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Abstract

Non-linear martingale problems in the McKean-Vlasov sense for

superprocesses are studied. The stochastic calculus on historical trees

is used in order to show that there is a unique solution of the non-linear

martingale problems under Lipschitz conditions on the coe�cients.
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1 Introduction

Non-linear di�usions, also called McKean-Vlasov processes, are di�usion pro-
cesses which are associated with non-linear second order partial di�erential
equation. IRd-valued McKean-Vlasov di�usions are studied in detail in many
papers, e.g. [F,Oel,S1,S2]. The main issues are approximation by a sequence
of weakly interacting di�usions, associated large deviations and 
uctuations
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and �nally uniqueness and existence of the non-linear martingale problem
associated with McKean-Vlasov process.

In this paper we focus on the latter question in the set-up of branching
measure-valued di�usions processes, also called superprocesses. For an ex-
cellent introduction to the theory of superprocesses we refer to [D]. In order
to formulate the basic de�nition we need to introduce some notation. The
space of �nite (resp. probability) measures over a Polish space E is denoted
byM(E) (resp. M1(E)) and is equipped with the weak topology. The space
of continuous (resp. c�adl�ag) E�valued paths is denoted by CE (resp. DE)
and Cb(E) is the set of bounded continuous functions on E. The expression
�(f) with � 2M(1)(E) means

R
fd�.

De�nition 1.1 � Let L = (L(m);D)m2M1(M(E)) be a family of linear op-
erators with common domain D � Cb(E), b; c measurable functions
on M1(M(E)) � E with c � 0. The function b is called immigration
function and the function c measures the variance in the branching be-
havior.

� Fix � 2 M(E). A measure P� on (CM(E);F ;Ft) with canonical �ltra-
tion Ft and �-algebra F generated by the coordinate process X is called
a non-linear superprocess with parameter (L; b; c) started from �, if for
each f 2 D the process M(f) de�ned by

Mt(f) := Xt(f)� �(f) (1.1)

�
Z t

0
Xs(L(P �X�1

s )f + b(P �X�1
s )f)ds

is a local martingale with increasing process

Z t

0

Z
E
f2(x)c(P �X�1

s ; x)Xs(dx)ds; (1.2)

where P� �X�1
s 2M1(M(E)) denotes the distribution of Xs under P� .

In terms of partial di�erential equation the 
ow of the one-dimensional
marginals us := P� �X

�1
s of a solution of the non-linear martingale problem

(1.1,1.2) solves the (weak) non-linear equation

_us = A�(us)us; (1.3)
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where for nice functions F on M(E)

A(m)F (�) = �
�
L(m)r:F (�) + b(m)r:F (�) + c(m)r(2)

: F (�)
�
(1.4)

with rxF (�) := lim�#0
F (�+��x)�F (�)

�
. This is one motivation for the study of

non-linear superprocesses from the point of view of partial di�erential equa-
tions. Another motivation is a kind of Law of Large Numbers for weakly
interacting N-type superprocesses, which provides also an proof of the exis-
tence of a non-linear superprocess. A weakly interacting N-type superpro-
cesses ~XN = (X1; : : : ;XN ) 2 CM(E)N is characterized by the martingale
property of the processes

�
e~f (

~XN
t )� e~f(

~XN
0 ) +

Z t

0
e~f (

~XN
s )

NX
j=1

Xj
s (L(

1

N

NX
i=1

�
X
i;N
s
)fj + (1.5)

b(
1

N

NX
i=1

�
X
i;N
s
)fj � c(

1

N

NX
i=1

�
X
i;N
s
)f2j )ds

�
t�0

;

where e~f (~�
N ) := exp(�

PN
i=1 �i(fi)) for ~�

N = (�1; : : : ; �N ) 2 M(E)N and
~f = (f1; : : : ; fN ) 2 Cb(E)N : The actual proof the approximation result is
based on the Propagation of Chaos techniques, cf. [S1,S2]. It needs some
machinery on tightness of measure-valued processes. I state the result and
an outline of the proof in the appendix. For details I refer to [O1]. In the ac-
companying papers [O1,O2] I study the large deviations and the 
uctuations
associated with the approximation if the weakly interacting superprocesses
are superprocesses with mean-�eld interaction.

The main result of the present paper is the proof that there is a unique solu-
tion to (1.1),(1.2) under Lipschitz conditions on the parameter (L; b; c). The
proof relies on the fact that for two superprocesses P i; i = 1; 2; with di�erent
parameters there exits a �ltered probability space (~
; ~Ft; ~F ; IP ) on which we
can de�ne processes X i with distribution P i; i = 1; 2. This follows from the
stochastic calculus along historical trees, recently developed by Steven N.
Evans and Ed A. Perkins [P1,P2,EP]. Once this is established the proof of
existence and uniqueness is carried out by a Picard-Lindel�of approximation.

Basically, there are two di�erent cases. First, if only b depends on m 2
M1(M(E)) then (~
; ~Ft; ~F ; IP ) is the canonical space of a marked historical

3



process as in [EP], cf. Theorem A in Section 2. If all parameters depend
on m 2 M1(M(E)), we assume that L(m) is a nice di�erential operator on
IRd and that the coe�cients of L, b and c are strongly related, cf. Theorem
3.1 and Theorem B in Section 3. Then we can choose (~
; ~Ft; ~F; IP ) as the
canonical space of the historical Brownian motion.

