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DECOMPOSITION OF JAPANESE YEN INTEREST RATE DATA
THROUGH LOCAL REGRESSION

RITEI SHIBATA AND RYOZO MIURA

Abstract. Seven di�erent Japanese Yen interest rates recorded on a daily basis
for the period from 1986 to 1992 are simultaneously analyzed. By introducing a
new concept of \short term trend", we decompose each interest rate series into
three components, \long term trend", \short term trend" and \irregular" by a
two step lowess smoothing procedure. Furthermore, a multivariate autoregressive
model (MAR) is �tted to the seven irregular series. The decomposition and the
model �tting were quite satisfactory, and each component and the residuals of the
MAR model are statistically well behaved. Thus it enables us to understand well
various aspects of interest rate series from those trends, the MAR(2) coe�cients,
and its residuals. The result is compared with the decomposition through sabl and
the advantages of our procedure will be discussed in relations to other parametric
model �tting like ARCH or GARCH. Based on the decomposition we can have
better daily prediction and more stable long term forecasting.

1. Introduction

In this paper, we are concerned with simultaneous analysis of seven di�erent
Japanese Yen interest rates recorded daily for the period beginning from the 1st of
December, 1986 to the 16th of September, 1992. The basic idea behind our analysis
is to decompose each time series into three components, namely \long term trend",
\short term trend" and \irregular". The long term trend is obtained by applying
a smoothing technique, a local regression procedure lowess or loess (Cleveland and
Devlin, 1988) to the original time series with a yearly span, and the short term trend
is obtained by applying again the lowess with a monthly span to the residuals of the
smoothing. The decomposition explains well the behavior of the underlying structure
of these seven interest rate series. For example, the behavior of the long term trend
signi�cantly links to that of the Japanese o�cial discount rate and explains well the
di�erence between two groups; a group of Euro interest rate and the other group of
LIBOR(London Interbank O�ered Rate) swap interest rate series, particularly well

Key words and phrases. Decomposition of Time Series, Local Regression, Short Term Trend,
Sabl, Smoothing, Yen Interest Rates.
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when Japan is in a period of \bubble economy". The short term trend indicates
a cycle though not exact. More importantly, a multivariate autoregressive model
of order 2 �ts well to the vector of seven irregular series and a good prediction of
each interest rate is available on daily basis. It is enough to predict the irregular
series based on the model, since daily changes of the long and short term trends are
negligible relative to those of the irregular series.
Our approach is not based either on any de�nite economic theory or on �nancial

theory, but based on a modern technique of data analysis, a nonparametric smooth-
ing. In the latter part of this paper the validity of the decomposition will be checked
from various statistical points of view: goodness of �t, accuracy of prediction, and
the stability of the results, as well as the interpretability of the results. There still
remain a lot of statistical properties to be checked, for example, a check of the inde-
pendence of residuals besides the orthogonality. We leave such interesting problems
for further investigation.

2. Data

Data we are analyzing are 3 month, 6 month and 1 year Euro Yen interest rate
series, and 3 year, 5 year, 7 year, and 10 year LIBOR swap rate series. All series are
daily for the period; from the 1st of December, 1986 to the 16th of September, 1992.
This data is now regarded as historic in the sense that the period of over heated
Japanese economy, or the \bubble" economy, is included. The length of each series is
2115, so that this study requires a powerful computing environment since computer
intensive smoothing techniques like sabl or lowess is used.
Euro Yen interest rate is a �xed annual interest rate for Yen bonds, which are

mainly traded in European countries for short term maturities, such as 3 months, 6
months or 1 year. On the other hand, LIBOR swap rate is a �xed annual interest rate
with which the coupon can be swapped for a LIBOR 6 month variable interest rate
contract for the same period. Swapped is only a coupon at a time, not a principal.
Since there is a di�erence between the o�er and the bid swap rates, which is mostly
ranging from 0.002 % to 0.004 %, we analyze the mean of those two rates, so that
meaningful scale unit of rate changes in practice would be around �0:004 %. It is
also said that LIBOR swap rate re
ects a long term forecast of economy and Euro
Yen rate re
ects various short term expectations.
Preceding to the analysis, we interpolated the rates for Sunday or other holidays

by a simple linear interpolation method. Also the data for the 29th of February of a
leap year are all removed to adjust the number of days in a year to 365 days. The
details will be found in the last section.

