On robust regression with high-dimensional predictors

Noureddine El Karoui *, Derek Bean *, Peter Bickel *, Chinghway Lim †, and Bin Yu *

* University of California, Berkeley, and † National University of Singapore

Submitted to Proceedings of the National Academy of Sciences of the United States of America

We study regression M-estimates in the setting where p, the number of covariates, and n, the number of observations, are both large but $p \leq n$. We find an exact stochastic representation for the distribution of $\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \rho(Y_i - X_i^T \beta)$ at fixed p and n under various assumptions on the objective function ρ and our statistical model. A scalar random variable whose deterministic limit $r_p(\kappa)$ can be studied when $p/n \to \kappa > 0$ plays a central role in this representation.

Furthermore, we discover a non-linear system of two deterministic equations that characterizes $r_p(\kappa)$. Interestingly, the system shows that $r_p(\kappa)$ depends on ρ through proximal mappings of ρ as well as various aspects of the statistical model underlying our study. Several classical results in statistics are upended. In particular, we show that when p/n is large enough, least-squares becomes preferable to least-absolute-deviations for double exponential errors.

robust regression | prox function | high-dimensional statistics | concentration of measure

Abbreviations: EPE, expected prediction error; $\overset{\text{E}}{\equiv}$, equal in law; LAD, least absolute deviations; i.i.d, independent identically distributed; fidi, finite dimensional

In the “classical” period up to the 1980’s, research on regression models focused on situations for which the number of covariates p was much smaller than n, the sample size. Least squares regression (LSE) was the main fitting tool used but its sensitivity to outliers came to the fore with the work of Tukey, Huber, Hampel and others starting in the 1950’s.

Given the model $Y_i = X_i^T \beta_0 + \epsilon_i$ and M-estimation methods described in the abstract, it follows from the discussion in [7] (p. 170 for instance) that, if the design matrix X (an $n \times p$ matrix whose i-th row is X_i) is non singular, under various regularity conditions on X, ρ, $\psi = \rho$’ and the (i.i.d) errors $\{\epsilon_i\}_{i=1}^n$, $\hat{\beta}$ is asymptotically normal with mean β_0 and covariance matrix $C(\rho, \epsilon)(X^T X)^{-1}$. Here $C(\rho, \epsilon) = \mathbb{E} \left[\psi^2(\epsilon) \right]/\left[\mathbb{E} \left[\psi'(\epsilon) \right] \right]^2$ and ϵ has the same distribution as ϵ_i’s.

It follows that, for p fixed, the relative efficiency of M-estimates such as LAD, to LSE, does not depend on the design matrix. Thus, LAD has the same advantage over LSE for heavy tailed distributions as the median has over the mean.

In recent years there has been great focus on the case where p and n are commensurate and large. Greatest attention has been paid to the “sparse” case where the number of nonzero coefficients is much smaller than n or p. This has been achieved by adding an ℓ_1 type of penalty to the quadratic objective function of LSE, in the case of the LASSO. Unfortunately, these types of methods result in biased estimates of the coefficients and statistical inference, as opposed to prediction, becomes problematic.

Huber [6] was the first to investigate the regime of large p ($p \to \infty$ with n). His results were followed up by Portnoy [9] under weaker conditions. Huber showed that the behavior found for fixed p persisted in regions such as $p^2/n \to 0$ and $p^3/n \to 0$. That is, estimates of coefficients and contrasts were asymptotically Gaussian and relative efficiencies of methods did not depend on the design matrix. His arguments were, in part, heuristic but well confirmed by simulation. He also pointed out a surprising feature of the regime, $p/n \to \kappa > 0$ for LSE; fitted values were not asymptotically Gaussian. He was unable to deal with this regime otherwise, see the discussion on p.802 of [6].

In this paper we intend to, in part heuristically and with “computer validation”, analyze fully what happens in robust regression when $p/n \to \kappa < 1$. We do limit ourselves to Gaussian covariates but present grounds that the behavior holds much more generally. We also investigate the sensitivity of our results to the geometry of the design matrix. We have chosen to use heuristics because we believe successful general proofs by us or others will require a great deal of time and perhaps remain unresolved. We proceed in the manner of Huber [6] who also developed highly plausible results buttressed by simulations, many of which have not yet been established rigorously.

We find that:

1. the asymptotic normality and unbiasedness of estimates of coordinates and contrasts which, unlike fitted values, have coefficients independent of the observed covariates persist in these situations;
2. this happens at scale $n^{-1/2}$, as in the fixed p case, at least when the minimal and maximal eigenvalues of the covariance of the predictors stay bounded away from 0 and ∞ respectively1.

These findings are obtained by

1. using intricate leave-one-out perturbation arguments both for the data units and predictors;
2. exhibiting a pair of master equations from which the asymptotic mean square prediction error and the correct expressions for asymptotic variances can be recovered;
3. showing that these two quantities depend in a nonlinear way on p/n, the error distribution, the design matrix and the form of the objective function, ρ.

It is worth noting that our findings upend the classical intuition that the “ideal” objective function is the negative log-density of the error distribution. That is, we show that when p/n is large enough, it becomes preferable to use least-squares rather than LAD for double exponential errors. We illustrate this point in Figure 3.