In both cases it turns out that the historical process plays the same role for
non-linear superprocesses as the Brownian motion plays for non-linear di�u-
sions on IRd, namely as a driving term for strong stochastic equations. The
fundamental role of the historical process also becomes apparent in several
other papers, e.g. in [P1,P2], where interacting measure-valued processes are
considered, in [EP], where a Clark-type formula for measure-valued processes
is proved, in [LG], where the connections to Brownian excursions are inves-
tigated, and in [Dy2] , where the relations to quasi-linear partial di�erential
equation are explored.

2 Non-linearity in the immigration function

In this section we consider the case in which L(m) = L is a generator of
a time-homogeneous Hunt process independent of m and c = 1. Hence the
non-linearity appears only in the immigration function b. Because we need
the historical process from now on I will shortly describe it.

2.1 Historical process

The historical process over a one-particle motion �, e.g. over a Hunt process
with state space E, can be seen as the superprocess constructed over the
path-process of the one-particle motion. A path process is a path-valued
process and evolves from a path of length s to a path of length t > s by
pasting on the given path �s a new path of length t� s, which is distributed
as the underlying one-particle motion started from �s(s). By construction
this is a time-inhomogeneous Markov process with state-space DE and it has
a generator (Lh;D(Lh)) in the sense of martingale problems, cf. e.g.[P1,P2].
If we superpose a critical branching mechanism to this path-process and
take the usual \superprocess limit" we arrive at the historical process, which
can then be viewed as the solution of the martingale problem described in
(1.1),(1.2) with c(m) = 1; b(m) = 0; L(m) = Lh. It is called \historical"
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because every particle carries all the information about the places it and its
anchestor visited. Additionally one can reconstruct from this information the
genealogy of a present particle by investigation of the overlap of the paths of
two di�erent particles. Because we only use the historical process as a tool
and we will not prove theorems about it we will omit an exact de�nition and
refer to [D, Sect. 12] or [DP, P1, P2, Dy1].

2.2 Superprocesses with emigration as functionals of the marked historical
process

Let X = (Y;N) 2 D(D(E � [0; 1])) denote the path process of the Hunt
process � generated by L and an independent Poisson process with uniform
jumps on [0; 1], ( i.e., N is the path process of a Poisson point measure on
[0;1)� [0; 1] with intensity ds � dx). Denote by IP the distribution of the
superprocess G over the one-particle motion (Y;N) starting from G0, i.e., the
historical process over the Huntprocess � and an independent Poisson process.
IP is a measure on 
 := C([0;1);M(DE�[0;1])) equipped with the canonical
�ltration Ft and canonical �-algebra. The process G is now the canonical
process on 
. Let us denote by x = (y; n) a generic element in DE�[0;1]. Let
n also denote the point measure

P
s�t;ns 6=ns� �s;ns�ns� on [0;1)� [0; 1].

Let b be a predictable function from [0;1)� E � 
 to [0; 1], the candidate
for the emigration term. (Because in Proposition 2.2 and �nally in Theorem
2.4 we consider the martingale problem (1.1),(1.2) with �b instead of b, we
view b now as an emigration rather then an immigration function.)

In order to meet the formulation of [EP] we de�ne the [0; 1]-valued function
� on [0;1)�DE � 
 by

�(s; y; !) = b(s; y(s); !): (2.1)

Further we de�ne the following functions

A(t; x; !) = n(f(s; z) 2]0; t[�[0; 1]j�(s; y;!) > zg) (2.2)

B(t; x; !) = 1fA=0g(t; x; !): (2.3)

LetK be the martingale measure of the historical process G (for the de�nition
of martingale measures for measure-valued processes cf. [D, Sect. 7] and for
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historical processes a de�nition can be found in [P1]). Then we can de�ne a

new measure on 
 having the local densities dIP�

dIP
jFt =

R�
t = expf

Z t

0

Z
D(E�[0;1])

�(s; y)K(ds; dx)� (2.4)

1

2

Z t

0

Z
D(E�[0;1])

�2(s; y)Gs(dx)dsg;

cf. [D, Sect.7],[EP]. Finally let us de�ne the measure-valued processes

H�
t (�) =

Z
D(E�[0;1])

1�(y)B(t; x)Gt(dx) (2.5)

Ht(�) =
Z
D(E�[0;1])

1�(y)Gt(dx): (2.6)

From the de�nition of IP it is obvious that H is the historical process over �
under IP . The following proposition is basic for us:

Proposition 2.1 [EP, Theorem 5.1] Under IP � the process H� is the his-
torical process over �.

We need a slightly di�erent version of this result which will be obtained by a
Girsanov argument. Let (Lh;D(Lh)) be the martingale operator of the path
process of �.