3. Decomposition

3.1. Sabl decomposition. As a preliminary analysis, we tried the sabl (Seasonal
Adjustment at Bell Laboratories) decomposition procedure which is proposed by
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Cleveland and Devlin(1988) and implemented as a function sabl in S (Becker et al.,
1988). This sabl procedure is widely used as well as X-11 for time series analysis of
real data. By this procedure, the given time series is decomposed into three parts,

original series = trend + seasonal + irregular:

The decomposition is the result of a repeated application of smoothings to obtain the
trend and seasonal components in turn ( Cleveland et al., 1981). The initial (tem-
porary) trend T0(t) is obtained from the original Z(t) by applying a moving median
smoothing with the given span and then two times moving average smoothings. The
�rst moving average is done with the given span and the second is done with three
time point span. The �rst seasonal component S1(t) is then obtained by applying
a weighted moving median regression and a moving least squares regression to the
moving subseries of residuals Z(t)� T0(t) with the given span. The next trend T1(t)
is obtained in the same way from the residuals Z(t) � S1(t). A robustness weight
is computed from the residuals Z(t) � T1(t)� S1(t), and the second seasonal series
S2(t) is obtained by applying a weighted moving robust regression to the residuals
Z(t)� T1(t). The second trend T2(t) is obtained from Z(t)� S2(t) in the same way
by using the robustness weight computed from the residuals Z(t)�T1(t)�S2(t). The
�nal two steps are a repeat of the last two steps, and the �nal estimates S3(t) and
T3(t) follow. The irregular series is the series of residuals, Z(t)� T3(t)� S3(t).
An important feature of this procedure is to be able to decrease the end e�ects of

the smoothing since the weighted moving robust regression is used from the second
stage. The procedure also makes it possible to extrapolate the long and short term
trends. Another feature of this procedure is to eliminate or reduce interaction between
the seasonal and the trend series by applying a power transformation of the original
series. The power p of the transformation is selected so as to minimize the absolute
value of the regression coe�cient � of the model

g(Z(t)) = T (t) + S(t) + �(S(t)� �S)(T (t)� �T ) + I(t); t = 1; 2; :::; n;

where g is a power transformation

g(x) =

8>><
>>:

xp if p > 0 ;

log(x) if p = 0 ;

�xp if p < 0 ;

and the �S and �T is the mean of the obtained components S(t) and T (t) respectively.
The following Figure.1 and Figure.2 are parts of the results of sabl decomposition

of the 3 month Euro Yen interest rates. Here we simply assumed that the seasonality
is a year, 365 days so that the smoothing span to obtain a trend is taken to be the
same 365 days for both cases. On the other hand the seasonal component is obtained
by smoothing the residuals of the trend over the same days of the year for 3 and 7
neighbor years. They are shown in Figure.1 and Figure.2 respectively. More explicitly
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Figure 1. sabl decomposition of the 3 month Euro Yen interest rate
series. The seasonal component on the third panel is obtained by
smoothing over the same days in 3 neighbor years.

the argument trend of the S function sabl is taken to be 365 and an optional
argument seasonal is taken to be 3 and 7 respectively. The data is organized as an
S time series object with the attribute frequency=365. These �gures are plotted by
the S function sablplot, As is shown in those �gures, the power of the transformation
selected by the sabl procedure is p = 0:5, that is, this procedure concluded that the
square root transformation is appropriate for eliminating interaction between the
trend and seasonal. In each of the two �gures the four panels show the square root
transformed original series, the trend, the seasonal and the irregular, from the top to
the bottom. The bar at the right side of each panel is to indicate the unit scale of
each panel. It shows the same length in the di�erent scales across the panels. This
makes the comparison by eyes easier.

The problem of such a decomposition is now clear. The irregular part behaves
so as to compensate the cyclic behavior of the seasonal series. It does not look
irregular nor random but another seasonal component. Such a result suggests that
no signi�cant yearly cycle exists in the series. We tried many other cycles, weekly,
monthly, quarterly for all seven series, but could not �nd any de�nite seasonality.
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Figure 2. sabl decomposition of the 3 month Euro Yen interest rate
series. The seasonal component on the third panel is obtained by
smoothing over the same days in 7 neighbor years.
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3.2. New decomposition. Based on the preliminary analysis, we came to a con-
cept of \short term trend" in place of seasonality. The short term trend is not seasonal
but moves very slowly on a monthly scale. In contrast, we then call a trend like that
obtained by sabl as \long term trend", which changes slowly on a yearly scale. The
concepts of \long term trend" and \short term trend" seem closely related to those
of \permanent" and \transitory" components in econometrics, which are applied to
the detection of \business cycle". For example, Beveridge and Nelson (1981) explic-
itly proposed such a decomposition by explicitly de�ning those two components ( i.e.
permanent and transitory ) for an ARIMA(p, 1, q) process fztg. Their de�nition of
permanent component is a process �zt which satis�es

