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Abstract. Using modern technology, it is now common to survey microbial

communities by sequencing DNA or RNA extracted in bulk from a given envi-
ronment. Comparative methods are needed that indicate the extent to which

two communities differ given data sets of this type. UniFrac, a method built

around a somewhat ad hoc phylogenetics-based distance between two commu-
nities, is one of the most commonly used tools for these analyses. We provide

a foundation for such methods by establishing that if one equates a metage-

nomic sample with its empirical distribution on a reference phylogenetic tree,
then the weighted UniFrac distance between two samples is just the classical

Kantorovich-Rubinstein (KR) distance between the corresponding empirical

distributions. We demonstrate that this KR distance and extensions of it that
arise from incorporating uncertainty in the location of sample points can be

written as a readily computable integral over the tree, we develop Lp Zolotarev-
type generalizations of the metric, and we show how the p-value of the resulting

natural permutation test of the null hypothesis “no difference between the two

communities” can be approximated using a functional of a Gaussian process
indexed by the tree. We relate the L2 case to an ANOVA-type decomposition

and find that the distribution of its associated Gaussian functional is that of

a computable linear combination of independent χ2
1 random variables.

1. Introduction

Next-generation sequencing technology enables sequencing of hundreds of thou-
sands to millions of short DNA sequences in a single experiment. This has led
to a new methodology for characterizing the collection of microbes in a sample:
rather than using observed morphology or the results of culturing experiments, it
is possible to sequence directly genetic material extracted in bulk from the sample.
This technology has revolutionized the possibilities for unbiased surveys of environ-
mental microbial diversity, ranging from the human gut (Gill et al., 2006) to acid
mine drainages (Baker and Banfield, 2003). We consider statistical comparison
procedures for such DNA samples.

We have divided this introductory section into several subsections. We begin
in Subsection 1.1 by reviewing the definition of the UniFrac metrics that were de-
veloped by microbial ecologists wishing to assign biologically meaningful distances
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between two samples of the type described above. The metrics in the UniFrac
papers are defined without preliminary justification via formulas. Although it has
been pointed out that alternative ways of using phylogenetic branch lengths are pos-
sible (Faith et al., 2009), there has been little work investigating the extent to which
there is a deeper mathematical rationale for these measures of similarity. With the
goal of building a more mathematically founded comparative framework, we next
observe in Subsection 1.2 that DNA from an environmental sample for a given locus
can be thought of naturally as a probability distribution on a reference phylogenetic
tree, and proceed to propose in Subsection 1.3 the Kantorovich-Rubinstein (KR)
metric as a familiar and sensible way of comparing two such probability distribu-
tions. We then observe in the same subsection how the KR metric can be computed
via a simple integral over the tree, and that the resulting distance is in fact a gen-
eralization of UniFrac. The final subsection of the introduction, Subsection 1.4,
summarizes the other results of the paper.

1.1. Introduction to UniFrac and its variants. In 2005, Lozupone and Knight
introduced the UniFrac comparison measure to quantify the phylogenetic difference
between microbial communities (Lozupone and Knight, 2005), and in 2007 they and
others proposed a corresponding weighted version (Lozupone et al., 2007). These
two papers already have hundreds of citations in total, attesting to their centrality
in microbial community analysis. Researchers have used UniFrac to analyze micro-
bial communities on the human hand (Fierer et al., 2008), establish the existence
of a distinct gut microbial community associated with inflammatory bowel disease
(Frank et al., 2007), and demonstrate that host genetics play a major part in de-
termining intestinal microbiota (Rawls et al., 2006). The distance matrices derived
from the UniFrac method are also commonly employed as input to clustering al-
gorithms, including hierarchical clustering and UPGMA (Lozupone et al., 2007).
Furthermore, the distances are widely used in conjunction with ordination methods
such as PCA (Rintala et al., 2008) or to discover microbial community gradients
with respect to another factor, such as ocean depth (Desnues et al., 2008). Two
of the major metagenomic analysis “pipelines” developed in 2010 had a UniFrac
analysis as one of their endpoints (Caporaso et al., 2010; Hartman et al., 2010).
Recently, the software used to compute the two UniFrac distances has been re-
optimized for speed (Hamady et al., 2009) and it has been re-implemented in the
heavily used mothur (Schloss et al., 2009) microbial analysis software package.

The unweighted UniFrac distance uses only presence-absence data and is defined
as follows. Imagine that one has two samples A and B of sequences. Call each such
sequence a read. Build a phylogenetic tree on the total collection of reads. Color the
tree according to the samples – if a given branch sits on a path between two reads
from sample A, then it is colored red, if it sits on a path between two reads from
sample B, then it is colored blue, and if both, then it is colored gray. Unweighted
UniFrac is then the fraction of the total branch length that is “unique” to one of
the samples: that is, it is the fraction of the total branch length that is either red
or blue.

Weighted UniFrac incorporates information about the frequencies of reads from
the two samples by assigning weights to branch lengths that are not just 0 or 1.
Assume there are m reads from sample A and n reads in sample B, and that one
builds a phylogenetic tree T from all m+ n reads. For a given branch i of the tree
T , let `i be the length of branch i and define fi to be the branch length fraction of
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branch i, i.e. `i divided by the total branch length of T . The formula for the (raw)
weighted UniFrac distance between the two samples is

(1)

n∑
i=1

`i

∣∣∣∣Aim − Bi
n

∣∣∣∣
where Ai and Bi are the respective number of descendants of branch i from com-
munities A and B (Lozupone et al., 2007). In order to determine whether or not
a read is a descendant of a branch, one needs to prescribe a vertex of the tree as
being the root, but it turns out that different choices of the root lead to the same
value of the distance because

(2)

∣∣∣∣Aim − Bi
n

∣∣∣∣ =
1

2

(∣∣∣∣Aim − Bi
n

∣∣∣∣+

∣∣∣∣(1− Ai
m

)
−
(

1− Bi
n

)∣∣∣∣) ,
and the quantity on the right only depends on the proportions of reads in each
sample that are in the two disjoint subtrees obtained by deleting the branch i.
Also, similar reasoning shows that the (unweighted) UniFrac distance is, up to a
factor of 1

2 , given by a formula similar to (1) in which Ai/m (respectively, Bi/n)
is replaced by a quantity that is either 1 or 0 depending on whether there are any
descendants of branch i in the A (respectively, B) sample and the branch length
`i is replaced by the branch length fraction fi. Using the quantities `i rather than
the fi simply changes the resulting distance by a multiplicative constant, the total
branch length of the tree T .

The UniFrac distances can also be calculated using a pre-existing tree (rather
than one built from samples) by performing a sequence comparison such as BLAST
to associate a read with a previously identified sequence and attaching the read
to that sequence’s leaf in the pre-existing tree with an intervening branch of zero
length. Using this mapping strategy, the tree used for comparison can be adjusted
depending on the purpose of the analysis. For example, the user may prefer an
“ultrametric” tree (one with the same total branch length from the root to each
tip) instead of one made with branch lengths that reflect amounts of molecular
evolution.

With the goal of making reported UniFrac values comparable across different
trees, it is common to divide by a suitable scalar to fit them into the unit interval.
Given a rooted tree T and counts Ai and Bi as above, the raw weighted UniFrac
value is bounded above by

(3) D =

n∑
i=1

di

(
Ai
m

+
Bi
n

)
where di is the distance from the root to the leaf side of edge i (Lozupone et al.,
2007). When divided by this factor, the resulting scaled UniFrac values sit in
the unit interval; a scaled UniFrac value of one means that there exists a branch
adjacent to the root which can be cut to separate the two samples. Note that the
factor D, and consequently the “normalized” weighted UniFrac value, does depend
on the position of the root.

