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Abstract

This note presents three ways of constructing simultaneous con-

�dence intervals for linear estimates of linear functionals in inverse

problems, including \Backus-Gilbert" estimates. Simultaneous con�-

dence intervals are needed to compare estimates, for example, to �nd

spatial variations in a distributed parameter. The notion of simultane-

ous con�dence intervals is introduced using coin tossing as an example

before moving to linear inverse problems. The �rst method for con-

structing simultaneous con�dence intervals is based on the Bonferroni

inequality, and applies generally to con�dence intervals for any set of

parameters, from dependent or independent observations. The second

method for constructing simultaneous con�dence intervals in inverse

problems is based on a \global" measure of �t to the data, which

allows one to compute simultaneous con�dence intervals for any num-

ber of linear functionals of the model that are linear combinations of

the data mappings. This leads to con�dence intervals whose widths

depend on percentage points of the chi-square distribution with n de-

grees of freedom, where n is the number of data. The third method

uses the joint normality of the estimates to �nd shorter con�dence
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intervals than the other methods give, at the cost of evaluating some

integrals numerically.

1 Introduction

Backus-Gilbert theory [Backus and Gilbert, 1968, 1970; Backus, 1970abc]
estimates certain weighted spatial averages of some physical property from
indirect linear measurements. Often, averages sensitive to di�erent regions
in the object of study are compared to try to identify di�erences in prop-
erties between the regions. For example, in both geophysics ( e.g., Backus
and Gilbert [1970], Parker [1970], Johnson and Gilbert [1972], Masters [1979],
Oldenburg [1979,1981]) and astrophysics (e.g., Christensen-Dalsgaard et al.

[1990], D�appen et al. [1991], Gough and Toomre [1991], Schou [1991]) esti-
mates of averages centered at di�erent depths are frequently plotted in the
same �gure, inviting the reader to compare the estimated values at di�er-
ent depths. (A common plotting method is to use \plusses" centered at
the depths and values of the estimates, with the lengths of the vertical bars
corresponding to the nominal resolutions, and the lengths of the horizontal
bars corresponding to the nominal uncertainties.) It does not appear to be
appreciated generally that the uncertainties must be magni�ed somewhat for
this comparison to be valid. In this note, I illustrate the issue of simultane-
ous versus individual con�dence intervals, and give three simple methods to
compute simultaneous con�dence intervals for linear estimates of linear func-
tionals, including \Backus-Gilbert" estimates, that can be used to compare
estimates of di�erent averages, such as averages centered at di�erent points.

2 Individual versus Simultaneous Coverage

Probability

Consider tossing a (loaded) coin independently 100 times to �nd a con�dence
interval for the probability p with which the coin lands heads. The distri-
bution of the number of heads in 100 tosses is, under these assumptions,
binomial with 100 trials and probability p of success in each trial. Pro-
vided p is not too close to zero or one, this Binomial distribution is approxi-
mated well by a normal distribution with mean 100p and standard deviation
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10
q
p(1 � p). With high probability, 10

q
p̂(1� p̂) will be close to the stan-

dard deviation, where the p̂ is the sample proportion: p̂ = (# heads observed)=100.
Again, provided p is not too close to zero or one, the distribution of the sam-
ple proportion is approximately normal with mean p and standard deviation

�̂ =
q
p̂(1� p̂)=10. Thus Pfjp � p̂j � 1:96�̂g � 0:95, and an approximate

95% con�dence interval for p is given by

I = [p̂� 1:96�̂; p̂ + 1:96�̂]: (1)

The coverage probability of the con�dence interval I is the chance that I
contains p. Note that this probability makes sense only before the data are
observed: the coverage probability refers to the properties of the procedure
applied to random data, not to the ultimate numerical values one computes
after observing the data. After observing the data and constructing a speci�c
con�dence interval, the interval either does or does not contain p, and there
is no more randomness in the problem. At that point, what we have is a
\con�dence level," which is equal to the coverage probability of the random
interval before observing the data.

