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Abstract

Existing approaches to analyzing the asymptotics of graph Laplacians
typically assume a well-behaved kernel function with smoothness assump-
tions. We remove the smoothness assumption and generalize the analysis
of graph Laplacians to include previously unstudied graphs including kNN
graphs. We also introduce a kernel-free framework to analyze graph con-
structions with shrinking neighborhoods in general and apply it to analyze
locally linear embedding (LLE). We also describe how for a given limiting
Laplacian operator desirable properties such as a convergent spectrum and
sparseness can be achieved choosing the appropriate graph construction.

1 Introduction

Graph Laplacians have become a core technology throughout machine learn-
ing. In particular, they have appeared in clustering Kannan et al. (2004);
von Luxburg et al. (2008), dimensionality reduction Belkin & Niyogi (2003);
Nadler et al. (2006), and semi-supervised learning Belkin & Niyogi (2004); Zhu et al.
(2003).

While graph Laplacians are but one member of a broad class of methods
that use local neighborhood graphs to model data lying on a low-dimensional
manifold embedded in a high-dimensional space, they are distinguished by their
appealing mathematical properties, notably: (1) the graph Laplacian is the in-
finitesimal generator for a random walk on the graph, and (2) it is a discrete ap-
proximation to a weighted Laplace-Beltrami operator on a manifold, an operator
which has numerous geometric properties and induces a smoothness functional.
These mathematical properties have served as a foundation for the development
of a growing theoretical literature that has analyzed learning procedures based
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on the graph Laplacian. To review briefly, Bousquet et al. (2003) proved an
early result for the convergence of the unnormalized graph Laplacian to a reg-
ularization functional that depends on the squared density p2. Belkin & Niyogi
(2005) demonstrated the pointwise convergence of the empirical unnormalized
Laplacian to the Laplace-Beltrami operator on a compact manifold with uni-
form density. Lafon (2004) and Nadler et al. (2006) established a connection
between graph Laplacians and the infinitesimal generator of a diffusion pro-
cess. They further showed that one may use the degree operator to control
the effect of the density. Hein et al. (2005) combined and generalized these re-
sults for weak and pointwise (strong) convergence under weaker assumptions
as well as providing rates for the unnormalized, normalized, and random walk
Laplacians. They also make explicit the connections to the weighted Laplace-
Beltrami operator. Singer (2006) obtained improved convergence rates for a
uniform density. Giné & Koltchinskii (2005) established a uniform convergence
result and functional central limit theorem to extend the pointwise convergence
results. von Luxburg et al. (2008) and Belkin & Niyogi (2006) presented spec-
tral convergence results for the eigenvectors of graph Laplacians in the fixed and
shrinking bandwidth cases respectively.

Although this burgeoning literature has provided many useful insights, sev-
eral gaps remain between theory and practice. Most notably, in constructing
the neighborhood graphs underlying the graph Laplacian, several choices must
be made, including the choice of algorithm for constructing the graph, with k-
nearest-neighbor (kNN) and kernel functions providing the main alternatives, as
well as the choice of parameters (k, kernel bandwidth, normalization weights).
These choices can lead to the graph Laplacian generating fundamentally differ-
ent random walks and approximating different weighted Laplace-Beltrami op-
erators. The existing theory has focused on one specific choice in which graphs
are generated with smooth kernels with shrinking bandwidths. But a variety of
other choices are often made in practice, including kNN graphs, r-neighborhood
graphs, and the “self-tuning” graphs of Zelnik-Manor & Perona (2004). Sur-
prisingly, few of the existing convergence results apply to these choices (see
Maier et al. (2008) for an exception).

This paper provides a general theoretical framework for analyzing graph
Laplacians and operators that behave like Laplacians. Our point of view differs
from that found in the existing literature; specifically, our point of departure
is a stochastic process framework that utilizes the characterization of diffusion
processes via drift and diffusion terms. This yields a general kernel-free frame-
work for analyzing graph Laplacians with shrinking neighborhoods. We use it
to extend the pointwise results of Hein et al. (2007) to cover non-smooth kernels
and introduce location-dependent bandwidths. Applying these tools we are able
to identify the asymptotic limit for a variety of graphs constructions including
kNN, r-neighborhood, and “self-tuning” graphs. We are also able to provide an
analysis for Locally Linear Embedding (Roweis & Saul, 2000).

A practical motivation for our interest in graph Laplacians based on kNN
graphs is that these can be significantly sparser than those constructed using
kernels, even if they have the same limit. Our framework allows us to establish
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this limiting equivalence. On the other hand, we can also exhibit cases in which
kNN graphs converge to a different limit than graphs constructed from kernels,
and that this explains some cases where kNN graphs perform poorly. Moreover,
our framework allows us to generate new algorithms: in particular, by using
location-dependent bandwidths we obtain a class of operators that have nice
spectral convergence properties that parallel those of the normalized Laplacian
in von Luxburg et al. (2008), but which converge to a different class of limits.

2 The Framework

Our work exploits the connections among diffusion processes, elliptic operators
(in particular the weighted Laplace-Beltrami operator), and stochastic differ-
ential equations (SDEs). This builds upon the diffusion process viewpoint in
Nadler et al. (2006). Critically, we make the connection to the drift and dif-
fusion terms of a diffusion process. This allows us to present a kernel-free
framework for analysis of graph Laplacians as well as giving a better intuitive
understanding of the limit diffusion process.

We first give a brief overview of these connections and present our general
framework for the asymptotic analysis of graph Laplacians as well as provid-
ing some relevant background material. We then introduce our assumptions
and derive our main results for the limit operator for a wide range of graph
construction methods. We use these to calculate asymptotic limits for specific
graph constructions.

2.1 Relevant Differential Geometry

Assume M is a m-dimensional manifold embedded in R
b. To identify the asymp-

totic infinitesimal generator of a diffusion on this manifold, we will derive the
drift and diffusion terms in normal coordinates at each point. We refer the
reader to Boothby (1986) for an exact definition of normal coordinates. For our
purposes it suffices to note that normal coordinates are coordinates in R

m that
behave roughly as if the neighborhood was projected onto the tangent plane at
x. The extrinsic coordinates are the coordinates R

b in which the manifold is
embedded. Since the density, and hence integration, is defined with respect to
the manifold, we must relate to link normal coordinates s around a point x with
the extrinsic coordinates y. This relation may be given as follows:

y − x = Hxs + Lx(ssT ) + O(
∥

∥s3
∥

∥), (1)

where Hx is a linear isomorphism between the normal coordinates in Rm and
the m-dimensional tangent plane Tx at x. Lx is a linear operator describing the
curvature of the manifold and takes m × m positive semidefinite matrices into
the space orthogonal to the tangent plane, T⊥

x . More advanced readers will note
that this statement is Gauss’ lemma and Hx and Lx are related to the first and
second fundamental forms.
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We are most interested in limits involving the weighted Laplace-Beltrami
operator, a particular second-order differential operator.

2.2 Weighted Laplace-Beltrami operator

Definition 1 (Weighted Laplace-Beltrami operator). The weighted Laplace-
Beltrami operator with respect to the density q is the second-order differential

operator defined by ∆q := ∆M − ∇qT

q ∇ where ∆M := div ◦∇ is the unweighted
Laplace-Beltrami operator.

It is of particular interest since it induces a smoothing functional for f ∈
C2(M) with support contained in the interior of the manifold:

〈f,∆qf〉L(q) = ‖∇f‖
2
L2(q)

. (2)

Note that existing literature on asymptotics of graph Laplacians often refers to
the sth weighted Laplace-Beltrami operator as ∆s where s ∈ R. This is ∆ps in
our notation. For more information on the weighted Laplace-Beltrami operator
see Grigor’yan (2006).