A statistical significance for the observed UniFrac distance is typically assigned
by a permutation procedure that we review here for the sake of completeness. The
idea of a permutation test (also known as a randomization test) goes back to Fisher
(1935) and Pitman (1937a,b, 1938) (see Good, 2005, and Edgington and Onghena,
2007, for guides to the more recent literature). Suppose that our data are a pair of
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samples with counts m and n, respectively, and that we have computed the UniFrac
distance between the samples. Imagine creating a new pair of “samples” by taking
some other subset of size m and its complement from the set of all m+n reads and
then computing the distance between the two new samples. The proportion of the(
m+n
m

)
choices of such pairs of samples that result in a distance larger than the one

observed in the data is an indication of the significance of the observed distance. Of
course, we can rephrase this procedure as taking a uniform random subset of reads
of size m and its complement (call such an object a random pair of pseudo-samples)
and asking for the probability that the distance between these is greater than the
observed one. Consequently, it is possible (and computationally necessary for large
values of m and n) to approximate the proportion/probability in question by taking
repeated independent choices of the random subset and recording the proportion
of choices for which there is a distance between the pair of pseudo-samples greater
than the observed one. We call the distribution of the distance between a random
pair of pseudo-samples produced from a uniform random subset of reads of size
m and its complement of size n the distribution of the distance under the null
hypothesis of no clustering.

1.2. Phylogenetic placement and probability distributions on a phyloge-
netic tree. We now describe how it is natural to begin with a fixed reference
phylogenetic tree constructed from previously-characterized DNA sequences and
then use likelihood-based phylogenetic methods to map a DNA sample from some
environment to a collection of phylogenetic placements on the reference tree. This
collection of placements can then be thought of as a probability distribution on the
reference tree.

In classical likelihood-based phylogenetics (see, e.g., Felsenstein, 2004), one has
data consisting of DNA sequences from a collection of taxa (e.g. species) and a
probability model for that data. The probability model is composed of two ingre-
dients. The first ingredient is a tree with branch lengths that has its leaves labeled
by the taxa and describes their evolutionary relationship. The second ingredient
is a Markovian stochastic mechanism for the evolution of DNA along the branches
of the tree. The parameters of the model are the tree (its topology and branch
lengths) and the rate parameters in the DNA evolution model. The likelihood of
the data is, as usual, the function on the parameter space that gives the proba-
bility of the observed data. The tree and rate parameters can be estimated using
standard approaches such as maximum likelihood or Bayesian methods.

Suppose one already has, from whatever source, DNA sequences for each of a
number of taxa along with a corresponding phylogenetic tree and rate parameters,
and that a new sequence, the query sequence, arrives. Rather than estimate a new
tree and rate parameters ab initio, one can take the rate parameters as given and
only consider trees that consist of the existing tree, the reference tree, augmented
by a branch of some length leading from an attachment point on the reference tree
to a leaf labeled by the new taxon. The relevant likelihood is now the conditional
probability of the query sequence as a function of the attachment point and the
pendant branch length, and one can input this likelihood into maximum likelihood
or Bayesian methods to estimate these two parameters. For example, a maximum-
likelihood point phylogenetic placement for a given query sequence is the maximum-
likelihood estimate of the attachment point of the sequence to the tree and the
pendant branch length leading to the sequence. Such estimates are produced by
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a number of algorithms (Von Mering et al., 2007; Monier et al., 2008; Berger and
Stamatakis, 2010; Matsen et al., 2010). Typically, if there is more than one query
sequence, then this procedure is applied in isolation to each one using the same
reference tree; that is, the taxa corresponding to the successive query sequences
aren’t used to enlarge the reference tree. By fixing a reference tree rather than
attempting to build a phylogenetic tree for the sample de novo, recent algorithms
of this type are able to place tens of thousands of query sequences per hour per
processor on a reference tree of one thousand taxa, with linear performance scaling
in the number of reference taxa.

For the purposes of this paper, the data we retain from a collection of point
phylogenetic placements will simply be the attachment locations of those place-
ments on the reference phylogenetic tree. We will call these positions placement
locations. We can identify such a set of placement locations with its empirical dis-
tribution, that is, with the probability distribution that places an equal mass at
each placement. In this way, starting with a reference tree and an aligned collection
of reads, we arrive at a probability distribution on the reference tree representing
the distribution of those reads across the tree.

One can also adopt a Bayesian perspective and assume a prior probability on
the branch to which the attachment is made, the attachment location within that
branch, and the pendant branch length, in order to calculate a posterior probability
distribution for a placement. For example, one might take a prior for the attachment
location and pendant branch length that assumes these quantities are independent,
with the prior distribution for the attachment location being uniform over branches
and uniform within each branch and with the prior distribution of the pendant
branch length being exponential or uniform over some range. By integrating out
the pendant branch length, one obtains a posterior probability distribution µi on
the tree for query sequence i. We call such a probability distribution a spread
placement: with priors such as those above, µi will have a density with respect to
the natural length measure on the tree. It is natural to associate this collection
of probability distributions with the single distribution

∑
i µi/n, where n is the

number of query sequences.
For large data sets, it is not practical to record detailed information about the

posterior probability distribution. Thus, in the implementation of Matsen et al.
(2010), the posterior probability is computed on a branch-by-branch basis for a
given query sequence by integrating out the attachment location and the pendant
branch length, resulting in a probability for each branch. The mass is then assigned
to the attachment location of the maximum likelihood phylogenetic placement.
With this simplification, we are back in the point placement situation in which
each query sequence is assigned to a single point on the reference tree and the
collection of assignments is described by the empirical distribution of this set of
points. However, since it is possible in principle to work with a representation of a
sample that is not just a discrete distribution with equal masses on each point, we
develop the theory in this greater level of generality.

1.3. Comparing probability distributions on a phylogenetic tree. If one
wished to use the standard Neyman-Pearson framework for statistical inference
to determine whether two metagenomic samples came from communities with the
“same” or “different” constituents, one would first have to propose a family of
probability distributions that described the outcomes of sampling from a range
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of communities and then construct a test of the hypothesis that the two samples
were realizations from the same distribution in the family. However, there does not
appear to be such a family of distributions that is appropriate in this setting.

We are thus led to the idea of representing the two samples as probability distri-
butions on the reference tree in the manner described in Subsection 1.2 above, cal-
culating a suitable distance between these two probability distributions, and using
the general permutation/randomization test approach reviewed in Subsection 1.1
above to assign a statistical significance to the observed distance.

The key element in implementing this proposal is the choice of a suitable metric
on the space of probability distributions on the reference tree. There are, of course,
a multitude of choices: Chapter 6 of Villani (2009) notes that there are “dozens
and dozens” of them and provides a discussion of their similarities, differences and
various virtues.

Perhaps the most familiar metric is the total variation distance, which is just the
supremum over all (Borel) sets of the difference between the masses assigned to the
set by the two distributions. The total variation distance is clearly inappropriate
for our purposes, however, because it pays no attention to the evolutionary distance
structure on the tree: if one took k point placements and constructed another set of
placements by perturbing each of the original placements by a tiny amount so that
the two sets of placements were disjoint, then the total variation distance between
the corresponding probability distributions would be 1, the largest it can be for
any pair of probability distributions, even though we would regard the two sets of
placements as being very close. Note that even genetic material from organisms of
the same species can result in slightly different placements due to genetic variation
within species and experimental error.