The “Main results” section contains a detailed presentation of our results. We give some examples and supporting

Reserved for Publication Footnotes

1 and the vector defining the contrasts has norm bounded away from 0 and ∞.
simulations in the “Examples” section. We present our derivation in the last section.

Main results

We consider the following robust regression problem: let $\hat{\beta}$ be

$$
\hat{\beta} = \text{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} \rho(Y_i - X_i^\top \beta).
$$

[1]

Here $X_i \in \mathbb{R}^p$, $Y_i = X_i^\top \beta_0 + \epsilon_i$, where $\beta_0 \in \mathbb{R}^p$, ϵ_i is a random (scalar) error independent of the vector $X_i \in \mathbb{R}^p$. ρ is a convex function. We assume that the pairs $\{\epsilon_i\}_{i=1}^{n}$ and $\{X_i\}_{i=1}^{n}$ are independent. Furthermore, we assume that X_i’s are independent. Our aim is to characterize the distribution of $\hat{\beta}$. As we will discuss later, our approach is not limited to this standard robust regression setting; we can, for instance, shed light on similar questions in weighted regression.

The following lemma is easily shown by using the rotational invariance of the Gaussian distribution (see [11]).

Lemma 1. Suppose that $X_i = \lambda_i X_i$, where X_i’s are i.i.d $\mathcal{N}(0, \Sigma)$, with Σ of rank p, and $\{\lambda_i\}_{i=1}^{n}$ are (non zero) scalars, independent of $\{X_i\}_{i=1}^{n}$. Call $\hat{\beta}(\rho; \beta_0, \Sigma)$ the solution of (Equation 1) when $n \to p$, we have the stochastic representation

$$
\hat{\beta}(\rho; \beta_0, \Sigma) \sim \beta_0 + \|\hat{\beta}(\rho; 0, \Sigma)\| \Sigma^{-1/2} u,
$$

where u is uniform on the sphere of radius 1 in \mathbb{R}^p and is independent of $\|\hat{\beta}(\rho; 0, \Sigma)\|$. Furthermore, $\hat{\beta}(\rho; \beta_0, \Sigma) - \beta_0 \sim \mathcal{N}(0, \Sigma)$. In light of this result, it is clear that we just need to understand the distribution of $\hat{\beta}(\rho; 0, \Sigma)$ to understand that of $\hat{\beta}(\rho; \beta_0, \Sigma)$.

Result 1. Suppose that ρ is a non-linear convex function. Let us call $r_{\rho}(n, p) \equiv \|\hat{\beta}(\rho; 0, \Sigma)\|$. We assume that $X_i = \lambda_i X_i$, where X_i’s are i.i.d $\mathcal{N}(0, \Sigma)$ and $\{\lambda_i\}_{i=1}^{n}$ are non-zero scalars, independent of $\{X_i\}_{i=1}^{n}$. We also assume that $Y_i = \epsilon_i$ (i.e., $\beta_0 = 0$) and $\{\epsilon_i\}_{i=1}^{n}$ are independent of $\{X_i\}_{i=1}^{n}$. Then, under regularity conditions on $\{\epsilon_i\}_{i=1}^{n}$, $\{\lambda_i\}_{i=1}^{n}$ and ρ, $r_{\rho}(n, p)$ has a deterministic limit in probability as $p \to \infty$.

Let us call $\tilde{Z}(\epsilon) = \epsilon + \lambda r_{\rho}(\epsilon) \tilde{Z}$, where \tilde{Z} is $\mathcal{N}(0, 1)$ and $\{\epsilon_i\}_{i=1}^{n}$ and $\{\lambda_i\}_{i=1}^{n}$ are independent. We can determine $r_{\rho}(\epsilon)$ through solving

$$
\begin{align*}
\lim_{n \to \infty} & \sum_{i=1}^{n} \mathbb{E} \left[\left(\text{prox}_{\epsilon}(\rho) \right)(\tilde{Z}(\epsilon_i)) \right] \\
\lim_{n \to \infty} & \sum_{i=1}^{n} \mathbb{E} \left[\left(\text{prox}_{\epsilon}(\rho) \right)(\tilde{Z}(\epsilon_i))^2 \right] = 1 - \kappa,
\end{align*}
$$

[2]

where c is a positive deterministic constant to be determined from the above system. (The expectations above are taken with respect to the joint distribution of $\{\epsilon_i\}_{i=1}^{n}$, $\{\lambda_i\}_{i=1}^{n}$ and $\{\tilde{Z}\}_{i=1}^{n}$.)

The prox abbreviation refers to the proximal mapping which is standard in convex optimization (see [8]). One of its definitions is $\text{prox}_{\epsilon}(\rho) = \text{argmin}_{\rho \in \mathbb{R}} \left(\rho(y) + \frac{\|x-y\|^2}{2\epsilon} \right)$.

