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Abstract

In this paper, we propose to monitor a Markov chain sampler using the cusum path plot of

a chosen 1-dimensional summary statistic. We argue that the cusum path plot can bring out,

more e�ectively than the sequential plot, those aspects of a Markov sampler which tell the user

how quickly or slowly the sampler is moving around in its sample space, in the direction of the

summary statistic. The proposal is then illustrated in four examples which represent situations

where the cusum path plot works well and not well. Moreover, a rigorous analysis is given for

one of the examples. We conclude that the cusum path plot is an e�ective tool for convergence

diagnostics of a Markov sampler and for comparing di�erent Markov samplers.

KEY WORDS: Convergence diagnostic; Cusum path plot, Markov sampler; Mixing; Sequen-

tial plot; Summary statistic.

�Research supported in part by ARO Grant DAAL03-91-G-007.

yResearch supported in part by NSF Grant DMS-9305601.

1



1 Introduction

As Markov chain Monte Carlo methods become more popular among Bayesians and non-Bayesians

alike, the more acute becomes the problem of reliable convergence diagnostics of a Markov sampler.

Previous works addressing this problem include Cui et al (1992), Gelman and Rubin (1992b), Liu

et al (1992), Roberts (1992, 1993), and Yu (1994). Both Gelman and Rubin (1992b) and Yu (1994)

rely on additional information to that from a single run, though in di�erent ways.

In this paper, we propose to use the cusum (path) plot from quality control (cf. Kotz and

Johnson (1988), p. 233-236) to monitor the performance of the Markov sampler. The cusum

path plot is based on a single run and a chosen 1-dim summary statistic. We argue that this

plot can bring out, more e�ectively than the sequential plot, those aspects of a Markov sampler

which tell the user how quickly or slowly the sampler is moving around in the sample space, in the

direction of the summary statistic. From the examples we implemented, we can see that, for some

Markov samplers, we can get more information than previously believed about the convergence or

mixing behavior using only a single run. We conclude that the cusum plot is an e�ective tool for

convergence diagnostics of a Markov sampler.

This paper is organized as follows. Section 2 contains the cusum proposal and its basic support-

ing arguments. Section 3 contains 4 examples where the proposal is implemented. The �rst three

examples are chosen to represent situations where the cusum path plot works well: the bimodal case,

the \cigar" case (Gilks and Roberts, 1993), and the \slow-mixing" data from the literature (Gelman

and Rubin, 1992a). These three examples have the same feature: the sampler moves around in the

sample space in a relatively homogeneous way, in the direction of the summary statistic. In other

words, we believe that the driving force behind the bimodal and \cigar" phenomena are the same:

the sampler is moving slowly, both within the same mode and among di�erent modes if there are

more. The proposed cusum plot brings out nicely this \slowness" or "quickness" of a sampler and

therefore is e�ective even when the sampler gets stuck at one mode for a particular run. This issue

is further investigated rigorously in Section 4 in the context of the cigar example. In a way, we feel

that we have found a good pair of glasses, the cusum path plot, to look at Markov sampler with,

and di�erent samplers can be compared under this pair of glasses. However, the cusum path plot

is no panacea. The last example is the \uniform" variant of Witch's Hat (cf. Cui et al, 1992). It

gives a situation where the sampler has a split mixing behavior and the cusum path plot might not
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work well: the sample space is divided into two regions between which the communicativity almost

does not exist and the sampler mixes more quickly in one region than in the other. If we start

the sampler in the better mixing region, the cusum path plot won't be able to detect the other

region before it moves there. In this particular example, the di�culty of detection is increased

tremendously by the fact that the worse-mixing region is very tiny. Obviously, the sequential plot

(single run or multiple runs), the Gibbs stopper in Cui et al (1992), and the L1 error proposal in Yu

(1994) will have a hard time as well: in �rst case if the sampler never visits the slow-mixing region,

in the second case if the candidate proposal in the Metropolis-Hastings algorithm never proposes

a point in that region, and in the third case if the grid used in the evaluation of the estimated L1

error is not �ne enough.

