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Abstract

Mark Kac introduced a method for calculating the distribution of the

integral Av =
R
T

0
v(Xt)dt for a function v of a Markov process (Xt; t � 0)

and a suitable random time T , which yields the Feynman-Kac formula
for the moment-generating function of Av. We review Kac's method,
with emphasis on an aspect often overlooked. This is Kac's formula for
moments of Av, which may be stated as follows. For any random time T
such that the killed process (Xt; 0 � t < T ) is Markov with substochastic
semi-group Kt(x; dy) = Px(Xt 2 dy; T > t), any non-negative measurable
function v, and any initial distribution �, the nth moment of Av is P�A

n

v =
n!�(GMv)

n
1 where G =

R
1

0
Ktdt is the Green's operator of the killed

process, Mv is the operator of multiplication by v, and 1 is the function
that is identically 1.

1 Introduction

Mark Kac [32, 33, 13], introduced a method for calculating the distribution of
the integral

Av =

Z T

0

v(Xt)dt (1)

for a function v de�ned on the state space E of a Markov process X = (Xt; t �
0), and a time T that may be �xed or random. In [32] and [33] Kac considered
the case when X is a Brownian motion (BM), but his method leading to the
Feynman-Kac formula in that setting has since been developed and applied
much more generally. See [62, 11, 14, 34, 64] for textbook treatments of the
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F-K formula for BM, Section III.19 of [57] for a modern treatment of the F-K
formula for a Feller-Dynkin process, and Section 5 of [37] for a survey with
further references. In this paper we review an aspect of Kac's method not
mentioned in these treatments. This is his formula for moments of Av for
suitable T , �rst derived in [33] for BM on the line, then generalized in [13] to
a Markov process with abstract state space. The reader is not assumed to be
acquainted with the modern theory of Markov processes beyond what can be
found, for example, in Chapter III of [57].

To state the basic form of Kac's formula in some generality, let (Px; x 2 E)
be the family of probability measures governing a Markov process (Xt) set up
on a suitable probability space (
;F); Px is the law of X under the initial
condition X0 = x. We assume that there is a �-algebra E on E such that
(i) x 7! P x(F ) is E-measurable for each F 2 F , and (ii) (t; !) 7! Xt(!) is
a B 
 F=E-measurable mapping of [0;1) � 
 into E, where B is the Borel
�-algebra on [0;1). It is convenient to assume that (
;F) accommodates a
random variable T� (� > 0) which (under Px for all x 2 E) is independent
of X, and has the exponential distribution with parameter �. Other random
times T involving extra randomization may also be assumed to be de�ned on
the same basic setup.

Call T aMarkov killing time ofX if under each Px the killed process (Xt; 0 �
t < T ) is Markovian with (sub-Markovian) semigroup (Kt; t � 0):

Ktf(x) = Px[f(Xt)1(t < T )]: (2)

In addition we assume that Ktf is E-measurable for all t > 0 and all positive
E-measurable f . In formula (2) (and elsewhere in the paper), 1(B) is the indi-
cator of the event B and Px serves double duty as the expectation operator for
the probability measure Px. De�ne the Green's operator or potential kernel G
associated with T by

Gf(x) = Px

Z T

0

f(Xt)dt =

Z 1

0

Ktf(x)dt (3)

for non-negative E-measurable f . For example, T� is a Markov killing time
with Kt = e��tPt, where (Pt; t � 0) is the semigroup of X, in which case
G = R� =

R1
0

e��tPtdt is the resolvent or �-potential operator associated with
(Pt). Other Markov killing times are 1 = lim�!0 T�, and T the �rst entrance
or last exit time of a suitable subset B of the state space of X. A �nite �xed
time T is typically not a Markov killing time unless X is set up as a space-
time process, so T becomes a hitting time. Other Markov killing times can be
constructed (i) by killing the process at state-dependent rate k(Xt) for some
killing rate function k de�ned on E, (ii) by killing according to a multiplicative
functional, and (iii) by combinations of these kinds of operations. See [8]. As
shown by the example of last exit times, a Markov killing time of X is not
necessarily a stopping time. See [47, 60] for further examples in this vein.

2



Kac's moment formula [33, 13] Let T be a Markov killing time for X, let �
be an arbitrary initial distribution on E, and let v be a non-negative measurable

function on E. Then the nth moment of Av =
R T
0
v(Xt)dt under P� is given by

P�A
n
v = n!�Gn

v1 (n = 1; 2; : : :) (4)

where Gv(x; dy) = G(x; dy)v(y), G is the potential kernel for the killed process

as in (3), and 1 stands for the function that is identically 1.