Suppose now that we have two biased coins, and we wish to know whether
there is a di�erence between p1 and p2, the probabilities of heads for coin 1
and coin 2. One way to do this is to compare p̂1 and p̂2, the sample propor-
tions of heads in 100 independent tosses of each coin separately. Intuition
and common practice suggest that we can use p̂1 and p̂2 to construct 95%
con�dence intervals for p1 and p2, then conclude that p1 6= p2 if the con�dence
intervals do not overlap. In fact, testing the hypothesis that p1 = p2 in this
way has a higher signi�cance level (lower con�dence level, loosely speaking)
than is commonly recognized: If p̂1 and p̂2 are independent, then the chance
that both p̂1 � 1:96�̂1 � p1 � p̂1 + 1:96�̂1 and p̂2 � 1:96�̂2 � p2 � p̂2 + 1:96�̂2
is only about 0:95� 0:95 = 0:9025. Thus if the two 95% con�dence intervals
do not overlap, we have only about 90% con�dence that p1 6= p2. (More
precisely, we could reject the hypothesis that p1 = p2 at signi�cance level
approximately 0.1, not 0.05.) The essential point is that even though each
interval Ij, j = 1; 2 contains its corresponding parameter pj with probabil-
ity 1 � �, part of the time that I1 contains p1, I2 will not contain p2, and
vice versa. As a result, the intervals both contain their parameters less than
1 � � of the time. Figure 1 illustrates this point. If we try to compare the
probabilities of heads for n coins in this way, we end up with a simultaneous
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con�dence level of about 0:95n � 100%. Conversely, if we want to end up
with simultaneous 95% con�dence, we need to begin with 0:951=n � 100%
con�dence intervals for each pj . The situation is more complicated when the
sample proportions p̂j are not independent, which is more directly analogous
to comparing several Backus-Gilbert estimates, since estimates \centered" at
di�erent points typically involve correlated linear combinations of the same
data.

3 Simultaneous Backus-Gilbert Estimates

The canonical linear inverse problem is to make inferences about the func-
tion x(r) from n observations f�jgnj=1 that are linearly related to x(r) but
contaminated by additive Gaussian noise:

�j =< Kj; x > +�j; j = 1; : : : ; n: (2)

Here < Kj ; x > is a linear functional of the function x and may be thought
of as an integral < Kj ; x >=

R
Kj(r)x(r) over the appropriate domain, and

the noise terms �j are assumed to be realizations of independent, zero mean
Gaussian random variables with variances �2j . We abbreviate these n equa-
tions using vector notation:

� =< K; x > +�: (3)

The random vector � has zero expectation and covariance matrix

� = diag(�2
1
; : : : ; �2n):

The inverse of the covariance matrix is ��1 = diag(��2

1 ; : : : ; ��2

n ), and the
square-root of the inverse is ��1=2 = (��1

1 ; : : : ; ��1

n ). We shall assume hence-
forth that the functionals fKjg are linearly independent; i.e., if

<
nX

j=1

�jKj ; y >= 0

for every function y, the constants f�jg must all be zero.
Suppose we wish to estimate the linear functional < L; x > from the data

�. A fundamental result of linear inverse theory is that this is impossible
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without additional information unless one can write L as a linear combination
of the data mappings fKjg; i.e., one can estimate < L; x > with �nite
uncertainty only if

< L; y > = <
nX

j=1

�jKj; y > (4)

for all y [Backus and Gilbert, 1968]. The corresponding linear combina-
tion of the data,

Pn
j=1 �j�j, is an unbiased estimate of < L; x >. Much of

Backus-Gilbert theory consists of considerations and methods for selecting
� = (�1; : : : ; �n) so that the functional L is a \localized" average and can be
estimated with reasonable uncertainty. Suppose we wish to estimate m such
functionals fLkgmk=1. Let Lk =

Pn
j=1 �kjKj in the sense that

< Lk; y > = <
nX

j=1

�kjKj; y > (5)

for all y. Nothing in this note depends on how �kj are selected, so Backus-
Gilbert estimates are included as special cases. Let �k be the n-vector
(�k1; : : : ;�kn) and de�ne

�k �K �
nX

j=1

�kjKj (6)

and

�k � � �
nX

j=1

�kj�j; (7)

with �k � � de�ned similarly. For any vector 
 = (
1; : : : ; 
n), de�ne its
ordinary two-norm

k
k � p

 � 
; (8)

and (for a positive-de�nite matrix �) its weighted two-norm

k
k� �
q

 � � � 
: (9)

3.1 Bonferroni simultaneous con�dence intervals

Bonferroni's inequality (see, e.g., Bickel and Doksum [1977]) says that the
probability that at least one of many events fAkgmk=1 occurs is no larger than
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the sum of the chances that each occurs; i.e.,

Pf A1 occurs or A2 occurs or : : : or Am occurs g �
mX
k=1

Pf Ak occurs g:
(10)