�zt � �zt�1 = � +

0
@
1X
j=0

aj

1
A �t

and the transitory component as a process

ct = �

0
@
1X
j=1

aj

1
A �t �

0
@
1X
j=2

aj

1
A �t�1 � � � � ;

observing that

lim
k!1

fE (zt+kjzt; zt�1; � � � )� k�g = �zt:

Here we assumed that the ARMA(p, 1, q) process fztg is represented as

zt � zt�1 = �+
1X
j=0

aj�t�j

with innovations f�tg of the di�erences of fztg. Their idea is that the permanent com-
ponent should be an essential part of a long-term forecast, that is, the conditional
expectation of zt+k at the time of t for very large k. They applied such a decom-
position procedure to the various economic indices including GNP for the detection
of business cycles of U.S. economy during the period of 1947 to 1977. A related
work is Nelson and Plosser(1982). More recently Cochrane (1988) developed an es-
timation procedure for the variance of the permanent component. A mathematical
approach is done by Quah(1992). Also a good review of this approach can be found
in Enders(1995).
However, our approach is in fact di�erent from their approach. First of all, we

don't assume any particular model like ARIMA behind our analysis, and the long
term and the short term trends are both assumed to be non stochastic, rather deter-
ministic. And, we decompose the original time series into three components, \long
term trend", \short term trend" and \irregular". Conceptually we might say that
the former two components are corresponding to their \permanent" component, and
the last \irregular" to their \transitory" component. As is seen later, distinction
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between long term and short term changes of interest rates are quite important in
analyzing such interest rate series not only for prediction also for detection of business
cycles. Also we believe that our procedure is, in general, a more 
exible vehicle to
extract interesting features of the phenomena from a given data, than an automatic
application of a particular model like ARCH or GARCH ( See the special volume of
Journal of Econometrics 52, 1992 for the modeling economic data).
To extract both the long and the short term trends, we use a smoothing technique

called lowess proposed by Cleveland and Devlin(1982). With lowess the smoothed
values are obtained by applying a local linear regression with the weights reciprocal to
the distance in time of data points from the time point at which we are now smooth-
ing. The weights are then made decreased for the data with large residuals, and again
a local linear regression with the new weights is applied. This process continues as
long as the smoothed value changes signi�cantly. This smoothing technique is linear
with respect to the data in each step but is not linear in the overall procedure since
the weights are updated according to the value of the residuals. The algorithm we
actually used is the function lowess which is implemented in the S software ( Becker
and Chambers , 1988).
The two smoothings are not commutative. We have applied two smoothings to

obtain the long term trend at �rst and the short term trend at second. We have used
a year span for smoothing the original data to get a long term trend and a month
span for smoothing the residuals of the long term smoothing to get a short term
trend. If we reverse the procedure we obtain something di�erent. The short term
trend includes the e�ects of long term trends. The reader may wonder if any other
choice of smoothing span is available to get a short term trend. We tried several
other choices including weekly, bimonthly, quarterly. Our criterion is whether we
obtain the stationarity of irregular series and the interpretation of short term trend.
Weekly span does not provide us a good interpretation of the short term trend and
any other choices longer than a month give us almost the same short term trend but
the irregular component looks like less stationary.
The following Figure.3 shows an example of our decomposition, the decomposition

of the 3 month Euro Yen interest rate. Our notation for the decomposition of the
ith interest rate series Zi(t) into the long term Li(t), short term Si(t), and irregular
series Ii(t) is

Zi(t) = Li(t) + Si(t) + Ii(t);

for i = 1; � � � ; 7. An advantage of this new decomposition procedure to the previous
sabl procedure is now clear. The irregular series we obtained does not exhibit any
peculiar behavior and looks very stationary.