In terms of operators, Gv = GMv where Mv is the operator of multiplication
by v. For n = 1, formula (4) just restates the de�nition (3) of the Green's
operator G. For n = 2 the formula reads

P�A
2
v = 2�G2

v1 = 2

Z
E

�(dx)

Z
E

G(x; dy)v(y)

Z
E

G(y; dz)v(z): (5)

Note the special case v = 1 in (4): Av = T , Gv = G, so (4) becomes

P�T
n = n!�Gn1: (6)

The �rst appearance of formula (4) seems to be (3.5) in Kac [33]. There
Xt = (Bt; t) is a space-time BM derived from a one-dimensional BM B, and T
is a �xed time. Darling-Kac [13] (page 445, line 4) give the Laplace transformed
version of the same formula for B a two-dimensional BM, which amounts to
the present formula (4) for X = B and T = T�. The formula (4) for general
X and v, and T = T�, is implicit in the discussion on page 446 of [13], and is
used there for an asymptotic calculation of moments which identi�es the limit

distribution of
R T
0 v(Xt)dt as T !1 for a large class of Markov processes. See

[7, 3] for more recent developments in this vein. To illustrate with three more
examples from the literature, Exercise 4.11.10 of Itô-McKean [30] is (6) for X
a one-dimensional di�usion and T the �rst exit time from an interval; Nagylaki
[48] gives the more general formula (4) in the same setting; Propositions 8.6
and 8.7 of Iosifescu [29] are (4) for X a Markov chain, T =1, and v either the
indicator of the set of all transient states, or the indicator of a single transient
state.

As noted by Kac [33] in the Brownian setting, summing the moment formula
(4) weighted by 1=n! yields the

Feynman-Kac formula [21, 32] For v � 0,

P� exp(Av) = �

1X
n=0

Gn
v1 = �fv (7)

where fv is the minimal positive solution f of

f = 1+ Gvf: (8)
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Informally, we may write

fv = (I �Gv)
�11: (9)

The meaning of (I � Gv)
�1 has just been precisely de�ned for v � 0, but this

expression also makes sense for signed v under appropriate conditions.
Note that replacing Av in (7) by A�v = �Av for � > 0 gives an expression

for the P� moment generating function of Av, which may however diverge for
all � > 0. If the m.g.f. does converge for some � > 0, it of course determines
the P� distribution of Av. But even if not, Kac's moment formula still allows
evaluation of whatever moments of Av are �nite.

Khas'minskii [38] found (4) and (7) for a general X and T the exit time of
a domain. He also noted the following immediate consequence of (4) which has
found numerous applications in the theory of Schr�odinger semigroups [2, 63].
See also [5, 9, 49] for various re�nements and further references.

Khas'minskii's condition If Gv1 is bounded then for all x the moment gen-

erating function Px[exp(�Av)] converges for � < 1=kGv1k1.

If the in�nitesimal generator G of the semigroup (Pt) is a di�erential operator
(such as 1

2� for Brownian motion), then integral equation (8) can be recast as a
di�erential equation subject to suitable boundary conditions depending on the
nature of T . For details in various settings see [14, 34, 64] and Section 13.4 of
[16]. Ciesielski-Taylor [12] used (7) to derive the distribution of Av for X a BM
in Rk for k � 3, T =1 and v the indicator function of a solid sphere in Rk, in
which case Av represents the total time spent by B in the sphere. See also [57]
Section III.20 for a di�erent treatment.

The rest of this paper is organized as follows. Kac's moment formula as
stated above is proved in Section 2. Some variations and corollaries are presented
in Section 3. In Section 4 we explain how these results relate to the more
customary statement of the F-K formula that the semi-group of the process
obtained by killing X at rate v(x) has in�nitesimal generator G � Mv. In
Section 5 the general results are specialized to the context of a Markov chain
with �nite state space, where the F-K formula can be understood with almost
no calculation by direct probabilistic argument. In Section 6 we point out
how the F-K formula for occupation times of Markov chains applies to local
times of more general Markov processes. Such formulae were the basis of Ray's
[55] derivation of the Ray-Knight description of the local time �eld of a one-
dimensional di�usion evaluated at a Markov killing time T , and of calculations
by Williams [65, 66] for Markov chains.
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2 Proof of Kac's Moment Formula

The proof is essentially just a formalization of Kac's [33] original argument for
space-time BM. Variations appear in the proofs of similar results in [38, 50, 51,
19]. Let Y denote the killed process with state space E [ @ de�ned by Yt = Xt

if t < T and Yt = @ if t � T , where @ =2 E is a cemetery state. In terms of Y ,
the killing time T is just the hitting time of @. It is therefore enough to prove
the result for T the hitting time of a point in the state space E of X.