Corollary 1. (Important special case) When for all i, $\lambda_i^2 = 1$, and ϵ_i’s are i.i.d., the same conclusions hold but the system characterizing $r_{\rho}(\kappa)$ becomes: if $\tilde{Z} = \epsilon + r_{\rho}(\kappa) \tilde{Z}$, where ϵ has the same distribution as ϵ_0 and is independent of $Z \sim \mathcal{N}(0, 1)$,

$$
\begin{align*}
\mathbb{E} \left[\left(\text{prox}_{\epsilon}(\rho) \right)(\tilde{Z}) \right] & = 1 - \kappa, \\
\mathbb{E} \left[\left(\tilde{Z} - \text{prox}_{\epsilon}(\rho) \tilde{Z} \right)^2 \right] & = \kappa r_{\rho}(\kappa),
\end{align*}
$$

[3]

The asymptotic normality (in the fidi convergence sense) and unbiasedness of $\hat{\beta}$ is a consequence of Result 1 and Lemma 1. Note the complicated interaction of ρ, the distribution of ϵ, the distribution of the X_i’s and κ in determining $r_{\rho}(\kappa)$. In the p fixed ($\kappa = 0$) case, $X_i \sim \mathcal{N}(0, \Sigma)$, the contribution of the design is just Σ^{-1}, which determines the correlation matrix of $\tilde{\beta}$. In general the correlation structure is the same but the variances also depend on the design.

As our arguments will show, we expect that the results concerning $r_{\rho}(\kappa)$ detailed in Result 1 will hold when the assumptions of normality on $\{X_i\}_{i=1}^{n}$ are replaced by assumptions on concentration of quadratic forms in X_i. Results on fidi convergence of $\hat{\beta}$ also appear likely to hold under these weakened restrictions.

The difference between the systems of equations characterizing $r_{\rho}(\kappa)$ in Result 1 and Corollary 1 highlights the importance of the geometry of the predictors, X_i, in the results.

As a matter of fact, if we consider the case where Σ is non-invertible, and λ_i’s are i.i.d with $\mathcal{E}(\lambda_i^2) = 0$, in both situations the X_i’s have covariance Σ, and are nearly orthogonal to one another; however, in the setting of Result 1, $\|X_i\|/\sqrt{\rho}$ is close to $\|\lambda_i\|$ whereas in the setting of Corollary 1, λ_i’s all have almost the same norm and hence are near a sphere. The importance of the geometry of the vectors of predictors in this situation is hence a generalization of similar phenomena that were highlighted in [3] for instance. Further examples of a different nature detailed in [4] p.27 illustrate the fundamental importance of our implicit geometric assumptions on the design matrix.

Our analysis also extends to the case where ρ is replaced by ρ_{ϵ}, where for instance $\rho_{\epsilon} = w_{\rho}(\epsilon)$ (the weighted regression case) as long as $w_{\rho}(\epsilon)_{i=1}^{n}$ is independent of $\{X_i\}_{i=1}^{n}$. (One simply needs to replace ρ by ρ_{ϵ} in the system [S1] above and take expectation with respect to these quantities, too.) We refer the interested reader to [4], p.26.

Examples

We illustrate the quality of our results on a few numerical examples, showing the importance of both the objective function and the distribution of the errors in the behavior of $r_{\rho}(\kappa)$. For simplicity, we focus only on the case where $\lambda_i^2 = 1$ for all i, i.e. the case of Gaussian predictors (an example with λ_i random is in the SI). We also assume that ϵ_i’s are i.i.d.

Least-squares. In this case, $\rho(x) = x^2/2$ and $\psi(x) = x$. Hence, $\text{prox}_{\epsilon}(\rho) = \frac{x}{1 + \epsilon}$. Elementary computations then show that $c = \kappa/(1 - \kappa)$. We also find that $r_{\rho}(\kappa) = \kappa/(1 - \kappa)\sigma^2$, where σ^2 is the variance of ϵ. Naturally, in the case of least-squares, one can use results concerning Wishart distribution [2] as well as the explicit form of $\hat{\beta}$ to verify mathematically that this expression is correct. We also note that in this case, the distribution of ϵ does not matter, only its variance.

Median regression (LAD). This case, where $\rho(x) = |x|$, is substantially more interesting and reveals the importance of the interaction between objective function and error distribution. Clearly, we first have to compute the prox of the function ρ. It is well-known and not difficult to show that this prox is the soft-thresholding function. More formally, using the notation $x_+ = \max(x, 0)$, we have, for any $t > 0$,

$$
\text{prox}_{\epsilon}(\rho)(y) = \text{sign}(y)(|y| - t)_+.
$$

In this subsection, we use the notation r_{ϵ} instead of r_{ρ}.

2We write $\hat{\beta}(\rho; \beta_0, \Sigma)$ instead of $\hat{\beta}(\rho; \beta_0, \Sigma; \{\epsilon_i\}_{i=1}^{n}; \{\lambda_i\}_{i=1}^{n})$ for simplicity.
Let us call $s^2 = r_{L1}^2(\kappa) + \sigma^2$. When ϵ_i’s are i.i.d $\mathcal{N}(0, \sigma^2)$, $Z \sim \mathcal{N}(0, s^2)$. The first equation of our system $[S2]$ therefore becomes $P(|Z| > c/s) = 1 - \kappa$, where $Z \sim \mathcal{N}(0, 1)$. Hence, $c/s = \Phi^{-1}(1 + \kappa)/2$, where Φ^{-1} is the quantile function for the standard normal distribution.