2.3 Equivalence of Limiting Characterizations

We now establish the promised connections among elliptic operators, diffusions,
SDEs, and graph Laplacians. We first show that elliptic operators define dif-
fusion processes and SDEs and vice versa. An elliptic operator G is a second
order differential operator of the form

Gf(x) =
∑

ij

aij(x)
∂2f(x)

∂xi∂xj
+
∑

i

bi(x)
∂f(x)

∂xi
+ c(x)f(x),

where the m×m coefficient matrix (aij(x)) is positive semidefinite for all x. If
we use normal coordinates for a manifold, we see that the weighted Laplace-
Beltrami operator ∆q is a special case of an elliptic operator with (aij(x)) = I,

the identity matrix, b(x) = ∇q(x)
q(x) , and c(x) = 0. Diffusion processes are related

via a result by Dynkin which states that given a diffusion process, the generator
of the process is an elliptic operator.

The (infinitesimal) generator G of a diffusion process Xt is defined as

Gf(x) := lim
t→0

Exf(Xt) − f(x)

t

when the limit exists and convergence is uniform over x. Here Exf(Xt) =
E(f(Xt)|X0 = x). A converse relation holds as well. The Hille-Yosida theorem
characterizes when a linear operator, such as an elliptic operator, is the generator
of a stochastic process. We refer the reader to Kallenberg (2002) for proofs.

A time-homogeneous stochastic differential equation (SDE) defines a diffu-
sion process as a solution (when one exists) to the equation

dXt = µ(Xt)dt + σ(Xt)dWt,
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where Xt is a diffusion process taking values in R
d. The terms µ(x) and

σ(x)σ(x)T are the drift and diffusion terms of the process.
By Dynkin’s result, the generator G of this process defines an elliptic operator

and a simple calculation shows the operator is

Gf(x) =
1

2

∑

ij

(

σ(x)σ(x)T
)

ij

∂2f(x)

∂xi∂xj
+
∑

i

µi(x)
∂f(x)

∂xi
.

In such diffusion processes there is no absorbing state and the term in the
elliptic operator c(x) = 0. We note that one may also consider more general
diffusion processes where c(x) ≤ 0. When c(x) < 0 then we have the generator
of a diffusion process with killing where c(x) determines the killing rate of the
diffusion at x.

To summarize, we see that a SDE or diffusion process define an elliptic
operator, and importantly, the coefficients are the drift and diffusion terms, and
the reverse relationship holds: An elliptic operator defines a diffusion under
some regularity conditions on the coefficients.

All that remains then is to connect diffusion processes in continuous space
to graph Laplacians on a finite set of points. Diffusion approximation theorems
provide this connection. We state one version of such a theorem .

Theorem 2 (Diffusion Approximation). Let µ(x) and σ(x)σ(x)T be drift and
diffusion terms for a diffusion process defined on a compact set S ⊂ R

b, and

let and G be the corresponding infinitesimal generator. Let {Y
(n)
t }t be Markov

chains with transition matrices Pn on state spaces {xi}
n
i=1 for all n, and let

cn > 0 define a sequence of scalings. Put

µ̂n(xi) =cnE(Y
(n)
1 − xi|Y

(n)
0 = xi)

σ̂n(xi)σ̂n(xi)
T =cnVar(Y

(n)
1 |Y

(n)
0 = xi).

Let f ∈ C2(S). If for all ǫ > 0

µ̂n(xi) → µ(xi),

σ̂n(xi)σ̂n(xi)
T → σ(xi)σ(xi)

T ,

cn sup
i≤n

P
(∥

∥

∥
Y

(n)
1 − xi

∥

∥

∥
> ǫ
∣

∣

∣
Y

(n)
0 = xi

)

→ 0,

then the generators Anf = cn(Pn − I)f → Gf Furthermore, for any bounded f
and t0 > 0 and the continuous-time transition kernels Tn(t) = exp(tAn) and T
the transition kernel for G, we have Tn(t)f → T (t)f uniformly in t for t < t0.

Proof. We first examine the case when f(x) = x. By assumption,

Anπnx = cn(Pn − I)x = cnE(Y
(n)
1 − xi|Y

(n)
0 = xi)

= µn(x) → µ(x) = Ax.
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Similarly if f(x) = xxT , ‖Anπnf − Af‖∞ → 0. If f(x) = 1, then Anπnf =
πnAf = 0. Thus, by linearity of An, Anπnf → Af for any quadratic polynomial
f .

Taylor expand f to obtain f(x+h) = qx(h)+δx(h) where qx(h) is a quadratic
polynomial in h. Since the second derivative is continuous and the support of
f is compact, supx∈M δx(h) = o(‖h‖

2
) and supx,h δx(h) < M for some constant

M .
Let ∆n = Y

(n)
1 −xi. We may bound An acting on the remainder term δx(h)

by

sup
x

Anδx = cnE(δx(∆n)|Y
(n)
0 = x)

≤ sup
x

cnE(δx(∆n)1(‖∆n‖ ≤ ǫ)|Y
(n)
0 = x)+

M sup
x

cnP(‖∆n‖ > ǫ|Y
(n)
0 = x)

= o(cnE(‖∆n‖
2
|Y

(n)
0 = x)) + M sup

x
cnP(‖∆n‖ > ǫ|Y

(n)
0 = x)

= o(1)

where the last equality holds by the assumptions on the uniform convergence of
the diffusion term σ̂nσ̂T

n and on the shrinking jumpsizes.
Thus, Anπnf → Af for any f ∈ C2(M).
The class of functions C2(M) is dense in L∞(M) and form a core for the

generator A. Standard theorems give equivalence between strong convergence of
infinitesimal generators on a core and uniform strong convergence of transition
kernels on a Banach space (e.g. Theorem 1.6.1 in Ethier & Kurtz (1986)).

We remark that though the results we have discussed thus far are stated in
the context of the extrinsic coordinates R

b, we describe appropriate extensions
in terms of normal coordinates in the appendix.

2.4 Assumptions

We describe here the assumptions and notation for the rest of the paper. The
following assumptions we will refer to as the standard assumptions.

Unless stated explicitly otherwise, let f be an arbitrary function in C2(M).

Manifold assumptions. Assume M us a smooth m-dimensional manifold
isometrically embedded in R

b via the map i : M → R
b. The essential conditions

that we require on the manifold are

1. Smoothness, the map i is a smooth embedding.

2. A single radius h0 such that for all x ∈ supp(f), M∩B(x, h0) is a neigh-
borhood of x with normal coordinates, and

3. Bounded curvature of the manifold over supp(f), i.e. that the second
fundamental form is bounded .
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When the manifold is smooth and compact, then these conditions are satisfied.
Assume points {xi}

∞
i=1 are sampled i.i.d. from a density p ∈ C2(M) with

respect to the natural volume element of the manifold, and that p is bounded
away from 0.

Notation. For brevity, we will always use x, y ∈ R
b to be points on M ex-

pressed in extrinsic coordinates and s ∈ R
m to be normal coordinates for y in a

neighborhood centered at x. Since they represent the same point, we will also
use y and s interchangeably as function arguments, i.e. f(y) = f(s). Whenever
we take a gradient,it is with respect to normal coordinates.

Generalized kernel. Though we use a kernel free framework, our main theo-
rem utilizes a kernel, but one that is generalizes previously studied kernels by
1) considering non-smooth base kernels K0, 2) introducing location dependent
bandwidth functions rx(y), and 3) considering general weight functions wx(y).
Our main result also handles 4) random weight and bandwidth functions.

Given a bandwidth scaling parameter h > 0, define a new kernel by

K(x, y) = wx(y)K0

(

‖y − x‖

hrx(y)

)

. (3)

Previously analyzed constructions for smooth kernels with compact support
are described by this more general kernel with rx = 1 and wx(y) = d(x)−λd(y)−λ

where d(x) is the degree function and λ ∈ R is some constant.
The directed kNN graph is obtained if K0(x, y) = 1(‖x − y‖ ≤ 1), rx(y) =

distance to the kth nearest neighbor of x, and wx(y) = 1 for all x, y.
We note that the kernel K is not necessarily symmetric; however, if rx(y) =

ry(x) and wx(y) = wy(x) for all x, y ∈ M then the kernel is symmetric and the
corresponding unnormalized Laplacian is positive semi-definite.

