
On robust regression with high-dimensional
predictors
Noureddine El Karoui ∗, Derek Bean ∗ , Peter Bickel ∗ , Chinghway Lim †, and Bin Yu ∗

∗University of California, Berkeley, and †National University of Singapore

Submitted to Proceedings of the National Academy of Sciences of the United States of America

We study regression M-estimates in the setting where p, the num-
ber of covariates, and n, the number of observations, are both large
but p ≤ n. We find an exact stochastic representation for the dis-

tribution of β̂ = argminβ∈Rp
∑n
i=1 ρ(Yi − X′iβ) at fixed p and n

under various assumptions on the objective function ρ and our sta-
tistical model. A scalar random variable whose deterministic limit
rρ(κ) can be studied when p/n→ κ > 0 plays a central role in this
representation.
Furthermore, we discover a non-linear system of two deterministic
equations that characterizes rρ(κ). Interestingly, the system shows
that rρ(κ) depends on ρ through proximal mappings of ρ as well as
various aspects of the statistical model underlying our study.
Several classical results in statistics are upended. In particular, we
show that when p/n is large enough, least-squares becomes prefer-
able to least-absolute-deviations for double exponential errors.

robust regression | prox function | high-dimensional statistics | concentration

of measure

Abbreviations: EPE, expected prediction error;
L
=, equal in law; LAD, least absolute

deviations; i.i.d, independent identically distributed; fidi, finite dimensional

In the “classical” period up to the 1980’s, research on regres-
sion models focused on situations for which the number of

covariates p was much smaller than n, the sample size. Least
squares regression (LSE) was the main fitting tool used but
its sensitivity to outliers came to the fore with the work of
Tukey, Huber, Hampel and others starting in the 1950’s.

Given the model Yi = X ′iβ0+εi and M-estimation methods
described in the abstract, it follows from the discussion in [7]
(p. 170 for instance) that, if the design matrix X (an n×p ma-
trix whose i-th row is Xi) is non singular, under various regu-
larity conditions on X, ρ, ψ = ρ′ and the (i.i.d) errors {εi}ni=1,

β̂ is asymptotically normal with mean β0 and covariance ma-
trix C(ρ, ε)(X ′X)−1. Here C(ρ, ε) = E

(
ψ2(ε)

)
/[E (ψ′(ε))]2

and ε has the same distribution as εi’s.
It follows that, for p fixed, the relative efficiency of M es-

timates such as LAD, to LSE, does not depend on the design
matrix. Thus, LAD has the same advantage over LSE for
heavy tailed distributions as the median has over the mean.

In recent years there has been great focus on the case
where p and n are commensurate and large. Greatest atten-
tion has been paid to the “sparse” case where the number
of nonzero coefficients is much smaller than n or p. This has
been achieved by adding an `1 type of penalty to the quadratic
objective function of LSE, in the case of the LASSO. Unfortu-
nately, these types of methods result in biased estimates of the
coefficients and statistical inference, as opposed to prediction,
becomes problematic.

Huber [6] was the first to investigate the regime of large
p (p → ∞ with n). His results were followed up by Portnoy
[9] under weaker conditions. Huber showed that the behavior
found for fixed p persisted in regions such as p2/n → 0 and
p3/n→ 0. That is, estimates of coefficients and contrasts were
asymptotically Gaussian and relative efficiencies of methods
did not depend on the design matrix. His arguments were,
in part, heuristic but well confirmed by simulation. He also

pointed out a surprising feature of the regime, p/n → κ > 0
for LSE; fitted values were not asymptotically Gaussian. He
was unable to deal with this regime otherwise, see the discus-
sion on p.802 of [6].

In this paper we intend to, in part heuristically and with
“computer validation”, analyze fully what happens in robust
regression when p/n→ κ < 1. We do limit ourselves to Gaus-
sian covariates but present grounds that the behavior holds
much more generally. We also investigate the sensitivity of
our results to the geometry of the design matrix. We have
chosen to use heuristics because we believe successful general
proofs by us or others will require a great deal of time and
perhaps remain unresolved. We proceed in the manner of Hu-
ber [6] who also developed highly plausible results buttressed
by simulations, many of which have not yet been established
rigorously.