We now turn our attention to the second equation in the system $[S2]$. We have $|y - \text{prox}_s(\rho)(y)|^2 = y^2 1_{y \leq t} + t^2 1_{y > t}$. Using the fact that $c/s = \Phi^{-1}(1 + \kappa)/2$, computations show that the second equation in the system $[S2]$ becomes

$$
\kappa r_{L1}^2(\kappa) = s^2 h(\kappa) + c^2 (1 - \kappa),
$$

$$
= s^2 \left[h(\kappa) + (1 - \kappa) \left(\Phi^{-1} \left(\frac{1}{2} (1 + \kappa) \right) \right)^2 \right],
$$

where h is the function such that for $t \in [0, 1],$

$$
h(t) = t - \sqrt{\frac{\sqrt{2}}{\pi}} \Phi^{-1}\left((1 + t)/2\right) \exp(-\Phi^{-1}\left((1 + t)/2\right)^2/2).$$

Finally, calling ζ the function such that for $t \in [0, 1]$, if φ denotes the standard normal density,

$$
\zeta(t) = 2\Phi^{-1}(t) (\varphi[\Phi^{-1}(t)] - \Phi^{-1}(t)(1 - t)),
$$

further manipulations show that we can solve for s as a function of κ and therefore for $r_{L1}(\kappa)$. Our final expression is that, when the ϵ_i’s are i.i.d $\mathcal{N}(0, \sigma^2)$,

$$
r_{L1}^2(\kappa) = \frac{\kappa - \zeta([1 + \kappa]/2)}{\zeta([1 + \kappa]/2) - \sigma^2}.
$$

Figure 1 compares this expression for $r_{L1}(\kappa)$ to $E(r_{L1}^2(p, n))$ obtained by simulations. The comparison is done by computing relative errors. (A figure comparing the actual values, which are also of interest, is in the SI.)

Case of errors with symmetric distribution

We call $f_{r, \epsilon}$ the density of $Z\epsilon$ and drop the dependence of $r_{L1}(\kappa)$ on ρ and κ from our notations for simplicity. The first equation of system $[S2]$ still reads $P(|Z\epsilon| > c) = 1 - \kappa$. Let us call $F_{r, \epsilon}$, the cdf of $Z\epsilon$, and $F_{r, \epsilon} = 1 - F_{r, \epsilon}$. Let us denote by $F_{r, \epsilon}$ the functional inverse of $F_{r, \epsilon}$.

Integration by parts, symmetry of $f_{r, \epsilon}$ as well as the above characterization of c finally lead to the implicit characterization of $r_{L1}(\kappa)$ (denoted simply by r for short in the next
\[(1 - \kappa)r^2 = 4 \int_{F^{-1}_r(1 - \kappa)/2} F_F(x) dx - \sigma^2_r. \]

We note in passing that \(r^2 + \sigma^2_r = 4 \int_{0}^{\infty} F_F(x) dx; \) therefore the previous equation can be rewritten \(\kappa r^2 = 4 \int_{0}^{\infty} F_F(x) dx, \) a convenient equation to work with numerically when \(\kappa \) is small.

Case of double exponential errors. We now present a comparison of simulation results to numerical solutions of System \([S2]\) when the errors are double exponential. It should be noted that in this case the cdf \(\Phi \) therefore the previous equation can be rewritten \(\kappa r^2 = 4 \int_{0}^{\infty} F_F(x) dx, \) a convenient equation to work with numerically when \(\kappa \) is small.

It is also clear in this case that \(\sigma^2_r = 2. \) We used all this information to solve Equation \([2]\) for \(r \), by doing a dichotomous search. Figure 2 illustrates our results by showing the relative errors between \(E(\ell^2_r(p, n)) \) (computed from simulations) and numerical solutions of system \([S2]\) with appropriate parameters. (A figure comparing the actual values is in the SI.)

Other objective functions. We have carried out similar computations and validations of results for other objective functions, including the Huber objective functions, the objective functions appearing in quantile regression, as well as \(\ell_2 \) and \(\ell_1 \) tions and validations of results for other objective functions.

Further remarks. The characterizations of \(r_p(\kappa) \) allow us to compare the performance of various regression methods for various error distributions. One mathematical and statistical consequence is that we can optimize over \(\rho \) to minimize \(r_p(\kappa) \) when the distribution of the errors is given and log-concave and we are in the setup of Gaussian predictors. We have done this in the companion paper \([1]\).

Quite independently, we can investigate the performance of say median regression vs least squares for a range of values of \(\kappa. \) In the case of double exponential errors, it is well-known \(\text{(see e.g. \([7]\))} \) that median regression is twice as efficient as least-squares when \(\kappa \) is close to 0. As our simulations and computations illustrate, this is not the case when \(\kappa \) is not close to zero. Indeed, when \(\kappa > .3 \) or so, \(r_{\ell_2}(\kappa) < r_{\ell_1}(\kappa) \) for double exponential errors. This should serve as caution against using “natural” maximum-likelihood methods in high-dimension since they turn out to be suboptimal even in apparently favorable situations.