Kernel assumptions. We now introduce our assumptions on the choices
K0, h, wx, rx that govern the graph construction. Assume that the base ker-
nel K0 : R+ → R+ has bounded variation and compact support and hn > 0
form a sequence of bandwidth scalings. For (possible random) location de-

pendent bandwidth and weight functions r
(n)
x (·) > 0, w

(n)
x (·) ≥ 0, assume that

they converge to rx(·), wx(·) respectively and the convergence is uniform over
x ∈ M. Further assume they have Taylor-like expansions for all x, y ∈ M with
‖x − y‖ < hn

r(n)
x (y) = rx(x) + (ṙx(x) + αxsign(uT

x s)ux)T s + ǫ(n)
r (x, s)

w(n)
x (y) = wx(x) + ∇wx(x)T s + ǫ(n)

w (x, s)
(4)

where the approximation error is uniformly bounded by

sup
x∈M,‖s‖<hn

|ǫ(n)
r (x, s)| = O(h2

n)

sup
x∈M,‖s‖<hn

|ǫ(n)
w (x, s)| = O(h2

n)
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We briefly motivate the choice of assumptions. The bounded variation con-
dition allows for non-smooth base kernels but enough regularity to obtain limits.
The Taylor-like expansions allow give conditions where the limit is tractable to
analytically compute as well as allowing for randomness in the remainder term
as long as it is of the correct order. The particular expansion for the location
dependent bandwidth allows one to analyze undirected kNN graphs, which ex-
hibit a non-differentiable location dependent bandwidth (see section 3.3). Note

that we do not constrain the general weight functions w
(n)
x (y) to be a power of

the degree function, dn(x)αdn(y)α nor impose a particular functional form for
location dependent bandwidths rx. This gives us two degrees of freedom, which
allows the same asymptotic limit be obtained for an entire class of parameters
governing the graph construction. In section 5.5, we discuss one may choose a
graph construction that has more attractive finite sample properties than other
constructions that have the same limit.

Functions and convergence. We define here what we mean by convergence
when the domains of the functions are changing. When take gn → g where
domain(gn) = Xn ⊂ M, to mean ‖gn − πng‖∞ → 0 where πng = g|Xn

is the
restriction of g to Xn. Likewise, for operators Tn on functions with domain Xn,
we take Tng = Tnπng. Convergence of operators Tn → T means Tnf → Tf
for all f ∈ C2(M). When Xn = M for all n, this is convergence in the strong
operator topology under the L∞ norm.

We consider the limit of the random walk Laplacian defined by as Lrw =
I − D−1W where I is the identity, W is the matrix of edge weights, and D is
the diagonal degree matrix.

2.5 Main Theorem

Our main result is stated in the following theorem.

Theorem 3. Assume the standard assumptions hold eventually with probability
1. If the bandwidth scalings hn satisfy hn ↓ 0 and nhm+2

n / log n → ∞, then for
graphs constructed using the kernels

Kn(x, y) = w(n)
x (y)K0

(

‖y − x‖

hnr
(n)
x (y)

)

(5)

there exists a constant ZK0,m > 0 depending only on the base kernel K0 and the
dimension m such that for cn = ZK0,m/h2,

−cnL(n)
rw f → Af

where A is the infinitesimal generator of a diffusion process with the following
drift and diffusion terms given in normal coordinates:

µs(x) = rx(x)2
(

∇p(x)

p(x)
+

∇w(x)

w(x)
+ (m + 2)

ṙx(x)

rx(x)

)

,

σs(x)σs(x)T = rx(x)2I
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where I is the m × m identity matrix.

Proof. We apply the diffusion approximation theorem (Theorem 2) to obtain
convergence of the random walk Laplacians. Since hn ↓ 0, the probability of a
jump of size > ǫ equals 0 eventually. Thus, we simply need to show uniform
convergence of the drift and diffusion terms and identify their limits. We leave
the detailed calculations in the appendix and present the main ideas in the proof
here.

We first assume that K0 is an indicator kernel. To generalize, we note that
for kernels of bounded variation, we may write K0(x) =

∫

1(|x| < z)dη+(z) −
∫

1(|x| < z)dη−(z) for some finite positive measures η−, η+ with compact sup-
port. The result for general kernels then follows from Fubini’s theorem.

We also initially assume that we are given the true density p. After identify-
ing the desired limits given the true density, we show that the empirical version
converges uniformly to the correct quantities.

The key calculation is lemma 7 in the appendix which establishes that inte-
grating against an indicator kernel is like integrating over a sphere re-centered
on h2

nṙx(x).
Given this calculation and by Taylor expanding the non-kernel terms, one

obtains the infinitesimal first and second moments and the degree operator.

M
(n)
1 (x) =

1

hm
n

∫

sKn(x, y)p(y)ds

=
1

hm
n

∫

sw(n)
x (s)K0

(

‖y − x‖

hnr
(n)
x (s)

)

p(s)ds

=
1

hm
n

∫

s
(

wx(x) + ∇wx(x)T s + O(h2
n)
) (

p(x) + ∇p(x)T s + O(h2
n)
)

×

× K0

(

‖y − x‖

hnr
(n)
x (s)

)

ds

= CK0,mh2
nrx(x)m+2

(

wx(x)
∇p(x)

m + 2
+ p(x)

∇wx(x)

m + 2
+ wx(x)p(x)ṙx(x) + o(1)

)

M
(n)
2 (x) =

1

hm
n

∫

ssT Kn(x, y)p(y)ds

=
1

hm
n

∫

ssT w(n)
x (s)K0

(

‖y − x‖

hnr
(n)
x (s)

)

p(s)ds

=
1

hm
n

∫

ssT (wx(x) + O(hn)) (p(x) + O(hn))K0

(

‖y − x‖

hnr
(n)
x (s)

)

ds

=
CK0,m

m + 2
h2

nrx(x)m+2 (wx(x)p(x)I + O(hn)) ,
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dn(x) =
1

hm
n

∫

Kn(x, y)p(y)ds (6)

=
1

hm

∫

w(n)
x (s)K0

(

‖y − x‖

hnr
(n)
x (s)

)

p(s)ds (7)

=
1

hm

∫

(wx(x) + O(hn)) (p(x) + O(hn))K0

(

‖y − x‖

hnr
(n)
x (s)

)

ds (8)

= C ′
K0,mrx(x)m (wx(x)p(x) + O(hn)) (9)

where CK0,m =
∫

um+2dη, C ′
K0,m =

∫

umdη and η is the signed measure η =
η+ − η−.

Let ZK0,m = (m + 2)
C′

K0,m

CK0,m
and cn = ZK0,m/h2

n. Since Kn/dn define

Markov transition kernels, taking the limits µs(x) = lim
n→∞

cnM
(n)
1 (x)/dn(x) and

σs(x)σs(x)T = lim
n→∞

cnM
(n)
2 (x)/dn(x) and applying the diffusion approximation

theorem gives the stated result.
To more formally apply the diffusion approximation theorem we may calcu-

late the drift and diffusion in extrinsic coordinates. In extrinsic coordinates, we
have

µ(x) = rx(x)2Hx

(∇p(x)

p(x)
+

∇wx(x)

wx(x)
+ (m + 2)

ṙx(x)

rx(x)

)

+ rx(x)2Lx(I),

σ(x)σ(x)T = r(x)2ΠTx
,

where ΠTx
is the projection onto the tangent plane at x, and Hx and Lx are the

linear mappings between normal coordinates and extrinsic coordinates defined
in Eqn (1).

