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1 Introduction

The sampling formula of Ewens [8] defines a probability distribution over unordered
partitions of a positive integer n as follows: for a sequence of non-negative integers
(m1, . . . ,mn) with

∑
i imi = n, the probability that the partition has mi parts of size i,

i = 1, . . . , n, is

Pn,θ(m1, . . . ,mn) =
θk

θ(1;n)

n!∏n
j=1 jmjmj!

(1)

where k = m1 + . . . + mn is the total number of parts, θ > 0 is a parameter of the
distribution, and θ(1;n) = θ(θ + 1) . . . (θ + n − 1). For background and applications to
genetics see [11, 12, 13, 6, 5, 19]. This note presents a family of distributions Pn,θ,α for
random partitions of n, with two parameters θ ≥ 0 and 0 ≤ α ≤ 1. For α = 0, θ > 0,
Pn,θ,0 = Pn,θ as in (1). As indicated at the end of this introduction, the case 0 < α < 1
arises naturally in the study of certain random partitions associated with stable processes
with index α. In particular the case α = 1/2 is related to random partitions induced by
the zeros of Brownian motion.
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Here is the formula for the partition distribution Pn,θ,α: for non-negative integers
(m1, . . . ,mn) with

∑
i imi = n,

Pn,θ,α(m1, . . . ,mn) = N(m1, . . . ,mn)
θ(α;k−1)

(θ + ᾱ)(1;n−1)

n∏
j=1

[ᾱ(1;j−1)]mj (2)

where ᾱ = 1 − α;

N(m1, . . . ,mn) =
n!

[j!]mj mj!

is the number of partitions of a set of n elements into mi classes of size i, i = 1, 2, . . . , n;
and for a real number a and non-negative integer m,

θ(a;m) =

{
1 for m = 0
θ(θ + a) . . . (θ + (m − 1)a) for m = 1, 2, . . .

Proposition 1 For each θ > 0 and 0 ≤ α < 1, formula (2) defines a probability distri-
bution on unordered partitions of n. These distributions are consistent in the sense of
Kingman [17]: if a set of n + 1 elements is partitioned into random subsets with sizes
distributed according to Pn+1,θ,α, and independently one of the n+1 elements picked uni-
formly at random is deleted, the induced partition of n elements is distributed according
to Pn,θ,α.

There are two trivial cases of Proposition 1. For θ = 0 the distribution Pn,0,α is con-
centrated on the partition with a single component of size n. For α = 1 the distribution
Pn,θ,1 is concentrated on the partition with n components of size 1. For θ > 0, 0 ≤ α < 1,
formula (2) assigns strictly positive probability to all possible partitions of n. In this
case Proposition 1 is an immediate consequence of the next proposition:

Proposition 2 Fix θ > 0, 0 ≤ α < 1. For i = 1, 2, . . . let Xi be independent random
variables with beta (ᾱ, θ−α+iα) distributions. Let (Pi) be the random discrete probability
distribution on {1, 2, . . .} defined as follows:

Pi = X̄1X̄2 . . . X̄i−1Xi (3)

where x̄ = 1− x. Given (Pi), let Y1, Y2, . . . be independent and identically distributed on
{1, 2, . . .} according to (Pi). Define an equivalence relation

n∼ on {1, . . . n} by i
n∼ j iff

Yi = Yj. Then the random partition of n induced by
n∼ has distribution Pn,θ,α as in (2).

Proposition 2 effectively determines Kingman’s representation [18] of the partition struc-
ture defined by formula (2). Proposition 2 is derived in Section 2 as a consequence of
the following result.
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Proposition 3 For (Pi) and (Yn) as in Proposition 2, let

T1 = 1

Tn+1 = inf{m > Tn : Ym 6∈ {YT1, . . . , YTn},

the sequence of indices at which new Y -values appear. Then

(PT1, PT2 , . . .)
d
= (P1, P2, . . .).

In other words, the random probability distribution defined by (3) is invariant under size
biased random permutation. Proposition 3 is an immediate consequence of the work of
Perman, Pitman and Yor [20, 21], who showed that a sequence of random variables with
representation (3) is obtained by size biased sampling of a certain point process derived
from a Poisson point process on (0,∞). Another derivation of Proposition 3 is given in
Pitman[23].