Derivation

We now turn our attention to the derivation of the system of equations \([S1]\) presented in Result 1.

Our approach hinges on a “double leave-one-out approach”, the use of concentration properties of certain quadratic forms and the Sherman-Woodbury-Morrison formula of linear algebra.

We focus on the case \(\hat{\beta}_0 = 0 \) and \(\Sigma = \text{Id}_p. \) Lemma 1 guarantees that we can do so without loss of generality. Note that in this case \(Y_1 = \epsilon_1. \) We call \(\hat{\beta}(\rho; 0, \text{Id}_p) \) simply \(\hat{\beta} \) from now on. We also assume that \(\rho \) has two derivatives.

We call the residuals \(R_i = \epsilon_i - X_j^i \hat{\beta} \) and use the notation \(X(i) = \{X_j\}_{j \neq i}. \) Recall that \(\psi = \rho' \) . We note that under our assumptions \(\hat{\beta} \) satisfies the gradient equation

\[\sum X_i \psi(\epsilon_i - X_j^i \hat{\beta}) = 0. \]

In the derivations that follow, we will use repeatedly the fact that if \(X_i \) are i.i.d \(\mathcal{N}(0, \text{Id}_p) \) and \(A_p \) is a sequence of deterministic symmetric matrices, under mild conditions on the growth of trace \((A_p^k)\) with \(k \in \mathbb{N}, \) we have as \(n \) and \(p \) grow

\[\sup_{i=1, \ldots, n} \left| \frac{X_i^T A_p X_i}{p} - \text{trace}(A_p) \right| = o_P(1). \]

Many methods can be used to show this concentration result. A particularly simple one is to compute the second and fourth cumulants of \(X_i^T A_p X_i \). It shows that the result holds as soon as \(\text{trace}(A_p^4) \) is of order \(o(1/n) \), a mild condition. This concentration result is easily extended to the case where \(A_p \) is random but independent of \(X_i \). The previous result also extends easily to \(X_i = \lambda_i X_i \), under mild conditions on \(\lambda_i \)'s, to yield

\[\sup_{i=1, \ldots, n} \left| \frac{X_i^T A_p X_i}{p} - \lambda_i^2 \text{trace}(A_p) \right| = o_P(1). \]

Leaving-out one observation. Let us call \(\hat{\beta}(i) \) the usual leave one out estimator (i.e the estimator we get by not using \((X_i, Y_i)\) in our regression problem). It solves

\[\sum_{j \neq i} X_j \psi(\epsilon_j - X_j^i \hat{\beta}(i)) = 0. \]

Note that when \(|X_i|^p \) are independent, \(\hat{\beta}(i) \) is independent of \(X_i. \) For all \(j, 1 \leq j \leq n, \) we call \(\tilde{r}_j(i) \)

\[\tilde{r}_j(i) = \epsilon_j - X_j^i \hat{\beta}(i). \]

When \(j \neq i, \) these are the residuals from this leave-one-out situation. For \(j = i, \) \(\tilde{r}_i(i) \) is the prediction error for observation \(i. \)

Intuitively, it is clear that under regularity conditions on \(\rho \) and \(\epsilon_i \)'s, when \(X_i \)'s are i.i.d, for \(i \neq j, \) \(R_i \simeq \tilde{r}_j(i) \) (this means statistically that leave-one-out makes sense). On the other hand, it is easy to convince oneself (by looking e.g at the least-squares situation) that \(\tilde{r}_i(i) \) is very different from \(R_i \) in high-dimension. The expansion we will get below will indeed confirm this fact in a more general setting than least-squares.

Taking the difference between Equations \([3]\) and \([5]\) we get , after using Taylor expansions for \(j \neq i \) (and truncating the expansion at first order),

\[X_i \psi(\epsilon_i - X_j^i \hat{\beta}) + \sum_{j \neq i} \psi'(\tilde{r}_j(i)) X_j^i X_j^i \hat{\beta} - \hat{\beta} \simeq 0. \]

We call \(S_i = \sum_{j \neq i} \psi'(\tilde{r}_j(i)) X_j^i X_j^i \) . This suggests that

\[\hat{\beta} - \tilde{\beta}(i) \simeq S_i^{-1} X_i \psi(\epsilon_i - X_j^i \hat{\beta}). \]

Note that \(S_i \) is independent of \(X_i \). Hence, multiplying the previous expression by \(X_i, \) we get, using the approximation given in Equation \([4]\) (which amounts to assuming that \(S_i^{-1} \) is “nice enough”),

\[R_i - \tilde{r}_i(i) \simeq -\lambda_i^2 \text{trace}(S_i^{-1}) \psi(R_i). \]

Experience in random matrix theory as well as the form of the matrix \(S_i \) suggest that trace \((S_i^{-1})\) should have a deterministic limit (again under conditions\(^3\) on \(\rho, \lambda_i \)'s and \(\epsilon_i \)'s).