We now consider the convergence of the empirical quantities. For non-

random r
(n)
x = rx, w

(n)
x = wx, the uniform and almost sure convergence of

the empirical quantities to the true expectation follows from an application of

Bernstein’s inequality. In particular, the value of Fn(x, S) = SiK
(

‖Y −x‖
hnrx(Y )

)

is

bounded by Kmaxhn, where S is Y in normal coordinates and Kmax depends
on the kernel and the maximum curvature of the manifold. Furthermore, the

second moment calculation for M
(n)
2 gives that the variance Var(Fn(x, S)) is

bounded by chm+2
n for some constant c that depends on K and the max of p,

and does not depend on x. By Bernstein’s inequality and a union bound, we
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have

Pr

(

sup
i≤n

∣

∣

∣

∣

En
1

hm+2
n

Fn(xi, Y ) −
1

h2
n

M
(n)
1

∣

∣

∣

∣

> ǫ

)

= Pr

(

sup
i≤n

|EnFn(xi, Y ) − EFn(xi, Y )| > ǫhm+2
n

)

< 2n exp

(

−
ǫ2

2c/(nhm+2
n ) + 2Kmaxǫ/(3nhm+1

n )

)

. (10)

The uniform convergence a.s. of the first moment follows from Borel-Cantelli.
Similar inequalities are attained for the empirical second moment and degree
terms.

Now assume r
(n)
x , w

(n)
x are random and define Fn as before. To handle

the random weight and bandwidth function case, we first choose determin-
istic weight and bandwidth functions to maximize the first moment under a
constraint that is satisfied eventually a.s.. Define

w(n)
x (y) = wx(y) + κh2

nsign(si)

r(n)
x (y) = rx(x) + (ṙx(x) + αxsign(uT

x s)ux)T s − κh2
nsign(si)

Fn(y) = siw
(n)
x (y)K0

(

‖y − x‖

hnr
(n)
x (y)

)

for some constant κ such that r
(n)
x < r

(n)
x and w

(n)
x > w

(n)
x eventually. This is

possible since the perturbation terms ǫ
(n)
r (x, s), ǫ

(n)
w (x, s) = O(h2

n). Thus, we
have Fκ,n(x, y) > Fn(x, y) for all x, y ∈ M eventually with probability 1. Since
Fκ,n(x, Y ) uses deterministic weight and bandwidth functions, we obtain i.i.d.
random variables and may apply the Bernstein bound on Fκ,n(x, y) to obtain an
upper bound on the empirical quantities, namely EnFκ,n(x, Y ) > EnFn(x, Y )
for all x ∈ M eventually with probability 1. We may similarly obtain a lower
bound. By lemma 10, the difference between the expectation of the upper
bound and the is EFκ,n(x, Y )−EF 0,n(x, Y ) = o(κhm+2

n ). Applying the squeeze

theorem gives a.s. uniform convergence of the empirical first moment M
(n)
1 /h2

n.
The degree and second moment terms are handled similarly.

Since p,wx, rx are all assumed to be bounded away from 0, the scaled degree
operators dn are eventually bounded away from 0 with probability 1, and the

continuous mapping theorem applied to
M

(n)
i /h2

n

dn
gives a.s. uniform convergence

of the drift and diffusion.

2.6 Unnormalized and Normalized Laplacians

While our results are for the infinitesimal generator of a diffusion process, that
is, for the limit of the random walk Laplacian Lrw = I − D−1W , it is easy to
generalize them to the unnormalized Laplacian Lu = D−W = DLrw and sym-
metrically normalized Laplacian Lnorm = I−D−1/2WD−1/2 = D1/2LrwD−1/2.
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Corollary 4. Take the assumptions in Theorem 3, and let A be the limiting op-
erator of the random walk Laplacian. The degree terms dn(·) converge uniformly
a.s. to a function d(·), and

−c′nL(n)
u f → d · Af a.s.

where c′n = cn/hm. Furthermore, under the additional assumptions nhm+4
n / log n →

∞, supx,y |w
(n)
x −wx| = o(h2

n), supx,y |r
(n)
x −rx| = o(h2

n), and d,wx, rx ∈ C2(M),
we have

−cnL(n)
normf → d1/2 · A(d−1/2f) a.s.

Proof. For any two functions φ1, φ2 : M → R, define gu(φ1, φ2) = (φ1(·), f1(·)φ2(·)).
We note that gu is a continuous mapping in the L∞ topology and

(dn, c′nLn
uf) = gu(dn, cnLrwf).

By the continuous mapping theorem, if dn → d a.s. and cnL
(n)
rw f → Lf a.s. in

the then
c′nL(n)

u → d · Lf.

Thus, convergence of the random walk Laplacians implies convergence of the
unnormalized Laplacian under the very weak condition of convergence of the
degree operator to a bounded function.

Convergence of the normalized Laplacian is slightly trickier. We may write
the normalized Laplacian as

L(n)
normf = d1/2

n L(n)
rw (d−1/2

n f) (11)

= d1/2
n L(n)

rw (d−1/2f) + d1/2
n L(n)

rw (d−1/2
n − d−1/2)f). (12)

Using the continuous mapping theorem, we see that convergence of the nor-

malized Laplacian, cnL
(n)
normf → d−1/2Lrw(d−1/2f), is equivalent to showing

cnL
(n)
rw ((d

−1/2
n − d−1/2)f) → 0. A Taylor expansion of the inverse square root

gives that showing cnL
(n)
rw (dn − d) → 0 is sufficient to prove convergence.

We now verify conditions which will ensure that the degree operators will
converge at the appropriate rate. We further decompose the empirical degree
operator into the bias Edn − d and empirical error dn − Edn.

Simply carrying out the Taylor expansions to higher order terms in the
calculation of the degree function dn in Eq. 6, and using the refined calculation
of the zeroth moment in lemma 8 in the appendix, the bias of the degree operator
is dn − d = h2

nb + o(h2
n) for some uniformly bounded, continuous function b.

Thus we have,

cnL(n)
rw (dn − d) = cnh2

n ‖(I − Pn)b‖∞ + o(1) = o(1) (13)

since cnh2
n is constant and ‖(I − Pn)φ‖∞ → 0 for any continuous function φ.

We also need to check that the empirical error ‖dn − Edn‖∞ = O(h2
n) a.s..

If nhm+4
n / log n → ∞ then using the Bernstein bound in equation 10 with ǫ

replaced by h2
n and applying Borel-Cantelli gives the desired result.
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2.7 Limit as weighted Laplace-Beltrami operator

Under some regularity conditions, the limit given in the main theorem (Theorem
3) yields a weighted Laplace-Beltrami operator.

For convenience, define γ(x) = rx(x), ω(x) = wx(x).

Corollary 5. Assume the conditions of Theorem 3 and let q = p2ωγm+2. If
rx(y) = ry(x), wx(y) = wy(x) for all x, y ∈ M and r(·)(·), w(·)(·) are twice
differentiable in a neighborhood of (x, x) for all x, then for c′n = ZK0,m/hm+2

−c′nL(n)
u →

q

p
∆q. (14)

Proof. Note that ∇|y=x γ(y) = 2 ∇|y=x rx(y). The result follows from appli-
cation of Theorem 3, Corrollary 4, and the definition of the weighted Laplace-
Beltrami operator.

3 Application to Specific Graph Constructions

To illustrate Theorem 3, we apply it to calculate the asymptotic limits of graph
Laplacians for several widely used graph construction methods. We also apply
the general diffusion theory framework to analyze LLE.

3.1 r-Neighborhood and Kernel Graphs

In the case of the r-neighborhood graph, the Laplacian is constructed using
a kernel with fixed bandwidth and normalization. The base kernel is simply
the indicator function K0(x) = I(|x| < r). The radius rx(y) is constant so
ṙ(x) = 0. The drift is given by µs(x) = ∇p(x)/p(x) and the diffusion term is
σs(x)σs(x)T = I. The limit operator is thus

1

2
∆M +

∇p(x)T

p(x)
∇ =

1

2
∆2

as expected. This analysis also holds for arbitrary kernels of bounded variation.

One may also introduce the usual weight function w
(n)
x (y) = dn(x)−αdn(y)−α

to obtain limits of the form 1
2∆p2−2α) . These limits match those obtained by

Hein et al. (2007) and Lafon (2004) for smooth kernels.