4. Three components of the decomposition

4.1. Long term trend. Seven long term trends are shown together in Figure.4.
Each long term trend Li(t) is respectively obtained from the corresponding original
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Figure 3. Decomposition of the 3 month Euro Yen interest rate series
on the top panel into the following three components, the long term
trend, the short term trend and the irregular series.
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Table 1. Change Date of Japanese O�cial Discount Rate (%)

86-12-01 87-02-23 89-05-31 89-10-10 89-12-25 90-03-20
3 2.5 3.25 3.75 4.25 5.25

90-08-30 91-07-01 91-11-14 91-12-30 92-04-02 92-07-27
6 5.5 5 4.5 3.75 3.25

time series Zi(t) independently. The Japanese o�cial discount rate given in Table.1
is also plotted in the �gure for reference. In Table.1, the date of changes and the
new rate are shown except that the �rst date 86-12-01 is not a change date but the
date of the beginning of our series analyzed. The graph of each trend shown in Fig.4
naturally links with the o�cial discount rate. The seven trend series are roughly
classi�ed into two groups, one for the 3 months to 1 year interest rates and the other
for the 3 years to 10 years swap rates. As is well known, the two groups changed their
relative position in the period of the \bubble" economy, around 1990 to 1992. The
order of the magnitude of each trends in either group is quite natural, that is, upward
sloping yield curve, until the beginning of the bubble economy. The 3 months, the 6
months and the 1 year in the �rst group are lower than the 3 years, the 5 years, the
7 years and the 10 years in the second group. During the bubble period, the order is
totally reversed, that is, downward sloping yield curve, although the order is reversed
except the 3 months in the former half of the period. An interesting observation is
that the order of magnitude in the second group got back to the original one later
in the year of 1991, but the order in the �rst group did not. Their order remains
the same even after the bubble economy collapsed. This explains well the di�erence
between the two groups. The rates in the �rst group are Euro Yen interest rate for
short term contracts and those in the second group are LIBOR swap rate for long
term contracts. Any economic interpretation is beyond this paper and left for future
investigation.
We can check the smoothness of the long term trend with the boxplots of the lag

1 di�erence of the series shown in Figure.5. Again, the frequency distribution of
the one day di�erence of long term trend can be classi�ed into two groups, one for
the 3 months to 1 year interest rates and the other for the 3 year to 10 year swap
rates. It shows a greater volatility in the second group. We conclude the comments
by mentioning that these seven long term trends show together not only the global
movements but the di�erences of two groups both globally and locally.

4.2. Short term trend. The seven short term trends Si(t); t = 1; � � � ; 7 are shown
together in Figure.6. Apart from the long term trends, all the seven short term trends
behave very similarly. The frequency distributions of the one day di�erences are also
similar, as shown in Figure.7. The main e�ects caused by changes in the o�cial
discount rate and other economic environments are well removed by extracting the
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Figure 4. Long term trends and the o�cial discount rate series.
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Figure 5. Boxplots of lag 1 di�erences of the long term trends.
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Figure 6. Short term trends

long term trend from the original series and hence no signi�cant long term di�erence
is left in the seven short term trends. We note that such a check is possible because
we are not analyzing a single interest rate but seven di�erent interest rate series
simultaneously. An apparent fact we can see in Figure.6 is that all of the short term
trends simultaneously increase from June and decreases around December every year.
It is, of course, not a de�nite cycle nor a seasonality. To clarify this kind of business
cycle, we discretized the trend. The discretization here means that each value is
replaced by the mean of the values over the intervals where the series has the same
sign all the time. This device makes such a behavior clearer as is seen in Figure.8.
Table.2 is a list of the dates just after each short term trend crosses the level 0. The
symbol & indicates a crossing from positive to negative, and the % indicates that
from negative to positive. The dates close to each other are grouped into a single
row and the change dates of the o�cial discount rate are also shown as a reference in
the last column with the symbols which indicate whether it is increased or decreased.
We see from this table that the dates of the crossings for those short term trends are
quite close to each other and that there are fewer crossings for longer term interest
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rates. Also we should note that the short term trends are not so related to the
changes of the o�cial discount rates. This indicates that the changes of the o�cial
discount rate mainly a�ects the long term trend, and thus justify the plausibility of
our decomposition in this sense.