Proposition 2.2 For every � 2 D(Lh) the process H�
t (�) is under IP a

semimartingale with increasing process V (�)�
R
0H

�
s (�(s)�)ds, where V (�) =R :

0H
�
s (L

h�)ds is the increasing process of H�(�) under IP �. The quadratic
variation of the martingale part equals

R :
0H

�
s (�

2)ds. ( Hence under IP the
process H� is a historical process with (negative) immigration ��, or in other
words with an emigration function �.)

Proof. Applying the Girsanov transformation for martingales we can calcu-
late the semimartingale decomposition ofH� under IP � from the semimartin-
gale decomposition of H� under IP . In order to do that we have to consider
the martingale Z of the densities Zt =

dIP
dIP�

jFt. Let M denote the martingale
measure associated with the historical Brownian motion H under IP . Then
we have

Zt = expf�
Z t

0

Z
D(E)

�(s; y)M(ds; dy) + (2.7)
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1

2

Z t

0

Z
D(E)

�2(s; y)Hs(dy)dsg

= expf�[
Z t

0

Z
D(E)

�(s; y)M(ds; dy)�
Z t

0

Z
D(E)

�2(s; y)Hs(dy)ds]

�
1

2

Z t

0

Z
D(E)

�2(s; y)Hs(dy)dsg

= expf�
Z t

0

Z
D(E)

�(s; y)N�(ds; dy)�
1

2

Z t

0

Z
D(E)

�2(s; y)Hs(dy)dsg;

whereN� is the martingale measure associated withH under IP �, i.e. (�:N�)t :=R t
0

R
D(E) �(s; y)N

�(ds; dy) is the martingale in the semimartingale decompo-

sition of Ht(�(t)) under IP �. This yields in particular, that Z solves under
IP � the equation

Zt = 1�
Z t

0
Zsd(�:N

�)s: (2.8)

According to Proposition 2.1 and Girsanov's theorem (e.g. [RY, p.303]),

H�(�)� V (�)�
Z :

0

1

Zs

< Zs;H
�(�)� V (�) >s (2.9)

= H�(�)� V (�)+ < �:N�;H�(�)� V (�) >

is a martingale under IP . The bracket in the last line equals, again according
to [RY, p.303],

< martingale in the decomposition of H(�) under IP �;

martingale in the decomposition of H�(�) under IP � >

= < martingale in the decomposition of H(�) under IP;

martingale in the decomposition of H�(�) under IP >

= < �:K;B � �:K >

=
Z :

0
Gs(B��)ds

=
Z :

0
H�
s (��)ds:

Because the quadratic variation of this martingale remains unchanged under
a change of measure the proposition is proved. �

7



2.3 Comparison of two historical processes with di�erent non-interactive
emigration

We consider two function bi; i = 1; 2, from [0;1)� E to [0; 1] and de�ne �i

and Ai by bi as in (2.1) above. Then �i; i = 1; 2; do not depend on !. For a
measure H on fxtjx 2 Dg (, where xt(s) := x(s); s < t; xt(s) := x(t); s � t,
) and a function f 2 Cb(E) we de�ne H(f) :=

R
D f(x

t
t)H(dx).

Lemma 2.3 For every T > 0 there exists a constant CT <1 such that

IE[( sup
jjf jjBL�1

jH�1

t (f)�H�2

t (f)j)2] � CT

Z t

0
E[jb1(s; �s)� b2(s; �s)j]ds

for all t � T , where � is the Hunt process generated by L.

Proof. Let us write n =
PN

i=1 �ti;Zi.

IE[( sup
jjf jjBL�1

jH�1

t (f)�H�2

t (f)j)2]

= IE[( sup
jjf jjBL�1

Z
f(x)(1A1(t;x)=0 � 1A2(t;x)=0)Gt(dx))

2]

� IE[(
Z
j1A1(t;x)=0 � 1A2(t;x)=0jGt(dx)](IE[G0(1)] + t)

� IE[
Z
1 N
[
j=1

fb1(ti;y(ti))�Zi;i=1;:::;N;b2(tj;y(tj))>Zjg
Gt(dx)](IE[G0(1)] + t) +

IE[
Z
1 N
[
j=1

fb1(ti;y(ti))�Zi;i=1;:::;N;b2(tj;y(tj))>Zjg
Gt(dx)](IE[G0(1)] + t):

The term IE[
R
1 N
[
j=1

fb1(ti;y(ti))�Zi;i=1;:::;N;b2(tj;y(tj))>Zjg
Gt(dx)] equals

P [
N
[
j=1
fb1(ti; �ti) � Zi; i = 1; : : : ; N; b2(tj; �tj ) > Zjg]; (2.10)

where Zj ; tj are uniform distributed on [0; 1]� [0; t], N has a Poisson distri-
bution and all random variables are independent from each other. Because

P [b1(tj; �tj) � Zj < b2(tj; �tj) j (tj ; �tj)]

= (b2(tj; �tj)� b1(tj; �tj))1b2(tj;�tj)�b1(tj;�tj)
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we obtain by conditioning that the probability (2.10) is bounded by

E[N ] �
Z t

0
E[(b2(tj; �tj)� b1(tj; �tj))1b2(tj;�tj )�b1(tj ;�tj )]ds=t:

By the same argument for P [b2(tj; �tj) � Zj < b1(tj; �tj) j (tj ; �tj)] we can
�nally prove the assertion. �

2.4 Non-linear martingale problem

We de�ne for p � 1 an appropriate Wasserstein metric:

�p(m1;m2) :=
�
inf
Q

Z
M(E)�M(E)

d(E;d)(�; �)Q(d�; d�)
� 1

p

; (2.11)

where the in�mum is taken over all Q 2M1(M(E)�M(E)) whose marginal
distributions are m1 and m2 and where for a Polish space E with metric d,
the metric d(E;d) on M(E) is de�ned as follows.

d(E;d)(�; �) := supfj�(f) � �(f)j; jjf jjBL � 1g (2.12)

where

jjf jjBL = jjf jj1 ^ inffK; jf(x)� f(y)j � Kd(x; y) 8x; y 2 Eg:

Notice that if we replace d(E;d) by d(E;d) ^ 2 in the de�nition of �1 then �1
is smaller than the original �1 and equivalent with the Prohorov metric and
also with d(M(E);d(E;d)). Recall that by H�older's inequality �q � Kp;q�p if q � p
with some constant Kp;q.

Fix R > 0. Let P 1 and P 2 be two solutions of the non-linear martingale
problem (1.1),(1.2) with 0 � �b(m;x) � R, L(m) = L and with c = 1.

Theorem A Let �b :M1(M(E))� E ! [0; R] satisfy

jb(m1; x)� b(m2; x)j � Kb�
2
2(m1;m2) (2.13)

with some constant Kb. Then there is a unique solution to the non-linear
martingale problem (1.1), (1.2).
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Proof. Let us de�ne the map � on C([0; T ];M1(M(E))) by

�(u) := (P u �X�1
s )0�s�T ; (2.14)

where P u is the superprocess with immigration function bu(s; x) := b(us; x)
on the canonical space C([0; T ];M(E)) with coordinate process X. De�ne
now for ui 2 C([0; T ];M1(M(E))); i = 1; 2; the processes H�i and H as in
Proposition 2.2 and Lemma 2.3 with �i(t; y; !) = 1

R
b(uit

R

; y( t
R
)) and over

the one-particle motion generated by L
R
. By an obvious scaling property the

superprocesses projected down form the processes (H�i

tR)t�0 have distributions
P ui ; i = 1; 2. Because H�i; i = 1; 2, satisfy the assumptions of Proposition
2.2 and Lemma 2.3 we can conclude that

�22(�(u
1)t; �(u

2)t) � E[( sup
jjf jjBL�1

jH�1
tR(f) �H�2

tR(f)j)
2] (2.15)

� Kt;b

Z tR

0
�22(u

1
s
R
; u2s

R
)ds

� K 0
T;b

Z t

0
�22(u

1
s; u

2
s)ds:

Hence

sup
r�t

�2(�(u
1)r; �(u

2)r) � K 00
Z t

0
sup
r�s

�2(u
1
r; u

2
r)ds: (2.16)

A Picard-Lindel�of approximation yields that there is a solution uF of the
�x-point equation

�(u) = u: (2.17)

The approximation starts with u1 := (P 0 �X�1
s )0�s�T where P 0 is the super-

process with b0(s; x) = b(m0; x) with some m0 2 M1(M(E)) and for n 2 IN
we de�ne un+1 = �(un). Applying successively the inequality (2.16) with
un+1 and un we obtain that there exists uF := limn!1 un+1, which solves
(2.17). By the property (2.17) the superprocess P uF is a solution of the
non-linear martingale problem (1.1),(1.2). The measure P uF is the unique
solution because if we denote by ui; i = 1; 2; the 
ow (P i � X�1

s ) of two
solutions P i of the martingale problem (1.1),(1.2) then both u1 and u2 are
�x-points of the equation (2.17). The properties (2.17) and (2.16) implies by
Gronwall's inequality that u1 = u2 and therefore P i = P uF ; i = 1; 2. �
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3 Non-linear one-particle motion

Now we consider the non-linear martingale problem (1.1),(1.2) where E = IRd

and L(m) equals some nice partial di�erential operator A(m) � b(m), see
Theorem B, below. As in the last section we have to be able to couple two
di�erent solutions of the non-linear martingale problem in order to prove
uniqueness. We will use the stochastic calculus \along historical trees" de-
veloped by Perkins in [P1,P2]. In order to describe interacting superprocesses
he constructs a unique solution of a strong integral equation, in which the
stochastic integral is a \H-historical integral".

3.1 Stochastic calculus along historical trees

Let me recall some of the results in [P1,P2] specialized to the case of non-
interactive parameters.

We �x a T � 0.

Let C = C([0; T ]; IRd), and let (Ct) be the canonical �ltration on C , 
 =
C([0; T ];M(C)), 
̂ = 
 � C with product �-algebra and let the Campbell-
type measure ÎP be de�ned by ÎP [A�B] := IP [1AHT (B)]IP [HT (1)]�1, where
the coordinate process H on the �ltered probability space (
;H;Ht; IP ) is
the historical Brownian motion with branching rate 1 and with starting point
H0. For the de�nition of H we refer again to [P2, p.3]. Let F̂t := Ht � Ct.