We find that :

1. the asymptotic normality and unbiasedness of estimates of
coordinates and contrasts which, unlike fitted values, have
coefficients independent of the observed covariates persist
in these situations;

2. this happens at scale n−1/2, as in the fixed p case, at least
when the minimal and maximal eigenvalues of the covari-
ance of the predictors stay bounded away from 0 and ∞
respectively1.

These findings are obtained by

1. using intricate leave-one-out pertubation arguments both
for the data units and predictors;

2. exhibiting a pair of master equations from which the
asymptotic mean square prediction error and the correct
expressions for asymptotic variances can be recovered;

3. showing that these two quantities depend in a nonlinear
way on p/n, the error distribution, the design matrix and
the form of the objective function, ρ.

It is worth noting that our findings upend the classical intu-
ition that the “ideal” objective function is the negative log-
density of the error distribution. That is, we show that when
p/n is large enough, it becomes preferable to use least-squares
rather than LAD for double exponential errors. We illustrate
this point in Figure 3.

The “Main results” section contains a detailed presenta-
tion of our results. We give some examples and supporting
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simulations in the “Examples” section. We present our deriva-
tion in the last section.

Main results
We consider the following robust regression problem: let β̂ be

β̂ = argminβ∈Rp

n∑
i=1

ρ(Yi −X ′iβ) . [1]

Here Xi ∈ Rp, Yi = X ′iβ0 + εi, where β0 ∈ Rp, εi is a random
(scalar) error independent of the vector Xi ∈ Rp. ρ is a con-
vex function. We assume that the pairs {εi}ni=1 and {Xi}ni=1

are independent. Furthermore, we assume that Xi’s are in-

dependent. Our aim is to characterize the distribution of β̂.
As we will discuss later, our approach is not limited to this
“standard” robust regression setting: we can, for instance,
shed light on similar questions in weighted regression.

The following lemma is easily shown by using the rota-
tional invariance of the Gaussian distribution (see SI).
Lemma 1. Suppose that Xi = λiXi, where Xi’s are n i.i.d
N (0,Σ), with Σ of rank p, and {λi}ni=1 are (non zero) scalars,

independent of {Xi}ni=1. Call β̂(ρ;β0,Σ) the solution2 of
Equation [1]. When n > p, we have the stochastic repre-
sentation

β̂(ρ;β0,Σ)
L
= β0 + ‖β̂(ρ;β0, Idp)− β0‖Σ−1/2u ,

where u is uniform on the sphere of radius 1 in Rp and is in-

dependent of ‖β̂(ρ; 0, Idp)− β0‖. Furthermore, β̂(ρ;β0, Idp)−
β0
L
= β̂(ρ; 0, Idp).

In light of this result, it is clear that we just need to un-

derstand the distribution of β̂(ρ; 0, Idp) to understand that of

β̂(ρ;β0,Σ).

Result 1. Suppose that ρ is a non-linear convex function. Let

us call rρ(p, n) = ‖β̂(ρ; 0, Idp)‖. We assume that Xi = λiXi,
where Xi are i.i.d N (0, Idp) and {λi}ni=1 are non-zero scalars,
independent of {Xi}ni=1. We also assume that Yi = εi (i.e
β0 = 0) and {εi}ni=1 are independent of {Xi}ni=1.

Then, under regularity conditions on {εi}ni=1, {λi}ni=1 and
ρ, rρ(p, n) has a deterministic limit in probability as p and n
tend to infinity while p/n→ κ < 1. We call this limit rρ(κ).

Let us call ẑε(i) = εi + λirρ(κ)Zi, where Zi ∼ N (0, 1) are
i.i.d and independent of {ε}ni=1 and {λi}ni=1. We can deter-
mine rρ(κ) through solving limn→∞

∑n
i=1

E

([
prox

cλ2
i

(ρ)

]′
(ẑε(i))

)
n

= 1− κ ,

limn→∞
∑n
i=1

E

(
λ−2
i [ẑε(i)−prox

cλ2
i

(ρ)(ẑε(i))]
2
)

n
= κr2

ρ(κ) ,
[S1]

where c is a positive deterministic constant to be determined
from the above system. (The expectations above are taken
with respect to the joint distribution of {εi}ni=1, {λi}ni=1 and
{Zi}ni=1.)

