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Abstract

Local time processes parameterized by a circle, defined by the oc-
cupation density up to time 7" of Brownian motion with constant drift
on the circle, are studied for various random times T. While such
processes are typically non-Markovian, their Laplace functionals are
expressed by series formulae related to similar formulae for the Marko-
vian local time processes subject to the Ray-Knight theorems for BM
on the line, and for squares of Bessel processes and their bridges. For
T the time that BM on the circle first returns to its starting point
after a complete loop around the circle, the local time process is cycli-
cally stationary, with same two-dimensional distributions, but not the
same three-dimensional distributions, as the sum of squares of two
ii.d. cyclically stationary Gaussian processes. This local time process
is the infinitely divisible sum of a Poisson point process of local time
processes derived from Brownian excursions. The corresponding inten-
sity measure on path space, and similar Lévy measures derived from
squares of Bessel processes, are described in terms of a 4-dimensional
Bessel bridge by Williams’ decomposition of 1t6’s law of Brownian
excursions.

1 Introduction

Let Ps denote the probability distribution and associated expectation op-
erator governing a one-dimensional Brownian motion (B, > 0) started at

By = 0, with drift 6. So the Ps distribution of B, is Gaussian with PsB; = 6t
and Ps[(B, — 6t)*] = t. Let (By,t > 0) be the BM on a circle of unit cir-

cumference obtained as B; = B; mod 1, where the circle is identified with
[0,1). Let (L7,2 € R,t > 0) be the usual bicontinuous local time process
of B, normalized as occupation density relative to Lebesgue measure. The
corresponding local time process for é is (z;‘ =27 Li*?.0 < u < 1) where
Z is the set of integers. For a subinterval I of R, let C*(I) denote the space
of non-negative continuous paths with domain /. For a random time T, set

ET = (2%,0 <wu < 1), and view zT as a C*[0,1) valued random path. This
paper describes the Ps distribution of zT on C*t[0,1), for various random

times T', by a combination of three methods:
1) decomposition of the Brownian path by excursion theory;



2) the Ray-Knight description of various linear local time processes in
terms of squares of Bessel processes;

3) application of series formulae for the Laplace functionals of squares of
Bessel processes.

Following Williams [66, 67, 68], methods 1) and 2) have been developed
and applied by several authors. See for instance [51, 61, 40], and further
work cited in [61]. Method 3), which is described in Section 2, is a substitute
for the traditional approach to computing Laplace transforms of additive
functionals of BM via solutions of a Sturm-Liouville equation, as presented
for example in [23, 34, 24, 51, 6]. Series formulae for solutions of Sturm-
Liouville equations are well known to analysts [42, 25, 9]. But this method
has been neglected by probabilists, even though it greatly simplifies the com-
putation of moment generating functions of stopped additive functionals of
one-dimensional diffusions. Such applications, indicated briefly in Sections
2 and 6 of this paper, will be treated in more detail elsewhere [53]. As in-
dicated in [50], these techniques can also be applied to analyse local time
processes defined by diffusions on a network as considered in [3]. The circle
is the simplest example where the Markovian properties of linear local time
processes are lost due to the feedback effect of a loop [12].

For a constant time ¢, Bolthausen [5] showed that as { — oo the Fy dis-

tribution of (zt —1)y/t on C[0,1) converges weakly to a cyclically stationary
Gaussian process (2b, — 2f01 bydv,0 < u < 1) where b is a standard Brown-
ian bridge. Leuridan [40] used methods 1) and 2), as developed in [51], to

describe the P, distribution of zT for T" a hitting time or an inverse local

time of é, and to recover Bolthausen’s Gaussian limit. The process zT is
not cyclically stationary for a fixed time T, nor for any of the random 7"s
considered by Leuridan. A central result of this paper is the following:

Proposition 1 Let Ty = inf{t : |B;| = 1}, the time when B first returns to
0 by a complete loop around the circle, so z%i = Ly, + LEI,O <wu<1. For

each 6 € R, the Ps distribution of zTﬂ: on C1[0,1) is cyclically stationary,
reversible, and infinitely divisible, with exponential marginals.

Proposition 1, which is proved in Section 3, is a circular analog of the follow-
ing result for linear BM:



Proposition 2 For each 6 > 0, the Ps distribution of (L*,0 < u < o0)
on C[0,00) is stationary, reversible, and infinitely divisible, with exponential
marginals.

See [44, 51, 46] for similar variations of the Ray-Knight theorems from which
Proposition 2 is easily obtained along with this more precise description:

(L2,0 < u < 00; Ps) £ (V2(u) + Z%(u),0 < u < oo0; Py) (1)

where < denotes equality in distribution of processes on C[0,00), and P
governs (Y (u),u > 0) and (Z(u),u > 0) as two i.i.d. stationary Ornstein-
Uhlenbeck processes which are centered Gaussian with covariance function
Ps[Y (w)Y (v)] = (26)"'e~?"=¥l. For a vector of non-negative random vari-
ables (Vi,---,V,) defined on some probability space (2, F, P), call the dis-
tribution of (Vi,- -+, V,.) multivariate x* with d degrees of freedom if it is the
distribution of the sum of squares of d independent copies of a vector of
centered jointly Gaussian variables, say (Z1,---, Z,), for some d = 1,2,---.
In particular, say that the distribution of (Vi, V) is x*(d, i, p?) if Vi and
V4 have a bivariate y? distribution with d degrees of freedom, and common
mean  and correlation p?. Then Z; and Z, have common variance u/d and
correlation p. In terms of Laplace transforms, the P distribution of (V;,V3)
is \3(d, p, p*) iff for a; > 0

N

Pexp(—an Vi — anVs) = (1 + agp+ agp + (1 — pz)/fozlozg)_ (2)

See for instance [28, 8]. According to (1) for 0 < u < v < 0
the Ps distribution of (L%, LY) is )(2(275—17 6—25(U—u)) (3)

Proposition 2 implies the bivariate y? distribution is infinitely divisible for
all choices of the parameters, a result found analytically by Vere-Jones [64],
who gave formulae for the corresponding density and Lévy measure. See
also [27, 41] for related derivations of the multivariate y? distribution from
occupation times of birth and death processes, and [18] regarding conditions
for infinite divisibility of the multivariate y? distribution. In view of the
close parallel between Propositions 1 and 2, it is natural to expect a y?

representation like (1) for the circular local time process zTﬂ:' It will be
shown that forall 6 € Rand 0 <u <wv <1

the Py distribution of (zh,zh) is X*(2, ps, pr(v — u)) (4)

4



where o =1, p2(p) = 1 — 2pp with p =1 — p, and for § # 0

2sinh(pd) sinh(pd)

:5_1t h5 2 :1
[hs anh o0; ps(p) Cosh(é)tanh?(5)

But the parallel stops here. It turns out that for each ¢

the Ps trivariate distributions of zTﬂ: are not trivariate x* (6)

This follows by comparison of the well known determinant formula for the
Laplace transform of the multivariate y? distribution with the Laplace trans-
form of the finite-dimensional distributions of zTﬂ:’ which can be described as

follows (Corollary 10 and Proposition 11): for every finite subset F' of [0, 1),
and a, > 0

ueF ACF ueA

Py exp (— Z auzh) = (1 + % Z 19[(14) H (QOzu)) (7)

where 37 4cp is a sum over all non-empty subsets A of I, and 19[(14) is the
product of the spacings around the circle between points of A:

n

M({ur, - un}) = U(uk_uk—l) 0<u <+ <u, <1) ()

where ug = u, — 1. The cyclic stationarity of zTﬂ: under P, is evident in this

formula by the invariance of 19[(14) under cyclic shifts of A. For 6 # 0 the
corresponding formula for Ps is obtained by the following modification of the
right side of (7): replace the 1 by (2cosh §)™", and modify the definition (8)
of 19[(14) by replacing each factor (uj —ug_1) by 6~ ' sinh(ug — up_y)0.