Let the functions � : [0; T ] � IRd ! IRd�d; d0 : [0; T ] � IRd ! IRd, and
c : [0; T ] � IRd ! (0;1) be bounded and Lipschitz continuous in x 2 IRd.
We assume that @c

@s
(s; �) and @2c

@xixj
(s; �) exist and are Lipschitz continuous in

x with a Lipschitz constant uniform in s. De�ne the functions a := ���,
h(s; x) := rxc(s; x) and g(s; x) := @c

@s
(s; x) + 1

2

P
i;j

@2c
@xixj

(s; x)aij(s; x),

d := d0 + ah�c�1 and b := (g + h � d0) � c�1: (3.1)

Theorem 3.1 [P2, Theorems 4.10 and 5.1,Example 4.4]

a) Let K0(�) :=
R
1fY0(y)2�gc(0; Y0(y))H0(dy) where Y0 : 
̂ ! IRd is F̂0-

measurable. Then there is a F̂t-predictable IRd-valued continuous pro-
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cess Y and a Ft-predictable M(C)-valued process K such that

Yt(y) = Y0(y) +
Z t

0
�(s; Ys(y))dy(s) +

Z t

0
d0(s; Ys(y))ds(3.2)

Kt(!)(�) =
Z
�(Y (!; y)t)c(t; Yt(!; y))Ht(!)(dy); (3.3)

where the �rst equation holds a.s. with respect to the �rst component of
ÎP , i.e. w.r.t. Wiener measure with initial distribution IP [H0(�)]. The
second equality holds for all � 2 Cb(C) and 0 � t � T , IP -a.s.

b) We de�ne the M(IRd)-valued projection �(K) of the M(C)-valued pro-
cess K by

�s(K)(f) :=
Z
C
f(y(s))Ks(dy); f 2 Cb(IR

d): (3.4)

Under IP we have that for every f 2 C2
b (IR

d) the process

Mt(f) := �t(K)(f)��0(K)(f) �
Z t

0
�s(K)(A(s)f)ds (3.5)

is a martingale with quadratic variation

Z t

0

Z
IRd

c(s; x)f2(x)�s(K)(dx)ds; (3.6)

where A(s)f(x) = f(x)b(s; x)+rf(x)�d(s; x)+1
2

Pd
i;j=1 aij(s; x)

@2f

@xi@xj
(x)

for f 2 C2
b (IR

d).

Proof. The Theorem is a special case of [P2, Theorems 4.10 and 5.1]. In
Example 4.4 in [P2] the case of non-interactive c is considered. The fact that
the expression \H � a:s:" used in Theorem 4.10 in [P2] is equivalent with
\a.s. with respect to Wiener measure" if all coe�cients of the stochastic
equation (3.2), (3.3) do not depend on the the process K follows by Remarks
3.3a) and 3.13d) in [P1].

3.2 Non-linear martingale problems

In the case of a non-linear martingale problem we want to consider functions
a; b; c; d in (3.5) and (3.6) which depend on the external force caused by

12



the distribution of �s(K) at time s. Hence we consider bounded functions
a; b; c; d; d0 on M1(M(IRd)) � IRd instead of functions on [0; T ] � IRd. We
assume that the functions are Lipschitz continuous with respect to both
variables where in the �rst variable we use the Wasserstein metric �2 on
M1(M(IRd)) cf.(2.11), i.e., we assume

jr(m1; x1)� r(m2; x2)j � Kr(�2(m1;m2) + jx1 � x2j) (3.7)

for r = d0; �; c; g and h. (Note that (3.7) is a stronger condition than the
condition (2.13) on b.) Caused by the di�erentiability assumption for the
function c there is an additional condition on c which will be formulated in
Theorem B, below. Fix now the starting point � 2 M(IRd). The martingale
problem in question is to �nd a probability measure on C([0; T ];M(IRd))
such that for every f 2 C2

b (IR
d) the process

Mt(f) := Xt(f)� �(f) �
Z t

0
Xs(A(P �X�1

s )f)ds (3.8)

is a local martingale with quadratic variationZ t

0

Z
IRd

f2(x)c(P �X�1
s )Xs(dx)ds; (3.9)

where A(m)f(x) = f(x)b(m;x) +rf(x) � d(m;x)1
2

Pd
i;j=1 aij(m;x)

@2f

@xi@xj
(x).

First we prove uniqueness.

Theorem B Let us suppose that there exist bounded and Lipschitz contin-
uous functions ~c0; ~c1; ~cjk; 1 � i; j; k � d, on M1(M(IRd)) � IRd such that for
the 
ow us := P �X�1

s of every solution P of (3.8, 3.9) we have

@

@s
c(us; x) = ~c0(us; x);

@

@xi
c(us; x) = ~ci(us; x) (3.10)

and
@2

@xj@xk
c(us; x) = ~cjk(us; x)

for 1 � i; j; k � d. Assume (3.7). Then there exists at most one proba-
bility measure P on C([0; T ];M(IRd)) which solves (3.8,3.9) with d = d0 +
ah�c�1; b = (g + hd0)c�1, where

h(m;x) = (~c1(m;x); : : : ; ~cd(m;x)) and (3.11)

g(m;x) = ~c0(m;x) +
1

2

dX
j;k=1

~cjk(m;x)ajk(m;x): (3.12)