3.2 Directed k-Nearest Neighbor Graph

For kNN-graphs, the base kernel is still the indicator kernel, and the weight

function is constant 1. However, the bandwidth function r
(n)
x (y) is random and

depends on x. Since the graph is directed, it does not depend on y so ṙx = 0.
By the analysis in section 3.4, rx(x) = cp−1/m(x) for some constant c. Con-

sequently the limit operator is proportional to

1

p2/m
(x)

(

∆M + 2
∇pT

p
∇

)

=
1

p2/m
∆p2 .
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Note that this is generally not a self-adjoint operator in L(p). The symmetriza-
tion of the graph has a non-trivial affect to make the graph Laplacian self-
adjoint.

3.3 Undirected k-Nearest Neighbor Graph

We consider the OR-construction where the nodes vi and vj are linked if vi is a k-

nearest neighbor of vj or vice-versa. In this case hm
n r

(n)
x (y) = max{ρn(x), ρn(y)}

where ρn(x) is the distance to the kth
n nearest neighbor of x. The limit bandwith

function is non-differentiable, rx(y) = max{p−1/m(x), p−1/m(y)}, but a Taylor-

like expansion exists with ṙx(x) = 1
2m

∇p(x)T

p(x) . The limit operator is

1

p2/m
∆p1−2/m .

which is self-adjoint in L2(p). Surprisingly, if m = 1 then the kNN graph
construction induces a drift away from high densiy regions.

3.4 Conditions for kNN convergence

To complete the analysis, we must check the conditions for kNN graph construc-
tions to satisfy the assumptions of the main theorem. This is a straightforward
application of existing uniform consistency results for kNN density estimation.

Let hn =
(

kn

n

)1/m
. The condition we must verify is

sup
y∈M

∥

∥

∥
r(n)
x − rx

∥

∥

∥

∞
= O(h2

n) a.s.

We check this for the directed kNN graph, but analyses for other kNN graphs
are similar. The kNN density estimate of Loftsgaarden & Quesenberry (1965)
is

p̂n(x) =
Vm

n(hnr
(n)
x (x))m

(15)

where hnr
(n)
x (x) is the distance to the kth nearest neighbor of x given n data

points. Taylor expanding equation 15 shows that if ‖p̂n − p‖∞ = O(h2
n) a.s.

then the requirement on the location dependent bandwidth for the main theorem
is satisfied.

Devroye & Wagner (1977)’s proof for the uniform consistency of kNN density
estimation may be easily modified to show this. Take ǫ = (kn/n)2 in their proof.

One then sees that hn = kn/n → 0 and
nhm+2

n

log n =
k2+2/m

n

n1+2/m log n
→ ∞ are sufficient

to achieve the desired bound on the error.
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3.5 “Self-Tuning” Graphs

The form of the kernel used in self-tuning graphs is

Kn(x, y) = exp

(

−‖x − y‖
2

σn(x)σn(y)

)

.

where σn(x) = ρn(x), the distance between x and the kth nearest neighbor. The

limit bandwidth function is rx(y) =
√

p−1/m(x)p−1/m(y). Since this is twice
differentiable, corollary 5 gives the asymptotic limit, which is the same as for
undirected kNN graphs,

p−2/m∆p1−2/m .

3.6 Locally Linear Embedding

Locally linear embedding (LLE), introduced by Roweis & Saul (2000), has been
noted to behave like (the square of) the Laplace-Beltrami operator Belkin & Niyogi
(2003).

Using our kernel-free framework we will show how LLE differs from weighted
Laplace-Beltrami operators and graph Laplacians in several ways. 1) LLE has,
in general, no well-defined asymptotic limit without additional conditions on the
weights. 2) It can only behave like an unweighted Laplace-Beltrami operator.
3) It is affected by the curvature of the manifold, and the curvature can cause
LLE to not behave like any elliptic operator (including the Laplace-Beltrami
operator).

The key observation is that LLE only controls for the drift term in the
extrinsic coordinates. Thus, the diffusion term has freedom to vary. However,
if the manifold has curvature, the drift in extrinsic coordinates constrains the
diffusion term in normal coordinates.

The LLE matrix is defined as (I −W )T (I −W ) where W is a weight matrix

which minimizes reconstruction error W = argminW ′ ‖(I − W ′)y‖
2

under the
constraints W ′1 = 1 and W ′

ij 6= 0 only if j is one of the kth nearest neighbors
of i. Typically k > m and reconstruction error = 0. We will analyze the matrix
M = I − W .

Suppose LLE produces a sequence of matrices Mn = I − Wn. The row
sums of Mn are 0. Thus, we may decompose Mn = A+

n − A−
n where A+

n , A−
n

are generators for finite state Markov processes obtained from the positive and
negative weights respectively. Assume that there is some scaling cn such that
cnA+

n , cnA−
n converge to generators of diffusion processes with drifts µ+, µ− and

diffusion terms σ+σT
+, σ−σT

−. Set µ = µ+ − µ− and σσT = σ+σ+ − σ−σ−.

No well-defined limit. We first show there is generally no well-defined
asymptotic limit when one simply minimizes reconstruction error. Suppose
rank(Lx) < m(m + 1)/2 at x. This will necessarily be true if the extrinsic
dimension b < m(m + 1)/2 + m. For simplicity assume rank(Lx) = 0. Mini-
mizing the LLE reconstruction error does not constrain the diffusion term, and
σ(x)σ(x)T may be chosen arbitrarily. Choose asymptotic diffusion σσT and drift
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µ terms that are Lipschitz so that a corresponding diffusion process necessarily
exists. A diffusion with terms 2σσT and µ will also exist in that case.

One may easily construct graphs for the positive and negative weights with
these asymptotic diffusion and drift terms by solving highly underdetermined
quadratic programs. Furthermore, in the interior of the manifold, these graphs
may be constructed so that the finite sample drift terms are exactly equal by
adding an additional constraint. Thus, A+

n → 2G0 +µT∇ and A−
n → G0 +µT∇

where G0 is the generator for a diffusion process with zero drift and diffusion
term σ−(x)σ−(x)T . We have cnMn = A+

n −A−
n → G0. Thus, we can construct a

sequence of LLE matrices that have 0 reconstruction error but have an arbitrary
limit. It is trivial to see how to modify the construction when 0 < rank(Lx) <
m(m + 1)/2.

No drift. Since µs(x) = 0, if the LLE matrix does behave like a Laplace-
Beltrami operator, it must behave like an unweighted one, and the density has
no affect on the drift.

Curvature and limit. We now show that the curvature of the manifold affects
LLE and that the LLE matrix may not behave like any elliptic operator. If
the manifold has sufficient curvature, namely if the extrinsic coordinates have
dimension b ≥ m+m(m+1)/2 and rank(Lx) = m(m+1)/2, then the diffusion
term in the normal coordinates is fully constrained by the drift term in the
extrinsic coordinates.

Recall from equation 1 that the extrinsic coordinates as a function of the
normal coordinates are y = x + Hxs + Lx(ssT ) + O(‖s‖

3
). By linearity of Hx

and Lx, the asymptotic drift in the extrinsic coordinates is µ(x) = Hxµs(x) +
Lx(σs(x)σs(x)T ).

Since reconstruction error in the extrinsic coordinates is 0, we have in normal
coordinates

µs(x) = 0 and Lx(σs(x)σs(x)T ) = 0.

In other words, the asymptotic drift and diffusion terms of A+
n and A−

n must be
the same, and cnMn → G0 − G0 = 0.

This implies that the scaling cn where LLE can be expected to behave like an
elliptic operator gives the trivial limit 0. If another scaling yields a non-trivial
limit, it may include higher-order differential terms. It is easy to see when Lx is
not full rank, the curvature affects LLE by partially constraining the diffusion
term.

Regularization and LLE. We note that while the LLE framework of mini-
mizing reconstruction error can yield ill-behaved solutions, practical implemen-
tations add a regularization term when constructing the weights. This causes
the reconstruction error to be non-zero in general and gives unique solutions
for the weights which favor equal weights (and asymptotic behavior like kNN
graphs).
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Figure 1: (A) shows a 2D manifold where the x and y coordinates are drawn from
a truncated standard normal distribution. (B-D) show embeddings using differ-

ent graph constructions. (B) uses a normalized Gaussian kernel K(x,y)
d(x)1/2d(y)1/2 ,

(C) uses a kNN graph, and (D) uses a kNN graph with edge weights
√

p̂(x)p̂(y).
The bandwidth for (B) was chosen to be the median standard deviation from
taking 1 step in the kNN graph.