4.3. Irregular. The seven irregular series were combined into a multivariate time
series I(t) = (I1(t); � � � ; I7(t))T and a multivariate autoregressive model MAR(2),

I(t) = AI(t� 1) +B I(t� 2) + �(t)

is �tted to. The order of the autoregression is selected so as to minimize AIC.
Autocorrelations of the residuals �i(t); i = 1; � � � ; 7 are shown in Figure.9. There is
no doubt on the orthogonality of each residuals, since all autocorrelations are between
-0.06 and 0.05. This supports that the �t of the MAR(2) model is quite good.
It is interesting to note that the coe�cient matrix A in Table.3 shows that the 6

month rate signi�cantly a�ects the 3 month rate and also a�ects other rates except
the 10 years. This behavior is understandable since the volume of 6 month coupon
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Table 2. Zero Crossing Date of Short Term Trends

3 months 6 months 1 year 3 years 5 years 7 years 10 years o�cial
& 87-01-20 87-01-24 87-01-20 87-01-29 87-02-01 87-02-03 87-02-01
% 87-02-17 87-02-23 87-03-10 & 87-02-23
& 87-03-25 87-03-21 87-03-19
% 87-07-27 87-07-24 87-07-21 87-07-07 87-07-11 87-07-16
& 87-08-26
% 87-09-07 87-09-01
& 87-11-23
% 87-11-24
& 88-01-11 88-01-06 88-01-02 88-01-06 87-12-27 88-01-06 88-01-08
% 88-03-03
& 88-03-15
% 88-06-29 88-06-24 88-06-23 88-06-17 88-06-13 88-06-15 88-06-10
& 88-10-20 88-10-16 88-10-13 88-10-06 88-10-06 88-10-12 88-10-14
% 89-02-01
% 89-03-01 89-02-26 89-03-09 89-03-12
& 89-03-29 89-04-07 89-04-04 89-04-08 89-04-11
% 89-05-12 89-05-02 89-04-23 89-04-24 89-04-16 89-04-13
% 89-05-24 % 89-05-31
& 89-07-16 89-07-10 89-07-06 89-06-20 89-06-23 89-07-07 89-07-09

% 89-10-10
% 89-10-16 89-10-17 89-10-20 89-10-27 89-10-31
& 89-12-17 89-12-17 89-12-06 89-12-04
% 89-12-24 89-12-23 90-01-03 89-12-27 90-01-05 90-01-05 % 89-12-25

% 90-03-20
& 90-04-28 90-04-31 90-05-04 90-05-05 90-05-03 90-05-07 90-05-08
% 90-08-10 90-08-06 90-07-30 90-07-24 90-07-20 90-07-25 90-07-23

% 90-08-30
& 90-12-21 90-12-20 90-12-02 90-11-30 90-11-30 90-12-02
& 91-02-05
% 91-02-17
% 91-03-30 91-04-10 91-04-05 91-03-28 91-04-05 91-04-10

& 91-07-01
& 91-09-09 91-09-06 91-09-10 91-08-30 91-08-28 91-08-27 91-08-28
% 91-11-14 91-11-18 91-11-26 91-11-12 & 91-11-14
& 91-12-03
& 91-12-30 91-12-30 91-12-28 & 91-12-30
% 92-02-25 92-02-23
% 92-03-19 92-03-23 & 92-04-02
% 92-04-15
% 92-05-10 92-04-28
& 92-07-07 92-07-10 92-07-12 92-07-16
& 92-08-03 92-07-27 92-07-25 & 92-07-27
% 92-09-06 92-09-10 92-09-12
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Table 3. Coe�cient Matrix A

3 months 6 months 1 year 3 years 5 years 7 years 10 years
0.693 0.381 0.019 -0.025 0.150 -0.062 -0.0936
0.141 0.769 0.016 0.115 0.031 -0.128 0.0026
0.053 0.245 0.603 0.071 0.086 -0.163 0.0515
0.021 0.201 -0.036 0.884 0.089 -0.137 0.0689
0.025 0.160 -0.037 0.134 0.790 -0.081 0.0946
0.000 0.133 -0.010 0.066 0.038 0.741 0.1001
0.036 0.086 -0.000 0.147 0.000 -0.086 0.8681