Let B = (Bt, 0 ≤ t ≤ 1) be a stochastic process, for example a Brownian motion
or Brownian bridge. Independent of B let U1, . . . , Un be i.i.d. uniform [0, 1]. Define an
equivalence relation

n∼ on {1, . . . , n} by i
n∼ j iff Ui and Uj fall in the same excursion

of B away from zero: that is to say Bt 6= 0 for all t between Ui and Uj. Let Pn be
the distribution of the unordered partition of n induced by

n∼. According to the results
of [21], if B is any of the processes considered below, then the size-biased presentation
of the lengths of maximal subintervals of [0, 1] that are free of zeros of B defines a
random discrete distribution (Pi) of the form described in Proposition 2. Consequently,
Proposition 2 implies

• If B is standard Brownian motion, then Pn = Pn,1/2,1/2

• If B is standard Brownian bridge, then Pn = Pn,1,1/2

Somewhat more generally,

• If B is a Bessel process of dimension δ, 0 < δ < 2, started at B0 = 0, then
Pn = Pn,α,α for α = 1 − δ/2

• If B is a Bessel bridge of dimension δ, 0 < δ < 2, starting and ending at 0, then
Pn = Pn,2α,α for α = 1 − δ/2

Corollary 3.15 of [21] shows how to construct for any 0 < α < 1 and θ > 0 a process B
absolutely continuous with respect to a Bessel bridge of dimension δ = 1− 2α such that
the zeros of B induce the partition distribution Pn,θ,α.
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2 Derivation of the Formula

Let (Pi) be as in (3), and (Yn) an iid sample from (Pi) as in the statement of Proposition
2. Formula (1) for the distribution of unordered partition of n induced by the values of
Y1, . . . , Yn is a consequence of the following formula for the distribution of the ordered
partition induced by the same values, with order defined by the order in which values
appear in the sequence. The following proposition extends a formula due to Donnelly
and Tavare [7] in case α = 0.

Proposition 4 Fix n, θ, α, and for (n1, . . . , nk) a sequence of integers with 1 ≤ ni ≤ n,∑k
i=1 ni = n, let Qn,α(n1, . . . , nk) denote the probability that for each 1 ≤ j ≤ n, the jth

value to appear in the Y sequence appears nj times among Y1, . . . , Yn. Then

Qn,θ,α(n1, . . . , nk) = #(n1, . . . , nk)
θ(α;k−1) ∏k

i=1 ᾱ(1;ni−1)

(ᾱ + θ)(1;n−1)
(4)

where

#(n1, . . . , nk) =
n!

nk(nk + nk−1) . . . (nk + . . . + n1)
∏k

i=1(ni − 1)!
(5)

Proof. It is elementary that #(n1, . . . , nk) as in (4) is the number of different ways to
arrange n1 values of one type, n2 of a second, and so on, subject to the constraint that
the first value is of the first type, the next distinct value of the second type, and so on.
The other factor in (4) is the probability of any given arrangement of this kind. Indeed,
for any given arrangement, due to the conclusion of Proposition 3, by conditioning on
the successive P -values to appear this probability is found to be

m1(n1 − 1, n2 + . . . + nk) m2(n2 − 1, n3 + . . . + nk) . . .

. . . mk−1(nk−1 − 1, nk) mk(nk − 1, 0) (6)

where

mi(r, s) = E(Xr
i X̄

s
i ) (7)

=
B(ᾱ + r, θ − α + iα + s)

B(ᾱ, θ − α + iα)
(8)

with

B(a, s) =
Γ(a)Γ(b)

Γ(a + b)
(9)
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the beta function. To illustrate the derivation of (6) for k = 3, the probability of any
particular arrangement of kind (n1, . . . , nk) is found to be

E[Xn1−1
1 X̄1(X̄1X2)

n2−1(X̄1X̄2)(X̄1X̄2X3)
n3−1]

= E[Xn1−1
1 X̄1+n2−1+1+n3−1

1 Xn2−1
2 X̄1+n3−1

2 Xn3−1
3 ]

= E[Xn1−1
1 X̄n2+n3

1 ]E[Xn2−1
2 X̄n3

2 ]E[Xn3−1
3 ].