The prox abbreviation refers to the proximal mapping which
is standard in convex optimization (see [8]). One of its defini-

tion is proxc(ρ)(x) = argminy∈R

(
ρ(y) + (x−y)2

2c

)
.

Corollary 1. (Important special case) When for all i, λ2
i = 1, and

εi’s are i.i.d, the same conclusions hold but the system char-
acterizing rρ(κ) becomes: if ẑ = ε + rρ(κ)Z, where ε has the
same distribution as εi and is independent of Z ∼ N (0, 1),{

E
(
[proxc(ρ)]′ (ẑε)

)
= 1− κ ,

E
(
[ẑε − proxc(ρ)(ẑε)]

2
)

= κr2
ρ(κ) .

[S2]

The asymptotic normality (in the fidi convergence sense)

and unbiasedness of β̂ is a consequence of Result 1 and Lemma
1. Note the complicated interaction of ρ, the distribution of ε,
the distribution of the Xi’s and κ in determining rρ(κ). In the
p fixed (κ = 0) case, Xi ∼ N (0,Σ), the contribution of the
design is just Σ−1, which determines the correlation matrix

of β̂. In general the correlation structure is the same but the
variances also depend on the design.

As our arguments will show, we expect that the results
concerning rρ(κ) detailed in Result 1 will hold when the as-
sumptions of normality on {Xi}ni=1 are replaced by assump-
tions on concentration of quadratic forms in Xi. Results on

fidi convergence of β̂ also appear likely to hold under these
weakened restrictions.

The difference between the systems of equations charac-
terizing rρ(κ) in Result 1 and Corollary 1 highlights the im-
portance of the geometry of the predictors, Xi, in the results.
As a matter of fact, if we consider the case where Σ = Idp and
λi’s are i.i.d with E

(
λ2
i

)
= 1, in both situations the Xi’s have

covariance Idp and are nearly orthogonal to one another; how-
ever, in the setting of Result 1, ‖Xi‖/

√
p is close to |λi| - hence

variable with i - whereas in the setting of Corollary 1, the Xi’s
all have almost the same norm and hence are near a sphere.
The importance of the geometry of the vectors of predictors in
this situation is hence a generalization of similar phenomena
that were highlighted in [3] for instance. Further examples of
a different nature detailed in [4] p.27 illustrate the fundamen-
tal importance of our implicit geometric assumptions on the
design matrix.

Our analysis also extends to the case where ρ is replaced
by ρi, where for instance ρi = wiρ (the weighted regression
case) as long as {wi}ni=1 is independent of {Xi}ni=1. (One sim-
ply needs to replace ρ by ρi in the system [S1] above and take
expectation with respect to these quantities, too.) We refer
the interested reader to [4], p.26.

Examples
We illustrate the quality of our results on a few numerical ex-
amples, showing the importance of both the objective function
and the distribution of the errors in the behavior of rρ(κ). For
simplicity, we focus only on the case where λ2

i = 1 for all i, i.e
the case of Gaussian predictors (an example with λi random
is in the SI). We also assume that εi’s are i.i.d.

Least-squares. In this case, ρ(x) = x2/2 and ψ(x) = x. Hence,
proxc(ρ) = 1

1+c
x. Elementary computations then show that

c = κ/(1− κ). We also find that r2
`2

(κ) = κ/(1− κ)σ2
ε , where

σ2
ε is the variance of ε. Naturally, in the case of least-squares,

one can use results concerning Wishart distribution [2] as well

as the explicit form of β̂ to verify mathematically that this
expression is correct. We also note that in this case, the dis-
tribution of ε does not matter, only its variance.