Table 4. Coe�cient Matrix B

3 months 6 months 1 year 3 years 5 years 7 years 10 years
-0.045 -0.0980 -0.04783 -0.0014 -0.12574 0.08 0.0454
-0.076 -0.0035 -0.01673 -0.1413 -0.04465 0.21 -0.0043
-0.074 -0.1159 0.12864 -0.0638 -0.09166 0.24 -0.0775
-0.091 -0.0472 0.01298 -0.0684 -0.06411 0.16 -0.1213
-0.073 -0.0554 0.03210 -0.0819 -0.00041 0.12 -0.1536
-0.045 -0.0595 0.00501 -0.0520 -0.00717 0.12 -0.1645
-0.058 -0.0449 0.00049 -0.1181 0.02371 0.12 -0.1237

Table 5. Residual Standard Error

3 months 6 months 1 year 3 years 5 years 7 years 10 years
0.035 0.04 0.04 0.031 0.031 0.029 0.028

Table 6. Residual Correlation Matrix

3 months 6 months 1 year 3 years 5 years 7 years 10 years
3 months 1.00 0.47 0.37 0.23 0.22 0.20 0.18
6 months 0.47 1.00 0.73 0.42 0.41 0.37 0.33

1 year 0.37 0.73 1.00 0.46 0.45 0.41 0.36
3 years 0.23 0.42 0.46 1.00 0.86 0.79 0.74
5 years 0.22 0.41 0.45 0.86 1.00 0.83 0.79
7 years 0.20 0.37 0.41 0.79 0.83 1.00 0.86
10 years 0.18 0.33 0.36 0.74 0.79 0.86 1.00
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Table 7. Eigen Values of Residual Covariance Matrix

�1 �2 �3 �4 �5 �6 �7
0.0044654 0.0016757 0.0008558 0.0004066 0.0002422 0.00013127 0.00010659

trade is biggest in the market. We could not �nd any good reason why all elements
of the 6th column of the coe�cient matrix B in Table.4 are positive and signi�cantly
high except the �rst. In particular, the 2nd and the 3rd elements are signi�cant
compared with other elements of the matrix. This implies that the rate of the 7
years two days before a�ects the 6 month or the 1 year rate positively. It is said
that bond future and the 7 year swap are very much related since bonds with 7 years
maturity are usually the cheapest among the nominates of the cheapest-to-deliver (
bonds with 7 to 10 years maturity ) for the bond future trading in the market. Note
that the portfolio of long term swaps are usually hedged with bond futures. It is also
said that the issuing banks of 5 years maturity bonds are limited to the three banks,
the Nippon Credit Bank, the Industrial Bank of Japan, and the Long Term Credit
Bank of Japan so that the 5 year swap rate is a�ected and tends to be lowered. But
we could not �nd any such speci�c feature of the 5 years even from the behavior of
residuals. These investigation of the results in relative to the speci�c features of the
market will be a subject of the future research.
From the correlation matrix of the residuals shown in Table.6, we can observe how

much correlation there is among the seven rates in one day. The fact that higher
correlations for longer terms are is quite natural and understandable, because there
is less speculation in longer term trading. We also note that correlation between 6
month and 1 year rate is high, but the 3 month rate is not so highly correlated to
those two rates.
Another possible way of interpreting the correlation structure is to see the eigen

value decomposition of the covariance matrix, that leads a principal component anal-
ysis. The eigen values are shown in Table.7 and the only �rst 4 eigen vectors are
shown in Table.8 since the eigen values for the rest of the eigen vectors are quite
small. We see from Table.7 and Table.8 that only the �rst two eigen vectors, that
is, the �rst two principal components, are signi�cant for all residuals. The others
contribute only to the �rst three residuals, that is, Euro Yen interest rate residuals.
More precisely, the residual vector �(t) is decomposed as

�(t) =
7X

j=1

q
�j �

(j)(t)

with the eigen values �j ; j = 1; � � � ; 7 and the corresponding orthogonal multiple
time series �(j)(t); j = 1; � � � ; 7 which have covariance matrices uju

T
j ; j = 1; � � � ; 7,

respectively. They are orthogonal to each other. Thus, as is seen from Table.8 the
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Table 8. The First Four Eigen Vectors of the Covariance Matrix of Residuals

u1 u2 u3 u4
3 months 0.2599885 -0.4014906 0.85685183 0.192176906
6 months 0.4779732 -0.4539444 -0.19496352 -0.726141302

1 year 0.4773444 -0.3520577 -0.45793555 0.658369742
3 years 0.3734923 0.3407595 0.05364768 0.008425985
5 years 0.3765874 0.3663068 0.05499962 -0.003553742
7 years 0.3264048 0.3614640 0.07069049 -0.018223919
10 years 0.2970443 0.3575489 0.08478813 -0.043822272