4 Experiments

To illustrate the theory, we show how to correct the bad behavior of the kNN
Laplacian for a synthetic data set. We also show how our analysis can predict
the surprising behavior of LLE.

kNN Laplacian. We consider a non-linear embedding example which almost
all non-linear embedding techniques handle well but the kNN graph Laplacian
performs poorly. Figure 1 shows a 2D manifold embedded in 3 dimensions and
embeddings using different graph constructions. The theoretical limit of the
normalized Laplacian Lknn for a kNN graph is Lknn = 1

p∆1. while the limit for
a graph with Gaussian weights is Lgauss = ∆p. The first 2 coordinates of each
point are from a truncated standard normal distribution, so the density at the
boundary is small and the effect of the 1/p term is substantial. This yields the
bad behavior shown in Figure 1 (C). We may use the relationship between the
kth-nearest neighbor and the density in Eqn (15) to obtain a pilot estimate p̂ of
the density. Choosing wx(y) =

√

p̂n(x)p̂n(y), gives a weighted kNN graph with
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Figure 2: (A) shows a 1D manifold isometric to a circle. (B-D) show the em-
beddings using (B) Laplacian eigenmaps which correctly identifies the structure,
(C) LLE with regularization 1e-3, and (D) LLE with regularization 1e-6.

the same limit as the graph with Gaussian weights. Figure 1 (D) shows that
this change yields the roughly desired behavior but with fewer “holes” in low
density regions and more in high density regions.

LLE. We consider another synthetic data set, the toroidal helix, in which the
manifold structure is easy to recover. Figure 2 (A) shows the manifold which is
clearly isometric to a circle, a fact picked up by the kNN Laplacian in Figure 2
(B).

Our theory predicts that the heuristic argument that LLE behaves like the
Laplace-Beltrami operator will not hold. Since the total dimension for the drift
and diffusion terms is 2 and the global coordinates also have dimension 2, that
there is forced cancellation of the first and second order differential terms and the
operator should behave like the 0 operator or include higher order differentials.
In Figure 2 (C) and (D), we see this that LLE performs poorly and that the
behavior comes closer to the 0 operator when the regularization term is smaller.
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5 Remarks and Discussion

5.1 Non-shrinking neighborhoods

In this paper, we have presented convergence results using results for diffu-
sion processes without jumps. Graphs constructed using a fixed, non-shrinking
bandwidth do not fit within this framework, but approximation theorems for
diffusion processes with jumps still apply (see Jacod & Širjaev (2003)). Instead
of being characterized by the drift and diffusion pair µ(x), σ(x)σ(x)T , the in-
finitesimal generators for a diffusion process with jumps is characterized by
the “Lêvy-Khintchine” triplet consisting of the drift, diffusion, and “Lêvy mea-
sure.” Given a sequence of transition kernels Kn, the additional requirement
for convergence of the limiting process is the existence of a limiting transition
kernel K such that

∫

Kn(·, dy)g(y)dy →
∫

K(·, dy)g(y)dy locally uniformly for
all C1 functions g. This establishes an impossibility result, that no method that
only assigns positive mass on shrinking neighborhoods can have the same graph
Laplacian limit as a a kernel construction method where the bandwidth is fixed.

5.2 Convergence rates

We note that one missing element in our analysis is the derivation of convergence
rates. For the main theorem, we note that it is, in fact, not necessary to apply
a diffusion approximation theorem. Since our theorem still uses a kernel (albeit
one with much weaker conditions), a virtually identical proof can be obtained
by applying a function f and Taylor expanding it. Thus, we believe that similar
convergence rates to Hein et al. (2007) can be obtained. Also, while our con-
vergence result is stated for the strong operator topology, the same conditions
as in Hein give weak convergence.

5.3 Relation to density estimation

The connection between kernel density estimation and graph Laplacians is obvi-
ous, namely, any kernel density estimation method using a non-negative kernel
induces a random walk graph Laplacian and vice versa.

In this paper, we have shown that as a consequence of identifying the asymp-
totic degree term, we have shown consistency of a wide class of adaptive kernel
density estimates on a manifold. We also have shown that on compact sets, the
the bias term is uniformly bounded by a term of order h2, and a small modifi-
cation to the Bernstein bound (Eqn 10) gives that the variance is bounded by a
term of order h−m. Both of which one would expect. This generalizes previous
work on manifold density estimation by Pelletier (2005) and Ozakin (2009) to
adaptive kernel density estimation.

The well-studied field of kernel density estimation may also lead to insights
on how to choose a good location dependent bandwidth as well. We compare
the form of our density estimates to other well-known adaptive kernel density
estimation techniques. The balloon estimator and sample smoothing estimators
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as described by Terrell & Scott (1992) are respectively given by

f̂1(x) =
1

nh(x)d

∑

i

K

(

‖xi − x‖

h(xi)

)

(16)

f̂2(x) =
1

n

∑

i

1

h(xi)d
K

(

‖xi − x‖

h(xi)

)

. (17)

In the univariate case, Terrell & Scott (1992) show that the balloon esti-
mators yield no improvement to the asymptotic rate of convergence over fixed
bandwidth density estimates. The sample smoothing estimator gives a density
estimate which does not necessarily integrate to 1. However, it can exhibit
better asymptotic behavior in some cases. The Abramson square root law es-
timator (Abramson, 1982) is an example of a sample smoothing estimator and
takes h(xi) = hp(xi)

−1/2. On compact intervals, this estimator has bias of
order h4 rather than the usual h2 (Silverman, 1998), and it achieves this bias
reduction without resorting to higher order kernels, which necessarily negative
in some region. However, the bias in the tail for univariate Gaussian data is of
order (h/ log h)2 (Terrell & Scott, 1992), which is only marginally better than
h2.

While we do not make claims of being able to reduce bias in the case of den-
sity estimation a manifold, in fact, we do not believe bias reduction to the order
of h4 is possible unless one makes some use of manifold curvature information,
the existing density estimation literature suggests what potential benefits one
may achieve over different regions of a density.

5.4 Eigenvalues/Eigenvectors

Fixed bandwidth case We find our location dependent bandwidth results to
be of interest in the context of the negative result in von Luxburg et al. (2008)
for unnormalized Laplacians with a fixed bandwidth. Their results state that
for unnormalized graph Laplacians, the eigenvectors of the discrete approxima-
tions do not converge if the corresponding eigenvalues lie in the range of the
asymptotic degree operator d(x), whereas for the normalized Laplacian, the “de-
gree operator” is the identity and the eigenvectors converge if the corresponding
eigenvalues stay away from 1. Our results suggest that even with unnormalized
Laplacians, one can obtain convergence of the eigenvectors by manipulating the
range of the degree operator through the use of a location dependent bandwidth
function. For example, with kNN graphs we have that the degree operator is
essentially 1. For self-tuning graphs, the degree operator also converges to 1,
and since the kernels form an equicontinuous family of functions, the theory
for compact integral operators may be rigorously applied when the bandwidth
scaling is fixed.