Median regression (LAD).This case, where ρ takes values
ρ(x) = |x|, is substantially more interesting and reveals the
importance of the interaction between objective function and
error distribution. Clearly, we first have to compute the prox
of the function ρ. It is well-known and not difficult to show
that this prox is the soft-thresholding function. More formally,
using the notation x+ = max(x, 0), we have, for any t > 0,
proxt(ρ)(y) = sign(y)(|y|− t)+. In this subsection, we use the
notation r`1 instead of rρ .

2We write β̂(ρ; β0,Σ) instead of β̂(ρ; β0,Σ; {εi}ni=1, {λi}
n
i=1) for simplicity.
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Case of Gaussian errors

Let us call s2 = r2
`1

(κ) + σ2
ε . When εi’s are i.i.d N (0, σ2

ε ),

ẑε ∼ N (0, s2). The first equation of our system [S2] therefore
becomes P (|Z| > c/s) = 1 − κ, where Z ∼ N (0, 1). Hence,
c/s = Φ−1((1 + κ)/2), where Φ−1 is the quantile function for
the standard normal distribution.

We now turn our attention to the second equation in the
system [S2]. We have [y − proxt(ρ)(y)]2 = y21y≤t + t21y≥t.
Using the fact that c/s = Φ−1((1 +κ)/2), computations show
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simulations.

that the second equation in the system [S2] becomes

κr2
`1(κ) = s2h (κ) + c2 (1− κ) ,

= s2

[
h (κ) + (1− κ)

(
Φ−1

[
1

2
(1 + κ)

])2
]
,

where h is the function such that for t ∈ [0, 1],

h(t) = t−
√

2

π
Φ−1([1 + t]/2) exp(−[Φ−1([1 + t]/2)]2/2) .

Finally, calling ζ the function such that for t ∈ [0, 1], if ϕ
denotes the standard normal density,

ζ(t) = 2Φ−1(t)
(
ϕ[Φ−1(t)]− Φ−1(t)(1− t)

)
,

further manipulations show that we can solve for s as a func-
tion of κ and therefore for r`1(κ). Our final expression is that,
when the εi’s are i.i.d N (0, σ2

ε ),

r2
`1(κ) =

κ− ζ([1 + κ]/2)

ζ([1 + κ]/2)
σ2
ε .

Figure 1 compares this expression for r2
`1

(κ) to E
(
r2
`1

(p, n)
)

obtained by simulations. The comparison is done by com-
puting relative errors. (A figure comparing the actual values,
which are also of interest, is in the SI.)

Case of errors with symmetric distribution

We call fr,ε the density of ẑε and drop the dependence of rρ(κ)
on ρ and κ from our notations for simplicity. The first equa-
tion of system [S2] still reads P (|ẑε| > c) = 1−κ. Let us call
Fr,ε the cdf of ẑε and F̄r,ε = 1 − Fr,ε. Let us denote by F̄−1

r,ε

the functional inverse of F̄r,ε.
Integration by parts, symmetry of fr,ε as well as the above

characterization of c finally lead to the implicit characteri-
zation of r`1(κ) (denoted simply by r for short in the next
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according to this measure, it becomes preferable to use ordinary least-squares rather

than l1-regression when the errors are double-exponential and κ is sufficiently large.
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equation)

(1− κ)r2 = 4

∫ ∞
F̄−1
r,ε ((1−κ)/2)

xF̄r,ε(x)dx− σ2
ε . [2]

We note in passing that r2 + σ2
ε = 4

∫∞
0
xF̄r,ε(x)dx;

therefore the previous equation can be rewritten κr2 =

4
∫ F̄−1

r,ε ((1−κ)/2)

0 xF̄r,ε(x)dx, a convenient equation to work
with numerically when κ is small.

Case of double exponential errors We now present a
comparison of simulation results to numerical solutions of Sys-
tem [S2] when the errors are double exponential. It should
be noted that in this case the cdf Fr,ε takes values

Fr,ε(t) = Φ

[
t

r

]
+

er
2/2

2

(
etΦ

[
− t+ r2

r

]
− e−tΦ

[
t− r2

r

])
.