2 Cusum path plot { a good pair of glasses

The idea of using the cusum path plot to monitor Markov samplers dawned on us when we realized

that in the test case of bimodal target densities, a bad Markov sampler tends to stay at one mode

for a while and makes a jump and then stays at the other mode for another while. Ignoring the

dependence between the iterations and the possible nonstationarity of the chain, this is very much

like the \change point" problem which the cusum plot is known to be good for. First we introduce

the cusum plot in a formal way and later we provide its supporting arguments based on change

point and partial sum literatures when the observations are not necessarily iid.

Since cusum plots can be constructed only for 1-dim quantities, we have to decide beforehand

the 1-dim summary statistic(s) of the Markov sampler we want to monitor. We may monitor

one summary statistic at a time or several simultaneously. The sampler is monitored only in the

direction(s) of the chosen 1-dim statistic(s), in the hope that the convergence behavior of the chosen

statistic(s) re
ect well that of the sampler.

AssumeX0, X1, ...,Xn is a single run of a Markov sampler, which may be discrete or continuous.

Let T (X) be the 1-dim summary statistic we decide to monitor. Let n0 be the \burn-in" time and

we should construct our cusum statistics based on T (Xn0+1); :::; T(Xn). The reason we don't

construct the cusum statistic from the beginning is to avoid the initial bias of the sampler since

this bias can be too overwhelming in the cusum plot (a huge linear tread upwards or downwards),
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and this linear trend could mask other �ner features of the statistic. What we hope to get out

of the cusum plot is the more detailed information we can't see in the simple sequential plot of

T (X) which MCMC users have been plotting all along. Hence it is an implicit presumption that a

sequential plot of T (X) should be done before the cusum plot and the burn-in time should be chosen

based on this sequential plot.

For given starting and ending values n0 and n, denote the expected sample mean of T (X) and

its estimator as

� := (n� n0)
�1

nX
n0+1

ET (Xj); �̂ := (n� n0)
�1

nX
n0+1

T (Xj);

the cusum or partial sum

St :==
tX

j=n0+1

[T (Xj)� ET (Xj)] =
tX

j=n0+1

[T (Xj)� �] for t = n0 + 1; :::; n;

and the observed cusum or partial sum

Ŝt :=
tX

j=n0+1

[T (Xj)� �̂] = St � (�̂� �)t for t = n0 + 1; :::; n:

Cusum path plot: Plot fŜtg against t for t = n0+1; :::; n and connect the successive points with

line segments. Since
P

t Ŝt = 0, the cusum path plot ends at 0.

Next we argue that the slowness or the quickness of the mixing rate of T (X) is re
ected in the

smoothness of the cusum plot path, i.e., the more \hairy" the cusum path is, the faster the mixing

rate of T (X); the smoother the cusum path, the slower the mixing rate of T (X).

First, we provide some heuristic arguments. In quality control, cusum plot is used to detect

small shifts in the process. When there is a shift, we see an approximate line segment in the cusum

plot. Hence if the target density has multiple modes or sticky locations within the same mode

where the sampler gets stuck at, (for example, because of the small acceptance probability when

using the Metropolis-Hastings algorithm, cf. Hastings, 1970), we may view the process T (X) as

having many shifts whose sizes depend on the di�erences in T (X) which the locations of the sticky

points of the sampler induce, hence we expect to observe line segments along the cusum path and

hence the path appears smooth.

On the other hand, we can argue more rigorously about the same point based on the result in

Lin (1992, Theorem, p. 323), which characterizes the behavior of the increments of partial sums
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of a �-mixing sequence. The sequence does not have to be stationary. Of course, our sampler

might not be �-mixing. Nevertheless, Lin's result tells us quantitatively how the cusum's behavior

depends on the variances of sums over blocks of the sequence. The stickiness of the sampler is

re
ected in the variances of sums in the sense that the stickier the sampler, the faster the variance

increases as the block size increases. To be more precise, for a given nondecreasing sequence an,

assume ET (Xi) = 0, and denote

�2nN = E(T (Xn+1 + :::+ T (Xn+aN ))
2;

fnN = �nNf2[log(N=�2nN) + log logN ]g1=2; S(n; k) = Sn+k � Sn:

Lin imposed the following conditions to obtain his result.