We assume, without any real loss of generality, that the sample space 
 is
equipped with a family of shift operators (�t; t � 0), such that Xs � �t = Xs+t

for all s; t � 0. Furthermore, we assume that there is a �ltration (Ft; t � 0)
on (
;F) to which X is adapted and with respect to which X has the simple
Markov property:

Px(F �(�t)) = Px(FPXt
�) (x 2 E); (10)

for all t � 0, all non-negative Ft-measurable functions F , and all non-negative
functions � on 
 that are measurable with respect to H := �fXs; s � 0g.

The key property of a hitting time T of X is that it is a terminal time [8, 59];
that is, an (Ft)-stopping time T with the property T � �t = T � t on the event
fT > tg. The basic inductive step which allows Kac's moment formula (4) to
be pushed from n to n + 1 involves the following identity, which holds for an
arbitrary (Ft)-stopping time T . Let G = GT be the pre-T occupation kernel

de�ned by

Gv(x) =

Z
E

G(x; dy)v(y) = PxAv (11)

for an arbitrary non-negative measurable v. If � is an initial distribution, then
�G =

R
E
�(dx)G(x; �) is the measure

�G(F ) = P�

Z T

0

1F (Xs)ds (F 2 E); (12)

which describes the P� expected amount of time X spends in various subsets F
of E up to time T . Call �G the P� pre-T occupation measure for (Xt; t � 0).
In case T is a Markov killing time of X, G is the potential kernel derived from
the killed process, as discussed in Section 1. But the above de�nition (11) of G
makes sense, and the following identity is valid, for an arbitrary stopping time
T :

Occupation measure identity [38, 50, 51] For each initial distribution � on

E, each non-negative H-measurable �, and each non-negative E-measurable f ,

P�

Z T

0

f(Xt)�(�t) dt =

Z
E

�G(dy)f(y)Py�: (13)
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The assumed measurability of (t; !) 7! Xt(!) implies that (t; !) 7! �(�t!)
is B 
 F-measurable, because � is H-measurable. Thus the left side of (13) is
well de�ned. Now Fubini's theorem shows that

P�

Z T

0
f(Xt)�(�t) dt =

Z 1

0
P�[f(Xt)�(�t) 1(t < T )] dt; (14)

which by the Markov property (10) and the Ft-measurability of ft < Tg is equal
to Z 1

0

P�[f(Xt)PXt
(�) 1(t < T )] dt = P�

Z T

0

f(Xt)PXt
(�) dt: (15)

Taken together, (12), (14), and (15) yield (13).
Notice that the proof of (13) required no strong Markov property of X. So

the occupation measure identity holds without any assumptions about the state
space of X or path properties of X beyond the joint measurability of Xt(!) as
a function of t and !.

Turning to the proof of (4), observe that

An
v =

 Z T

0

v(Xt)dt

!n

= n! In (16)

where

In =

Z
0�t1�t2�����tn�T

v(Xt1 )dt1 v(Xt2 )dt2 � � �v(Xtn )dtn: (17)

Because T is a terminal time, the obvious change of variables in (17) leads to

In+1(!) =

Z T

0

v(Xt(!)) In(�t!)dt: (18)

Thus (4) follows by induction from the occupation measure identity (13).

3 Corollaries of Kac's Moment Formula

The basic notation and assumptions regarding X, T and G are as for (4).

3.1 Positive Continuous Additive Functionals

To this point our study has focused on the random variableAv, which is the value
at time t = T of the additive functional Av(t) =

R t
0 v(Xs) ds. In the abstract,

a positive continuous additive functional (PCAF) is an (Ft)-adapted family
A = (A(t); t � 0) of positive �nite random variables satisfying the additivity
condition

A(t + s) = A(t) +A(s)��t (s; t � 0): (19)
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We can de�ne an operator GA analogous to the operator Gv by the formula

GAf(x) = Px

Z T

0

f(Xt) dA(t); (20)

for positive E-measurable f . Note that GA = Gv when A(t) =
R t
0
v(Xs) ds. The

validity of the analog of (13), namely

Px

Z T

0
f(Xt)�(�t) dA(t) =

Z
E

GA(x; dy)f(y)Py (�); (21)

requires a mild additional hypothesis. For instance, if E is a complete separable
metric space (with Borel �-algebra E) andX has right-continuous sample paths,
then (21) is valid with f and � as for (13). The proof of this assertion involves
Ray-Knight compacti�cation methods found in [59], and is well beyond the
scope of this article. Assuming the validity of (21), we can repeat the earlier
argument to show that Kac's moment formula (4) and the F-K formula (7)
hold for any PCAF A, provided the operator GA is substituted for Gv. Ray [55],
Section 2, used this version of the F-K formula for �nite linear combinations of
local times.