It is also clear in this case that σ2
ε = 2. We used all this infor-

mation to solve Equation [2] for r, by doing a dichotomous
search. Figure 2 illustrates our results by showing the relative
errors between E

(
r2
`1

(p, n)
)

(computed from simulations) and
numerical solutions of system [S2] with appropriate parame-
ters. (A figure comparing the actual values is in the SI.)

Other objective functions. We have carried out similar compu-
tations and validations of results for other objective functions,
including the Huber objective functions, the objective func-
tions appearing in quantile regression, as well as `3 and `1.5
objective functions - the latter two more for their analytical
tractability than for their statistical interest. We refer the
reader to [4] for details.

Further remarks. The characterizations of rρ(κ) allows us to
compare the performance of various regression methods for
various error distributions. One mathematical and statistical
consequence is that we can optimize over ρ to minimize rρ(κ)
when the distribution of the errors is given and log-concave
and we are in the setup of Gaussian predictors. We have done
this in the companion paper [1].

Quite independently, we can investigate the performance
of say median regression vs least squares for a range of val-
ues of κ. In the case of double exponential errors, it is well-
known (see e.g [7]) that median regression is twice as efficient
as least-squares when κ is close to 0. As our simulations and
computations illustrate, this is not the case when κ is not close
to zero. Indeed, when κ > .3 or so, r`2(κ) < r`1(κ) for double
exponential errors. This should serve as caution against us-
ing “natural” maximum-likelihood methods in high-dimension
since they turn out to be suboptimal even in apparently fa-
vorable situations.

Derivation
We now turn our attention to the derivation of the system of
equations [S1] presented in Result 1.

Our approach hinges on a “double leave-one out ap-
proach”, the use of concentration properties of certain
quadratic forms and the Sherman-Woodbury-Morrison for-
mula of linear algebra.

We focus on the case β0 = 0 and Σ = Idp. Lemma 1
guarantees that we can do so without loss of generality. Note

that in this case Yi = εi. We call β̂(ρ; 0, Idp) simply β̂ from
now on. We also assume that ρ has two derivatives.

We call the residuals Ri = εi −X ′iβ̂ and use the notation
X(i) = {Xj}j 6=i. Recall that ψ = ρ′ . We note that under our

assumptions β̂ satisfies the gradient equation∑
Xiψ(εi −X ′iβ̂) = 0 . [3]

In the derivations that follow, we will use repeatedly the
fact that if Xi are i.i.d N (0, Idp) and Ap is a sequence of de-
terministic symmetric matrices, under mild conditions on the
growth of trace

(
Akp
)

with k ∈ N, we have as n and p grow

sup
i=1,...,n

∣∣∣∣X ′iApXip
− trace (Ap)

p

∣∣∣∣ = oP (1) .

Many methods can be used to show this concentration result.
A particularly simple one is to compute the second and fourth
cumulants of X ′iApXi. It shows that the result holds as soon
as trace

(
A4
p

)
p−4 + (trace

(
A2
p

)
p−2)2 = o(1/n), a mild condi-

tion. This concentration result is easily extended to the case
where Ap is random but independent of Xi. The previous re-
sult also extends easily to Xi = λiXi, under mild conditions
on λi’s, to yield

sup
i=1,...,n

∣∣∣∣X ′iApXip
− λ2

i
trace (Ap)

p

∣∣∣∣ = oP (1) . [4]

Leaving-out one observation. Let us call β̂(i) the usual leave
one out estimator (i.e the estimator we get by not using
(Xi, Yi) in our regression problem). It solves∑

j 6=i

Xjψ(εj −X ′j β̂(i)) = 0 . [5]

Note that when {Xi}ni=1 are independent, β̂(i) is independent
of Xi. For all j, 1 ≤ j ≤ n, we call r̃j,(i)

r̃j,(i) = εj −X ′j β̂(i) . [6]

When j 6= i, these are the residuals from this leave-one-out sit-
uation. For j = i, r̃i,(i) is the prediction error for observation
i.

Intuitively, it is clear that under regularity conditions on
ρ and εi’s, when Xi’s are i.i.d, for i 6= j, Rj ' r̃j,(i) (this
means statistically that leave-one-out makes sense). On the
other hand, it is easy to convince oneself (by looking e.g at the
least-squares situation) that r̃i,(i) is very different from Ri in
high-dimension. The expansion we will get below will indeed
confirm this fact in a more general setting than least-squares.