\(^{3}\)To help with intuition, note that in the least squares case, \(S_i = \sum_{j \neq i} X_j^i X_j^i, \) a sample covariance matrix multiplied by \(n - 1 \).
Then, by symmetry between the observations, all trace \(S_i^{-1}\) are approximately the same, i.e., when \(p\) and \(n\) are large, trace \(S_i^{-1} \approx c\). Hence,

\[
R_i - \hat{r}_i(i) \approx -\lambda_i^2 c \psi(R_i).
\]

Note that since \(X_i\) and \(\hat{\beta}(i)\) are independent when \(X_i\)'s are independent and independent of \(\{\epsilon_i\}_{i=1}^n\) and \(\lambda_i\), much can be said about the distribution of \(\hat{r}_i(i)\). However, at this point in the derivation it is not clear what the value of \(c\) should be.

Leaving-out one predictor. Let us consider what happens when we leave the \(p\)-th predictor out. Because we are assuming that \(X_i\) is \(N(0, \text{Id}_p)\) and \(\hat{\beta}_0 = 0\), all the predictors play a symmetric role, so we pick the \(p\)-th to simplify notations. There is nothing particular about it and the same analysis can be done with any other predictors.

Let us call \(\hat{\gamma} \in \mathbb{R}^{p-1}\) the corresponding optimal regression vector for the loss function \(P\). We use the notations and partitions

\[
X_i = \begin{bmatrix} V_i & X_i(p) \end{bmatrix}, \quad \hat{\beta} = \begin{bmatrix} \hat{\beta}_p \end{bmatrix}.
\]

We have \(V_i \in \mathbb{R}^{p-1}\). Naturally, \(\hat{\gamma}\) satisfies

\[
\sum_{i=1}^n V_i \psi(\epsilon_i - V_i' \hat{\gamma}) = 0.
\]

We call

\[
r_{i,[p]} = \epsilon_i - V_i' \hat{\gamma},
\]

i.e. the residuals based on \(p-1\) predictors. Note that \(\{r_{i,[p]}\}_{i=1}^n\) is independent of \(\{X_i(p)\}_{i=1}^n\) under our assumptions (because \(V_i\) is independent of \(X_i(p)\) and the \(X_i's\) are i.i.d.).

It is intuitively clear that \(R_i \approx r_{i,[p]}\), for all \(i\), since adding a predictor will not help us much in estimating \(\hat{\beta}_0 = 0\). Hence the residuals should not be much affected by the addition of one predictor. Taking the difference of the equations defining \(\hat{\beta}\) (Equation [3]) and \(\hat{\gamma}\), we get

\[
\sum_{i=1}^n V_i \psi(\epsilon_i - X_i' \hat{\beta}) - \begin{bmatrix} V_i' \end{bmatrix} \psi(\epsilon_i - V_i' \hat{\gamma}) = 0.
\]

This \(p\)-dimensional equation separates into a scalar and a vector equation, namely,

\[
\sum_{i=1}^n X_i(p) \psi(\epsilon_i - X_i' \hat{\beta}) = 0,
\]

\[
\sum_{i=1}^n V_i \psi(R_i - \psi(r_{i,[p]})) = 0_{p-1}.
\]

Using a first-order Taylor expansion of \(\psi(R_i)\) around \(\psi(r_{i,[p]})\) and noting that \(R_i - r_{i,[p]} = V_i' (\hat{\gamma} - \hat{\beta}_p)\) we can transform the first equation above into

\[
\sum_{i=1}^n X_i(p) \left[\psi(r_{i,[p]}) + \psi'(r_{i,[p]}) (V_i' (\hat{\gamma} - \hat{\beta}_p) - X_i(p) \hat{\beta}_p) \right] \approx 0.
\]

This gives the near identity

\[
\hat{\beta}_p \approx \frac{\sum_{i=1}^n X_i(p) [\psi(r_{i,[p]}) + \psi'(r_{i,[p]}) (V_i' (\hat{\gamma} - \hat{\beta}_p) - X_i(p) \hat{\beta}_p)]}{\sum_{i=1}^n X_i^2(p) \psi'(r_{i,[p]})}.
\]

Working similarly on the equations involving \(V_i\), we get

\[
\sum_{i=1}^n \psi'(r_{i,[p]}) V_i [R_i - r_{i,[p]}] \approx 0.
\]

Since \(R_i - r_{i,[p]} = -\hat{\beta}_p X_i(p) + V_i' (\gamma - \hat{\beta}_p)\), the previous equation reads

\[
\left[\sum_{i=1}^n \psi'(r_{i,[p]}) V_i V_i' \right] (\gamma - \hat{\beta}_p) - \hat{\beta}_p \sum_{i=1}^n \psi'(r_{i,[p]}) V_i X_i(p) \approx 0.
\]