Thus we can obtain unnormalized and normalized graph Laplacians that
(1) have spectra that converges for fixed (non-decreasing) bandwidth scalings
and (2) converge to a limit that is different from that of previously analyzed
normalized Laplacians when the bandwidth decreases to 0.
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Corollary 6. Assume the standard assumptions. Further assume that for some

h0 > 0,
{

K0

(

‖y−x‖
h

)

: h > h0

}

form an equicontinuous family of functions. Let

q, g ∈ C2(M) be bounded away from 0 and ∞. Set

γ =

√

q

pg
rx(y) =

√

γ(x)γ(y) (18)

ω =

(

pg

q

)m/2
g

p
wx(y) =

√

ω(x)ω(y). (19)

If hn = h1 for all n, then the eigenvectors of the normalized Laplacians converge
in the sense given in von Luxburg et al. (2008). If hn ↓ 0 satisfy the assumptions
of theorem 3, then the limit rescaled degree operator is d = g and

−cnLnormf → g−1/2 q

p
∆q(g

−1/2f) (20)

which induces the smoothness functional

〈

f, g−1/2 q

p
∆q(g

−1/2f)

〉

L2(p)

=
〈

∇(g−1/2f),∇(g−1/2f)
〉

L2(q)
. (21)

Proof. Assume the hn ↓ 0 case. Use corollary 5 and solve for ω and γ in
the system of equations: q = p2ωγm+2, g = pωγm. In the hn = h1 case, the
conditions satisfy those given in von Luxburg et al. (2008) with the modification
that the kernel is not bounded away from 0 and the additional assumption that
p is bounded away from 0. Thus, the asymptotic degree operator d is bounded
away from 0, and the proofs in von Luxburg et al. (2008) remain unchanged.

We note that the restriction to an equicontinuous family of kernel functions
excludes kNN graph constructions. However, one may get around this by con-
sidering the two-step transition kernels K2(x, y) = K(x, ·) ∗ K(·, y), where ∗
denotes the convolution operator with respect to the underlying density. For in-
dicator kernels like those used in kNN graph constructions, K2 will be Lipschitz
and hence form an equicontinuous family. Thus, if one handles the potential
issues with the random bandwidth function, one may apply the theory of com-
pact integral operators to obtain convergence of the spectrum and eigenvectors
for kNN graph Laplacians when k grows appropriately.

5.5 Reasons for choosing a graph construction method

We highlight how our more general kernel can yield advantageous properties. In
particular, it yields graphs constructions where one can (1) control the sparsity
of the Laplacian matrix, (2) control connectivity properties in low density re-
gions, (3) give asymptotic limits that cannot be attained using previous graph
construction methods, and (4) give Laplacians with good spectral properties in
the non-shrinking bandwidth case.
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One way to control (1) and (2) is to make the binary choice of using kNN or
a kernel with uniform bandwidth to construct the graph. Our results show that,
by using a pilot estimate of the density, one can obtain sparsity and connectivity
properties in the continuum between these two choices.

For (3) and (4), we note that the limits for previously analyzed unnormal-
ized Laplacians were of the form pα−1∆pαf . Using corollary 5, one see that
limits of the form q

p∆q for any smooth, bounded density q on the manifold
can be obtained. Equivalently, one can approximate the smoothness functional
‖∇f‖

2
L2(q)

for any almost any q, not just pα.
For normalized Laplacians, which have good spectral properties, the previ-

ously known limits induced smoothness functionals of the form
∥

∥∇(p(1−α)/2f)
∥

∥

2

L2(pα)
.

With our more general kernel and any g, q ∈ C2(M), we may induce a smooth-

ness functional of the form ‖∇(gf)‖
2
L2(q)

. In particular, in the interesting case
where g = 1 and the smoothness functional is just a norm on the gradient of f ,
i.e. ‖∇f‖

2
L2(q)

, q may be chosen to be almost any density, not just q = p1.

6 Conclusions

We have introduced a general framework that enables us to analyze a wide
class of graph Laplacian constructions. Our framework reduces the problem of
graph Laplacian analysis to the calculation of a mean and variance (or drift
and diffusion) for any graph construction method with positive weights and
shrinking neighborhoods. Our main theorem extends existing strong operator
convergence results to non-smooth kernels, and introduces a general location-
dependent bandwidth function. The analysis of a location-dependent bandwidth
function, in particular, significantly extends the family of graph constructions for
which an asymptotic limit is known. This family includes the previously unstud-
ied (but commonly used) kNN graph constructions, unweighted r-neighborhood
graphs, and “self-tuning” graphs.

Our results also have practical significance in graph constructions as they
suggest graph constructions that (1) can produce sparser graphs than those
constructed with the usual kernel methods, despite having the same asymptotic
limit, and (2) in the fixed bandwidth regime, produce normalized Laplacians
that have well-behaved spectra but converge to a different class of limit opera-
tors than previously studied normalized Laplacians. In particular, this class of
limits include those that induce the smoothness functional ‖∇f‖

2
L2(q)

for almost

any density q. The graph constructions may also (3) have better connectivity
properties in low-density regions.
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8 Appendix

8.1 Main lemma

Lemma 7 (Integration with location dependent bandwidth). Let 1 be the indi-
cator function and h > 0 be a constant. Let rx be a location dependent bandwidth
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function that satisfies the standard assumptions, i.e. it has a Taylor-like expan-
sion

r̃x(y) = rx(x) + (ṙx(x) + αxsign(uT
x s)ux)T s + ǫr(x, s).

Let Vm = πm/2

Γ(m
2 +1)

be the volume of the unit m–sphere.

Then

M0 =
1

Vmhm

∫

1

(

‖y − x‖

r̃x(s)
< h

)

ds = rx(x)m + h2ǫ0(x, h)

M1 =
1

Vmhm

∫

s1

(

‖y − x‖

r̃x(s)
< h

)

ds = h2rx(x)m+2ṙ(x) + h3ǫ1(x, h)

M2 =
1

Vmhm

∫

ssT1

(

‖y − x‖

r̃x(s)
< h

)

ds =
2h2

m + 2
rx(x)m+2I + h3ǫ2(x, h)

where supx∈M,h<h0
‖ǫi(x, h)‖ < Cǫ for some constant Cǫ > 0.

Proof. Let v(s) = ṙ(x) + sign(sT ux)αux. We will show that the set on which
the indicator function is approximately a sphere shifted by v/rx(x) with radius
hrx(x).

1

(

‖y − x‖

rx(s)
< h

)

= 1
(

‖s‖
2

+
∥

∥L(ssT )
∥

∥

2
< h2(rx(x) + v(s)T s + O(‖s‖

2
))2
)

= 1
(

‖s‖
2

< h2rx(x)2(1 + 2v(s)T s + O(h2))
)

= 1

(

‖s‖
2
− 2h2 v(s)T s

rx(x)
+

h4v(s)T v(s)

rx(x)2
< h2rx(x)2 + O(h4)

)

= 1

(∥

∥

∥

∥

s −
v(s)

rx(x)

∥

∥

∥

∥

< hrx(x) + h3δx(s)

)

for some function δx(s). Furthermore, the assumptions on the bounded curva-
ture of the manifold and uniform bounds on the bandwidth function remainder
term ǫr(x, s) give that the perturbation term δx(s) may be uniformly bounded

by supx∈M |δx(s)| ≤ Cδ(‖s‖
2
) for some constant Cδ.

The result for the zeroth moment follows immediately from this. The results
for the first and second moments we calculate in lemma 10.

8.1.1 Refined analysis of the zeroth moment

For convergence of the normalized Laplacian, we need a more refined result for
the zeroth moment.

Lemma 8. Assume
r̃x(y) = rx(s) + ǫr(x, s).
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where rx(s) is twice continuously differentiable as a function of x and s and and
ǫr is bounded. Then

∫

1

Vmhm
1

(

‖y − x‖

r̃x(s)
< h

)

ds = rx(x)m + h2b(x) + h2ǫ0(x, h)

where b is continuous and supx |ǫ0(x, h)| → 0 as h → 0.

Proof. We first sketch idea behind the proof and leave the details to interested
readers. One may convert the integral in normal coordinates to an integral in
polar coordinates (R, θ). One may then apply the implicit function theorem to
obtain that the unperturbed radius function R is a twice continuously differen-
tiable function of h. This gives a Taylor expansion of the zeroth moment with
respect to h. ǫr(x, s) gives the desired result.