Taking the difference between Equations [3] and [5] we
get , after using Taylor expansions for j 6= i (and truncating
the expansion at first order),

Xiψ(εi −X ′iβ̂) +
∑
j 6=i

ψ′(r̃j,(i))XjX
′
j(β̂(i) − β̂) ' 0 .

We call Si =
∑
j 6=i ψ

′(r̃j,(i))XjX
′
j . This suggests that

β̂ − β̂(i) ' S−1
i Xiψ(εi −X ′iβ̂) . [7]

Note that Si is independent of Xi. Hence, multiplying the
previous expression by X ′i, we get, using the approximation
given in Equation [4] (which amounts to assuming that S−1

i

is “nice enough”),

Ri − r̃i,(i) ' −λ2
i trace

(
S−1
i

)
ψ(Ri) .

Experience in random matrix theory as well as the form of
the matrix Si suggest that trace

(
S−1
i

)
should have a deter-

ministic limit (again under conditions3 on ρ, λi’s and εi’s).

3to help with intuition, note that in the least squares case, Si =
∑
j 6=iXjX

′
j , a sample

covariance matrix multiplied by n− 1

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



Then, by symmetry between the observations, all trace
(
S−1
i

)
are approximately the same, i.e, when p and n are large,
trace

(
S−1
i

)
' c. Hence,

Ri − r̃i,(i) ' −λ2
i cψ(Ri) . [8]

Note that since Xi and β̂(i) are independent when Xi’s are in-
dependent and independent of {εi}ni=1 and {λi}ni=1, much can
be said about the distribution of r̃i,(i). However, at this point
in the derivation it is not clear what the value of c should be.

Leaving-out one predictor.Let us consider what happens
when we leave the p-th predictor out. Because we are assum-
ing that Xi is N (0, Idp) and β0 = 0, all the predictors play
a symmetric role, so we pick the p-th to simplify notations.
There is nothing particular about it and the same analysis can
be done with any other predictors.

Let us call γ̂ (∈ Rp−1) the corresponding optimal regres-
sion vector for the loss function ρ. We use the notations and
partitions

Xi =

[
Vi

Xi(p)

]
, β̂ =

[
β̂Sp
β̂p

]
.

We have Vi ∈ Rp−1. Naturally, γ̂ satisfies

n∑
i=1

Viψ(εi − V ′i γ̂) = 0 .

We call
ri,[p] = εi − V ′i γ̂ ,

i.e the residuals based on p−1 predictors. Note that {ri,[p]}ni=1

is independent of {Xi(p)}ni=1 under our assumptions (because
Vi is independent of Xi(p) and the Xi’s are i.i.d).

It is intuitively clear that4 Ri ' ri,[p], for all i, since adding
a predictor will not help us much in estimating β0 = 0. Hence
the residuals should not be much affected by the addition of
one predictor. Taking the difference of the equations defining

β̂ (Equation [3]) and γ̂, we get∑
i

Xiψ(εi −X ′iβ̂)−
[
Vi
0

]
ψ(εi − V ′i γ̂) = 0 .

This p-dimensional equation separates into a scalar and a vec-
tor equation, namely,∑

i

Xi(p)ψ(εi −X ′iβ̂) = 0 ,∑
i

Vi[ψ(Ri)− ψ(ri,[p])] = 0p−1 .

Using a first-order Taylor expansion of ψ(Ri) around ψ(ri,[p])

and noting that Ri − ri,[p] = V ′i (γ̂ − β̂Sp) −Xi(p)β̂p, we can
transform the first equation above into∑
i

Xi(p)
[
ψ(ri,[p]) + ψ′(ri,[p])(V

′
i (γ̂ − β̂Sp)−Xi(p)β̂p)

]
' 0 .

This gives the near identity

β̂p '
∑
Xi(p)[ψ(ri,[p]) + ψ′(ri,[p])V

′
i (γ̂ − β̂Sp)]∑

X2
i (p)ψ′(ri,[p])

.