(i) lim inf
n!1

inf
m�0

E(T (Xm+1+ :::+ T (Xm+n)
2=n > 0;

(ii) there exists t0, M > 0, such that EetT (Xk) �M for every k and any jtj � t0;

(iii) there exists l > 0 such that the � mixing coe�cient (cf. Lin (1992) for de�nition)

�n = O(n�l);

(iv) there exists a > 0 such that a logd n � an � n, where d > 3l+ 1=(l� 1).

Under the above assumptions, Lin asserts that

lim sup
N!1

max1�n�Nf
�1
nN jS(n; aN)j = 1 a:s:

lim sup
N!1

max1�n�Nmax1�k�aN f
�1
nN jS(n; k)j= 1 a:s:

Hence when N large and � 2 (0; 1) small, we can choose an = �n, then Lin's result implies that

the cusum path behaves like fnN , which is an increasing function of �2nN and N . The stickier the

sampler, the faster the variance �2nN increases as N and thus aN increases. Hence the steeper the

partial sum path if we connect the partial sum points with line segments, that is, the smoother the

cusum path St. Also, the stickier the sampler, the larger the variance �2nN ; thus its cusum path plot

St takes a relatively bigger excursion before coming back to zero at n. This is consistent with the
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stickier sampler having a smoother path since to make a big excursion the increments should point

in the same direction; since we are connecting the cusum points by lines, this will form longer line

segments and hence make for a smoother cusum path. So far, we have pretended that ET (Xi) = 0,

but in our observed cusum path plot Ŝt, the expected value of the sample mean is estimated by

�̂. When T (X) does not mix well, it is likely that �̂ is biased compared with the expected sample

mean. This (observed) bias will add to the theoretical cusum plot (whose smoothness we have

argued to be related to the stickiness of the sequence T (X)) a linear term with minus the bias as

the slope. Fortunately, this will only enhance the smoothness of the observed cusum path plot Ŝt.

Therefore the smoothness of the observed cusum path plot re
ects both the variance and bias of

the sampler in the direction of T (X), and remember we want both the variance and bias to be

small, i.e. the observed cusum path plot to be hairy. Since the observed cusum path plot starts

and ends at 0, if the variance of the sample sum (or mean) is large, we will see large excursions on

the observed cusum path plot.

When the (observed) cusum path plot is very small, the solution of the graphic device will

interfere with our visual perception of the \smoothness" of the cusum path. We will have a hard

time distinguishing a smooth path from a hairy one since they can both look like bold lines on a

small plot. It is therefore a good idea to make the cusum path plot as large as we can, say use a

whole page, and keep in mind that small cusum plots can be very non-informative and should be

avoided at all cost.

Another worry is that our perception of \smoothness" or "hairiness" of a path is very subjective.

For this reason, one can do a much better job if there is another path one can compare with.

Keeping in mind the invariance principle for partial sum processes of weakly dependent sequences

(cf. Phillip and Stout, 1975), we suggest to add a \benchmark" cusum path in the same cusum

path plot of T (X). The \benchmark" plot is the cusum path plot of an iid sequence of normal

random variables with their mean and variance matched with the estimated mean and variance of

fT (Xj) : j = n0 + 1; :::; ng. That is, for t = n0 + 1; :::; n, let

Ŝb
t :=

tX
j=n0+1

[Yj � �̂Y ]; �̂Y := (n� n0)
�1

nX
j=n0+1

Yj ;

where Yn0+1; :::; Yn is an iid sequence of N(�̂T ; s
2
T ) random variables with �̂T as above and s2T being

the sample variance of fT (Xj) : j = n0 + 1; :::; ng.
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Thus when we only have one sampler, we should

plot Ŝt and Ŝb
t against t for t = n0 + 1; :::; n and connect the points by line interpolation for

each path.