We therefore need a metric that is compatible with the evolutionary distance on
the reference tree and measures two distributions as being close if one is obtained
from the other by short range redistributions of mass. The Kantorovich-Rubinstein
(KR) metric, which can be defined for probability distributions on an arbitrary
metric space, is a classical and widely used distance that meets this requirement and,
as we shall see, has other desirable properties such as being easily computable on a
tree. It is defined rigorously in Section 2 below, but it can be described intuitively
in physical terms as follows. Picture each of two probability distributions on a
metric space as a collection of piles of sand with unit total mass: the mass of sand
in the pile at a given point is equal to the probability mass at that point. Suppose
that the amount of “work” required to transport an amount of sand from one
place to another is proportional to the mass of the sand moved times the distance
it has to travel. Then, the KR distance between two probability distributions
P and Q is simply the minimum amount of work required to move sand in the
configuration corresponding to P into the configuration corresponding to Q. It will
require little effort to move sand between the configurations corresponding to two
similar probability distributions, while more will be needed for two distributions
that place most of their respective masses on disjoint regions of the metric space. As
noted by Villani (2009), the KR metric is also called the Wasserstein(1) metric or, in
the engineering literature, the earth mover’s distance. We note that mass-transport
ideas have already been used in evolutionary bioinformatics for the comparison
and clustering of “evolutionary fingerprints”– such a fingerprint being defined by
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Kosakovsky Pond et al. (2010) as a discrete bivariate distribution on synonymous
and nonsynonymous mutation rates for a given gene.

1.4. Overview of results. Our first result is that in the phylogenetic case, the
optimization implicit in the definition of the KR metric can be done analytically,
resulting in a closed form expression that can be evaluated in linear time, thereby
enabling analysis of the volume of data produced by large-scale sequencing studies.
Indeed, as shown in Section 2, the metric can be represented as a single integral
over the tree, and for point placements the integral reduces to a summation with
a number of terms on the order of the number of placements. In contrast, com-
puting the KR metric in Euclidean spaces of dimension greater than one requires
a linear programming optimization step. It is remarkable that the point version of
this closed-form expression for the phylogenetic KR distance (although apparently
not the optimal mass transport justification for the distance) was intuited by mi-
crobial ecologists and is nothing other than the weighted UniFrac distance recalled
in Subsection 1.1 above.

We introduce Lp generalizations of the KR metric that are analogous to ones
on the real line due to Zolotarev (Rachev, 1991; Rachev and Rüschendorf, 1998)
– the KR metric corresponds to the case p = 1. Small p emphasizes primarily
differences due to separation of samples across the tree, while large p emphasizes
large mass differences. The generalizations do not arise from optimal mass transport
considerations, but we remark in Section 5.3 that the square of the p = 2 version
does have an appealing ANOVA-like interpretation as the amount of variability in
a pooling of the two samples that is not accounted for by the variability in each of
them.

We show in Section 3 that the distribution of the distance under the null hy-
pothesis of no clustering is approximately that of a readily-computable functional
of a Gaussian process indexed by the tree and that this Gaussian process is rela-
tively simple to simulate. Moreover, we observe that when p = 2 this approximate
distribution is that of the square root of a weighted sum of χ2

1 random variables.
We also discuss the interpretation of the resulting p value when the data exhibit
local “clumps” that might be viewed as being the objects of fundamental biological
interest rather than the individual reads.

In Section 5, we discuss alternate approaches to sample comparison. In par-
ticular, we remark that any probability distribution on a tree has a well-defined
barycenter (that is, center of mass) that can be computed effectively. Thus, one
can obtain a one point summary of the location of a sample by considering the
barycenter of the associated probability distribution and measure the similarity of
two samples by computing the distance between the corresponding barycenters.

2. The phylogenetic Kantorovich-Rubinstein metric

In this section we more formally describe the phylogenetic Kantorovich-Rubinstein
metric, which is a particular case of the family of Wasserstein metrics. We then
use a dual formulation of the KR metric to show that it can be calculated in linear
time via a simple integral over the tree. We also introduce a Zolotarev-type Lp

generalization.
Let T be a tree with branch lengths. Write d for the path distance on T . We

assume that probability distributions have been given on the tree via collections of
either “point” or “spread” placements as described in the introduction.
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For a metric space (S, r), the Kantorovich-Rubinstein distance Z(P,Q) between
two Borel probability distributions P and Q on S is defined as follows. Let R(P,Q)
denote the set of probability distributions R on the product space S × S with the
property R(A×S) = P (A) and R(S ×B) = Q(B) for all Borel sets A and B (that
is, the two marginal distributions of R are P and Q). Then,

(4) Z(P,Q) := inf

{∫
S×S

r(x, y)R(dx, dy) : R ∈ R(P,Q)

}
;

see, for example, (Rachev, 1991; Rachev and Rüschendorf, 1998; Villani, 2003;
Ambrosio et al., 2008; Villani, 2009).

There is an alternative formula for Z(P,Q) that comes from convex duality.
Write L for the set of functions f : S → R with the Lipschitz property |f(x) −
f(y)| ≤ r(x, y) for all x, y ∈ S. Then,

Z(P,Q) = sup

{∫
S

f(x)P (dx)−
∫
S

f(y)Q(dy) : f ∈ L
}
.

We can use this expression to get a simple explicit formula for Z(P,Q) when
(S, r) = (T, d).

Given any two points x, y ∈ T , let [x, y] be the arc between them. There is a
unique Borel measure λ on T such that λ([x, y]) = d(x, y) for all x, y ∈ T . We call
λ the length measure; it is analogous to Lebesgue measure on the real line. Fix a
distinguished point ρ ∈ T , which we call the “root” of the tree. For any f ∈ L
with f(ρ) = 0, there is an λ-a.e. unique Borel function g : T → [−1, 1] such that
f(x) =

∫
[ρ,x]

g(y)λ(dy) (this follows easily from the analogous fact for the real line).

Given x ∈ T , put τ(x) := {y ∈ T : x ∈ [ρ, y]}; that is, if we draw the tree with
the root ρ at the top of the page, then τ(x) is the sub-tree below x. Observe that
if h : T → R is a bounded Borel function and µ is a Borel probability distribution
on T , then we have the integration-by-parts formula∫

T

(∫
[ρ,x]

h(y)λ(dy)

)
µ(dx) =

∫
T×T

1[ρ,x](y)h(y) (µ⊗ λ)(dx, dy)

=

∫
T×T

1τ(y)(x)h(y) (µ⊗ λ)(dx, dy)

=

∫
T

h(y)

(∫
τ(y)

µ(dx)

)
λ(dy)

=

∫
T

h(y)µ(τ(y))λ(dy).

Thus, if P and Q are two Borel probability distributions on T and f : T → R is
given by f(x) =

∫
[ρ,x]

g(y)λ(dy), then we have∫
T

f(x)P (dx) =

∫
T

(∫
[ρ,x]

g(y)λ(dy)

)
P (dx) =

∫
T

g(y)P (τ(y))λ(dy),

and an analogous formula holds for Q. Hence,

Z(P,Q) = sup

{∫
T

g(y) [P (τ(y))−Q(τ(y))] λ(dy) : −1 ≤ g ≤ +1

}
.
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It is clear that the integral is maximized by taking g(y) = +1 (resp. g(y) = −1)
when P (τ(y)) > Q(τ(y)) (resp. P (τ(y)) < Q(τ(y))), so that

(5) Z(P,Q) =

∫
T

|P (τ(y))−Q(τ(y))| λ(dy).

Note that (1) is the special case of (5) that arises when P assigns point mass
1/m to each of the leaves in community A, and Q assigns point mass 1/n to each
of the leaves in community B.

We can generalize the definition of the Kantorovich-Rubinstein distance by tak-
ing any pseudo-metric f on [0, 1] and setting

Ẑf (P,Q) =

∫
T

f(P (τ(y)), Q(τ(y)))λ(dy).

This object will be a pseudo-metric on the space of probability distributions on the
tree T . All of the distances considered so far are of the form Ẑf for an appropriate
choice of the pseudo-metric f : (unweighted) UniFrac results from taking f(x, y)
equal to one when exactly one of x or y is greater than zero, and Z arises when
f(x, y) = |x− y|.