Working similarly on the equations involving Vi, we get∑
i

ψ′(ri,[p])Vi[Ri − ri,[p]] ' 0 .

Since Ri−ri,[p] = −β̂pXi(p)+V ′i (γ̂− β̂Sp), the previous equa-
tion reads[∑

i

ψ′(ri,[p])ViV
′
i

]
(γ̂ − β̂Sp)− β̂p

∑
i

ψ′(ri,[p])ViXi(p) ' 0 .

Calling

Sp =
∑
i

ψ′(ri,[p])ViV
′
i , and up =

∑
i

ψ′(ri,[p])ViXi(p) ,

we see that (γ̂ − β̂Sp) ' β̂pS−1
p up . Using this approximation

in the previous equation for β̂p, we have finally

β̂p '
∑
Xi(p)ψ(ri,[p])∑

X2
i (p)ψ′(ri,[p])− u′pS−1

p up
. [9]

Approximation of this denominator Let us write in ma-
trix form u′pS

−1
p up = X(p)′AX(p), where A = D1/2PVD

1/2,

PV = D1/2V (V ′DV )−1V ′D1/2 and D is a diagonal matrix
with D(i, i) = ψ′(ri,[p]). Note that PV is a projection matrix
of rank p− 1 in general.

Let us call ξn the denominator of β̂p divided by n. We
have

ξn =
1

n
X(p)′(D −A)X(p) .

Let us call Sp(i) = Sp − ψ′(ri,[p])ViV
′
i . Using the

Sherman-Morrison-Woodbury formula (see [5], p.19 and the
SI), we see that PV (i, i) = 1 − 1

1+ψ′(ri,[p])V
′
i [Sp(i)]−1Vi

. We

notice that Sp(i)
−1 can be approximated by a matrix M−1

i

which is independent of Vi (by using our leave-one-predictor-
out observations) for which V ′iM

−1
i Vi/λ

2
i = trace

(
M−1
i

)
+

oP (1) by Equation [4] (these two approximations naturally
require some regularity conditions on ρ, etc... so that M−1

i is
“nice enough”). Hence,

PV (i, i) = 1− 1

1 + λ2
iψ
′(ri,[p])trace ([Sp(i)]−1)

+ oP (1) .

Therefore, using the approximations ri,[p] ' Ri
and trace

(
[Sp(i)]

−1
)
' c (because trace

(
[Sp(i)]

−1
)
'

trace
(
[Sp]

−1
)

using Sherman-Morrison-Woodbury), we also
have

1−PV (i, i) =
1

1 + ψ′(ri,[p])V ′i [Sp(i)]−1Vi
' 1

1 + λ2
i cψ
′(ri,[p])

.

Since PV is a rank (p − 1) projection matrix, we have
trace (PV ) = p− 1 =

∑
i PV (i, i), and therefore

1

n

n∑
i=1

1

1 + λ2
i cψ
′(ri,[p])

= 1− p

n
+ oP (1) .

Using concentration properties of X(p) conditional on
{λi}ni=1, we have

ξn =
1

n
trace (Dλ(D −A)Dλ) + oP (1)

=
1

n

n∑
i=1

λ2
iψ
′(ri,[p])(1− PV (i, i)) + oP (1) .

4under regularity conditions on ρ, εi’s and λi’s
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Replacing 1− PV (i, i) by its approximate value, we get

ξn '
1

n

n∑
i=1

λ2
iψ
′(ri,[p])

1 + cλ2
iψ
′(ri,[p])

,

=
1

c

(
1− 1

n

n∑
i=1

1

1 + cλ2
iψ
′(ri,[p])

)
' 1

c

p

n
.

So finally,

β̂p '
∑
Xi(p)ψ(ri,[p])/n

p
n
/c

' c1

p

n∑
i=1

λiψ(ri,[p])Xi(p) . [10]

Using again ψ(ri,[p]) ' ψ(Ri), we see that

E
(
‖β̂‖2

)
' n

p

[
1

n

n∑
i=1

E
(
c2λ2

iψ
2(Ri)

)]
, [11]

assuming that we can take expectations in all these approxi-
mations.