The existence of a cyclically stationary Brownian local time process was
suggested by a problem about random mappings posed by Steve Evans, and
the Brownian bridge asymptotics for random mappings of Aldous-Pitman

[1]. See [2] for details. The process that arises in this setting is zT_1 where
T_y is the hitting time of —1 by B governed by Fy. Section 5 considers the

distribution of zT for various random times 7" including 7_;. It appears that

none of these local time processes zT has the two-sided Markov property.
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Kaspi-Eisenbaum [12] show this for one particular 7', and similar arguments
apply to the various other 1T"s considered here. See also [19, 29] regarding the
circular Ornstein-Uhlenbeck process, which is the two-sided Markov cyclically
stationary Gaussian process with covariance function of (u, v) equal to (26(1—
e (e e for p = |v—wul. It is curious that this process does not
seem to arise in the description of circular Brownian local times. From (4)
one can construct a cyclically stationary Gaussian process with continuous
paths, the sum of squares of two i.i.d. copies of which has the same two-

dimensional distributions as zTﬂ:‘ But even this process is not the circular
Ornstein-Uhlenbeck process. As an immediate consequence of Proposition 1
there is the following:

Corollary 3 For each 6 > 0 there is a different one parameter family of in-
finitely divisible distributions on C1[0,1), denoted (Qf,x > 0), such that Q:

is the Ps distribution of the normalized circular local time process (6 coth §) zTﬂ:

with mean 1. Under Qf the process (X,,0 < u < 1) is cyclically stationary
and reversible with gamma (k,1) marginals.

To illustrate, replacing the power —1 by —& in (7) gives the (g joint
Laplace transform of (X,,u € F'). The structure of the infinitely divisible

family (Qg, & > 0) is exposed in Section 4 by an explicit description of the
corresponding Lévy measure on C[0,1). The basic idea is that a process

with distribution COQS can be represented as an infinite sum of random pulses
where a pulse is a continuous function on the circle which is strictly positive
on some open interval and vanishes on the complement of this interval. The
random pulses are the points of a Poisson point process on CT[0,1) with

intensity measure /43]\04 for a o-finite Lévy measure ]\04 on CT[0,1) which is
concentrated on pulses. A similar description can be given for any 6, by
following the method of [51], where the Lévy measure corresponding to the
Ornstein-Uhlenbeck process in Proposition 2 is described. To be more precise,
make the following definition:

Definition 4 Say that a C*([) valued random variable Z = (Z* u € 1)
admits a strong Lévy-Ito (A) representation if 7% = Y, ZF for all u € [
almost surely, where the Z; are the points of a Poisson process on C'*(7)



with mean measure A, defined with Z on some common probability space

(Q,F,P).

The distribution () of Z on C*([I) is then the infinitely divisible distribution
determined by the Lévy-Khintchine formula:

Pexp(—mZ) = Qexp(—mX) = exp (A(l — e_mX)) 9)

where m is a bounded positive measure on [, and for W = X or Z, mW =
[ Wym(du). In Section 4, after some development of results of [51] concern-
ing the Lévy-Ito representation of squares of Bessel processes, it is shown that

under Fy the circular local time process zTﬂ: admits a strong Lévy-Ito (]\04)

representation for a Lévy measure ]\04 which is described explicitly in terms
of 4-dimensional Bessel bridges. In the Poisson (M) point process of pulses

whose sum 1is zTﬂ:’ each pulse is an increment zs — zR of the C'[0,1) valued
local time process derived from an excursion interval (R,S) of the basic
Brownian motion B, that is an interval such that Br = Bs = y for some v,
and B; # y for t € (R,5). These excursion intervals are defined to be flat
intervals of the past maximum process of B if By, = 1, and flat intervals of
the past minimum process of B if By, = —1. Call a pulse long if it is strictly
positive over the whole circle, and otherwise call it short. Ignoring events
of probability zero, the pulse associated with an excursion interval (R, .S) is
long if maxg<i<s By — ming<i<s By > 1, that is if é visits every point on
the circle during the interval [R,S]. Summing the pulses of the local time
process over long and short excursions yields an interesting decomposition of

Ly, into two independent infinitely divisible cyclically stationary processes:

zTﬂ: = Lgport + zl(mg. To illustrate, the Laplace transform of the exponential
distribution of z%i admits the factorization (1 + a)™" = @) Pron, (@)

where @01 (a) = Py exp(—ozz;‘hoﬁ) is given by the formula

V2Fa-— ﬁ)ﬁ— "

Dopore(a) = ¢ (m

The density of the corresponding Lévy measure is Ki(a)e™ where Ki(x)
is the modified Bessel function. The decomposition of T4 into time spent



during long and short excursions yields some novel infinitely divisible laws
on (0,00) with Laplace transforms involving hyperbolic functions.
Finally, some open problems are mentioned in Section 7.

2 Squares of Bessel Processes

Ford=1,2,--- aprocess (R, t > 0)is a d dimensional Bessel process started
at r or BES? for short, if (B2t > 0) is the sum of squares of d independent
Brownian motions started at points xy,---, 24 with 3, 2% = r?. For r with
r? = z, the process (R?,t > 0) is then a squared d dimensional Bessel process
started at x, or BESQ?. The distribution of a BESQ? process on the space
C*+]0,00) of continuous non-negative paths is denoted by Q?. Following
Shiga-Watanabe [60], the definition of Q% extends to all real d > 0 via the
infinite divisibility properties of the two parameter family Q%,z > 0,d > 0.
See also [51, 56]. Let (X,,u > 0) denote the co-ordinate process on C'*[0, c0).
As shown by Pitman-Yor [51, 52], for a positive measure m on (0, o0)

Q7 exp (— /OOO Xum(du)) — P75 exp (—;if) (11)

where Uy = Wo(m) and Wy = Wy(m) can be expressed in terms of the unique
solution ¢,, of the Sturm-Liouville equation

%qﬁ" =m- ¢ on (0,00) with ¢(0) =1, 0 < ¢ <1, (12)

To be precise,

\2

1 W
= =) (13)

where ¢! is the right derivative of ¢,,, and ¢,,(00) is the limit of ¢,, at oc.
It is known to analysts [25, 9] that under mild conditions on m solutions of
Sturm-Liouville equations such as (12) can be expressed as infinite series of
terms obtained from appropriate iterated integrals with respect to m. See
[53] for discussion of such formulas and their relation to the series for the
U,;(m) presented in the following proposition:

Proposition 5 For each positive measure m on [0,00) such that

m[0,00) < 0o and /OOO xm(dr) < oo (14)
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formula (11) holds with U, as follows for =10 or 1:

U,(m) =1+ Z M 2" where (15)

n=1

My = /m(dul) /m(dun) 1/1 kli[z(Uk — Up—1) (16)

0<ug < o LUp <00

For n =1 the empty product in (16) equals 1. So the first few m,, are
mer =m0, 00); Moz = / m(du)/ (v — u)m(dv);
0 U

mip = /OOO um(du);  myg = /OOO m(du) /OO u(v — u)m(dv)

U

Proof. Take (15) as the definition of the W;(m). It can be shown directly
that (11) holds, without consideration of the Sturm-Liouville equation. Note
first that it is enough to show (11) for © = 0 and some d > 0, and for d = 0
and some x > 0. For a discrete measure m = 3, cp ay€,, where F' is a finite
subset of [0,00) and ¢, is a unit mass at u, the U; defined by (15) reduce to

W(ges) g o e o

ueF ACF ueA

where 37 4cp is a sum over all non-empty subsets A of F', and
I ({ug, - yun ) = 1/1 H(uk — Up—1) 0<u < <u, <1)
k=2

The special case of (11) for # = 0,d = 2, and such a discrete m, appears
in Problems 5 and 6 of Section 2.8 of It6-McKean [23], solutions of which
appear in Section 6.4B of [26]. The discrete form of (11) with d = 0,2 > 0
can be established by the method of [23], that is induction on the number of
elements of F, using the recursion derived from the Markov property of Q¢
that appears in formulae (1.20) and (1.21) of Shiga-Watanabe [60]. Or see
formula (2.j) of [51], which should be corrected as follows: on the second last
line of page 431, \;11 should be 5\i+1- Formula (11) for a bounded positive
measure m with finite first moment is obtained from the discrete case by



straightforward approximation. In particular, elementary estimates show
that the series for W; converge rapidly provided m has a finite first moment.
(c.f. Dym-McKean [9], Sec. 5.4, Exercises 1-3). O

The Ray-Knight Theorems. The solution of the problems of [23] cited
above for a discrete m yields also the following Laplace transform, where
Ty = inf{t : B, = 1}: for every bounded m with support contained in [0, 1],

and a > 0,
1

Py exp (—oz/ol L%Fl_“m(du)) = Urfam) (18)

Combined with (11) for @ = 0,d = 2, this amounts to the theorem of Ray-
Knight [30, 54] that

(L*,0 < w < 15 o) £ (X,,0 < w < 15.05) (19)

where £ denotes equality of distributions on C*[0,1]. Closing up the gaps
between positive excursions of B to obtain a reflecting BM (see [23], Sec.