We may express the integral for the zeroth moment in polar coordinates

Zx(h) =
∫

1
Vmhm1

(

‖y−x‖
r̃x(s) < h

)

ds =
∫

Rx(θ, h)dµθ where µθ is the uniform

measure on the surface of the unit m-sphere and s̃ = s/h = Rx(θ, h))θ solves
the equation

‖s̃‖
2

+ L(s̃s̃T ) =
(

rx(x) + h∇rx(x)T s̃ + h2s̃THrx(0)s̃
)2

.

and Hrx(0) is the Hessian of rx(·) evaluated at 0.
By the implicit function theorem, the solutions s̃ define a twice continuously

differentiable function of x, h. For sufficiently small h ≥ 0, s̃ is bounded away
from 0 since rx is bounded away from 0 and ‖s/h‖ is bounded away from ∞
by the bound in lemma 7. Thus, Rx(θ, h) and Zx(h) are twice continuously
differentiable with bounded second derivatives.

Zx(h) then has a second-order Taylor expansion Zx(h) = Zx(0) + Z ′
x(0)h +

Z ′′
x (0)h2 + o(h2).

By the less refined analysis in lemma 7, we have that Zx(0) = rx(x)m and
Z ′

x(0+) = 0. One may apply a squeeze theorem to obtain that the contribution
of the error term ǫr(x, s) to the zeroth moment is bounded by Cr supx,s |ǫr(x, s)|
for some constant Cr, and the result follows.

8.2 Moments of the indicator kernel / Integrating over
the centered sphere in normal coordinates

Here we calculate the first three moments of the normalized indicator kernel
where Vm =

∫

1(‖u‖ < 1)du =
∫

Sm
du is the volume of the m-dimensional unit

sphere in Euclidean space.

Lemma 9 (Moments for the sphere). Let K(‖s‖ /h) = 1
hmVm

1(‖s‖ < h). Then
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the first two moments are given by:

M0 =

∫

K(‖s‖ /h)ds =
1

hmVm

∫

Sm

ds = 1 + O(h3)

M1 =

∫

sK(‖s‖ /h)ds =
1

hmVm

∫

Sm

sds = 0 + O(h4)

M2 =

∫

ssT K(‖s‖ /h)ds =
1

hmVm

∫

Sm

ssT ds =
1

m + 2
1+ O(h4).

Proof. The error terms O(hi) arise trivially after converting normal coordinates
to tangent space coordinates. Thus, we may simply treat the integrals as inte-
grals in m–dimensional Euclidean space to obtain the leading term. The values
for M0 and M1 follow immediately from the definition of the volume Vm and
by symmetry of the sphere. We obtain the second moment result by calculating
the values on the diagonal and off-diagonal. On the off-diagonal

1

Vm

∫

Sm

sisjds = 0

for i 6= j due to symmetry of the sphere.
On the diagonal

1

Vm

∫

Sm

s2
i ds =

Vm−1

Vm

∫ 1

−1

s2
i (1 − s2

i )
(m−1)/2dsi (22)

=
Vm−1

Vm

∫ 1

−1

si × si(1 − s2
i )

(m−1)/2dsi (23)

= 0 +
Vm−1

Vm

∫ 1

−1

1

m + 1
(1 − s2

i )
(m+1)/2dsi (24)

=
1

m + 1

Vm−1

VmVm+1

∫ 1

−1

Vm+1(1 − s2
i )

(m+1)/2dsi (25)

=
1

m + 1

Vm−1

Vm+1

Vm+2

Vm
(26)

=
1

m + 2
(27)

where the last equality uses the recurrence relationship Vm+2 = 2π
m+2Vm.

8.3 Integrating the shifted and peturbed sphere

Here we calculate the moments used in Lemma 7.
The integrals in lemma 7 essentially involve integrating over sphere with

(1) a shifted center h2ṙx(x), (2) a symmetric shift by sign(sT u)h2αxu on two
half-spheres, and (3) a small perturbation h3δx(s).

Lemma 10 (Moments of the shifted and perturbed sphere). Let vc ∈ R
m, u be a

unit vector in R
m, β ∈ R, and h > 0. Define K̃(s) = 1(

∥

∥s − vc + sign(sT u)βu
∥

∥ <
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h + h3δ), so that the support of K̃ is a shifted and perturbed sphere with center
vc, symmetric shift sign(sT u)βu, and radius perturbation h3δ.

Assume ‖vc‖ , |β| < Ch2 and δ < min{C, 1} for some constant C, and put
hmax = h + h3δ

Then

M0 =
1

Vm

∫

Rm

K̃(s)ds = hm + ǫ0

M1 =
1

Vm

∫

Rm

sK̃(s)ds = hm+2vc + ǫ1

M2 =
1

Vm

∫

Rm

ssT K̃(s)ds =
hm+2

m + 2
1+ ǫ2.

where ǫ1 < κChm+1
max and ǫi < κChm+3

max for i = 1, 2 and κ is some universal
constant that does not depend on δ, vc, or β.

Proof. Set H+ = {s ∈ R
m : uT s > 0} and H− = HC

+ to be the half-spaces
defined by u. For a set H ⊂ R

m, let H + vc := {w + vc : w ∈ H}.
We first bound the error introduced by the perturbation h3δ. Define

A := supp(K̃) = {s ∈ R
m :

∥

∥s − vc + sign(sT u)βu
∥

∥ < h + h3δ}

A := {s ∈ R
m :

∥

∥s − vc + sign(sT u)βu
∥

∥ < h}

so that A gets rid of the dependence on the perturbation.
For any function Q, we have a trivial bound

∣

∣

∣

∣

∫

A

Q(s)ds −

∫

A

Q(s)ds

∣

∣

∣

∣

< Qmax|V ol(A) − V ol((A))|

< QmaxVm|hm
max − hm|

< QmaxVm(mhm−1
max )(h3δ)

= O(hm+2Qmax) (28)

where Qmax = sup‖s‖<hmax
Q(s) and mVm−1 is the surface area of the m-

dimensional sphere. For Q(s) = 1/Vm, s/Vm, or ssT /Vm, the corresponding
Qmax are 1/Vm, hmax/Vm, and h2

max/Vm. The error induced by the perturba-
tion is thus of the right order.

We now consider the integral over the unperturbed but shifted sphere. De-
note by Bh(v) the ball of radius h centered on v. Note that the function
1(s ∈ A) = 1(

∥

∥s − vc + sign(sT u)βu
∥

∥ < h) is symmetric around vc. Thus,
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for a function Q(s − vc + βu) which is symmetric around vc,

∫

A

Q(s − vc)ds = 2

∫

A∩H+

Q(s − vc)ds

= 2

∫

H+

Q(s − vc)1(‖s − vc‖ < h)ds−

2

∫

H+

Q(s − vc)(1(‖s − vc‖ < h) − 1(‖s − vc + βu‖ < h))ds

=

∫

Q(s)1(‖s‖ < h)ds−

2

∫

H+

Q(s − vc)(1(s ∈ Bh(vc)) − 1(s ∈ Bh(vc − βu)))ds.

For Q(s) = 1/Vm or ssT /Vm, lemma 9 gives that the value of the main term
∫

Q(s)1(‖s‖ < h)ds is hm or hm+2

m+2 I respectively. The error term is bounded by

2

∫

H+

Q(s − vc)(1(s ∈ Bh(vc)) − 1(s ∈ Bh(vc − βu)))ds

≤ 2Qmax

∫

H+

|1(s ∈ Bh(vc)) − 1(s ∈ Bh(vc − βu))|ds

< 2Qmax|β|Area(H+ ∩ Bh(vc))

< 2Qmax|β|(mVm−1h
m−1)

< 2mVm−1CQmaxhm+1

where Area(H+ ∩Bh(vc)) is the surface area of a half-sphere of radius h. Plug-
ging in Qmax = 1/Vm and h2/Vm give that the error terms for the zeroth and
second moment calculations are of the right order.

By another symmetry argument, we have for the first moment calculation
∫

A
1

Vm
(s − vc)ds = 0 or equivalently,

1

Vm

∫

A

sds =
vc

Vm

∫

A

ds

= hmvc + O(hm+3)

where the last equality holds from the calculation of the zeroth moment above.
More precisely, the error term is bounded by 2mVm−1CQmaxhm+1vc.
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