From approximations to functional system. Our approxima-

tions concerning the residuals and β̂p shed considerable light

on them. Our focus is now on ‖β̂‖.
From Equation [8] we got the approximation

r̃i,(i) ' Ri + cλ2
iψ(Ri) .

Recall that for a convex, proper and closed function ρ, whose
subdifferential we call ψ, and t > 0, proxt(ρ) = (Id + tψ)−1.
It is an important fact that the prox is indeed a function and
not a multi-valued mapping, even when ρ is not differentiable
everywhere. We therefore get the approximation

Ri ' proxcλ2
i
(ρ)(r̃i,(i)) .

Recalling Equation [6] and using the independence of β̂(i)

and Xi, we have r̃i,(i)
L
= εi + |λi|‖β̂(i)‖Zi, where Zi is N (0, 1)

and independent of εi, λi and ‖β̂(i)‖.
We now argue that ‖β̂‖ is asymptotically deterministic.

Using the relationship between β̂ and β̂(i) in Equation [7]
and taking squared norms, we see that

‖β̂‖2 ' ‖β̂(i)‖2 + 2β̂′(i)S
−1
i Xiψ(Ri) +X ′iS

−2
i Xiψ

2(Ri) .

Assuming that the smallest eigenvalue of Si/n remains
bounded, which is automatically satisfied with high-
probability for strongly convex functions ρ, we see that

‖β̂‖2 − ‖β̂(i)‖2 is OP (1/n), provided ‖β̂(i)‖ remains bounded
and ψ and ψ′ do not grow too fast at infinity. Applying the

Efron-Stein inequality, we see that var
(
‖β̂‖2

)
= O(1/n) if we

take squared expectations in our approximations. It follows

that ‖β̂‖2 is asymptotically deterministic.
These arguments suggest that as p and n become large,

r̃i,(i)
L
= εi+ |λi|rρ(κ)Zi+ oP (1), where Zi ∼ N (0, 1), indepen-

dent of λi and εi, and rρ(κ) is deterministic. We also note
that Zi are i.i.d, since Xi are.

Since cλ2
iψ(Ri) ' r̃i,(i) − Ri ' r̃i,(i) − proxcλ2

i
(ρ)(r̃i,(i)),

we see that Equation [11] now becomes asymptotically

κr2
ρ(κ) =

1

n

n∑
i=1

E

(
λ−2
i

[
r̃i,(i) − proxcλ2

i
(ρ)(r̃i,(i))

]2)
,

where the expectations are over the joint distribution of λi’s,
εi’s and Zi’s. (We note that our arguments do not depend
on independence of λi’s or εi’s, though both families of ran-
dom variables need to be independent of {Xi}ni=1.) This is the
second equation of System [S1].

We now recall that using the fact that the matrix PV above
was a projection matrix, we had argued that asymptotically

1

n

n∑
i=1

1

1 + cλ2
iψ(Ri)

= 1− κ+ oP (1) .

We observe that (proxcλ2
i
)′(r̃i,(i)) = 1

1+cλ2
iψ(prox

cλ2
i

[r̃i,(i)])
and

therefore 1
1+cλ2

iψ(Ri)
' (proxcλ2

i
)′(r̃i,(i)). This allows us to

conclude that under regularity conditions,

1

n

n∑
i=1

E
(

(proxcλ2
i
)′(r̃i,(i))

)
= 1− κ .

This is the first equation of our System [S1].

A note on non-differentiable ρ’s. One of the appeals of our
systems [S1] and [S2] is that they yield expressions even in
the case of non-differentiable ρ, since the prox is well-defined.
However, we derived the systems assuming smoothness of ρ.
To go around this hurdle, one can approximate ρ by a family
ρη of smooth convex functions such that ρη → ρ as η → 0 in
an appropriate sense. Intuitively it is quite clear that rρη (κ)
should tend to rρ(κ) as η tends to 0 under appropriate regu-
larity conditions on εi’s and λi’s. We then just need to take
limits in our systems to justify them for non-differentiable
ρ’s.
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