2.11, or [58] 111.22) yields the result of Knight [31] that also
(LA 4+ L0 <u <1, ) £ (X,,0 < u < 1;Q2) (20)
Consequently,
Jormula (18) holds also with Ly," + L' instead of Ly, " (21)

Let (74, > 0) be the right-continuous inverse of the process (LY,¢ > 0) of
local times of B at zero. Using the formula of Williams [66] which is derived
in Section 6.4C of [26], an argument parallel to the derivation of (18) shows
that for every bounded positive measure m on [0, 0o) with finite first moment,
and a > 0,

Py exp (—oz/ooo Lfgm(d:p)) = exp (—g i?ggg;) (22)

Combined with (11) for d = 0,2 = {, this amounts to the Ray-Knight theo-
rem that
the Py distribution of (L*,u >0) is QY (23)

Te?

Some further applications of these formulae are indicated briefly in Section

6. See also [68, 45, 43, 44, 59, 46, 56, 71, 61, 65, 48] for other approaches
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to the Ray-Knight theorems and related connections between squared Bessel
processes and Brownian local times.

Examples. For m(dy) = f(y)dy write ¥,;(f) and f;, instead of ¥,;(m) and
Min. Set f(y) = 0if y < 0. For a,b,¢ > 0, let fop.: @ — af((x —¢)/b).
Then for i =0or 1 and n =1,2---, (15) and (16) imply

(fame)in = a"b>" 7 fin + icfon) (24)

Wi(fape) = b7 Wi(ab®f) + icWo(ab®f) (25)

For m the uniform distribution on (0,1) with density 1 1), the integrals (16)
and series (15) are easily evaluated as follows

1 1
(o) (2n — 1) (o) (2n)!

Uo(aly)) = V2asinh v2a;  Wy(al(y)) = cosh vV2a (26)

For the indicator of an interval (¢, d), say 1. 4)(z) = (o1 (%), (25) yields
Yo(al(eq)) = V2asinh(v2a(d — ¢)) (27)

Uyi(aleq) = cosh(\/ﬁ(d —¢)) + c¥o(2al(0q) (28)

Substituting these expressions in (18) and (22) yields formulae for the Laplace
transform of the time spent by B in (¢,d) up to time Ty for 0 < e < d < 1,
or up to time 7, for 0 < ¢ < d < oo. Similar formulae can be obtained
with one or both of ¢ and d negative. Another variation is obtained with
(21). See [69, 32, 34, 51, 13] for instances of these formulae, and further
variations which can be recovered by the same method. Formula (36) in the
next Section gives an application on the circle. As a general rule, any explicit
solution of a Sturm-Liouville problem like (12), of which a great many are
known, (see e.g. [9] Exercise 5.4.15, [51, 53]), typically yields an evaluation
of one or both of the basic functions W;(m) for some m. Such ¥, can then be
transformed to obtain other W; as above, without any further discussion of
boundary conditions for the Sturm-Liouville equation. See also [9], Section
6.9, for some more sophisticated transformations related to Krein’s theory of
strings.

Formulae for Bessel Bridges. For z,y,d > 0 let Qi_w denote the dis-
tribution on C*[0,1] or C*[0,1) of the BESQ® bridge obtained from the
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Q¢ conditional distribution of (X,,0 < u < 1) given X; = y. According to
[51, 52], for m with support contained in [0, 1]

1 exp (— /01 Xum(du)) — V% exp (—g (% _ 1)) (29)

where U, = \ill(m) = Uy(m) for m the image of m via the map v — 1 — w,

and ¥ = (\111\111 — 1)/Wy. It can also be shown that

\ill(m) =1+ Z my2" ; U(m)=1+ Z m,2" (30)

n=1 n=1

where both m, and m, are given by expressions like (16). To be precise,
m, = Mmo1, and m, = myy, where, for ¢+ = 0 or 1, myy, is defined like m;,
in (16) but with an extra factor (1 — u,) in the integrand. In particular, to

complement (26),

sinh v/2«

\ill(ozl(m)) = cosh V2a;  U(aly)) = —

(31)

3 The Circular Local Time Process at 1.

The following lemma is a key ingredient in the proof of Proposition 1.

Lemma 6 (Knight [31]) Let G be the time of the last zero of B before time
Ty. Under Py governing B as a Brownian motion with zero drift,

(i) L, has standard exponential distribution: Po(LY, € dl) = e~"d(,{ > 0.
(ii) Given LG, = ( the processes (L¢,0 < u < 1) and (Lg",0 < u < 1) are
independent with identical distribution Q9_,

(ii1) The process (L';i' — Lg', 0 <u < 1) has distribution Q32_,

(iv) The two processes (L{,—1 < v < 1) and (L';i' — L'g;',() <u<1) and
the random sign By, € {—1,4+1} are mutually independent.

Remark 7 The process in (iii) is the process of occupation densities of the
path fragment (| B|a4s,0 < s < Ty — G). As shown by Williams [66, 67, 68],
this fragment has the distribution of a BESj process stopped at its first hit
of 1.
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Translating Lemma 6 into terms of the circular local time process yields
the next lemma. See also Proposition 21 for a generalization derived by

excursion theory. Note that G is also the last zero of é before time T,

and that oni = L. Let Px @ denote convolution of two distributions on
C*[0,1), that is the distribution of Y+ Z for independent random elements
Y and Z with distributions P and Q.

Lemma 8 Under B

(1) The distribution of L on CT[0,1) is [ Q0 * QO e~“dl where Q9_,
is image of QY_, via time reversal.

(ii) The distribution of LT zG on C1[0,1) is Q2_,

(iii) The two processes LG and LTi zG and the random sign Br, are
mutually independent.

(iv) The distribution of zTﬂ: is Q2% (S22 Q9o+ QU e~tdl)

(v) The process zTﬂ: and the random sign By, are independent.

Proof. Part (i) follows from parts (i) and (ii) of Lemma 6 by conditioning on
L%, . Parts (ii) and (iii) follow from (ii) and (iii) of Lemma 6 and reversibility
of Q2_,. Parts (iv) and (v) follow from parts (i), (ii) and (iii). O
Notation. For the rest of this section, let m denote an arbitrary bounded
positive measure on [0,1), and let Wq, ¥y, \111, U be defined in terms of m as
n (15) and (30). For a process (X,,0 <u < 1) let mX = [} m(du)X,,.
Proof of Proposition 1. Consider first the case 6 = 0. Part (iv) of Lemma
8 combined with (29) allows the following computation:

Py exp(—szi) = (Qg_@e_mX) /OOO (Q?_>0 e_mX) (Qg_@ e_mX) e~ dl

= 0 (0 ([ 2
:\Il_l/ dﬁexpl——(—l—l)——<—l—l) 4:7A
0 2\ U 2\VU Uy + 0y

Take m to be discrete and use (17). The result is (7), since for a finite
subset A of [0,1), 19[(14) = II;(A) + Hl(A) where A is the reversal of A.

The cyclic stationarity of zT is now apparent, and reversibility is obvious
for 6 = 0. Infinite divisibility follows easily from the same decomposition,
using standard ideas of subordination, and the infinite divisibility of the
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exponential distribution of on and the various squared Bessel components.
See formula (51) in the next section for the consequent expression for the
Lévy measure. For 6 # 0 the Cameron-Martin formula (see e.g. [16],1.11)

combined with the independence of zTﬂ: and Br, yields

Ps exp (—szi) = cosh(6) Py exp ( (m + 152)\)LTi) (32)

where A is Lebesgue measure on [0,1). This formula and the cyclic station-
arity of zTﬂ: under Fy imply that zTﬂ: is cyclically stationary under Ps too.