Calling

\[
\mathcal{G}_p = \sum_{i=1}^n \psi'(r_{i,[p]}) V_i V_i', \quad \text{and } u_p = \sum_{i=1}^n \psi'(r_{i,[p]}) V_i X_i(p),
\]

we see that \(\gamma - \hat{\beta}_p \approx \hat{\beta}_p \mathcal{G}_p^{-1} u_p\). Using this approximation in the previous equation for \(\hat{\beta}_p\), we have finally

\[
\hat{\beta}_p \approx \frac{\sum_{i=1}^n X_i(p) \psi(r_{i,[p]})}{\sum_{i=1}^n X_i^2(p) \psi'(r_{i,[p]}) - u_p' \mathcal{G}_p^{-1} u_p}.
\]

Approximation of this denominator Let us write in matrix form

\[
\mathcal{G}_p^{-1} u_p = X(p)' A X(p),
\]

where \(A = D^{-1/2} P V D^{1/2}\), \(P V = D^{1/2} V' D V D^{-1/2}\) and \(D\) is a diagonal matrix with \(D(i,i) = \psi'(r_{i,[p]})\). Note that \(P V\) is a projection matrix of rank \(p - 1\) in general.

Let us call \(\xi_n\) the denominator of \(\hat{\beta}_p\), divided by \(n\). We have

\[
\xi_n = \frac{1}{n} X(p)'(D - A) X(p).
\]

Let us call \(\mathcal{G}_p(i) = \mathcal{G}_p - \psi'(r_{i,[p]}) V_i V_i'\). Using the Sherman-Morrison-Woodbury formula (see [5], p.19 and the SI), we have

\[
P V(i,i) = 1 - \frac{1}{1 + \psi'(r_{i,[p]}) V_i' \mathcal{G}_p(i) V_i}.
\]

We notice that \(\mathcal{G}_p(i)\) can be approximated by a matrix \(M_{i-1}\) which is independent of \(V_i\) (by using our leave-one-predictor-out observations) for which \(V_i' M_{i-1} V_i = \text{trace}(M_{i-1}) + o_P(1)\) by Equation [4] (these two approximations naturally require some regularity conditions on \(\rho\), etc... so that \(M_{i-1}\) is “nice enough”). Hence,

\[
P V(i,i) = 1 - \frac{1}{1 + \psi'(r_{i,[p]}) V_i' \mathcal{G}_p(i) V_i + \text{trace}(\mathcal{G}_p(i))} + o_P(1).
\]

Therefore, using the approximations \(r_{i,[p]} \approx R_i\) and \(\text{trace}(\mathcal{G}_p(i)^{-1}) \approx c\) (because trace(\(\mathcal{G}_p(i)^{-1}\)) \approx \text{trace}(\(\mathcal{G}_p(i)^{-1}\)) using Sherman-Morrison-Woodbury), we also have

\[
1 - P V(i,i) = \frac{1}{1 + \psi'(r_{i,[p]}) V_i' \mathcal{G}_p(i) V_i} \approx 1 + \lambda_i^2 c \psi'(r_{i,[p]})
\]

Since \(P V\) is a rank \((p - 1)\) projection matrix, we have trace \((P V) = p - 1 = \sum_i P V(i,i)\), and therefore

\[
\frac{1}{n} \sum_{i=1}^n \frac{1}{1 + \lambda_i^2 c \psi'(r_{i,[p]})} = 1 - \frac{p}{n} + o_P(1).
\]

Using concentration properties of \(X(p)\) conditional on \(\{\lambda_i\}_{i=1}^n\), we have

\[
\xi_n = \frac{1}{n} \text{trace}(D_A (D - A) D_A) + o_P(1) = \frac{1}{n} \sum_{i=1}^n \lambda_i^2 \psi'(r_{i,[p]}(1 - P V(i,i)) + o_P(1).
\]
Replacing $1 - P_V(i, i)$ by its approximate value, we get
\[
\xi_n \approx \frac{1}{n} \sum_{i=1}^{n} \frac{\lambda_i^2 \psi'(r_{i,p})}{1 + c \lambda_i^2 \psi'(r_{i,p})},
\]
\[
= \frac{1}{c} \left(1 - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + c \lambda_i^2 \psi'(r_{i,p})} \right) \approx \frac{1}{c} \frac{1}{n}.
\]
So finally,
\[
\hat{\beta}_p \sim \frac{\sum X_i(p) \psi(r_{i,p})/n}{\xi/c} \approx \frac{1}{p} \sum_{i=1}^{n} \lambda_i \psi(r_{i,p}) X_i(p). \tag{10}
\]
Using again $\psi(r_{i,p}) \sim \psi(R_i)$, we see that
\[
E \left(\|\hat{\beta}\|^2 \right) \sim \frac{1}{p} \sum_{i=1}^{n} E \left(c^2 \lambda_i^2 \psi^2(R_i) \right), \tag{11}
\]
assuming that we can take expectations in all these approximations.

From approximations to functional system. Our approximations concerning the residuals and β_p shed considerable light on them. Our focus is now on $\|\hat{\beta}\|$.