3.2 Signed Additive Functionals

For Av derived from a function v that takes both positive and negative values,
or, more generally, for a CAF A = B � C that is the di�erence of PCAFs, it
is easily seen that Kac's moment formula remains valid provided at each of the
n successive integrations involved in computing (GA1)(x), (GA(GA1))(x); : : :,
the integral is absolutely convergent for each x 2 E, as is the �nal integration
with respect to �. Such formulae are used, for example, in [58, 42, 44] to study
the asymptotics of di�erences Lyt � Lxt of local times, as y ! x.

3.3 Covariances

For positive measurable functions v and w, applying Kac's formula to Av, Aw

and Av+w and examining the result yields

P�(AvAw) = �(GvGw + GwGv)1 (22)

where the terms in the decomposition can be understood using (16) and the
occupation measure identity:

�GvGw1 = P�

Z T

0

dAv(t)

Z T

t

dAw(s): (23)

These formulae are related to an energy form associated with v andw [35, 27, 64].
The P� covariance of Av and Aw is

�GvGw1+ �GwGv1� (�Gv1)(�Gw1): (24)
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For each initial distribution �, (24) is a symmetric bilinear non-negative de�-
nite function of pairs of non-negative functions chosen from fu : �G2

u1 < 1g.
Similar remarks apply to the more general CAFs considered in Subsection 3.2.

3.4 Additive Functionals with Jumps

In principle, the moments of an additive functional with jumps can be found by
the same method. The formulae are not as simple however, because diagonal
terms (which vanish in the continuous case) now appear in (17). The same
thing happens in discrete time analogs of Kac's formulae discussed in the next
subsection.

3.5 Discrete Time Analogs

To illustrate, in the discrete time version of (22) (see Kemeny-Snell [35] page
212) there is another term which must be subtracted due to double counting on
the diagonal in (17): For T a Markov killing time of the discrete time Markov
chain, X0; X1; : : :,

P�

" 
T�1X
n=0

v(Xn)

! 
T�1X
n=0

w(Xn)

!#
= �( ~Gv

~Gw + ~Gw
~Gv � ~Gvw)1 (25)

where ~G is the discrete time potential kernel ~G =
P1

n=0K
n
1 for K1 as in (2).

Because of diagonal terms like � ~Gvw1 above, the discrete time moment formulae
do not iterate neatly except when v is the indicator of some subset B of E. In
this case Av = NB (say) is the number of hits on B before time T , and there
is the following analog of Kac's formula for the rising factorial moments of NB

[50, 51]:
P�[NB(NB + 1) � � � (NB + n� 1)] = �( ~GMB)

n1 (26)

where MB is the operator of multiplication by the indicator of B. See [50, 51]
and Section 3.2 of [29] for further moment formulae in discrete time.

3.6 The General Product Moment Formula

Returning to the set-up of Kac's moment formula, or, more generally, the setting
of Subsection (3.1), by iterated application of the occupation measure identity
there is the following generalization of (22) and (4) to a product of n additive
functionals A(i), 1 � i � n:

P�

 
nY
i=1

A(i)

!
= �

 X
�

GA(�(1))GA(�(2)) � � �GA(�(n))

!
1 (27)

where the sum extends over all permutations � = (�(1); � � � ; �(n)) of f1; � � � ; ng.
Theorem 5.2 of Dynkin [19] is this result in a slightly di�erent framework.
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Dynkin assumes a symmetric potential density g(x; y), but (27) applies nonethe-
less without such symmetry, and without assuming the existence of a potential
density provided (21) is valid. Dynkin has shown how in the symmetric case
the moment formula (27) underlies a far-reaching isomorphism between the dis-
tribution of functionals of the occupation �eld of a symmetric Markov process,
and the distribution of the square of a Gaussian �eld with covariance derived
from the positive de�nite kernel g(x; y). See [17, 20, 43, 42, 41, 45] for further
developments, and Rogers and Williams [57] I.27 for an elementary proof of
Dynkin's isomorphism formula for a Markov chain, which is closely related to
the discussion in Section 5 below.

Question. Is there any interesting connection between the occupation �eld of
a Markov process that is not necessarily symmetric and the Gaussian process
with covariance structure de�ned by the non-negative de�nite function (24)? It
seems not, since it is not this positive kernel but the one derived more directly
from g(x; y) that works in the symmetric case.