13



Proof. Let P i; i = 1; 2, be two solutions of (3.8, 3.9). De�ne the cor-
responding 
ows by uis = P i � X�1

s . We can apply Theorem 3.1 with
the functions �i(s; x) = �(uis; x), d

0;i(s; x) = d0(uis; x), c
i(s; x) = c(uis; x)

gi(s; x) = g(uis; x) and hi(s; x) = h(uis; x): Then the distributions of the pro-
cesses �(K i); i = 1; 2; as de�ned in (3.3, 3.4) with these functions equals P i.
By Theorem 3.1b) we have that

�2
2(u1s; u

2
s) � IP [( sup

jjf jjBL�1
j�(K1

t )(f)��(K2
t )(f)j)

2]

� IP [( sup
jjf jjBL�1

Z
jf(Y 1(t; y))c(u1t ; Y

1(t; y))� f(Y 2(t; y))c(u2t ; Y
2(t; y))jHt(dy))

2]:

This can be bounded by

IP [(
Z
fjjcjj1jY

1(t; y)� Y 2(t; y)j+ (3.13)

jc(u1t ; Y
1(t; y))� c(u2t ; Y

2(t; y))jgHt(dy))
2]:

Because Y i
j (t)� Y i

j (0) �
R t
0 d

0(uis; Y
i(s; y))ds are continuous martingales for

1 � i � d with covariation
P

k ajk(u
i
s; Y

i(s; y))ds and because c 2 C1;2
b we

have by the Itô-formula that

c(t; Y i(t; y)) = c(0; Y i(0; y))+
Z t

0
h(s; Y i(s; y))dY i(s; y)+

Z t

0
g(s; Y i(s; y))ds:

Hence (3.13) equals

IP
�� Z �����

Z t

0
�(u1s; Y

1(s; y))� �(u2s; Y
2(s; y))dy(s) +

Z t

0
d0(u1s; Y

1(s; y))� d0(u2s; Y
2(s; y))ds

���� � jjcjj1 +
Z t

0
h�(u1s; Y

1(s; y))� h�(u2s; Y
2(s; y))dy(s) +

(hd0 + g)(u1s; Y
1(s; y))� (hd0 + g)(u2s; Y

2(s; y))ds
����
�
Ht(dy)

�2�
:

By Cauchy-Schwarz and the formula for the second moment of a superprocess
this is bounded by

IP
� Z �����

Z t

0
�(u1s; Y

1(s; y))� �(u2s; Y
2(s; y))dy(s) +

14



Z t

0
d0(u1s; Y

1(s; y))� d0(u2s; Y
2(s; y))ds

���� � jjcjj1 +
Z t

0
h�(u1s; Y

1(s; y))� h�(u2s; Y
2(s; y))dy(s) +

(hd0 + g)(u1s; Y
1(s; y))� (hd0 + g)(u2s; Y

2(s; y))ds
����
�2

Ht(dy)
�

� (IP [H0(1)] + t)

= E
� Z �����

Z t

0
�(u1s; Y

1(s;W ))� �(u2s; Y
2(s;W ))dW (s) +

Z t

0
d0(u1s; Y

1(s;W ))� d0(u2s; Y
2(s;W ))ds

���� � jjcjj1 +
Z t

0
h�(u1s; Y

1(s;W ))� h�(u2s; Y
2(s;W ))dW (s) +

(hd0 + g)(u1s; Y
1(s;W ))� (hd0 + g)(u2s; Y

2(s;W ))ds
����
�2�

� (IP [H0(1)] + t);

whereW is a Brownian motion with initial distribution IP [H0(�)] and Y i(s;W )
is a solution of (3.2) with W instead of y and �i(s;Ws) = �(uis;Ws). Because
hd0 + g and h� also satisfy (3.7) we can bound the last expression by

4(IP [H0(1)] + t)maxfK2
�; tK

2
d0 ; tK

2
(hd0+g);K

2
�hg(jjcjj

2
1 _ 1)Z t

0
(E[jY 1(s;W )� Y 2(s;W )j2]ds+ �2(u

1
s; u

2
s) )ds

� K 0
T

Z t

0
(E[jY 1(s;W )� Y 2(s;W )j2]ds+ �2(u

1
s; u

2
s) )ds:

It remains to prove that

E[sup
s�t

jY 1(s;W )� Y 2(s;W )j2] � KT

Z t

0
�22(u

1
s; u

2
s)ds (3.14)

with a �nite constant KT . We de�ne similarly as in [F],

At :=
Z t

0
d0(u1s; Y

1(s;W ))� d0(u2s; Y
2(s;W ))ds

Mt :=
Z t

0
�(u1s; Y

1(s;W ))� �(u2s; Y
2(s;W ))dW (s):

15



By Burkholder-Davis-Gundy's inequality we obtain

E[sup
s�t

jMsj
2]

� K(2)
dX
i=1

E[
Z t

0

dX
j=1

j�ij(u
1
s; Y

1(s;W ))� �ij(u
2
s; Y

2(s;W ))j2ds

� K(2)K2
�tE[sup

s�t
jY 1(s;W )� Y 2(s;W )j2]