The same goes for reversibility. The Ps distribution of zTﬂ: can be shown
to be infinitely divisible by using the Cameron-Martin formula to obtain a
variation of Lemma 8 for F%. See also Remark 15 in Section 4. O

Definition 9 For a measure m on [0,1) define &/ = &/(m) by
&;:5(\111+\i;1):1+§§jﬁ%2n (33)
n=1
where ﬁ%n: M1, + M1,, that is
m, = /m(dul) / (duy,) ﬁ (up — ug—1) where ug = u,, — 1. (34)
0<uy <+ e Lup <1 =

From the proof of Proposition 1 and the formulae of Proposition 5, there is
the following companion to the Ray-Knight formulae (18), (21) and (22):

Corollary 10

Py exp (—ozszi) = (&l(am)) - = (1 + %ni::l ﬁln (2@)”) B (35)

To illustrate, for m(du) = f(u)du, formula (35) gives the Laplace transform

of fOTi f(ét)dt. If Uh,---,U, are ii.d with density f/||f]|, where ||f|| =

[ f(u)du, then m,, equals ||f|["/n! times the expected product of the n
spacings around the circle between points of the random set {Uy,---,U,}.
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Occupation time of an interval on the circle. Consider the occupation

time A(I,t) = [§ l(és € [I)ds for an interval I on the circle. From (35),
(27),(28), for every interval [ of the circle of length p, the time A(1,Ty) that

é spends in [ up to time T4 has the same infinitely divisible distribution
with Laplace transform

Pyexp(—aA(I,Ty)) = (cosh(pv/2a) + L(1 — p)v2asinh(pv2a)) ™ (36)

According to Theorem 4.2.16 of Knight [34], which follows similarly from
(21), (27) and (28), the Fy Laplace transform of the time spent by |B| in
[0, p] before time Ty is given by the right side of (36) with the 1 replaced
by 1. That the ; is needed in (36) can be checked as follows: as p — 0,
A([0,p], T1)/p converges a.s. to LG, with Laplace transform 1/(1 + «). But
the time spent by |B]| in [0, p] before time T4 must be normalized by 2p
instead of p to obtain the same limit.

The Laplace functional of the Fs distribution of zTﬂ:' For the circular
Brownian motion with drift, a first formula for the Laplace functional of the

Ps distribution of zTﬂ: is obtained by combining (32) and (35). But there is
a more interesting formula which lies a little deeper:

Proposition 11 For 6 # 0:

-1

Py exp (—szi) (1 + (2cosh 6)~ Z My, s 2" ) where (37)

ﬁ”bmg: & /m(dul) / (duy,) H sinh(uy — ug—1)0 (38)

0<ug <+ <un <1 k=1

with ug = u, — 1.

Proof. Formula (37) will be obtained by development of the right side of
(32). Consider first m = ageg + €, where €, is a unit mass at u. Let
o = $6°X where X is Lebesgue measure on [0,1). Then from (33)

o -1
Py exp (—aoLOTi —auLf, — %52Ti) = (1 +32_(a0co + avey + p);, 2“)

n=1
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where (apeg + ay€, + )8 denotes the quantity m, in (33) for the measure
m = g€+ o€y + 1. Let p, denote the coefficient m,, in (30) for m = p, and
let w =1 — u. The quantity (apeg + aye, + 1) can be evaluated as follows:

forn =1: ,&1 dag + ay
for n = 2: flg + (o + )1 + oo, ut
forn=3422>2
(o] ] .
[ +(0o + ) pino1 + cgo ute Y uF g u¥
k=0

The summation index k counts how many w; in the repeated integral (34) for
(aoeo+ ey + ) fall in the interval (0,u). The powers of u and u appear by
making the appropriate linear changes of variables to replace each integral
over [0,u] or [u,1] by an integral over [0,1]. Summing over n, the desired
Laplace transform is found to be

(B00) + (a0 + @) ¥(30) + 20 ua () (ap))

Combined with (26), (31) and (32), this yields the proposition for for m =
ap€o + aye,. A similar calculation yields the result for a general discrete m,
and the argument is completed for an arbitrary finite measure m on [0,1) by
a routine weak approximation. O

Example 12 Let m = a for a positive scalar a and Lebesgue measure A

on [0,1). From (32)

cosh ¢
cosh V2a + 62

Ps exp (—aAETi) = P exp(—aTy) =
Comparison with formula (38) yields the identity
cosh v2a + 62 = cosh § + 1 i_ojl % (270‘) 1) (39)

where f,(6) = sinh(6) and for n = 2,3, -

)= [ [ TLAGed - dv.s (10)

v; 20, Xl vi=1 i=1
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For instance,

1
f2(0) = %(5 coshé —sinh é);  f3(0) §%sinh § — 38 cosh § + 3sinh §)

= 5o

A generalization of the identity (39). To check (39) directly, consider
functions f,(6) defined by the integral formula (40), for an arbitrary contin-
uous function f; defined on [0, 1] instead of fi(6) = sinhé. The f,(6) are

then determined by

18 = [ 0 s (08 (06 (a1
where v =1 —v. Let ,
Fla,6) = Z_:l fa()a” (42)

Then easily from (41)
F(a,6) = afi(§) + a /0 "o F(va, v8) fi(06)dv (43)

Retracing this argument shows that if a function F'(«, 6) is of the form (42)
for some sequence of continuous functions f,(6), and F'(«a,6) satisfies (43),
then (41) and (40) hold. Returning to consideration of (39), differentiation
with respect to a shows that (39) is equivalent to

Fla,8) = \/a?i&iw sinh Vaé + 62 for f1(8) = sinh & (44)

This is verified by checking (43), which, after setting 3 = V&b + 62, reduces

to the elementary formula

0sinh 3 — #sinh é
32— §2

/01 sinh(v3) sinh(vd)dv = (45)

4 Lévy-Ito Representations
If a probability measure ) and a o-finite measure A on C'T(7) are related

by the Lévy -Khintchine formula (9), let us say simply that @ is infinitely
divisible with Lévy measure A. Assume that A places zero mass on the path
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that is identically zero. Then () and A determine each other uniquely. As
shown in Pitman-Yor [51], it follows from (11) and (29) that

Q% is infinitely divisible with Lévy measure xM + dN (46)

4 is infinitely divisible with Lévy measure x My + dNo (47)

for some Lévy measure measures M, N on C'*[0,00) and My and Ny on
C1]0,1]. These Lévy measures will now described by a development of ideas
from [51]. The following results involve the Ray-Knight descriptions of linear
Brownian local times, and Williams’ decomposition of a Brownian excursion,
([70],I1.67). The basic idea can be stated informally as follows. When a Brow-
nian local time process indexed by v € I is decomposed as a sum of pulses
derived from various excursions, the pulse derived from either an excursion
above x with maximum level y or an excursion below y with minimum level
x, typically has the following distribution P, ,:

Definition 13 For a subinterval [ of R, and x,y € [ with x <y, let P, be
the probability distribution on Ct(I) of a process X, that vanishes off the
interval (x,y), and on (x,y) is a BESQ* bridge from 0 to 0 of length (y —x):

v—

y—

Xey(v)=(y — )5, ( ) Iz <v <y) (vel) (48)

where Sy has distribution Qg_.

Proposition 14 The Lévy measures defined by (46) and (47) are

o] PO
_1 [ gy T, :l/d/d 4
L : yy_x (19)
P
/d Toy. /d:z;/ byt (50)
(y —x)?