3.7 Conditioning on XT�

Assume now that E is a complete separable metric space, and that the sample
paths of X are right-continuous with left limits; in particular (21) is valid. In
this situation all of the previously displayed formulae have versions involving
a conditioning on XT�, as indicated in various settings by Kac [33], Ray [55]
and Dynkin [18, 19]. Such conditioning can be achieved in great generality
using h-processes. To illustrate, the h-process version of (27), as formulated in
[19], takes a simple form due to cancellation of the h-factors in the product of
Green's kernels. See also Proposition (5.14) of [51] for a discrete time example,
and [1] for the formula obtained this way for the mean exit time of a di�usion
on an interval conditioned to exit at a speci�ed boundary point. The e�ect of
conditioning on XT� is simplest for the special class of Markov killing times
introduced in the following de�nition:

De�nition 1 Say a Markov killing time T is killing with state-dependent rate

k, where k is a non-negative measurable function on E, if given (Xs; 0 � s � t)
and the event fT > tg, the killing rate is k(Xt):

Px(T 2 (t; t+ dt)jXs; 0 � s � t; T > t) = k(Xt)dt: (28)

More formally, assuming T has been set up as a stopping time relative to a
suitable enlargement (F t) of the �ltration (Ft), the assumption is that, under
Px for every x 2 E, the process (1(t�T )�Ak(t^T ); t � 0) is an (F t)-martingale.
Equivalently,

Px(ZT f(XT�);T <1) = Px

Z T

0

Zt f(Xt�) k(Xt) dt (29)
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for every positive (F t)-predictable process Z and every positive E-measurable
function f .

The above de�nition makes sense, and the obvious analog of (29) is valid,
if a general PCAF is substituted for Ak(t). For example, the last exit time
from a subset B of E will be \killing with rate dA(t)" (for a suitable PCAF A)
provided X is a strong Markov process with quasi-left-continuous sample paths
(a \Hunt process"). In this context the PCAF A is naturally associated with
the so-called \equilibrium distribution" on B; see [10, 26, 25, 28]. Note that a
�rst passage time into a set B will be of this form only if the �rst passage occurs
at the time of a jump of X. In particular, a predictable Markov killing time T ,
such as the hitting time of a set for a process with continuous paths, will not
be of this form.

Proposition 1 For a Markov killing time T that is killing with rate function

k � 0, and arbitrary non-negative measurable v and f ,

P�[ (Av)
nf(XT�);T <1] = n!�Gn

vGkf (n = 0; 1; 2; : : :) (30)

where Gv = GMv and Gk = GMk.

Proof. For n = 0 the result is the special case Z � 1 in (29):

P�(f(XT�);T <1) = �Gkf: (31)

For general n we proceed by induction, as in the proof of (4). Thus, de�ne

In(t) =

Z
0�t1�t2�����tn�t

v(Xt1 )dt1 v(Xt2 )dt2 � � �v(Xtn )dtn

and notice that In+1(t) =
R t
0 In(t � s)��s v(Xs) ds. Using 'n(x) as an abbrevi-

ation of Px[(Av)nf(XT�);T <1], we have

'n+1(x) = (n+ 1)!Px

Z T

0

In+1(t)f(Xt�) k(Xt) dt

= (n+ 1)!Px

Z T

0

Z t

0

[In(t � s)f(Xt�s)k(Xt�s)]��s v(Xs) ds dt

= (n+ 1)!Px

Z T

0

"Z T

0

In(u)f(Xu)k(Xu) du

#
��s v(Xs) ds

= (n+ 1)Px

Z T

0

'n(Xs) v(Xs) ds;

the �nal equality following from (13) and (29). Thus, 'n+1 = (n+1)Gv'n, and
(30) follows by induction on n. 2
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Remark. Formula (30) holds also with either Av(t) or Ak(t) or both replaced
by general PCAFs. A formula could also be obtained with f(XT�; XT ) instead
of f(XT�), assuming the existence of a L�evy system for the jumps of X and
that T is a jump time. See e.g. [4, 52].

Example. The special case of the above proposition for T = T� an independent
exponential time, when k(x) = � for all x, is already evident in Kac [33]. Then
G = R� =

R1
0 e��tPt dt is the resolvent operator of the semi-group of X. After

cancelling the common factor of � on both sides, the result is as follows: for
arbitrary f � 0,

P�

Z 1

0
e��t (Av)

n(t)f(Xt) dt = n!�(R�Mv)
nR�f: (32)

While the existence of left limits was assumed in the previous proposition, it is
easily shown that no such hypothesis is required for (32).