Furthermore, if f(x, y) = f(1 − x, 1 − y), then Ẑf is invariant with respect to
the position of the root. Indeed, for λ-a.e. y ∈ T we have that y is in the interior
of a branch and P ({y}) = Q({y}) = 0 so that, for such y, P (τ(y)) and P (T \ τ(y))
(respectively, Q(τ(y)) and Q(T \ τ(y))) are the P -masses (respectively, Q-masses)
of the two disjoint connected components of T produced by removing y (cf. (2)),
and hence these quantities don’t depend on the choice of the root. Because

f(P (τ(y)), Q(τ(y))) =
1

2
[f(P (τ(y)), Q(τ(y))) + f(1− P (τ(y)), 1−Q(τ(y)))]

=
1

2
[f(P (τ(y)), Q(τ(y))) + f(P (T \ τ(y)), Q(T \ τ(y)))]

for any y ∈ T , the claimed invariance follows upon integrating with respect to λ.
In particular, we see that the distance Z is invariant to the position of the root, a
fact that is already apparent from the original definition (4).

In a similar spirit, the KR distance as defined by the integral (5) can be gener-
alized to an Lp Zolotarev-type version by setting

Zp(P,Q) =

[∫
T

|P (τ(y))−Q(τ(y))|p λ(dy)

] 1
p∧1

for 0 < p <∞ – see (Rachev, 1991; Rachev and Rüschendorf, 1998) for a discussion
of analogous metrics for probability distributions on the real line. Intuitively, large
p gives more weight in the distance to parts of the tree which are maximally different
in terms of P andQ, while small p gives more weight to differences which require lots
of transport. The position of the root ρ also does not matter for this generalization
of Z by the argument above.
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As the following computations show, the distance Z2 has a particularly appealing
interpretation. First note that

Z2
2 (P,Q) =

∫
T

|P (τ(u))−Q(τ(u))|2 λ(du)

=

∫
T

P (τ(u))2 λ(du)− 2

∫
T

P (τ(u))Q(τ(u))λ(du)

+

∫
T

Q(τ(u))2 λ(du)

=

∫
T

[∫
T

∫
T

1[ρ,v](u)1[ρ,w](u)P (dv)P (dw)

]
λ(du)

− 2

∫
T

[∫
T

∫
T

1[ρ,v](u)1[ρ,w](u)P (dv)Q(dw)

]
λ(du)

+

∫
T

[∫
T

∫
T

1[ρ,v](u)1[ρ,w](u)Q(dv)Q(dw)

]
λ(du)

Now, the product of indicator functions 1[ρ,v]1[ρ,w] is the indicator function of
the set [ρ, v] ∩ [ρ, w]. This set is an arc of the form [ρ, v ∧ w], where v ∧ w is
the “most recent common ancestor” of v and w relative to the root ρ. Hence,∫
T

1[ρ,v](u)1[ρ,w](u)λ(du) = λ([ρ, v∧w]) is d(ρ, v∧w) = 1
2 [d(ρ, v) + d(ρ, w)− d(v, w)].

Therefore,

Z2
2 (P,Q) =

1

2

[
2

∫
T

∫
T

d(v, w)P (dv)Q(dw)

−
∫
T

∫
T

d(v, w)P (dv)P (dw)−
∫
T

∫
T

d(v, w)Q(dv)Q(dw)

]
.

Thus, if X ′, X ′′, Y ′, Y ′′ are independent T -valued random variables, where X ′, X ′′

both have distribution P and Y ′, Y ′′ both have distribution Q, then

(6) Z2
2 (P,Q) =

1

2
(E[d(X ′, Y ′)− d(X ′, X ′′)] + E[d(X ′, Y ′)− d(Y ′, Y ′′)]) .

Analogous to weighted UniFrac, one can “normalize” the KR distance by dividing
it by a scalar. The most direct analog of the scaling factor D used for weighted
UniFrac on a rooted tree (3) would be twice the KR distance between (P + Q)/2
and a point mass located at the root. This is an upper bound by the triangle
inequality. A root-invariant version would be to instead place the point mass at
the center of mass (that is, the barycenter, see Section 5.2) of (P +Q)/2, and twice
the analogous distance is again an upper bound by the triangle inequality. It is
clear from the original definition of the KR distance (4), that Z1(P,Q) is bounded
above by the diameter of the tree (that is, maxx,y d(x, y)) or by the possibly smaller
similar quantity that arises by restricting x and y to the respective supports of P
and Q. Any of these upper bounds can be used as a “normalization factor”.

The goal of introducing such normalizations would be to permit better compar-
isons between distances obtained for different pairs of samples. However, some care
needs to be exercised here: it is not clear how to scale distances for pairs on two very
different reference trees so that similar values of the scaled distances convey any
readily interpretable indication of the extent to which the elements of the two pairs
differ from each other in a “similar” way. In short, when comparing results between
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trees, the KR distance and its generalizations are more useful as test statistics than
as descriptive summary statistics.

3. Assessing significance

To assess the significance of the observed distance between the probability dis-
tributions associated with a pair of samples of placed reads of size m and n, we use
the permutation strategy mentioned in the Introduction for assigning significance
to observed UniFrac distances. In general, we have a pair of probability distri-
butions representing the pair of samples that is of the form P = 1

m

∑m
i=1 πi and

Q = 1
n

∑n
j=m+1 πj , where πk is a probability distribution on the reference tree T

representing the placement of the kth read in a pooling of the two samples (in the
point placement case, each πk is just a unit point mass at some point wk ∈ T ).
We imagine creating all

(
m+n
m

)
pairs of “samples” that arise from placing m of the

reads from the pool into one sample and the remaining n into the other, computing
the distances between the two probability distributions on the reference tree that
result from the placed reads, and determining what proportion of these distances
exceed the distance observed in the data. This proportion may be thought of as a
p-value for a test of the null hypothesis of no clustering against an alternative of
some degree of clustering.

Of course, for most values of m and n it is infeasible to actually perform this
exhaustive listing of distances. We observe that if I ⊆ {1, . . . ,m+n} is a uniformly
distributed random subset with cardinality m (that is, all

(
m+n
m

)
values are equally

likely), J := Ic is the complement of I, P̃ is the random probability distribution
1
m

∑
i∈I πi, and Q̃ is the random probability distribution 1

n

∑
j∈J πj , then the pro-

portion of interest is simply the probability that the distance between P̃ and Q̃
exceeds the distance between P and Q. We can approximate this probability in
the obvious way by taking independent replicates of (I, J) and hence of (P̃ , Q̃) and
looking at the proportion of them that result in distances greater than the observed
one. We illustrate this Monte Carlo approximation procedure in Section 4.

3.1. Gaussian approximation. Although the above Monte Carlo approach to
approximating a p-value is conceptually straightforward, it is tempting to explore
whether there are further approximations to the outcome of this procedure that
give satisfactory results but require less computation.

Recall that π1, . . . , πm+n is the pooled collection of placed reads and that P̃ =
1
m

∑
i∈I πi and Q̃ = 1

n

∑
j∈J πj , where I is a uniformly distributed random subset

of {1, . . . ,m+ n} and J is its complement. Write

Gk(u) := πk(τ(u)) for any u ∈ T, 1 ≤ k ≤ m+ n,

where we recall that τ(u) is the tree below u relative to the root ρ. Define a
T -indexed stochastic process X = (X(u))u∈T by

X(u) := P̃ (τ(u))− Q̃(τ(u))

=
1

m

∑
i∈I

Gi(u)− 1

n

∑
j∈J

Gj(u).

Then,

Zp(P̃ , Q̃) =

[∫
T

|X(u)|p λ(du)

] 1
p∧1

.
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If Hk, 1 ≤ k ≤ m + n, is the indicator random variable for the event {k ∈ I},
then

X(u) =

m+n∑
k=1

[(
1

m
+

1

n

)
Hk −

1

n

]
Gk(u).

Writing E, V, and C for expectation, variance, and covariance, we have

E[Hi] =
m

m+ n
,

V[Hi] =
m

m+ n

n

m+ n
,

and

C[Hi, Hj ] = − 1

m+ n− 1

m

m+ n

n

m+ n
, i 6= j.