+K(2)K2
�

Z t

0
�22(u

1
s; u

2
s)ds

with some constant K(2). For A we obtain

E[sup
s�t

jAsj
2] � K2

d0E
�
(
Z t

0
�2(u

1
s; u

2
s)ds+

Z t

0
jY 1(s;W )� Y 2(s;W )jds)2

�

� 2K2
d0t

Z t

0
�22(u

1
s; u

2
s)ds + 2K2

d0t
2E[sup

s�t
jY 1(s;W )� Y 2(s;W )j2]:

Therefore

E[sup
s�t

jY 1(s;W )� Y 2(s;W )j2] � 2E[sup
s�t

jMsj
2] + 2E[sup

s�t
jAsj

2]

� (2K(2)K2
� + 4K2

d0t)tE[sup
s�t

jY 1(s;W )� Y 2(s;W )j2]

� (2K(2)K2
� + 4K2

d0t)
Z t

0
�22(u

1
s; u

2
s)ds:

Hence for t < 1
2K(2)K2

�+4K
2
d0
^ 1 we have (3.14). This implies by the previous

calculations that

�22(u
1
t ; u

2
t ) � K 0

T

Z t

0
�22(u

1
s; u

2
s)ds

for small t. Gronwall's lemma yields that u1t = u2t for small t. Exploring now
the Markov property of the two solutions we obtain uniqueness for all t � T ,
cf. [F], and the assertion is proved. �

Generally, existence of a solution to (3.8), (3.9) is proved by approximation
with weakly interacting N-type superprocesses, cf. the appendix. In order
to prove an existence result with the present techniques we have to be more
speci�c about the function c, e.g. it su�ces that c is a �nitely based function
with �nitely based base functions.
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Corollary 3.2 Let c(m;x) = �(m(F1); : : : ;m(Fk); x) with � 2 C3
b (IR

k+d)
and Fi(�) = �i(�(f1i); : : : ; �(fkii)) such that fji; j = 1; : : : ; ki; �i; i = 1; : : : ; k.
We keep on assuming (3.7) and the boundedness of the functions aij; dk; d

0
k; 1 �

i; j; k � d and b. Then there exists a unique solution of (3.8), (3.9).

Proof. Uniqueness follows by Theorem B, if we take for ~c appropriate dif-
ferentiations of c. Let P u denote the superprocess with parameters depend-
ing on the 
ow u 2 C([0; T ]:M1(M(IRd))), e.g. a0ij(s; x) = aij(us; x) and
c0(s; x) = �(us(F1); : : : ; us(Fk); x). The starting point of the Picard-Lindel�of
approximation as in Theorem A is now u0 the 
ow of the superprocess P um0

with parameter depending on some constant 
ow um0
s = m0 for all s. De�ne

un+1 = �(un) = (P un �X�1
s )0�s�T . We have by the boundedness assumptions

that

j
@c

s
cu

n

(s; x)�
@c

s
cu

n

(s; y)j � sup
t�T

Eun [A(un�1t )Fi(Xt)]K�jx� yj

� sup
t�T

KE[Ht(1)]jx� yj

with a �nite constant K = K�;�i;fi;aij;dk;b;c (, where A(m) is de�ned in (1.3)).
Hence the Lipschitz condition for @c

@s
in the Remark following Theorem 3.1 is

proved. It is straight forward to see that the other conditions for Theorem 3.1
are all satis�ed. Hence we can construct P un and P un+1 as a strong solution
of a stochastic equation driven by a historical process. Proceeding now as in
the proof of Theorem B with P 1 = P un and P 2 = P un+1 we are led to

�22(u
n+1
t ; unt ) � K 0

T

Z t

0
�22(u

n
s ; u

n�1
s )ds;

which �nally yields a solution uF of �(uF ) = uF . The superprocess P uF

solves (3.8),(3.9). �

Of course, all assumptions on c are satis�ed for constant c.

Corollary 3.3 Assume c is constant and � and d are bounded and Lips-
chitz continuous in (m;x) with respect to �2 in the �rst component. Then
there exists a unique probability measure P on C([0; T ];M(IRd) which solves
(3.8),(3.9) with b = 0.

Examples. Assume that c satis�es the assumption of Theorem B. Let us
now give examples for which we can satisfy condition (3.1) in Theorem 3.1.
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First of all a necessary condition is that hd+ g = hah�c�1+ cb with h and g
as in (3.12) and (3.11), i.e.

c(m;x)
�
1

2

dX
j;k=1

~cjk(m;x)ajk(m;x) +
dX
i=1

~ci(m;x)di(m;x)
�

(3.15)

= c2(m;x)b(m;x) +
dX

j;k=1

~cj(m;x)ajk(m;x)~ck(m;x):

� Hence if c; a; d are given with c strickly positive, a possible choice is

b(m;x) = c(m;x)�1
�
1

2

dX
j;k=1

~cjk(m;x)ajk(m;x) +
dX
i=1

~ci(m;x)di(m;x)
�

�c(m;x)�2
dX

j;k=1

~cj(m;x)ajk(m;x)~ck:

It is clear that b is Lipschitz continuous and bounded if ~c; ajk; di are as
well. Under the same conditions d0i := d�c�1

Pd
j=1 aij~cj is also Lipschitz

continuous and bounded. Then the functions a; b; c; d; d0 satisfy all
assumptions of Theorem B.