4 The Feynman-Kac formula

To recover more standard expressions of the F-K formula, as presented in Section
III.19 of Rogers-Williams [57], let (P v

t ) be the semigroup derived from (Pt) by
killing X with state-dependent rate v(x). So if T is the associated Markov
killing time then

P v
t f(x) = Px[f(Xt)1(T > t)] = Px[exp(�Av(t))f(Xt)]: (33)

Summing formula (32) weighted by (�1)n=n! yields an expression for the resol-
vent of this semigroup:

�Rv
�f =

Z 1

0

P�[exp(�Av(t))f(Xt)]e
��tdt = �[I +R�Mv]

�1R�f (34)

where R� =
R1
0

e��tPt dt is the resolvent of the semi-group of X. Some mild
regularity on f and v are required to make sense of the second equality in (34),
but when rearranged as

Rv
� +R�MvR

v
� = R� (35)

the formula holds as an identity of bounded positive kernels for arbitrary � > 0
and non-negative measurable v. This is formula (III.19.5) of [57], which is one
of the three forms of the F-K formula presented by Rogers-Williams. As they
remark, and as shown by the above argument, (35) is a robust form of the F-K
formula which is valid with no hypotheses on the underlying Markov process X
beyond jointly-measurable paths.

To interpret the F-K formula as a statement relating the in�nitesimal gen-
erators of (Pt) and (P v

t ), let us recall that the weak in�nitesimal generator of
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(Pt) (say) is the operator G de�ned by

Gf(x) = lim
t#0

Ptf(x) � f(x)

t
(36)

on the domainD(G) comprising those functions f for which the pointwise limit
indicated in (36) exists and supt>0 t

�1kPtf � fk1 < 1. See [15], where it is
shown that for each � > 0, the resolvent operator R� is an injective mapping
of bE (the class of bounded E-measurable functions) onto D(G), and GR�f =
�R�f � f . Briey, R� = (� � G)�1. Viewed in these terms, (35) amounts to
the most common presentation of the F-K formula:

the killed semigroup (P v
t ; t � 0) has generator Gv = G �Mv; (37)

the domain D(Gv) consisting of those functions u 2 D(G) for which uv is a
bounded function. In the context of symmetric Markov processes, (37) can be
reformulated in terms of \Dirichlet forms"; see Section 6.1 of [24].

A third form of the F-K formula noted in [57] (III.19.7) is the following
variant of (35):

Rv
� +Rv

�MvR� = R� (38)

which can be understood with almost no calculation due to the following

Probabilistic interpretation of (38). Consider T ^ T�, the minimum of
T and an independent exponential time with rate �. From (34), the Green's
operator for X killed at time T ^ T� is Rv

�. Since killing at time T ^ T� is the
same as killing with rate function v(x) + �, the P� distribution of XT^T� on
fT < T�g is found by an easy variation of the \last exit" formula (31):

P�(XT^T� 2 dx; T� > T ) = �Rv
�Mv(dx): (39)

Thus (38) comes from integrating with respect to P� the decomposition

Af (T ^ T�) + (Af (T�)�Af (T ^ T�))1(T� > T ) = Af (T�) (40)

for an arbitrary additive functional Af =
R t
0
f(Xs)ds.

Another probabilistic interpretation of (38). Multiplication of both sides
of (38) by � yields an identity of Markov kernels which may be understood in
another way. By the companion of (39) with fT� � Tg instead of fT� > Tg,

the P� distribution of XT� on fT� � Tg is ��Rv
� (41)

and by (39) and the memoryless property of T�,

the P� distribution of XT� on fT� > Tg is �Rv
�MvR�. (42)

Adding these two distributions we arrive at ��R�, which is the P� distribution
of XT� .
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Remarks. For a constant function v, say v(x) = � for all x, (38) reduces to
the resolvent identity:

R�+� + �R�+�R� = R� (�; � > 0): (43)

So the above arguments give two simple probabilistic interpretations of this

identity involving the minimumT�+�
d
= T�^T� of two independent exponential

variables T� and T� and analysis of (Xt; 0 � t � T�) according to whether
T� < T� or T� � T�. Since it is obvious that R�+�R� = R�R�+�, the resolvent
identity also yields (35) in this special case. For a general v, comparison of (35)
and (38) establishes the identity of kernels

R� �Rv
� = Rv

�MvR� = R�MvR
v
� (� > 0) (44)

where the �rst identity was interpreted probabilistically above.
There is also a probabilistic interpretation of the second identity in (44),

involving the idea of resurrection of X after the killing time T , as considered
in [46, 22]. Note that (44) is the Laplace transformed version of the following
identity:

Pt � P v
t =

Z t

0

P v
sMvPt�sds =

Z t

0

PsMvP
v
t�sds; (45)

and that if � is an initial distribution, then

�(Pt � P v
t )f = P�[f(Xt);T � t] (46)

for any measurable f � 0. The �rst equality in (45) is evident from evaluation
of this expectation by conditioning on (T;XT ). The second equality in (45) is
obtained by the following construction. Assume for simplicity that v is bounded.
GivenX, let T = T(1) where T(1) < T(2) < � � � are the points of a Poisson process
on (0;1) with intensity v(Xt)dt; t > 0. The right hand expression in (45) arises
from evaluating the expectation (46) by conditioning on (T(N); XT(N)

), where
N = maxfn : T(n) � tg: Replacing the �xed time t by T� gives a similar
interpretation of the second equality in (44). From this perspective, the middle
and right hand expressions in (44) and (45) are seen to be typical \�rst entrance"
and \last exit" decompositions.

5 Application to Markov Chains

Suppose now that X is a Markov chain with �nite state space and T is a �nite
Markov killing time for X. By obvious reductions there is no loss of generality
involved in the following
Assumption. The state space of X is E [ f@g where E is �nite, @ is an

absorbing state, T = infft : Xt = @g and Px(0 < T <1) = 1 for all x 2 E.
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Let Kt denote the substochastic semi-group of X restricted to E, and view
Kt and all other operators as matrices indexed by E, for example Kt(x; y) =
Px(Xt = y). Then G =

R1
0 Ktdt is just

G = �Q�1 where Q = lim
t!0

t�1(Kt � I) (47)

is the usual Q-matrix of the chain killed at time T . Recall that Gv = GMv

where Mv is the operator of multiplication by v. It is clear that there exists
b > 0 such that for all v with jvj � b the matrix (I � Gv) is invertible. So

(I �Gv)
�1 = (I +Q�1Mv)

�1 = (Q�1(Q+Mv))
�1 = (Q+Mv)

�1Q (48)

and the F-K formula (7) can be restated as follows: There exists b > 0 such that

for all v with jvj � b

P� exp(Av) = �(I �Gv)
�11 = �(Q +Mv)

�1Q1: (49)

For x 2 E let Lxt =
R t
0 1(Xs = x)ds. Since Av =

P
x2E v(x)L

x
T , formula (49)

determines the joint moment generating function of the LxT ; x 2 E. The second
expression in (49) for this m.g.f. appears as formula (4) in Kingman [39], and
again in Puri [54]. Kingman noted as a consequence that the joint m.g.f. is a
ratio of two multilinear forms in v(x), x 2 E, and that the marginal distribution
of each LxT is a mixture of a point mass at zero and an exponential distribution
on (0;1). Kingman raised the problem, which is apparently still open, of
characterizing which joint distributions can appear as the joint distributions
of such occupation times of a transient �nite state chain. For some study of
particular examples see [36, 40].

Every killing time of a �nite state chain is easily seen to be of the form
assumed in Proposition 1 for the killing rate function k(x) = (�Q1)(x) where
Q is the Q-matrix of the killed chain. >From (31)

P�(XT� = x) = (�GMk)(x) (50)

so the assumption that Px(T < 1) = 1 for all x implies GMk1 = 1. Formula
(30) now yields expressions for the P� conditional moments of Av given XT�.
This leads to the following sharper form of the F-K formula for chains. Formula
(52) is a variant of Theorem 2.1 of Dynkin [18]. See also Sections I.27 of [57]
and IV.22 of [56] for related presentations.

Proposition 2 Let k(x) = (�Q1)(x) where Q is the Q-matrix of X killed at

time T . Then for v with jvj � b for some b > 0, and all f ,

P�[exp(�Av)f(XT�)] = �(I + GMv)
�1GMkf = �(Mv � Q)�1Mkf: (51)

Furthermore, for all x; y 2 E such that Px(XT� = y) > 0,

Px[exp(�Av) jXT� = y] =
~Gxy

Gxy

(52)
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where G = (�Q)�1 is the Green's matrix for X killed at time T , and ~G =
(Mv � Q)�1, which for v � 0 is the Green's matrix for X killed at time ~T � T
where ~T is de�ned by additional killing with rate v.