Suppose we have a procedure for producing a set of individual (not necessarily
simultaneous) 1 � �0 con�dence intervals for the parameters < Lk; x >, k =
1; : : : ;m. The chance that at least one of these intervals fails to contain its
corresponding parameter is the chance that at least one of the events fAjgnj=1
occurs, where Aj is the event that the jth con�dence interval fails to contain
its parameter. Each of these events has (by assumption) probability �0.
Bonferroni's inequality implies that the chance that one or more of the m
intervals fails to contain its corresponding parameter is no larger than m�0.
Thus the chance that all the con�dence intervals simultaneously include their
corresponding parameters is at least 1�m�0. It follows that if �0 = �=m, so
that the original intervals have coverage probability 1 � �=m, the set of m
con�dence intervals has simultaneous coverage probability at least 1� �, as
desired.

This relatively simple approach to simultaneity can be quite useful if
the number of simultaneous con�dence intervals one desires is not too large,
and the length of a con�dence interval required to get 1 � �=m coverage
probability is not too long. It is particularly simple to use since we need no
assumption about the dependence of the estimates.

As an example, suppose we desire to have a set of simultaneous 95%
con�dence intervals for the expected values of 10 Gaussian random variables
with common variance �2, based on one observation Xj of each variable,
j = 1; : : : ;m. Bonferroni's inequality implies that if we start with con�dence
intervals with individual con�dence levels 1� 0:05=10 = 0:995, the intervals
will have simultaneous coverage probability at least 95%. Referring to a
standard normal distribution table shows that the intervals f[Xj�2:81�;Xj+
2:81�]g10j=1 have simultaneous 95% coverage probability. A 95% con�dence
interval for a single parameter would have length 2 � 1:96�, so the increase
in length required for simultaneity is (2 � 2:81�)=(2 � 1:96�) � 1:43. This
ratio increases with the number of intervals, and for Gaussian estimates,
decreases with increasing con�dence level: for example, for 99% simultaneous
con�dence in this same problem, the ratio would be about 3:27=2:56 � 1:28.
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3.2 Simultaneous con�dence intervals based on the

chi-square distribution with n degrees of freedom

Since the errors f�jg are independent zero-mean Gaussian random variables
with variances f�2jg, the distribution of k�k2��1 is chi-square with n degrees of

freedom. If � =
q
�2n;1�� is the square-root of the (1��)� 100% percentage

point of the chi-square distribution with n degrees of freedom, by de�nition

Pfk�k��1 � �g = 1� �: (11)

Thus
Pfk�� <K; x > k��1 � �g = 1� �: (12)

For any �k, de�ne

`k = inff< �k �K; y >: k�� < bfK; y > k��1 � �g (13)

and
uk = supf< �k �K; y >: k�� < bfK; y > k��1 � �g (14)

Then
Pf`k � < Lk; x > � ukg � 1 � �; (15)

i.e., [`k; uk] is a 1 � � con�dence interval for < Lk; x >. Note that the
constraint set for this optimization problem, fy : k�� < bfK; y > k��1 � �g,
does not depend on Lk. This makes these con�dence intervals simultaneously
valid for all k:

Pf`1 � < L1; x > � u1 and `2 � < L2; x > � u2 and � � �

and `m � < Lm; x > � umg � 1� �: (16)

It is possible to �nd `k and uk explicitly: if k < K; x > ��k��1 � �
(which occurs with probability 1� �),

j�k � �� < �k �K; x > j = j�k � (< K; x > +�)� < �k �K; x > j
= j�k � �j
� k�kk�k�k��1
� �k�kk�: (17)
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This bound is attained provided fKjg are linearly independent (which we
have assumed), so `k = � � � � �k�kk� and uk = � � � + �k�kk�. See also
Stark [1992].

This gives an explicit solution to the problem of constructing simulta-
neous con�dence intervals for any number of Backus-Gilbert type averages.
However, the con�dence intervals obtained this way are unnecessarily wide,
especially if one is interested in only a few such linear combinations. The
next subsection shows how we can re�ne the intervals if we are interested in
relatively few functionals compared with n, the number of data.

3.3 Con�dence intervals based on the m-dimensional

normal distribution

As noted previously, the linear combination of data �k � � is an unbiased
estimate of the functional < �k �K; x >. We see directly from the de�ning
equation (2) that the estimate�k �� is a linear combination of n independent
Gaussian random variables with means f< Kj ; x >g and variances f�2jg. As
a result, the estimate is itself Gaussian with mean< �k �K; x > and variance
� 2k � �k � �2, where �2 is the vector (�2

1
; : : : ; �2n). There are innumerable

choices of simultaneous con�dence intervals for the collection of functionals
f< Lk; x >g, and we need to narrow the �eld somehow. A typical way to put
all the intervals on an equal footing is to make the widths of all the intervals
proportional to the standard deviations of the corresponding estimates, with
the same constant of proportionality for all the intervals. That is, we seek a
single constant c so that the set of intervals f[�k � � � c�k;�k � � + c�k]gmk=1
are simultaneous 1 � � con�dence intervals for f< Lk; x >g.