Proof. As shown in [51], a strong Lévy-Ito ({M) representation of the
BESQY distributed process in (23) is obtained by decomposing the C't[0, oo)
valued local time process L, as the sum of pulses derived from excursions

of B from 0. Consequently (Theorem (4.2) of [51]), M is the distribution
of the total local time pulse generated by a Brownian excursion (4,0 <
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t < () distributed according to 1td’s law for positive excursions of B from
0. William’s description of (g¢,0 <t < () given maxXo<i<c &¢ = ¥, in terms
of pasting back to back two independent BES; processes (each run till it
first hits y), implies the formula for M in (49) with P, the distribution
on C*t[0,00) of the total local time process derived from the two BFES®
fragments. By Remark 7 and Brownian scaling, each BFES? fragment has a
local time process on [0, y] which is a BESQ? bridge from 0 to 0 of length
y. Summing the two independent BESQ? bridges yields BESQ* bridge. So
By, 1s the distribution described by Definition 13 for « = 0. This proves the
formula for M in (49). The formula for NV in (49) follows from the description
of N obtained similarly in [51] using the other Ray-Knight theorem (19):
N = [° M,dx where under M, the path is identically zero up to time a and
(Xz4u,u > 0) has distribution M. To obtain the expressions (50), consider
a process Z = (Z(u),u > 0) with strong Lévy-Itd (A) representation, for
A =M or N, and condition on the event on Z(1) =0. O

Remark 15 As in [51], the results of Proposition 14 have straightforward
extensions to the case with squares of Ornstein-Uhlenbeck processes instead
of squares of Bessel processes. The connection with local time processes and
excursions of BM with drift é is provided by Proposition 2. But details of
this case are left to the reader.

Circular Lévy-It6 representations. By development of Proposition 14
and its relation to local times of linear BM there is the following result for
circular BM. The discussion will be restricted to the case of zero drift. But
similar results for non-zero drift can be obtained using Remark 15.

Proposition 16 Under Py the local time process zTﬂ:’ whose distribution is

determined by (7), admits a strong Lévy-Ito (]\04) representation, with
Pacy -1 —v
M / dy/ de’ = 2N0 ‘|‘/ dv —>0 * QU—>O (51)
(y — )

where ny is the image of P, after wrapping the pulse around the circle,
that is the probability distribution on C1[0,1) of

(Xoy(u) + Xopy(u—1),0 <u <)
for X, the random path in CT[—1,1] defined in (48).
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Notation. For a random subset A of [0,00), let L, denote the process

z _ /t°° 1(t € AL (ze[-1,1]) (52)

=0
In particular, for a random interval, say A = [R, 5], Ligs=Ls—Lptor Lg
and Lp as before, e.g. Lg = Ly - Put zz =LY+ 17 0<u<1and

zA = (zz, 0 <u < 1). For any random interval A, and also for various other
A’s considered below which are countable unions of intervals, the processes

L, and zA have continuous paths. Then L, and zA will be regarded as
random paths in C*t[—1,1] and C*[0,1) respectively.
Proof of Proposition 16. Due to the independence of zTﬂ: and Br,

(Lemma 8 (v)), it suffices to consider the process zTﬂ: conditionally given
Br, = 1. Let T, = inf{t : B, > y}. As a consequence of 1t6 ’s theory of
Brownian excursions, [22, 57, 56] conditionally given By, = 1, the C*T[—1,1]
valued point process of local time pulses (L[Ty_jy],() <y < 1) is an inho-
mogeneous Poisson marked point process with intensity measure dy p, (d€),
0<y<1,6£eCt[-1,1] where p, = [¥,(y — )" *P,dz. So given Br, =1,
the C*[0, 1] valued point process

o

(L, 0 <y <1) (53)

is also inhomogeneous Poisson, with intensity measure the dy p,(d¢) distri-
bution of (&, 4+ €u—1,0 < u < 1). This observation, and the decomposition

Ly, = Yo<y<r Lir,_ 1,) conditionally given Br, = 1, imply all the assertions
of the Proposition, apart from the second equality in (51). But this follows
easily from Lemma 8. (See the proof of Proposition 17 for some details.) O
Decompositions of the Circular Local Time Process. Various decom-

positions of zTﬂ:’ can now be described by splitting the Poisson point process
of pulses (53) into independent components. As a preliminary, observe that
given Br, = 1, the C*[—1,1] valued local time process Ly, decomposes as
the sum of three independent components Ly, = L,y + Lypore + Ligyg
obtained by classifying the pulses into the following three categories, where
y and x represent the levels of the maximum and minimum of the excursion
associated with a pulse:

short+ 0 <<y
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short— fy—1<a<0<y
long ifax<y—1
Thus a pulse (or its corresponding excursion) is called as short or long ac-
cording to whether the range y — x of the excursion is less than 1 or at least 1.

Each short pulse is further classified as + if its support is entirely contained
n (0,1), and — if its support intersects [—1,0]. By wrapping around the

circle, there is a corresponding decomposition of zTﬂ: into three independent
infinitely divisible components

LT:E = Lshort—l— + Lshort— + Llong (54)

which holds also without conditioning on By, provided the definitions are
modified appropriately given By, = —1. Call a C'[0,1) valued process, or a
measure on C[0, 1), symmetric if it is cyclically stationary and reversible.

Proposition 17 The following statements hold under Fy. In the decompo-
sition (54) of zTﬂ:’ the distribution of zshoﬁ_l_ is Q3_, with Lévy measure

]&short—l— = 2Ny. The distribution of zshm,t_ + zlong is [50 et dl QY _y * Qg_@,

with Lévy measure

]\04 - 2]\/YO — / Udv v—>0 * QU—>O (55)
0

o

Let zshomf = Lshort—l— —I_ zsho7°t—' The decomposition
LT:E = Lshort + Llong (56)

o
expresses Ly, as the sum of two independent processes, each of which is

infinitely divisible and symmetric. The corresponding Lévy measures ]\045;mt

and ]\Oﬂmg on CT[0,1) are

Px © y—1 Pac
Mshort _/ dy/ 71/ 7 MZOTLQ :/ dy/ 73/ (57)

(y — )
(o] (o] (o] i i
Each of the measures Mshort, Miong, and M is symmelric.
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Proof. These assertions follow directly from the preceding development.
The identification ]\045;LOTH_ = 2N, follows from (51) and (50), so the distri-

bution of zshoﬁ_l_ is Q2_,. Comparison with the last-exit decomposition in
Lemma 8, that is

LTi =Lg+ L[G,Ti] (58)
where (G is the time of the last zero of B before time T, identifies the

distribution of zshm,t_ +zlong, and yields its Lévy measure, due to the infinite
divisibility of the family (Q9_,,¢ > 0) and the well known formula v=*e~" for
the density at v of the Lévy measure of the standard exponential distribution
of LF, . (The identity (55) can also be derived using the relation between

BESQ° and BESQ* bridges described above (5.¢) of [51]). The measure ]\04
is symmetric by the symmetry of zTﬂ: and the Lévy -Khintchine formula (9).

Since ]\Oﬂmg 1s the restriction of ]\04 to a the symmetric subset {inf, X, > 0}
of C'*[0,1], this measure too is symmetric, and so is ]\045;mt = ]\04 — ]\Oﬂmg.
Again by the Lévy -Khintchine formula, the distributions of both z

Liyp, must be symmetric. O
A path transformation. According to the above proposition and Lemma

o

8 (ii), the process zshwt has the same distribution as L 7,;. There is the
following pathwise explanation of this identity in distribution: given By, =1,
if the short+ excursions are strung together to form a process by closing

short and

up the gaps between these excursions, the resulting process has the same
distribution as (Bg4.,0 < v < Ty — (), as described in Remark 7. This
follows from the identical Poisson character of the two excursion processes.