It follows that

E[X(u)] = 0

and

C[X(u), X(v)]

=
1

mn

∑
i

Gi(u)Gi(v)− 1

m+ n− 1

∑
i 6=j

Gi(u)Gj(v)


≈ 1

mn

∑
i

Gi(u)Gi(v)− 1

m+ n

∑
i,j

Gi(u)Gj(v)


=

1

mn

∑
i

Gi(u)Gi(v)− (m+ n)

(
1

m+ n

∑
i

Gi(u)

) 1

m+ n

∑
j

Gj(v)


=

1

mn

[∑
i

(
Gi(u)− Ḡ(u)

) (
Gi(v)− Ḡ(v)

)]
=: Γ(u, v)

when m+ n is large, where Ḡ(u) := 1
m+n

∑
kGk(u).

Remark 3.1. In the case of point placements, with the probability distribution πk
being the point mass at wk ∈ T for 1 ≤ k ≤ m+ n, then

Γ(u, v) =
1

mn

[∑
k

#{k : u ∈ [ρ, wk], v ∈ [ρ, wk]}

− 1

m+ n
#{k : u ∈ [ρ, wk]}#{k : v ∈ [ρ, wk]}

]
.

By a standard central limit theorem for exchangeable random variables (see,
e.g., Theorem 16.23 of Kallenberg, 2001), the process X is approximately Gaussian
with covariance kernel Γ when m+ n is large. A straightforward calculation shows
that we may construct a Gaussian process ξ with covariance kernel Γ by taking
independent standard Gaussian random variables η1, . . . , ηm+n and setting

ξ(u) =
1√
mn

[∑
i

Gi(u)ηi −
1

m+ n

(∑
i

Gi(u)

)(∑
i

ηi

)]
.
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It follows that the distribution of Zp(P̃ , Q̃) is approximately that of the random
variable

(7)

[∫
T

|ξ(u)|p λ(du)

] 1
p∧1

.

One can repeatedly sample the normal random variates ηi and numerically integrate
(7) to approximate the distribution of this integral. In the example application of
Section 4, this provides a reasonable though not perfect approximation (Figure 3).

There is an even simpler approach for the case p = 2. Let µ2
k, k = 1, 2, . . .,

and ψk, k = 1, 2, . . ., be the positive eigenvalues and corresponding normalized
eigenfunctions of the non-negative definite, self-adjoint, compact operator on L2(λ)
that maps the function f to the function

∫
T

Γ(·, v)f(v)λ(dv). The functions µkψk,
k = 1, 2, . . ., form an orthonormal basis for the reproducing kernel Hilbert space
associated with Γ and the Gaussian process ξ has the Karhunen-Loève expansion

ξ(u) =
∑
k

µkψk(u)ηk,

where ηk, k = 1, 2, . . ., are independent standard Gaussian random variables – see
(Jain and Marcus, 1978) for a review of the theory of reproducing kernel Hilbert
spaces and the Karhunen-Loève expansion.

Therefore, ∫
T

|ξ(u)|2 λ(du) =
∑
k

µ2
kη

2
k,

and the distribution of Z2
2 (P̃ , Q̃) is approximately that of a certain positive linear

combination of independent χ2
1 random variables.

The eigenvalues of the operator associated with Γ can be found by calculating the
eigenvalues of a related matrix as follows. Define an (m+n)×(m+n) non-negative
definite, self-adjoint matrix M given by

Mij :=
1

mn

∫
T

(
Gi(u)− Ḡ(u)

) (
Gj(u)− Ḡ(u)

)
λ(du).

Note that if we have point placements at locations wk ∈ T for 1 ≤ k ≤ m+ n as
in Remark 3.1, then

M =
1

mn

(
I − 1

m+ n
11>

)
N

(
I − 1

m+ n
11>

)
,

where I is the identity matrix, 1 is the vector which has 1 for every entry, and the
matrix N has (i, j) entry given by the distance from the root to the “most recent
common ancestor” of wi and wj .

Suppose that x is an eigenvector of M for the positive eigenvalue ν2. Set

(8) ψ(u) :=
∑
j

(
Gj(u)− Ḡ(u)

)
xj .
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Observe that∫
T

Γ(u, v)ψ(v)λ(dv)

=
1

mn

∫
T

[∑
i

(
Gi(u)− Ḡ(u)

) (
Gi(v)− Ḡ(v)

)]∑
j

(
Gj(v)− Ḡ(v)

)
xj λ(dv)

=
∑
i

(
Gi(u)− Ḡ(u)

)∑
j

Mijxj

=
∑
i

(
Gi(u)− Ḡ(u)

)
ν2xi

= ν2ψ(u),

and so ψ is an (unnormalized) eigenfunction of the operator on L2(λ) defined by
the covariance kernel Γ with eigenvalue ν2.

Conversely, suppose that µ2 is an eigenvalue of the operator with eigenfunction
φ. Set

xj :=

∫
T

(
Gj(v)− Ḡ(v)

)
φ(v)λ(dv).

Then, ∑
j

Mijxj

=
∑
j

1

mn

∫
T

(
Gi(u)− Ḡ(u)

) (
Gj(u)− Ḡ(u)

)
λ(du)

×
∫
T

(
Gj(v)− Ḡ(v)

)
φ(v)λ(dv)

=

∫
T

(
Gi(u)− Ḡ(u)

)
×

∫
T

1

mn

∑
j

(
Gj(u)− Ḡ(u)

) (
Gj(v)− Ḡ(v)

)
φ(v)λ(dv)

 λ(du)

=

∫
T

(
Gi(u)− Ḡ(u)

) [∫
T

Γ(u, v)φ(v)λ(dv)

]
λ(du)

=

∫
T

(
Gi(u)− Ḡ(u)

)
µ2φ(u)λ(du)

= µ2xi,

so that µ2 is an eigenvalue of M with (unnormalized) eigenvector of x.
It follows that the positive eigenvalues of the operator associated with Γ coincide

with those of the matrix M and have the same multiplicities.
However, we don’t actually need to compute the eigenvalues of M to implement

this approximation. BecauseM is orthogonally equivalent to a diagonal matrix with
the eigenvalues of M on the diagonal, we have from the invariance under orthogonal
transformations of the distribution of the random vector η := (η1, . . . , ηm+n)> that∑
k µ

2
kη

2
k has the same distribution as η>Mη. Thus, the distribution of the random

variable Z2
2 (P̃ , Q̃) is approximately that of

∑
ijMijηiηj .
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One might hope to go even further in the p = 2 case and obtain an analytic
approximation for the distribution

∑
k µ

2
kη

2
k or a useful upper bound for its right

tail. It is shown in (Hwang, 1980) that if we order the positive eigenvalues so that
µ2
1 ≥ µ2

2 ≥ . . . and assume that µ2
1 > µ2

2, then

P

{∑
k

µ2
kη

2
k ≥ r

}
∼
√

2

π
µ1

∏
k>1

(
1− µ2

k

µ2
1

)− 1
2

r−
1
2 exp

(
− r

2µ2
1

)
,

in the sense that the ratio of the two sides converges to one as r →∞. It is not clear
what the rate of convergence is in this result and it appears to require a detailed
knowledge of the spectrum of the matrix M to apply it.

Gaussian concentration inequalities such as Borell’s inequality (see, for example,
Section 4.3 of (Bogachev, 1998)) give bounds on the right tail that only require a

knowledge of E[(
∑
k µ

2
kη

2
k)

1
2 ] and µ2

1, but these bounds are far too conservative for
the example in Section 4.

There is a substantial literature on various series expansions of densities of posi-
tive linear combinations of independent χ2

1 random variables. Some representative
papers are (Robbins and Pitman, 1949; Gurland, 1955; Pachares, 1955; Ruben,
1962; Kotz et al., 1967; Gideon and Gurland, 1976). However, it seems that ap-
plying such results would also require a detailed knowledge of the spectrum of the
matrix M as well as a certain amount of additional computation to obtain the
coefficients in the expansion and then to integrate the resulting densities, and this
may not be warranted given the relative ease with which it is possible to repeatedly
simulate the random variable η>Mη.