Proof. Formula (51) results from summing (30) weighted by �1=n!, and using
QG = �I. To derive (52) from (51), take � to be a point mass at x and f to
be the indicator of a single point y, and cancel the common factor of k(y). 2

Formula (52) for v � 0 can also be understood probabilistically by consider-
ation of Px( ~T = T;XT� = y); that is, the probability that the chain starting at
x ends with left limit y at time T having survived the additional killing at rate
v. By conditioning on ~T ,

Px( ~T = T;XT� = y) =

Z 1

0

Px( ~T 2 dt;Xt� = y; ~T = T )dt

=

Z 1

0
Px(Xt� = y; ~T > t)k(y)dt = ~Gxy k(y)

On the other hand, by conditioning on XT� the same probability equals

Px(XT� = y)Px( ~T = T jXT� = y) = Gxy k(y)Px exp(�Av) jXT� = x)

Comparing the two results yields (52). Note the parallel between (52) and the
more obvious formula

Px(exp(�Av)jT > t;Xt = y) = ~K(t; x; y)=K(t; x; y) (53)

where K(t; x; y) = Px(T > t;Xt = y) is the transition function of the chain
killed at time T , and ~K is the same for ~T instead of T , namely the semigroup
with Q-matrix ~Q instead of Q, where ~Q = Q�Mv. Compare with formula 2.6.6
of Itô-McKean [30] in Kac's original Brownian setting. A common generalization
of these formulae in an abstract setting could be given using h-processes, but
this is left to the reader.

6 Application to Local Times

Suppose as in [8] (3.41) that X with state space E admits a jointly measurable
local time process (Lxt ; t � 0; x 2 E) relative to a reference measure dx on E,
so that for v � 0Z t

0

v(Xs) ds =

Z
E

Lxt v(x) dx Px a.s. for all t � 0; x 2 E: (54)

For example, X could be a Markov chain with countable state space, with
Lxt =

R t
0
1(Xs = x)ds, or a one-dimensional di�usion [56].
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Fix a Markov killing time T for X. Then g(x; y) = PxL
y
T serves as a density

for the Green's kernel of X killed at time T . From (22), for all a; x; y 2 E there
is the formula

Pa(LxTL
y
T ) = g(a; x)g(x; y) + g(a; y)g(y; x): (55)

So for each a such that Pa(T <1) = 1 the covariance

g(a; x)g(x; y) + g(a; y)g(y; x) � g(a; x)g(a; y) (56)

is a symmetric non-negative de�nite function of (x; y) 2 E � E. Suppose now
that a �nite subset F of E is such that Px(T < 1) = 1, for all x 2 F . The
results of Subsection 3.6 show that for any initial distribution � on F the P� joint
distribution of (LyT ; y 2 F ) is determined by the values of the Green's function
g(x; y) for x; y 2 F . In particular, all product moments P�[

Q
y2F (L

y
T )

n(y)] for
non-negative integer n(y) have �nite values which can be read from (27). And
the P� joint moment-generating function of the (LyT ; y 2 F ) converges in a
neighborhood of the origin and is given there by the formula

P� exp

0
@X
y2F

v(y)LyT

1
A = �(I � Gv)

�11 (57)

where Gv(x; y) = g(x; y)v(y); x; y 2 F . Put another way, (57) states that for v
in a neighborhood of 0, the function

fv(x) = Px exp

0
@X
y2F

v(y)LyT

1
A

is the unique solution f of the system of equations

f(x) = 1 +
X
y2F

g(x; y)v(y)f(y)

For X a one-dimensional di�usion, Ray [55] (2.1) derived this system of equa-
tions for an h-process obtained conditioning on XT , and went on to show that
these equations imply the Ray-Knight descriptions for the distribution of local
times of one-dimensional di�usions stopped at a Markov killing time. See also
Sheppard [61] who recovered most of Ray's results with the help of Dynkin's
isomorphism theorem, and [53] for further discussion.

Note that the class of possible �nite-dimensional distributions for (LyT ; y 2
F ) as above is precisely the class of joint distributions of total occupation times
of various states in a �nite state Markov chain. This can be understood by
considering the time-changed Markov chain (X�` ; ` � 0) where (�`; ` � 0) is
the inverse of (

P
y2F L

y
t ; t � 0). Williams [65, 66] used a similar time change

16



argument to derive variations of formula (55) for local time processes associated
with both ordinary and �ctitious states of a countable state Markov chain. See
Theorem 6.1 of [66].

An altogether di�erent application of the F-K formula to the local times of
one-dimensional L�evy processes can be found in [6]. This work concerns the
law of the Hilbert transform of LxT with respect to x (for certain random T ); it
extends and simpli�es [23], in which Kac's moment formula (4) is used. See also
[31] regarding connections between the F-K formula and path decompositions
for one-dimensional BM.

Acknowledgement. We are grateful to Jay Rosen for his illuminating com-
ments on the manuscript.
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