The Lévy measure for the short excursions. The symmetry of ]\Oﬂhm
is made obvious by the following variations of (57):

o 1 ~ 1
WManort = [ dy©,(3) = [ dy©,(Mo)

where ©,(K) denotes the image of the measure K on C'*[0,1] after a cyclic
shift by y, My = 1 1031,70 ™ %dz is the time reversal of My in (50), and the

expression with My instead of M follows from the time reversibility of Qp_,.
The Lévy measure for the long excursions. From (57), the measure

]\Oﬂmg on C7*[0,1] has total mass fy dy [T (y — x)"2dx = 1 —log2. So the
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number of long excursions up to time 7'y, say #.,4, has Poisson distribution
with mean (1 — log2). Given that #,,, = n, the local time pulses of these
excursions, when presented in a random order independent of the excursions,
form a sequence of n i.i.d random pulses with the distribution ]\Oﬂmg/(l —
log2). (This is false if the randomized order is replaced by the natural time
ordering of excursions: before wrapping, a pulse of range r > 1 cannot occur
until the maximum process has reached at least r — 1, so bigger pulses will
tend to come later). To describe ]&long more explicitly, let (Y, Z) be picked
at random from [0, 1]* according to the probability density

Wz +y <1)dzdy

P(Y edy,7Z € dz) = (1 —log2)(y + 2)?

and let S have distribution Q§_, independently of (Y, Z). Then, from (57),
the random pulse

u+ 7
Y+ 7

u+/7—1
Y+ 7

(Y—|—Z)[S4< )1(u<Y)—|—S4< )1(u>1—Z)] (0<u<)
(59)
has distribution ]\Oﬂmg/(l —log2). According to Proposition 17, this process
is symmetric, something not at all obvious from the above construction.
Decomposition of the one-dimensional distributions. For « > 0 let

pshort(2) and prong(2) denote the densities at @ of the one-dimensional dis-
tributions of ]\045;mt and ]\Oﬂmg respectively. Let ®g,+(a) and @p,py(ar) be

the corresponding Laplace transforms of z;‘hwt and z}‘ong. Thus for every
0<u<l,a>0

Poexp(—aLu) = ®apori(@) = exp <—/0 (1— e_aag)/)short(“?)dflf) (60)

and similarly for long instead of short. The one-dimensional distribution of

z%i is exponential with rate 1, with Laplace transform (1 + )™ and Lévy

density z7'e™* x > 0, So the independent decomposition (56) gives
(I)short(a) (I)long(a) = (1 + Oé)_l (Oé > 0) (61)
pshort(x) + plong(x) — x—le—x (l’ > 0) (62)
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Proposition 18

—X

Pshort(T) = %/01 u”? exp (m) du = Ky(x)e™® (63)

where Ky(x) is the modified Bessel function,

P port(r) = exp (g:l (n ?2}1)4(-”1;_ D! (— 2@)”) (64)

and there is the alternative expression (10) for ®gpom(a).

Remark 19 The coefficient of « in (64) shows that z;‘hwt has mean 2/3.

Consequently from (54), z}‘ong has mean 1/3. Integration over u shows that
the mean total lengths of the short and long excursions are also 2/3 and 1/3
respectively. See (68) and (69) for the corresponding Laplace transforms.

Proof. By symmetry, it suffices to consider v = 0. From (51), for any
non-negative function f vanishing at 0

/OO ) Pshort (X )d:}c—/ dy/1 ! O_ny(XO)(y_|_Z) 20z

where the 103_271/ distribution of Xy is gamma with shape parameter 2 and

rate (y +2)/(2y), so
By FX0) = [T 1) (y;yz)erxp (—%) dr

The first equality in (63) follows easily. A change of variables yields

ponont(@) = =2 /0 (t+ D)5 (1 4 2) Fedt

Now the standard integral [y t_%(t + 2)_%e_mdt = e¢"Ko(x) where Ky is the
usual modified Bessel function (see e.g. Oberhettinger-Badii [47] page 18,
2.48, where the right side should be corrected as follows: e Ky(ap) should

1
be e2"?Ko(2ap)) allows the evaluation

Pohort(T) = ¢ (690[(0(2}) — % [eg”[(o(:z;)]) =e " Kq(x)
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Formulae (64) and (10) are obtained by substituting the middle expression
in (63) into (60) and then switching the order of integration. O

Decomposition of the Total Time. From (54) the time 77 is the sum of
independent random times spent during various types of excursions, say Ty =
Tshortt + Tshort— + Tiong. As shown by Knight [31], the last-exit decomposition
(58) implies that the Laplace transform Ppexp(—aTy) = (cosh§)™!, where

0 = 2a, factors as
1 B 0 tanh 6 (65)
cosh(f) ~ \sinh# 0

where the factors are the Laplace transforms of T — G and (5, as restated in
the second equalities of (66) and (67) below. These equalities, and the second
equality in (68), also due to Knight [31], follow from Lemma 6, (29), (27),
(28) and (31). The remaining equalities in (66) - (70) follow immediately by
Proposition 17. Using the notation § = v/2a, and writing simply P instead
of Py governing B as a BM with no drift,

Pexp(—aTshors) = i Pexp(—a(Ty — &) (66)
tanh 0
Pexp(=a(Ts = Toony)) = =5 = Pexp(-aG) (67)

P exp(—aTshort) = exp(l — O coth§) = Pexp(—aG|Ly, =1) (68)

exp(f coth§ — 1)
cosh 6

Pexp(—aTiony) = (69)

sinh 0

Pexp(—aTspori—) = exp(l — 6 coth §) (70)

Of these formulae, the most interesting are (69) and (70), which present

the Laplace transforms of two infinitely divisible distributions on [0, c0) that

do not seem to have been encountered before. The Laplace transform (69)
expands as

1 3 1409

P —aTn,) =1— = —a® - ——a°

exXp(=aTlony) 39T 0% T 56m0”

confirming the result of Remark 19 that the mean of Tj,,, is 1/3. In fact,

each of the random variables Tporit, Topori— and Tj,,, has the same mean

(71)
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1/3. Both Tyuora and Typop— are strictly positive random variables with
continuous distributions on (0,00). However Tj,,, has a compound Poisson
distribution that has a continuous component on (0,00) and an atom at 0
whose size may be found from (69):

2

P(T1pny =0) = lim Pexp(—aTjpn,) = — (72)
— 00 e

As a check, from the discussion above (59), T., is distributed as the sum

of #iony 1.0.d. r.v’s with continuous distribution on (0, 00), where #,,, is

Poisson with mean 1 —log2. So P(Tj,,, = 0) = exp(log2 — 1) = 2/e. The

common distribution of the terms in this sum have density p(x)/(1 — log 2)

where (68) yields

I e e ™)
ol sinh 6 0 sinh 0 cosh 0

5 Results for Other Random Times

The Laplace functional of zT for many random times 7" besides T can be
obtained by variations of the method of Section 3. Throughout this section,
let P = Fy govern B as a BM with zero drift. Extensions to Ps for 6 # 0 are
straightforward, as in Section 3.

A class 7 of random times 1" such that BOT = 0 will now be defined. This
class 7 includes Ty, the i inverse local time of B at zero 7y = inf{¢: LY > (},

and the inverse local time of B at zero #,= inf{¢: Lt > (}.

Definition 20 Let T be the collection of random times T of the form either

T =7r or T =7r_ where R is a positive measurable measurable function of
the time-changed process (B, ,{ > 0).
Te

The process (B, ,{ > 0) is a continuous time symmetric random walk on
the integers, WithiTizd exponential(1 )holds mdependent of i.i.d. Bernoulli(1/2)
jumps of £1. Note that if T' € 7 then BT =0 and LT = R. Let Nr be the
number of loops (of either sign) completed by B up to time T'. That is to
say Np is the number of jumps of (B%), 0<(< zOT), where a jump if any at
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local time on = R is counted if T =7x but not if T = 7x_. The following

proposition generalizes Lemma 8 and the similar decomposition of zo given
Te

in Leuridan [40]. See also [50] where this proposition is generalized to Brow-
nian motion on a network. Recall that * denotes convolution of distributions

on C[0,1).