Even though these more sophisticated ways of using the Gaussian approximation
may not provide tight bounds, the process of repeatedly sampling normal random
variates ηi and numerically integrating the resulting Gaussian approximation (7)
does provide a useful way of approximating the distribution obtained by shuffling.
This approximation is significantly faster to compute for larger collections of place-
ments. For example, we considered a reference tree with 652 leaves and 5 samples
with sizes varying from 3372 to 15633 placements. For each of the 10 pairs of sam-
ples, we approximated the distribution of the Z1 distance under the null hypothesis
of no difference by both creating “pseudo-samples” via random assignment of reads
to each member of the pair (“shuffling”) and by simulating the Gaussian process
functional with a distribution that approximates that of the Z1 distance between
two such random pseudo-samples. We used 1000 Monte Carlo steps for both ap-
proaches. The (shuffle, Gaussian) run-times in seconds ranged from (494.1, 36.8)
to (36.1, 2.2); in general, the Gaussian procedure ran an order of magnitude faster
than the shuffle procedure.

3.2. Interpretation of p-values. Although the above-described permutation pro-
cedure is commonly used to assess the statistical significance of an observed dis-
tance, we discuss in this section how its interpretation is not completely straight-
forward.

In terms of the classical Neyman-Pearson framework for hypothesis testing, we
are computing a p-value for the null hypothesis that an observed subdivision of a set
of m+n objects into two groups of size m and n looks like a uniformly distributed
random subdivision against the complementary alternative hypothesis. For many
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purposes, this turns out to be a reasonable proxy for the imperfectly-defined notion
that the two groups are “the same” rather than “different.”

However, a rejection of the null hypothesis may not have the interpretation that
is often sought in the microbial context – namely, that the two collections of reads
represent communities that are different in biologically relevant ways. For example,
assume that m = n = NK for integers N and K. Suppose that the placements
in each sample are obtained by independently laying down N points uniformly
(that is, according to the normalized version of the measure λ) and then putting
K placements at each of those points. The stochastic mechanism generating the
two samples is identical and they are certainly not different in any interesting way,
but if K is large relative to N the resulting collections of placements will exhibit a
substantial “clustering” that will be less pronounced in the random pseudo-samples,
and the randomization procedure will tend to produce a “significant” p-value for
the observed KR distance if the clustering is not taken into account.

These considerations motivate consideration of randomization tests performed
on data which is “clustered” on an organismal level. Clustering reads by organism
is a difficult task and an active research topic (White et al., 2010). A thoroughgoing
exploration of the effect of different clustering techniques is beyond the scope of this
paper, but we examine the impact of some simple approaches in the next section.

4. Example application

Cyanophora_paradoxa_
chloroplast_Galdieria_sulphuraria.AY541295_

chloroplast_Galdieria_sulphuraria.AY541294_
chloroplast_Cyanidium_caldarium.AY541290_

chloroplast_Bumilleriopsis_filiformis.X79223_
Bigelowiella_natans_
Chlorella_vulgaris_

chloroplast_Chlorella_vulgaris.EU043044_
chloroplast_Pseudochlorella_sp._CCAP_211_1A.EU043048_

Nostoc_sp._PCC_7120

Fremyella_diplosiphon.FDIPSBA_
Cyanothece_sp._ATCC_51142.CAU39610_
Cyanothece_sp._PCC_8801

Synechococcus_sp._PCC_7335
Synechococcus_sp._JA-2-3Ba___

Cyanothece_sp._PCC_7425

Prochlorothrix_hollandica.X14523_
Synechococcus_sp._WH_5701_

Synechococcus_sp._WH_8102

Synechococcus_sp._CC9605
Synechococcus_sp._WH_7803__
Synechococcus_sp._RS9917__
Cyanobium_sp._PCC_70

Prochlorococcus_marinus_subsp._pastoris_str._CCMP1986
Prochlorococcus_marinus_str._MIT_9301_
Prochlorococcus_marinus_str._MIT_9312

Prochlorococcus_marinus_subsp._marinus_str._CCMP1375
chloroplast_Pavlova_lutheri.AY119755_
chloroplast_Imantonia_rotunda.EU851963_

chloroplast_Phaeocystis_antarctica.AY119756_
chloroplast_Pleurochrysis_carterae.AY119757_
chloroplast_Ostreococcus_sp._RCC344.EU851961_

uncultured_Prasinophyceae.AY509537_
plastid_uncultured_Prasinophyceae.AY176639_

Pmultiseries_psbA_

chloroplast_Heterosigma_akashiwo.AY119759_
chloroplast_Dictyota_dichotoma_var._linearis.AY422632_
plastid_Padina_japonica.AY430360_

chloroplast_Padina_crassa.AY422643_
chloroplast_Erythrotrichia_carnea.AY119739_

chloroplast_Bangiopsis_subsimplex.AY119736_
plastid_Carpoblepharis_flaccida.DQ787643_

Porphyra_purpurea_
0.1

Figure 1. Tree with branches thickened as a linear function of
the number of placements in the control sample placed on that
branch.

To demonstrate the use of the Zp metric in an example application, we inves-
tigated variation in expression levels for the psbA gene for an experiment in the
Sargasso Sea (Vila-Costa et al., 2010). Metatranscriptomic data was downloaded
from the CAMERA website (http://camera.calit2.net/), and a psbA alignment was

http://camera.calit2.net/
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Figure 2. Tree as in Figure 1 but for the DMSP-treated sample.

supplied by Robin Kodner. Searching and alignment was performed using HMMER
(Eddy, 1998), a reference tree was inferred using RAxML (Stamatakis, 2006), and
phylogenetic placement was performed using pplacer (Matsen et al., 2010). The
calculations presented here were performed using the “guppy” binary available as
part of the pplacer suite of programs (http://matsen.fhcrc.org/pplacer).

Visual inspection of the trees fattened by number of placements showed the same
overall pattern with some minor differences (Figure 1 and 2). However, application
of the KR metric revealed a significant difference between the two samples. The
value of Z1 for this example (using spread placements and normalizing by total
tree length) was 0.006601. This is far out on the tail of the distribution (Figure 3),
and is in fact larger than any of the 1000 replicates generated via shuffling or the
Gaussian-based approximation.

Such a low p-value prompts the question of whether the center of mass of the
two distributions is radically different in the two samples (see Section 5.2). In this
case, the answer is no, as the two barycenters are quite close together (Figure 4;
see Section 5.2).

It was not intuitively obvious to us how varying p would affect the distribution
of the Zp distance under the null hypothesis of no clustering. To investigate this
question, we plotted the observed distance along with boxplots of the null distribu-
tion for a collection of different p (Figure 5). It is apparent that there is a consistent
conclusion over a wide range of values of p.

One can also visualize the difference between the two samples by drawing the
reference tree with branch thicknesses that represent the minimal amount of “mass”
that flows through that branch in the optimal transport of mass implicit in the
computation of Z1(P,Q) and with branch shadings that indicate the sign of the
movement (Figure 6).

Next we illustrate the impact of simple clustering on randomization tests for
KR. The clustering for these tests will be done by rounding placement locations
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Figure 3. Comparison of the distribution of Z1 and Z2 distances
obtained by shuffling, Gaussian approximation, and the observed
value (marked with x) for the example data set.
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Figure 4. Dendrogram with barycenters marked. Circle is the
control sample, and star is the sample treated with DMSP.
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Figure 5. Plot showing sample (point) and randomized ranges
(box-and-whisker). Outliers eliminated for clarity. For each p, the
distribution was rescaled by subtracting the mean and dividing by
the standard deviation.

using two parameters: the mass cutoff C and the number of significant figures S as
follows. Placement locations with low probability mass for a given read are likely
to be error-prone (Matsen et al., 2010), thus the first step is to through away those
locations associated with posterior probability or “likelihood weight ratio” below C.
The second step is to round the placement attachment location and pendant branch
length by multiplying them by 10S and rounding to the nearest integer. The reads
whose placements are identical after this rounding process are then said to cluster
together. We will call the number of reads in a given cluster the “multiplicity” of
the cluster.