By the invariance principle for the partial sums of weakly dependent process, the Ŝb path

approximates, to the second order, the \ideal" cusum path of an iid sequence from the same target

distribution. If the Ŝ path is comparable with the Ŝb path in terms of smoothness of the path and

size of the excursion, then we conclude that the sampler is mixing well (in the direction speci�ed by

T (X), to be precise). Otherwise, we conclude that the sampler is not mixing well, in the direction

speci�ed by T (X).

When our intention is to compare two samplers for the same target distribution, we may omit

the \benchmark" cusum path plot in which case we just compare the cusum paths from the two

samplers in the same plot.

3 Examples

In this section, we demonstrate the cusum path plot in four examples, which represent four situa-

tions where slow mixing is known to occur, but in di�erent manners.

Example 1: Bimodal. Mixtures of two normals

Let us take the test case where the target density is a 1-dim bimodal mixture density with two

equal modes at 0 and 3 and variance 1 at each mode, cf. Yu (1994).

Three samplers are run up to n=2000 iterations for this target density and the burn-in time

is taken to be n0 = 1000. The three samplers are the independent sampler, the MH sampler 1

and the MH sampler 2. The latter two samplers are obtained using Metropolis-Hasting algorithm

with an N(x; �) jumping kernel and � = 4:146 for sampler 1 and � = 3 for sampler 2. N(0,1) is

used as the initial distribution. By the analysis in Gelman (1994), we know that sampler 1 mixes

faster than sampler 2 since it is \optimal" in the sense speci�ed by Gelman (1994). The sequential

plots in Fig. 1 indicate that both sampler 1 and sampler 2 are less desirable than the independent

sampler, but have little power of distinguishing between sampler 1 and sampler 2. However, the

cusum path plots in Figures 2-4 tell us that, although both sampler 1 and sampler 2 are pretty

good (Fig. 3-4), sampler 1 indeed seems better than sampler 2 (Fig. 2).
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Example 2: \Cigar". Gibbs sampler for bivariate normal (Gilks and Roberts (1993))

In this example, the target distribution is bivariate normal with marginal means 0 and marginal

variances 1, and correlation coe�cient �. When � is close to 1, it is known that the bivariate density

has a \cigar" shape along the diagonal line of the �rst quadrant and the two-component Gibbs

sampler moves slowly up and down the \cigar".

We take the �rst component of the bivariate variable as our 1-dim summary, i.e., T (X) = X1

and X = (X1; X2). The independent sampler in the plots is simply the iid N(0; 1) sampler. N(0,1)

is used as the initial distribution so our Markov sampler produces a stationary sequence. Again,

three samplers are taken: the independent sampler, the Gibbs sampler 1 when � = 0:75 and the

Gibbs sampler 2 when � = 0:80. Similar observations as those made in Example 1 can be made

here based on Figures 5-8.

Example 3: A slowly moving Gibbs sampler for an Ising model (Gelman and Rubin (1992a))

Professor Gelman has kindly provided us the two runs of the 1-dim summary statistic from a

Gibbs sampler for an Ising model, that appeared in Gelman and Rubin (1992a). By their analysis,

we known that the 1-dim summary statistic seem to have converged on a single run, but multiple

runs reveal that the convergence is false.