If we set � = 0:05 for example, we know that for m = 1, c =� 1:96.
The �rst section of this note shows that if m = 2 and the estimates �1 � �
and �2 � � are statistically independent, then c is the

q
1� �=2 =

p
0:975 �

0:987 percentage point of the normal distribution, which is about 2.23. The
estimates are independent when the coe�cients in the linear combinations
are orthogonal vectors, for example, when they depend on mutually exclusive
subsets of the data. In the typical case, the estimates are not independent.
Note that if we wish to compare only two Backus-Gilbert estimates, we should
proceed by �nding a single con�dence interval for the di�erence functional
< (�1��2) �K; x > instead of carrying out the following prescription. Only
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when we want to compare more than two averages does it make sense to use
simultaneous con�dence intervals.

To simplify the notation, let �k =< �k �K; x > be the kth \truth" and
let ak = �k � � be the kth \average" of the data. We have just seen that ak
is normally distributed with expected value �k and variance � 2k . We seek the
smallest constant c such that

P
�

m
max
k=1

�����k � ak
�k

���� � c
�
= 1� �: (18)

To �nd c, we need the joint distribution of vk = (ak � �k)=�k, k = 1; : : : ;m.
These m variables are Gaussian with expected value zero and variance 1 by
construction, but we need to know the o�-diagonal elements of their covari-
ance matrix in order to �nd c. Note that vk = �k � �=

p
�k � �2. Now if E is

the expectation operator,

Cov(vk; vl) = E [(vk �Evk)(vl � Evl)]

= E[vkvl]

= E
�
1

�k�l
(�k � �)(�l � �)

�

=
1

�k�l

nX
j=1

nX
i=1

�kj�liE[�j�j]

=
1

�k�l

nX
j=1

nX
i=1

�kj�li�
2

j1i=j

=
1

�k�l

nX
j=1

�kj�lj�
2

j : (19)

This is the (k; l)th element of the matrix

~� � � � ~�T ; (20)

where

~�kj =
�kj

�k

=
�kjp
�k ��2

: (21)
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Thus the covariance matrix of fvkg is

� � ~� � � � ~�T ; (22)

and c is the solution to

(2�)�m=2j�j�1=2
Z c

�c
dv1

Z c

�c
dv2 � � �

Z c

�c
dvm exp

 
� 1

2j�jv
T � � � v

!
= 1 � �;

(23)
where j�j is the determinant of the matrix �. For a general covariance matrix
�, c can not be found in closed form. However, it can be found iteratively by
performing the integral (23) numerically for trial values of c. Since the inte-
gral is monotone in c, a bisection or other search can �nd the unique value
of c relatively e�ciently to any desired precision. The FORTRAN subrou-
tine mulnor, publicly available through the Web site statlib, evaluates this
integral numerically. The on-line statistical library statlib has a gopher
connection:

Type=1

Name=StatLib Server (Carnegie Mellon University)

Path=

Host=lib.stat.cmu.edu

Port=70

The mulnor algorithm is number AS 195 in the Applied Statistics (apstat)
section of the statlib library.

Once c has been found, the intervals

[�k � � � c�k;�k � � + c�k]; k = 1; : : : ;m (24)

are a set of simultaneous 1 � � con�dence intervals for the functionals f<
Lk; x >g, as we have sought to construct. If m < n, these intervals in general
will be shorter than those derived in the previous subsection.
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Figure 1: Illustration of the issue of simultaneity. The circles represent
contours of the joint probability density function of X and Y . The chance
that X is in the (in�nite) shaded vertical slice is 1��, as is the chance that
Y is in the horizontal slice. However, the chance that X is in the shaded
region and Y is in the shaded region is the probability of the small square,
which is less than 1 � �. In this sketch, X and Y are independent, so the
probability of the square is (1 � �)2. In general, the probability that both
X and Y are in a pair of ranges will depend on their joint distribution. The
text gives three ways to adjust the lengths of a set of n con�dence intervals
so that the chance the intervals simultaneously contain their n associated
parameters is at least 1� �.
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