After clustering, various choices can be made about how to scale the mass dis-
tribution according to multiplicity. Again, each cluster has some multiplicity and
a distribution of mass across the tree according to likelihood weight. One option
(which we call straight multiplicity) is to multiply the mass distribution by the mul-
tiplicity. Alternatively, one might forget about multiplicity by distributing a unit
of mass for each cluster irrespective of multiplicity. Or one might do something
intermediate by multiplying by a transformed version of multiplicity; in this case
we transform by the hyperbolic arcsine, asinh.

We calculated distances and p-values for several clustering parameters and mul-
tiplicity uses (Table 1). To randomize a clustered collection of reads, we reshuffled
the labels on the clusters, maintaining the groupings of the reads within the clusters;
thus, all the placements in a given cluster were assigned to the same pseudo-sample.
The distances do not change very much under different collections of clustering pa-
rameters, as there is little redistribution of mass. On the other hand, the p-values
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Figure 6. A tree displaying the optimal movement of mass for the
KR metric. When moving from the first probability distribution
to the second, branches marked in gray have mass moving towards
the root, while those marked in black have mass moving towards
the leaves. Thickness shows the quantity of mass moving through
that branch.

S C strict Z1 strict p asinh Z1 asinh p unit Z1 unit p
1 0.01 0.006578 0.0087 0.007016 0.0008 0.007054 0.0003
1 0.05 0.006584 0.0218 0.006986 0.0018 0.007036 0.0005
1 0.1 0.006562 0.035 0.007214 0.001 0.007322 0.0005
2 0.01 0.006601 0.0018 0.007076 0.0003 0.007281 0.0001
2 0.05 0.006587 0.0029 0.00696 0.0005 0.007111 0.0002
2 0.1 0.006592 0.0039 0.007088 0.0003 0.007423 0
3 0.01 0.006601 0.0017 0.006806 0.0005 0.006922 0.0002
3 0.05 0.006602 0.0018 0.006719 0.0003 0.006695 0.0001
3 0.1 0.006612 0.0012 0.006775 0.0003 0.006816 0.0001

Table 1. Distances (Z1) and significance levels (p) for various
choices of clustering parameters and multiplicity interpretations
described in the text for 10,000 randomizations.

are different, because under our randomization strategy mass is relabeled on a
cluster-by-cluster level. The different choices represented in this table represent
different perspectives on what the multiplicities mean. The “strict” multiplicity-
based p-value corresponds to interpreting the multiplicity with which reads appear
as meaningful, the unit cluster p-value corresponds to interpreting the multiplicities
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as noise, and the asinh-transformed multiplicity sits somewhere in between. The p-
value with no clustering (as above, Z1 = 0.006601, with a p-value of 0) corresponds
to interpreting reads as being sampled one at a time from a distribution.

The choice of how to use multiplicity information depends on the biological set-
ting. There is no doubt that increased organism abundance increases the likelihood
of sampling a read from that organism, however the relationship is almost certainly
nonlinear and dependent on species and experimental setup (Morgan et al., 2010).
How multiplicities are interpreted and treated in a specific instance is thus a deci-
sion that is best left to the researcher using his/her knowledge of the environment
being studied and the details of the experimental procedure.

5. Discussion

5.1. Other approaches.

5.1.1. Operational Taxonomic Units (OTUs). The methods described in this pa-
per are complementary to comparative methods based on “operational taxonomic
units” (OTUs). OTUs are groups of reads which are assumed to represent the reads
from a single species, and are typically heuristically defined using a fixed percent-
age sequence similarity cutoff. A comparative analysis then proceeds by comparing
the frequency of various OTUs in the different samples. There has been some
contention about whether OTU-based methods or phylogenetic based methods are
superior– e.g. (Schloss, 2008) and (Lozupone et al., 2010)– but most studies use a
combination of both, and the major software packages implement both. A recent
comparative study for distances on OTU abundances can be found in a paper by
Kuczynski et al. (2010).

5.1.2. Other phylogenetic approaches. There are a number of ways to compare mi-
crobial samples in a phylogenetic context besides the method presented here. One
popular means of comparing samples is the “parsimony test,” by which the most
parsimonious assignment of internal nodes of the phylogenetic tree to communities
is found; the resulting parsimony score is interpreted as a measure of difference be-
tween communities (Slatkin and Maddison, 1989; Schloss and Handelsman, 2006).
Another interesting approach is to consider a “generalized principal components
analysis” whereby the tree structure is incorporated into the process of finding prin-
cipal components of the species abundances (Bik et al., 2006; Purdom, 2008). The
Kantorovich-Rubinstein metric complements these methods by providing a means
of comparing samples that leverages established statistical methodology, that takes
into account uncertainty in read location, and can be visualized directly on the tree.

There are other metrics that could be used to compare probability distributions
on a phylogenetic tree. The metric on probability distributions that is most familiar
to statisticians other than the total variation distance is probably the Prohorov
metric and so they may feel more comfortable using it rather than the KR metric.
However, the Prohorov metric is defined in terms of an optimization that does not
appear to have a closed form solution on a tree and, in any case, for a compact
metric space there are results that bound the Prohorov metric above and below by
functions of the KR metric (see Problem 3.11.2 of Ethier and Kurtz; 1986 ) so the
two metrics incorporate very similar information about the differences between a
pair of distributions.



22 STEVEN N. EVANS AND FREDERICK A. MATSEN

5.2. The barycenter of a probability distribution on a phylogenetic tree.
It can be useful to compare probability distributions on a metric space by calcu-
lating a suitably defined “center of mass” that provides a single point summary for
each distribution. Recall the standard fact that if P is a probability distribution
on a Euclidean space such that

∫
|y−x|2 P (dy) is finite for some (and hence all) x,

then the function x 7→
∫
|y − x|2 P (dy) has a unique minimum at x0 =

∫
y P (dy).

A probability distribution P on an arbitrary metric space (S, r) has a “center of
mass” or barycenter at x0 if

∫
r(x, y)2 P (dy) is finite for some (and hence all x)

and the function x 7→
∫
r(x, y)2 P (dy) has a unique minimum at x0. In terms of

the concepts introduced above, the barycenter is the point x that minimizes the Z2

distance between the point mass δx and P .
Barycenters need not exist for general metric spaces. However, it is well-known

that barycenters do exist for probability distributions on Hadamard spaces. A
Hadamard space is a simply connected complete metric space in which there is a
suitable notion of the length of a path in the space, the distance between two points
is the infimum of the lengths of the paths joining the points, and the space has non-
positive curvature in an appropriate sense – see (Burago et al., 2001). Equivalently,
a Hadamard space is a complete CAT(0) space in the sense of (Bridson and Hae-
fliger, 1999).

It is a straightforward exercise to check that a tree is a Hadamard space – see
Example II.1.15(4) of (Bridson and Haefliger, 1999) and note the remark after
Definition II.1.1 of (Bridson and Haefliger, 1999) that a Hadamard space is the
same thing as a complete CAT(0) space. Note that CAT(0) spaces have already
made an appearance in phylogenetics in the description of spaces of phylogenetic
trees (Billera et al., 2001).