Proposition 21 ForT' € T the conditional distribution of zT given Ny = n
and LT = is QY _, * Qg_>0 * Q3" . That is to say, the distribution of zT is

/ Z P(Np=n LT € d)Q7_, * Q£—>0 * Qoo (74)

Proof. Following the style of argument in Section 5 of [51], decompose zT as

the sum of pulses derived from individual excursions ¢ of é away from 0. Call
¢ a loop it ¢ returns to 0 on the opposite side from which it starts. Otherwise
call ¢ a non-loop. According to [t6’s [22] excursion theory, when the pulses
are viewed as a C'T[0,1) valued point process parameterized by local time

of é at 0, the pulses of loops and the pulses of non-loops form independent
Poisson processes. The point process of pulses of loops is defined by the
sequence of i.i.d. exponential spacings between loops on the local time scale,
and the i.i.d. sequence of C*[0,1] valued pulses. By Lemma 8 the pulse
of each loop has distribution Q2 _,, independently of the signs of all the
loops. The distribution of the sum of n such pulses is therefore Q2" , by the
additivity of squares of Bessel bridges. Similarly, it non-loops are classified in

the obvious way as either positive or negative, for each fixed ¢ the local time

process zo contains a contribution from pulses of positive non-loops with
Te

distribution Q9_,, and an independent contribution from pulses of negative

non-loops with distribution Q9 _,. By definition, 7' € 7 has the property

that (NT,EOT) is a measurable function of (B, ,¢ > 0), that is a function of
Te
the 1.i.d exponential spacings between loops on the local time scale and the

i.i.d. sequence of signs of the loops. So (N, on) is independent of both the
i.i.d. sequence of pulses of the loops, and of the Poisson point process of

pulses of non-loops. Since BT = 0 the process LT decomposes as the sum
of pulses from Ny loops, and the sum of pulses of the non-loops up to local

time on and the conclusion follows. O
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Corollary 22 ForT €T,

Pexp(— mLT / Z P(Np=n LT edoyy exp(—ﬁ(&/ —1))  (75)

for &/ and W as in (33) and (30).
Proof. Apply the previous proposition and (29).

Example 23 Leuridan [40] obtained (74) for 7,= inf{t : 2? > (}. Then
z% = ( and N, has Poisson distribution with mean (. So (75) yields

Ty £

Pexp(—mz%) = exp (—5(&/ — 1)/\11) (76)

?he calculation of features of the one- and two-dimensional distributions of
L, , as undertaken in [40], is simplified by application of this formula.

Te

Corollary 24 Let Tioy = 0 and let T(y), T(a), - -+ be the successive times that

é returns to ( after complete loops around the circle. Let S, = Br,,
(S0, S1, -+ +) is the usual embedding of a symmetric random walk in Brownian
motion. Let N be a non-negative integer valued r.v. which is conditionally

independent of (By,t > 0) given (51, 5,---). Let

- PV =

S0

Then the circular local time process zT(N) is cyclically stationary, with
Pexp(—miy, ) = G/¥)

Proof. By the strong Markov property of é, the sequence of circular local

time processes (LT( ) LT(n_1)7n =1,2,--+) is a sequence of i.i.d. copies of
LT(1) LT(o) = LTi' By Lemma 8, this i.i.d. sequence is independent of

the 1.i.d. sequence of signs of the successive loops of é that determine the
random walk (5,,). Corollary 24 now follows from (35). O

28



To illustrate, Corollary 24 shows that P exp (Oj’%(N)) =G(1/(14 «)) for
0 <u < 1, and with (36) gives the Laplace transform of the time spent by é
in an interval of length p up to time 7). If the distribution of N is infinitely
divisible, then so is the distribution of zT(N)’ by a standard subordination
argument. The following example shows that the distribution zT(N) may be

infinitely divisible even if that of N is not:

Example 25 Let T, be the first time By hits a. Then Ty = Ty where N is
the hitting time of 1 for the walk, with G(z) = 27'(1 — /1 — 22). So

Pesp(-miy) = (1 -1~ ()] )
For example
Pexp(ozz%l):1—|—oz—\/20z—|—oz2 0<u<l) (78)

Foru =0, 20T1 = inf{l: B, =1} is the hitting time of 1 by a continuous time
Te
symmetric random walk on the integers. Formula (78) then agrees with the

standard expression ([15], formula (3.10)) for the Laplace transform of this

hitting time. The fact that the distribution of le is cyclically stationary
can be seen directly as follows. For 0 < a < 1 the distribution of B is
preserved by the path transformation which exchanges the segments of path

of B on [0,7,] and [T, T1]. This remark, combined with the observation that
le is the sum of N i.i.d. copies of of zTﬂ:’ yields an elementary proof of
the cyclic stationarity of zTﬂ:' In this example, the possible values of N are

{1,3,5,---}, so the distribution of N is not infinitely divisible. However, by
consideration of excursions below the maximum, much as in Section 4, it is

clear that the distribution of zT is infinitely divisible, with Lévy measure A
on C"’[O 1) that may be obtained as follows from M on C[0,00) as in (49)

= 2f0 Mudu where Mu is image of Mo after a cyclic shift by u, and Mo

is the M distribution of (3202 X,1.,,0 < v < 1). The identity obtamed by
inserting this description of A and (77) into the Lévy -Khintchine formula
(9) seems quite non-trivial.
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The Cover Time. Let T.,,., be the cover time for the circular Brownian
motion, that is the inf of times ¢ such that the range of (B;,0 < s <1) equals
[0,1). Put another way, T,o1er = inf{t : R, = 1} where R, = maxo<s<¢ Bs —
ming<s<¢ B,. It is known that

P(Bz,,,., € dv) = |z|dx (-l<a<l) (79)

which implies évaer has uniform distribution on [0,1). Let 7' be the first

time that é reaches the point évaer. There is the following Williams decom-
position at time 7' which is a variation of results of Imhof [20, 21] and Vallois
(62, 63]: Conditionally given Br,,,., = x > 0, the processes (x— B, 0 <t < T)
and (Bj, ,,0 < s < Topper — T) are independent, the first @ BES]__ run till
its hitting time of 1, and the second a BESS run till its hitting time of 1.

This decomposition and Remark 7 yield a formula for the Laplace functional

o
Of LTcov er :

dx (80)

o Vo W(lemo,) + 2V (xm,
Pexp(—mLy_, ) :/0 (wmo.) ( v

W (ms)

where U is defined by (29), £ = 1 — z, and for a measure m on [0,1) and
x € [0,1) the measures m,, mo, and m, on [0,1) are defined as follows:
m, 1s the image of m via the map v — v — x mod 1 ;
Mo is the image of the restriction of m to [0,x) via the map v — u/x;
my1 is the image of the restriction of m to [z,1) via u — (v —2)/(1 — )

o
In particular, given Br,,., = x > 0 the local time [} = L%

decomposes as the sum of two i.i.d. exponentials with rates (2zz)~!, and

(80) yields

o

P B %4 _ / _ 2+o
eXp( aLTcover) 0 (1 _I_ 20&1‘5})2 2 —I— a —I_ \/5(2 _I_ 05)3/2

1 dx 1 2 arctanh

(81)

A similar but more complicated expression can be obtained from (80) for
the Laplace transform of z%mer for all 0 < w < 1. The transform (81)
can be explicitly inverted by noting that P(onwver >(0)=PX,+Y, <1)
where X, = maxg<,<-, Bs and ¥, = ming<;<, B;, and 7, is the inverse local
time process of B at zero. It is well known that X, and Y, are i.i.d. with
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P(X, < ) = exp(—{/2x), and the convolution integral can be evaluated
using formulae around (63) to give

P(LY,,., > () = (Ki(0)e™! (82)

where K is the modified Bessel function. The inequality L3 < L7, and
the exponential distribution of LOTi imply (K1(0) <1, as is easily verified an-
alytically. As another example, taking m = aA in (80) for Lebesgue measure
A on [0,1) recovers the formula Pexp(—aT.oper) = sechz(\/%) obtained in
[20].

Let U = évaer. Note that U is the a.s. unique zero of the process szver.
From the Williams decomposition and Remark 7, U has uniform distribution
on [0,1), and independently of U

o

the process (LU+5 — zg“‘s,() < s < 1) has distribution Q3%_, (83)

Tco'u er

where U + s is understood mod 1. So the process szver — zT is stationary,
with Laplace functional

Pesslomiiy,., — i) = [ g (54)

But neither the processes szver and zT is stationary, due to (85) below.
The first zero after the cover time. Let T" be a stopping time of B, and
0 < ¢ < oo. An argument using Dynkin’s formula shows that

Pz% =c for all 0 <u <1 if and only if PT = ¢ and é)T =0as (8))

And it is easily seen that if 7' > 0 and zT is stationary then T' > T, a.s..