We present the cusum path plots for both runs for n0 = 1000 and n = 2000, with benchmark

paths added. It is obvious from each path plot (Fig. 10 or 11) that this summary statistic is sticky,

without using the information from the other run. This suggests that the slow-converging property

of this summary statistic is due to that fact that the sampler moves around slowly, even within

the same mode. Our cusum path plot magni�es this \slowness" to a degree where it can be seen

easily, so that a single run gives enough information about the stickiness of the sampler. We are

nicely surprised about this example since many MCMC researchers, including the authors, had felt

that a single run might not be enough for the convergence diagnostic purpose, mainly because of

examples like this one. As will be illustrated by the next example, there are still cases where a

single run might not provide enough information. We can learn more, however, about the sampler

from a single run by using the cusum path plot than by using just the sequential plot. In other

words, if the sampler is slow-mixing homogeneously in the sample space, our proposed cusum path

plot has the ability to detect the stickiness within a mode, which the simple sequential plot of T (X)

does not have.
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Example 4: A \uniform" variant of Witch's Hat (cf. Cui et al (1992))

This example gives a situation where the cusum path plot might fail and so might other diag-

nostic means, for example, those in Gelman and Rubin (1992b), Cui et al (1992) and Yu (1994),

because it represents, in a way, the ultimate \nightmare" of a MCMC user.

Here the target density is an equal weight mixture of two uniforms: U(0; 1) and U(0:5��; 0:5+�).
When � is small, this density looks like a Witch's Hat with a 
at top, instead of the traditional

peaky one (cf. Cui et al, 1992). In the simulation, we use N(x; 1) as the proposal kernel in the

Metropolis-Hastings algorithm and take � = 0:005.

The unit interval can be divided into two regions: I1 = (0; 0:5 � �] [ [0:5 + �; 1) and I2 =

(0:5� �; 0:5+ �). On I1 the rejection rate in the Metropolis-Hastings algorithm is 0 so the sampler

moves around following the proposal kernel { mixing relatively fast, until it moves to a point in

I2. Note that this happens with probability less than 0:004 (= 2�=
p
2�) which is an upper bound

on the probability that the proposal kernel suggests a point in I2. On I2, the acceptance rate is

almost always 1=101 unless the proposal from the Normal kernel gives a candidate in I2 and this

happens with probability less than 0:004. Hence the two regions communicate with each other

with probabilities less than 0.004, and I2 is a sticky or slow-mixing region, while I1 is a fast-mixing

region. Most likely one would start the sampler in I1 and everything would seem mixing fast until

the sampler enters I2 and it will be stuck there for a long time. We simulate a sample of size

n = 2000 with X0 = 0:1. If we take the �rst 500 observations, both the sequential and cusum path

plots (Fig. 12) suggest the mixing speed of the sampler is not too bad, but when we continue the

simulation up to 2000 iterations, both the sequential and cusum plots (Fig. 13) tell us there is

something very sticky: two 
at line segments in the sequential plot and two sloppy line segments in

the cusum plot. In fact, the transitions between the two regions are just obvious in the sequential

plot as in the cusum path plot.

4 The Cigar Chain: an Asymptotic Study

In this section, only for the mathematically tractable cigar case, we establish rigorously the connec-

tion between the mixing behaviors of the 1-dim summary statistic and the smoothness properties

of the cusum path plots, and we argue that the cusum path plot can be used to infer unseen
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nonconvergence of the summary statistic, at least in this case. There are no doubt several ways

of investigating whether this is actually the case; we here propose to do it with triangular array

asymptotics: as the sample size increases, the 1-dim summary statistic T (X) = X1 process is

increasingly nonergodic or slow-mixing.

In the cigar case, it is straightforward to verify that T (X) = X1 follows an AR(1) process of

the form:

X1;n+1 = �2X1;n + (1� �4)1=2�n+1;

where the �'s are independent standard normal. Obviously, if � < 1, this process is asymptotically

ergodic and fast-mixing, and the distribution of the cusum path plot will approach a Brownian

bridge; hence \hairy" cusum path. The almost nonergodic (therefore very slow or non-mixing) case

is obtained by considering the cusum plot based on n observations when the correlation is �n, and

then let �n ! 1 as n !1. A similar approach is common when doing inference on AR processes

which are close to the boundary of the domain of stationarity, see, e.g., Chan & Wei (1987).