A similar calculation yields (6) for any other value of k. Now substituting (8) in (6)
and using (9) and Γ(r + 1) = rΓ(r) allows (6) to be manipulated into the form shown in
(4).

Proof of Proposition 2. what must be shown is that when formula (4) is summed over
the k!/(m1!m2! . . . mn!) distinct (n1, . . . , nk) such that #{i : ni = j} = mj, the result is
formula (1). In case α = 0 this is a well known fact which amounts to the identity

∑ 1

nk

1

(nk + nk−1)
. . .

1

(nk + . . . n1)
=

n∏
i=1

1

imimi!
, (10)

where the sum is over the same range. (This identity is easily understood by computing
the probability that a random permutation of n elements has mi cycles of length i in
two different ways).

The result in case 0 < α < 1 is obtained by using the identity (10) to simplify the
sum in that case, after noting that for every (n1, . . . nk) whose distribution is given by
(m1, . . . ,mn),

k∏
i=1

(ni − 1)! =
n∏

j=1

[(j − 1)!]mj

and similarly
k∏

i=1

ᾱ(1;ni−1) =
n∏

j=1

[ᾱ(1;j−1)]mj

so both these products are constants so far as the summation is concerned.

3 Questions

According to Kingman [17], the Ewens sampling distributions (Pn,θ,0) are characterized
among all consistent families (Pn) by the following feature:
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For a random partition with distribution Pn, if the part containing a point
picked uniformly from {1, . . . , n}, independently of the random partition is
deleted, then given that k points remain, the distribution of the remaining
partition of k is Pk, for every 1 ≤ k ≤ n.

A corresponding property of (Pn,θ,α), follows easily from Proposition 2 and 3.

For a random partition with distribution Pn,θ,α, if the part containing a point
picked uniformly from {1, . . . , n}, independently of the random partition, is
deleted, then given that k points remain, the distribution of the remaining
partition of k is Pk,θ+α,α, for every 1 ≤ k ≤ n.

It would be interesting if this property could be used to characterize the family (Pn,θ,α).
This motivates the following questions:

Question 5 Suppose that (Pn) and (Qn) are two consistent partition distributions, and
that for every n ≥ 2, when the part containing a random element is deleted from a Pn

partition, given that k elements remain these are partitioned according to Qk, 1 ≤ k ≤ n.
Does this imply Pn = Pn,θ,α for some θ ≥ 0, 0 ≤ α < 1?

Question 6 Suppose for each i = 0, 1, 2, . . . that (P i
n) is a consistent family of partition

distributions, and that for every i ≥ 1 and n ≥ 2, when the part containing a random
element is deleted from a P i

n partition, given that k elements remain these are partitioned
according to P i+1

k , 1 ≤ k ≤ n. Does this imply P 0
n = Pn,θ,α (hence P i

n = Pn,θ+iα,α) for
some θ ≥ 0, 0 ≤ α ≤ 1?

By arguing as in Hoppe [12], using Kingman’s representation of the partition distribu-
tions, these questions have the same answers as the next two questions respectively:

Question 7 Does the two parameter family of joint distributions for (Xi) described in
Proposition 2 comprise all joint distributions for a sequence of random variables (Xi)
with values in [0, 1] such that both X1 is independent of (X2, X3, . . .), and (Pi) defined
by (3) is invariant under size biased permutation?

Question 8 Are the beta distributions for Xi displayed in Proposition 2 the only possible
distributions for independent Xi such that (Pi) defined by (3) is invariant under size
biased permutation?

It appears possible to construct an example to show that the answer to Question 7 is
no, hence also the answer to Question 5 is no. Some results related to Question 8 may
be found in Pitman [23].
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A Subsequent literature

The results of this technical report were published in [22]. The two-parameter family was
characterized in various ways in [16, 23, 32]. Applications to Brownian and Bessel excur-
sions appear in [25]. The associated two-parameter family of Poisson-Dirichlet distribu-
tions was decribed in [29]. The family has found applications in the theory of processes
of fragmentation and coagulation [1, 2, 3, 26]. Other papers describing various aspects
of the two-parameter family are [9, 30, 31]. Various generalizations are treated in [24],
[28], [10]. Much of this literature is reviewed in [27]. See Carlton [4], [14], [15] for related
studies from the perspective of Bayesian non-parametric statistics.
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