The existence of barycenters on the tree (T, d) may also be established directly as
follows. As a continuous function on a compact metric space, the function f : T →
R+ defined by f(x) :=

∫
T
d(x, y)2 P (dy) achieves its infimum. Suppose that the

infimum is achieved at two points x′ and x′′. Define a function γ : [0, d(x′, x′′)] →
[x′, x′′], where [x′, x′′] ⊆ T is the arc between x′ and x′′, by the requirement that
γ(t) is the unique point in [x′, x′′] that is distance t from x′. It is straightforward
to check that the composition f ◦ γ is strongly convex; that is,

(f ◦ γ)(αr + (1− α)s) < α(f ◦ γ)(r) + (1− α)(f ◦ γ)(s)

for 0 < α < 1 and r, s ∈ [0, d(x′, x′′)]. In particular, f(γ(d(x′, x′′)/2)) = (f ◦
γ)(d(x′, x′′)/2) < (f(x′) + f(x′′))/2, contradicting the definitions of x′ and x′′.
Thus, a probability distribution on a tree possesses a barycenter in the above sense.

We next consider how to compute the barycenter of a probability distribution
P on the tree (T, d). For each point u ∈ T there is the associated set of directions
in which it is possible to proceed when leaving u. There is one direction for every
connected component of T \ {u}. Thus, there is just one direction associated with
a leaf, two directions associated with a point in the interior of a branch, and k
associated with a vertex of degree k. Given a point u and a direction δ, write
T (u, δ) for the subset of T consisting of points v 6= u such that the unique path
connecting u and v departs u in the direction δ, set

D(u, δ) := −
∫
T (u,δ)

d(u, y)P (dy) +

∫
T\T (u,δ)

d(u, y)P (dy),
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and note that

lim
v

1

d(u, v)

[∫
T

d(v, y)2 P (dy)−
∫
T

d(u, y)2 P (dy)

]
= 2D(u, δ),

where the limit is taken over v → u, v ∈ T (u, δ). Note that if u is in the interior
of a branch [a, b] and b is in the direction δ from u, u is in the direction α from a,
and u is in the direction β from b, then

D(u, δ) = −
∫
T\T (b,β)

d(u, y)P (dy)−
∫
(u,b)

d(u, y)P (dy)

+

∫
T\T (a,α)

d(u, y)P (dy) +

∫
(a,u)

d(u, y)P (dy)

= −
∫
T\T (b,β)

d(a, y)P (dy) + d(a, u)P (T \ T (b, β))

−
∫
(u,b)

d(a, y)P (dy) + d(a, u)P ((u, b))

+

∫
T\T (a,α)

d(a, y)P (dy) + d(a, u)P (T \ T (a, α))

+ d(a, u)P ((a, u))−
∫
(a,u)

d(a, y)P (dy)

= D(a, α) + d(a, u).

If for some vertex u of the reference tree, D(u, δ) is greater than 0 for all directions
δ associated with u, then u is the barycenter (this case includes the trivial one in
which u is a leaf and all the mass of P is concentrated on u). If there is no such
vertex, then there must be a unique pair of neighboring vertices a and b such that
D(a, α) < 0 and D(b, β) < 0, where α is the direction from a pointing towards b
and β is the direction from b pointing towards a. In that case, the barycenter must
lie on the branch between a and b, and it follows from the calculations above that
the barycenter is the point u ∈ (a, b) such that d(a, u) = −D(a, α).

5.3. Z2
2 (P,Q) and ANOVA. In this section we demonstrate how Z2

2 (P,Q) can
be interpreted as a difference between the pooled average of pairwise distances and
the average for each sample individually.

As above, let π1, . . . , πm (resp. πm+1, . . . , πm+n) be the placements in the first
(resp. second) sample, so that each πk is a probability distribution on the tree T ,

P = 1
m

∑m
i=1 πi, and Q = 1

n

∑m+n
j=m+1 πj . Set

R :=
m

m+ n
P +

n

m+ n
Q =

1

m+ n

∑
k

πk.

Recall the T -valued random variables X ′, X ′′, Y ′, Y ′′ that appeared in (6). If I ′, I ′′

are {0, 1}-valued random variables with P{I ′ = 1} = P{I ′′ = 1} = m
m+n and

X ′, X ′′, Y ′, Y ′′, I ′, I ′′ are independent, then defining Z ′, Z ′′ by Z ′ = X ′ on the
event {I ′ = 1} (resp. Z ′′ = X ′′ on the event {I ′′ = 1}) and Z ′ = Y ′ on the event
{I ′ = 0} (resp. Z ′′ = Y ′′ on the event {I ′′ = 0}) gives two T -valued random
variables with common distribution R.
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It follows readily from (6) that

Z2
2 (P,Q)

=
1

2

(m+ n)2

mn

[
E [d(Z ′, Z ′′)]−

{
m

m+ n
E [d(X ′, X ′′)] +

n

m+ n
E [d(Y ′, Y ′′)]

}]
=

1

2

(m+ n)2

mn

[∫
T

∫
T

d(v, w)R(dv)R(dw)

−
{

m

m+ n

∫
T

∫
T

d(v, w)P (dv)P (dw) +
n

m+ n

∫
T

∫
T

d(v, w)Q(dv)Q(dw)

}]
.

Thus, Z2
2 (P,Q) gives an indication of the “variability” present in the pooled col-

lection πk, 1 ≤ k ≤ m + n, that is over and above the “variability” in the two
collections πi, 1 ≤ i ≤ m, and πj , m+ 1 ≤ j ≤ m+ n.

6. Conclusion

As sequencing becomes faster and less expensive, it will become increasingly
common to have a collection of large data sets for a given gene. Phylogenetic
placement can furnish an evolutionary context for query sequences, resulting in each
data set being represented as a probability distribution on a phylogenetic tree. The
Kantorovich-Rubinstein metric is a natural means to compare those probability
distributions. In this paper we showed that the weighted UniFrac metric is the
phylogenetic Kantorovich-Rubinstein metric for point placements. We explored
Zolotarev-type generalizations of the KR metric, showed how to approximate the
limiting distribution and made connections with the analysis of variance.

The phylogenetic KR metric and its generalizations can be used any time one
wants to compare two probability distributions on a tree. However, our software im-
plementation is designed with metagenomic and metatranscriptomic investigations
in mind; for this reason it is tightly integrated with the phylogenetic placement
software pplacer (Matsen et al., 2010). With more than two samples, principal
components analysis and hierarchical clustering can be applied to the pairwise dis-
tances to cluster environments based on the KR distances as has been done with
UniFrac (Lozupone and Knight, 2005; Lozupone et al., 2008; Hamady et al., 2009).
We have recently developed versions of these techniques which leverage the special
structure of this data (Matsen and Evans, 2011).

Another potential future extension not explored here is to partition the tree into
subsets in a principal components fashion for a single data set. Recall that (8) gives
a formula for the eigenfunctions of the covariance kernel Γ given the eigenvectors
of M . For any k, one could partition the tree into subsets based on the sign of
the product of the first k eigenfunctions, which would be analogous to partition-
ing Euclidean space by the hyperplanes associated with the first k eigenvectors in
traditional principal components analysis.

Future methods will also need to take details of the DNA extraction procedure
into account. Recent work shows that current lab methodology is unable to recover
absolute mixture proportions due to differential ease of DNA extraction between
organisms (Morgan et al., 2010). However, relative abundance between samples
for a given organism with a fixed laboratory protocol potentially can be measured,
assuming consistent DNA extraction protocols are used. An important next step
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is to incorporate such organism-specific biases into the sort of analysis described
here.



26 STEVEN N. EVANS AND FREDERICK A. MATSEN

Acknowledgements

The authors are grateful to Robin Kodner for her psbA alignment, the Armbrust
lab for advice and for the use of their computing cluster, Mary Ann Moran and
her lab for allowing us to use her metagenomic sample from the DMSP experiment,
David Donoho for an interesting suggestion, Steve Kembel for helpful conversations,
and Aaron Gallagher for programming support.

The manuscript was greatly improved by suggestions from one of the editors, an
associate editor, and two anonymous reviewers.

References
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