The cuto� between ergodic and nonergodic behavior is as follows. If 1 � �n >> O(n�1), it is

easy to see that �X1;n (the mean of n observations of X1 under �n) converges to zero, which is the

desired mean. On the other hand, if �n = 1� 
=n+ o(n�1), then

�X1;n ! N(�; �2)

in law, where

� = X1;1(1� exp(�2
))=2


(X1;1 if 
 = 0) and

�2 = (�e�4
 + 4e�2
 + 4
 � 3)=4
2

(zero if 
 = 0). This is conditional on the �rst value of X1, which could either be a �xed number

or (if we are dealing with the stationary chain) standard normal.

The test of whether the cusum plot provides the correct diagnostic as suggested in Section 2 is

now one of whether it is smoother in the second case than in the �rst.

The answer is that this is indeed the case. To discuss the asymptotic behavior, assume that

the cusum path is standardized to be a function of t; 0 � t � 1, and that it is multiplied by a

nonrandom factor to have a nontrivial limiting process. Having done this, it is readily apparent
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that if 1 � �n >> O(n�1), the limiting process of the cusum path is a Brownian bridge; hence

\hairy". This is the same as in the asymptotically ergodic case (� < 1). In the other case, if

�n = 1 � 
=n + o(n�1), the limiting process of the cusum path is a smooth random process with

nonzero total variation, speci�cally

Z t

0
Ysds� t

Z 1

0
Ysds;

where Yt is the Ornstein-Uhlenbeck process given by the stochastic di�erential equation

dYt = �2
Ytdt+ dWt

(this is most easily seen using, say, Chan & Tong (1987)).

5 Concluding Remarks

In this paper, we proposed to use the cusum path plot of a chosen 1-dim summary statistic to

monitor the mixing or convergence behavior of a Markov sampler. We argued in general and

established rigorously in the cigar example, that the smoothness of the cusum path plot corresponds

to the slowness of the mixing behavior of the summary statistic. Based on the examples in Section 3

and the theoretical analysis in Section 4, we believe that the cusum path plot can be more e�ective

than the sequential plot so both should be used together, especially when the sequential plot seems

to suggest good mixing behavior. Overall, this research endeavor has led us to sense a notion of

\local" mixing property of a Markov sampler in relation to its sample space: some regions have

fast-mixing properties while others have slow-mixing properties. The cusum path plot might fail

when the local mixing property is very inhomogeneous, for example, as in Example 4 in Section 3.

We regret that we haven't been able to pin down the precise mathematical meaning of this \local"

mixing property, but we do believe that thinking in this term even at a very heuristic level helps

us understand di�erent behaviors of Markov samplers.
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Figure 1: Bimodal example. Sequential plots for three samplers
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Figure 2: Bimodal example. Solid line {independent sampler; dotted line { sampler 1; dashed line

{ sampler 2
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Figure 3: Bimodal example. Solid line { benchmark path; dotted line { sampler 1 path
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Figure 4: Bimodal example. Solid line { benchmark path; dotted line { sampler 2 path
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Figure 5: Cigar example. Sequential plots for three samplers
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Figure 6: Cigar example. Solid line{independent sampler path; dotted line { Gibbs sampler 1 for

rho=0.80; dashed line- Gibbs sampler 2 for rho=0.75
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Figure 7: Cigar example with rho=0.75. Solid line{independent sampler path; dotted line { Gibbs

sampler 2 path
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Figure 8: Cigar example with rho=0.80. Solid line{benchmark path; dotted line { Gibbs sampler

1 path
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Figure 9: Ising model. Sequential plots for two runs
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Figure 10: Ising model: �rst run. Solid line{benchmark path; dotted line { Gibbs sampler path
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Figure 11: Ising model: second run. Solid line{benchmark path; dotted line { Gibbs sampler path
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Figure 12: A uniform variant on Wicth's Hat: n=500, n0=1
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Figure 13: A uniform variant on Wicth's Hat: n=2000, n0=1
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