� If a and b are given, a possible choice for the functions d and d0 is

dj(m;x) =
� dX
j=1

~cj(m;x)
��1� dX

j;k=1

~cj(m;x)ajk(m;x)~ck(m;x)

�c(m;x)b(m;x)�
1

2

dX
j;k=1

~cjk(m;x)ajk(m;x)
�

and d0j = dj � c�1
Pd

i=1 ajk ~ci for 1 � j � d.

� If b = 0 and a; d are given then c has to satisfy

c(m;x)
�
1

2

dX
j;k=1

~cjk(m;x)ajk(m;x) +
dX
i=1

~ci(m;x)di(m;x)
�

=
dX

j;k=1

~cj(m;x)ajk(m;x)~ck(m;x); (3.16)

which seems to be very restrictive.
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� If c(m;x) = c0(x) with c0 2 C3
b (IR

d) then the functions in (3.10)
are computed as follows: c0(m;x) = 0; ci(m;x) =

@c0
@xi

(x); ~cjk(m;x) =
@2c0

@xj@xk
(x); 1 � i; j; k � d. But nevertheless the conditions an a; b and

d are not much simpli�ed. Therefore it seems that only a constant
branching variance c leads to reasonable concrete examples, cf. Corol-
lary 3.3.

A Propagation of chaos for weakly interacting super-

processes

Theorem A.1 Let L(m)f(x) :=
P
aij(m;x)

@2f

@xi@xj
(x) +

P
di(m;x)

@f

@xi
(x) be

a second order partial di�erential equation operator on IRd.

1. Let the functions aij; dk; 1 � i; j; k � d; c and b satisfy the following as-
sumptions for functions r on M1(M(IRd))� IRd

jr(m1; x1)� r(m2; x2)j � Kr(�1(m1;m2) + jx1 � x2j) (A.1)

sup
x2IRd

r(m;x) <1 for each m 2M1(M(IRd)); (A.2)

where the Wasserstein metric �1 = d(M1(IRd);d(IRd;j:j))
is de�ned in (2.12), below.

Additionally we assume that the the vectors ~XN
0 are exchangeable and that

one of the following growth conditions is satis�ed:

sup
m2M1(M(IRd))

Z Z
jr(m;x)j�(dx)m(d�) � K 0

r <1 (A.3)

for all functions b; c; aij; dk; 1 � i; j; k � d or

sup
m2M1(M(IRd))

Z
IRd
jr(m;x)j�(dx) � K 0

r�(1) +K 00
r (A.4)

for all functions b; c; aij; dk; 1 � i; j; k � d: Then there exists an exchangeable
solution of the martingale problem associated with (1.5).

2. Assume additionally that for each f 2 C2
b (IR

d) we have supN P [(X
1;N
0 (f))2] <

1. Then the sequence f�NgN2IN � M1(M1(CM(IRd))) of distributions of
1
N

PN
j=1 �Xj;N is tight and every accumulation point �1 is supported by the

set of solutions of the martingale problem (1.1), (1.2).
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3. If we assume �nally that there exists only one solution P1 to the martingale
problem (1.1), (1.2) then the \Propagation of Chaos" holds.

Sketch of proof. An exchangeable solution of (1.5) can be constructed by
weak approximation with interacting multitype branching di�usions. The
condition (A.3) (resp. (A.4)) ensures the tightness of the interacting branch-
ing di�usions as well as its existence as an accumulation point of a sequence
of branching random walks. The latter can be constructed as marked point
processes, which are exchangeable by construction. It is wellknown that the
sequence f�NgN is tight if sequence of the intensity measures fI(�N)gN2IN �
M1(CM(IRd)) de�ned by I(�N)(F ) := 1

N

PN
i=1 E[F (X

i;N)] = E[F (X1;N)] are
tight. By wellknown criteria for tightness of measure-valued processes, cf.
[D], we only have to show that the distributions of fX1;N

: (f)gN are tight for
each f 2 C2

b (IR
d). The latter follows by tightness criteria as in [EK], e.g.

the Aldous-Rebolledo criterium from the growth conditions (A.3) or (A.4).
The identi�cation of the limit points of f�NgN2IN follows from the fact thatR
M1(CM(IRd))

	2(Q)�1(dQ) = 0 with

	(Q) =
Z
C
M(IRd)

�
ef(!(t))� ef(!(r)) +

Z t

r

�
!(s)

�
L(s;Qs)f + b(s;Qs)f

� c(s;Qs)f
2
�
ef(!(s))

�
dsg(!(r1); : : : ; !(rk))

�
Q(d!):

By assumption (A.1) 	 is continuous and bounded by the uniform integrable
functionK 0( 1

N

PN
i=1K0X

i;N
T (1)+K1). The last part of the Theorem follows by

standard arguments of the \Propagation of Chaos" techniques, cf. [S1,S2].
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