From Equation (8) we got the approximation
\[
\tilde{r}_{i,(i)} \approx R_i + \lambda_i^2 \psi(R_i).
\]
Recall that for a convex, proper and closed function ρ, whose subdifferential we call ψ, and $t > 0$, $\text{prox}_t(\rho) = (t d + t \psi)^{-1}$. It is an important fact that the prox is indeed a function and not a multi-valued mapping, even when ρ is not differentiable everywhere. We therefore get the approximation
\[
R_i \approx \text{prox}_{\lambda_i^2}(\rho(\tilde{r}_{i,(i)})).
\]
Recalling Equation (6) and using the independence of $\tilde{\beta}_{(i)}$ and X_i, we have $\tilde{r}_{i,(i)} \sim \epsilon_i + \lambda_i \|\tilde{\beta}_{(i)}\| Z_i$, where Z_i is $N(0, 1)$ and independent of ϵ_i, λ_i and $\|\tilde{\beta}_{(i)}\|$.

We now argue that $\|\hat{\beta}\|$ is asymptotically deterministic. Using the relationship between $\hat{\beta}$ and $\beta_{(i)}$ in Equation (7) and taking squared norms, we see that
\[
\|\hat{\beta}\|^2 \approx \|\beta_{(i)}\|^2 + 2 \beta_{(i)}^T S_i^{-1} X_i \psi(R_i) + X_i^T S_i^{-1} \psi^2(R_i).
\]
Assuming that the smallest eigenvalue of S_i/n remains bounded, which is automatically satisfied with high-probability for strongly convex functions ρ, we see that $\|\hat{\beta}\|^2 - \|\beta_{(i)}\|^2$ is $O_p(1/n)$, provided $\|\beta_{(i)}\|$ remains bounded and ψ and ψ' do not grow too fast at infinity. Applying the Efron-Stein inequality, we see that $\text{var}(\|\hat{\beta}\|^2) = O(1/n)$ if we take squared expectations in our approximations. It follows that $\|\hat{\beta}\|^2$ is asymptotically deterministic.

These arguments suggest that as p and n become large, $\tilde{r}_{i,(i)} \sim \epsilon_i + \lambda_i r_{\rho}(\kappa) Z_i + o_p(1)$, where $Z_i \sim N(0, 1)$, independent of λ_i and ϵ_i, and $r_{\rho}(\kappa)$ is deterministic. We also note that Z_i are i.i.d. since X_i are.

Since $\lambda_i^2 \psi(R_i) \sim \tilde{r}_{i,(i)} - R_i \sim \tilde{r}_{i,(i)} - \text{prox}_{\lambda_i^2}(\rho)(\tilde{r}_{i,(i)})$, we see that Equation (11) now becomes asymptotically
\[
nr_{\rho}^2(\kappa) = \frac{1}{n} \sum_{i=1}^{n} E \left(\lambda_i^2 \left(\tilde{r}_{i,(i)} - \text{prox}_{\lambda_i^2}(\rho)(\tilde{r}_{i,(i)}) \right)^2 \right),
\]
where the expectations are over the joint distribution of λ_i’s, ϵ_i’s and Z_i’s. (We note that our arguments do not depend on independence of λ_i’s or ϵ_i’s, though both families of random variables need to be independent of $\{X_i\}_{i=1}^{n}$. This is the second equation of System [S1].

We now recall that using the fact that the matrix P_V above was a projection matrix, we had argued that asymptotically
\[
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + c \lambda_i^2 \psi(R_i)} = 1 - \kappa + o_p(1).
\]
We observe that $(\text{prox}_{\lambda_i^2})'(\tilde{r}_{i,(i)}) = \frac{1}{1 + c \lambda_i^2 \psi(\text{prox}_{\lambda_i^2}(\tilde{r}_{i,(i)}))}$ and therefore $\frac{1}{1 + c \lambda_i^2 \psi(R_i)} \approx (\text{prox}_{\lambda_i^2})'(\tilde{r}_{i,(i)})$. This allows us to conclude that under regularity conditions,
\[
\frac{1}{n} \sum_{i=1}^{n} E \left((\text{prox}_{\lambda_i^2})'(\tilde{r}_{i,(i)}) \right) = 1 - \kappa.
\]
This is the first equation of our System [S1].

A note on non-differentiable ρ’s. One of the appeals of our systems [S1] and [S2] is that they yield expressions even in the case of non-differentiable ρ, since the prox is well-defined. However, we derived the systems assuming smoothness of ρ. To go around this hurdle, one can approximate ρ by a family ρ_η of smooth convex functions such that $\rho_\eta \to \rho$ as $\eta \to 0$ in an appropriate sense. Intuitively it is quite clear that $r_{\rho_\eta}(\kappa)$ should tend to $r_{\rho}(\kappa)$ as η tends to 0 under appropriate regularity conditions on ϵ_i’s and λ_i’s. We then just need to take limits in our systems to justify them for non-differentiable ρ’s.

ACKNOWLEDGMENTS.

Bean gratefully acknowledges support from NSF grant DMS-0636667 (VIGRE). Bickel gratefully acknowledges support from NSF grant DMS-0907362. El Karoui gratefully acknowledges support from an Alfred P. Sloan Research Fellowship and NSF grant DMS-0847647 (CAREER). Yu gratefully acknowledges support from NSF Grants SES-0835531 (CDI), DMS-1107000 and CCF-0939370.