See [14] for related results. Let T. be the time of the first return of Bto0
after time T.y,.,. Combining the above observations shows that

if T'>0 and PT < oo and zT is stationary, then a.s. Br =0 and T > T.
(86)

So the following question arises:

Question 26 [s the process zT* stationary?
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The Williams decomposition used to obtain (80) yields the following expres-

sion for the Laplace functional of zT*:

Pexp(—sz*) — q;(lm) /01 (xq/(xmog&})(;f)\l/(xmﬂ))z . -

So the question is whether this expression is invariant under cyclic shifts of
m. Consider the following two special cases:

(i) m is concentrated on at most two points.

(ii) m is a multiple of uniform distribution on a subinterval of the circle.

Formula (87) in case (i) gives the joint Laplace transform of z%* and z%*
for arbitrary u and v in [0,1), and in case (ii) gives the Laplace transform
of the occupation time of a subinterval of the circle up to time T,. In both
cases it is possible to simplify the right side of (87) by calculus. In separate
calculations for the two cases using Mathematica, some remarkable simplifi-
cations occur. It is found that in both these cases the Laplace functional can
be expressed as follows:

o 0)) P
Pexp(—mLT*) = Y (1 + \/ﬁ arctanhv1 — CI)Q) (88)

where & = ®(m) = Pexp(—szi) = 1/&1(m) as in (33), and

1 1
arctanh(x) =« + §x3 + 5:1;5 + ... (:1;2 <1)

so the right side of (88), call it ®,, expands as

b=+ (1 — B)d? (%+§(1—q>2)+%(1—q>2)2+---) (89)

Because ®(m) is invariant under cyclic shifts of m, so is ®.(m). So (88)

in case (i) shows that the two-dimensional distributions of zT* are invariant
under cyclic shifts, and in case (ii) that the distribution of the occupation

time of a sub-interval of the circle up to time 7, depends only on the length
0

Tco'u er?

and (88) then reduces to (81). So for every u € [0,1) the distribution of z%*
is identical to the distribution of onwver described by formula (82).

of the interval. Note that for m a point mass at 0, on* = zOvaer =L
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Using (88) for two-point distributions, it can be checked for arbitrary m
that the two sides of (88) with am instead of m, viewed as power series in «,

have the same coefficients of 1, o and a?, namely 1, —P(sz*) =—(2/3) my,
and | 5 A
o o 2 o
5P(mLy,)") = 5 T3 (90)

where the m,, are defined by (34). So there is much evidence for the following
conjecture, which would imply an affirmative answer to question (26):

Conjecture 27 Formula (88) holds for all finite measures m on [0,1).

In connection with this conjecture, it turns out that for m a point mass or
Lebesgue measure, the expression \/1qu arctanhy/1 — ®2 appearing in (88)
is identical to the Laplace functional in (84). While it should be easier to
resolve whether or not this identity extends to all measures m, the relation

between this coincidence and (88) is not clear.

6 Further applications of the series formulae
for Bessel processes

This section points out a number of applications of Proposition 5 to one-
dimensional diffusion processes. See [53] for further details and developments.
Assumption. Throughout this section suppose as in (14) that the measure
m on [0,00) has finite total mass and finite first moment.

Corollary 28 Let m;, be as in (16). The functions Wo(am) and Wy(am)
are entire functions of a defined by the power series

U;(am) =1+ i_o:lmm(Zoz)” (=0 orl) (91)

Consequently, (11), (18) and (22) hold for all & > —¢,, for some €, > 0.

Thus (11), (18), (22) and other such formulae for Laplace transforms involv-
ing the U, yield moment generating functions, from which moments can be
read by formal manipulation of power series. For example:
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Corollary 29 All positive integer moments of the Q2 distribution of f;° X,m(du)
are finite, and given by polynomials in x,d and the my, obtained from by for-
mal power series manipulations on (11) with W,(am) instead of ;.

There is an alternative expression for the Laplace transform in (22) which
is well known (see e.g. It6-McKean [23], 6.1-6.2, Knight [33], Kotani-Watanabe
[35], Sec. 4). Let A, (t) = [y~ Lim(du). Then

Poexp(—aA,, (1)) = exp (m) (92)

where g¢,,(a, z,y) is the Green function of the quasi-diffusion X, defined by
Xp(u) = B(Th.) where (T, ,,u > 0) is the right-continuous inverse of the
additive functional (A,,(¢),t > 0) of B. As shown in [33, 35], the function
a — gm(,0,0) is the function known in Krein’s theory of vibrating strings
[36, 37, 25, 35] as the characteristic function of the mass distribution 2m, for
which many different expressions are known. Combining (22) and (92) yields
a particularly simple one that does not seem to appear in the literature:

Corollary 30
Uy (am)
2Uo(am)

where the U;(am) are the entire functions defined by the series (91).

gm(@,0,0) = (93)

According to a remarkable result of Krein, the mass distribution 2m can be
recovered its characteristic function. As a consequence:

Corollary 31 The measure m can be recovered from the two positive se-
quences (mo1, M1y, - +) and (mqy1, may, - --) defined by (16).

By considering variations of the functions W, like W in (30) with an arbi-
trary endpoint = instead of 1, both the increasing and decreasing solutions
of the Sturm-Liouville equation %qﬁ” = am - ¢, hence the Green function
gm(a,x,y), can be expressed by explicit series formulae involving iterated
integrals with respect to m (c.f. [9] Section 5.4, [25] Sec 2.3). Such formulae
have numerous applications to the computation of quantities of probabilistic
interest, by classical applications of the Green function [23]. To illustrate,
assume now for simplicity that m{0} = 0. Differentiation of the exponent in

(92) yields:
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Corollary 32 The Lévy measure A,, of the subordinator (A, (), { > 0),
which is the inverse of the local time of process of X at zero, is given by

i Uo(am)

da 2W4(am) (94)

/ YAy (dy)e ¥ = —
0

Consequently, all moments of A, are finite, and these moments are polyno-
mials in (mo1, m11,---) and (myy, may, - - ) with rational coefficients obtained
from (91) and (94) by formal power series manipulations.

In connection with formula (94), by combination of standard renewal theory
[15] and the theory of excursions for the stationary version of the quasi-
diffusion X,,, for which see [49], the measure

Fro(dy) = (fg~ xA(dz)) 'y A(dy)

has the following probabilistic interpretation. Let G, , be the last zero of
X,, before time u and D,, , the first zero of X, after time u. Then F), is
the limiting distribution of D,, , — G}, as u — oo.

For some recent applications of Krein’s theory of strings to probabilistic
problems, and references to earlier work, see [4, 7, 39, 38].

7 Open Problems

1. See Question 26 and Conjecture 27.

2. Provide some criteria for when expressions like (7) and the inverse of
(17) for ¢« = 1 generate multivariate Laplace transforms. The struc-
ture of the expression with the sum over subsets gives consistency of
corresponding f.d.d.’s if they exist. So this is a natural way to gener-
ate processes with exponential marginals. The question is what sort of

function of A is an acceptable substitute for the product 19[(14) in (7)
or II1(A) in (17)7 See e.g. [55] for background on related questions.
What about other parameter sets besides the line or a circle? If there
are more such processes, are they continuous? infinitely divisible?

3. For é; as in Corollary 3, find the distribution of maxo<y,<1 X, and/or

. . . K .
Ming<y<1 Xy It is easy to see that argmaxg<,.; Xy is (5 a.s. unique
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for all 6 > 0,k > 0, hence uniformly distributed on [0,1) by cyclic
stationarity. From the local time representation for x = 1 it is clear

that g)g(minogug X, > 0) =1 for « > 1, and then argmingc, o Xy

will be Q5 a.s. unique and uniform on [0,1). But for 0 < & < 1 the
Lévy -Ito representation and the recurrence of state 0 for BESE with

d < 2 imply that g)g(minogug X, = 0) is strictly between 0 and 1,
and given this event X will have lots of zeros. A finite dimensional
integral for the probability of this event can be given using results of
Section 4 and excursion theory. See Eisenbaum [11] regarding related
questions for linear Brownian local times and references to earlier work
of Borodin and others on this topic.

. It is known that squares of Bessel processes arise as the total mass pro-

cess of measure-valued branching process. Le Gall [17] established deep
connections between such superprocesses and the theory of Brownian
excursions. [s there a superprocess analog of Proposition 57 If so, how
does it relate to Dynkin’s [10] formulae for moments of the random
field generated by a superprocess?
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