Table 9. Estimated Quantiles

3 months 6 months 1 year 3 years 5 years 7 years 10 years
0.93 3.288799 3.686934 3.761160 2.997981 2.993087 3.314082 3.114515
0.95 3.767082 4.194803 4.316260 3.625486 3.672817 4.027951 3.812759
0.97 4.584951 4.969545 5.409281 4.506268 4.734835 5.101522 4.861329

�rst �(1)(t) can be considered a common factor which almost uniformly contributes
to all the seven residuals and the second �(2)(t) can be considered as a factor which
contributes in an opposite way to the last four swap rate series, because the �rst
three elements of the 2nd eigen vector are negative and the others are all positive. In
short, we can say that the �rst factor is a common factor, the second factor is a factor
discriminating the Euro Yen and the LIBOR swap rates, and the rest of factors are
small factors which contribute only to the Euro Yen rates.
As is seen in Figure.10, the distribution of residuals is quite heavily tailed, which

can be approximated by a stable distribution with the exponent around � = 1:3.
Table.9 shows the estimates ẑf of the f quantile of the standardized symmetric stable
distribution with exponent �,

ẑf = (:827)
x̂f � x̂1�f

x̂:72 � x̂:28

for f = 0:93, f = 0:95 and f = 0:97 ( Fama and Roll, 1971), where x̂f is the f

quantile of the residuals. Simple estimates of � can be obtained by looking into
Table.1 in Fama and Roll(1968). The estimates varies according to the value of f
but fall in the range from 1.1 to 1.4 for all the seven series. These estimates of �

Table 10. Estimates of the Exponent � of Stable Distribution

3 months 6 months 1 year 3 years 5 years 7 years 10 years
0.93 1.2 1.1 1.1 1.3 1.3 1.2 1.2
0.95 1.3 1.2 1.2 1.3 1.3 1.2 1.3
0.97 1.4 1.4 1.3 1.4 1.4 1.4 1.4
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Figure 10. Boxplots of residuals
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Table 11. Variability of Each Component of the Decomposition

3 months 6 months 1 year 3 years 5 years 7 years 10 years
long term trend 0.00716 0.00756 0.00827 0.00797 0.0078 0.00688 0.00709
short term trend 0.00518 0.00512 0.00499 0.00797 0.0078 0.00688 0.00709

irregular 0.07485 0.07611 0.07827 0.06976 0.0680 0.06345 0.05705

are shown in Table.10. Since no optimal f is known, we may satisfy ourselves by
saying that the � is around 1.3. However, it is interesting to compare this � with
that for return rate of stock prices, � = 1:7 (Mandelbrot, 1963). The residuals here
have much heavier tailed distribution than that of the return rate of stock prices.

5. Prediction

Using the �tted MAR(2) model in Section 4.3, we can predict interest rates on a
daily basis. For example, a practical one day ahead prediction of seven series is given
at once by

Ẑ(t+ 1) = L(t) + S(t) +AI(t) +B I(t� 1):

This is due to the fact that the variability of the irregular component dominates
those of the long term trend and the short term trend as is seen in Table.11. Here,
the variabilities for the long and short terms are the standard deviations of the lag 1
di�erences in regarding that those are random 
uctuations, and the variabilities for
the irregular is exactly the standard deviations of the stationary process I(t). Since
the Z(t+ 1) can be represented as

Z(t+ 1) = L(t+ 1) + S(t+ 1) +AI(t) +B I(t� 1) + �(t+ 1)

the prediction error becomes

Z(t+ 1) � Ẑ(t+ 1) = fL(t+ 1)� L(t)g+ fS(t+ 1) � S(t)g+ �(t+ 1)

and the �rst two terms on the right hand side of the above equation are negligible
compared with the last term �(t+ 1). The standard error of �(t+ 1) is around 0.03
to 0.04 as is seen in Table.5, so that the prediction error is reduced to almost half by
predicting by Ẑ(t+ 1) based on the MAR(2) model, if it is compared with that by a
simple prediction based only on the long term and short term trends,

~Z(t+ 1) = L(t) + S(t):

We note that we neglected the estimation error of coe�cients A and B in the discus-
sion above. Such errors are negligible in order of magnitude, because we estimated
those based on long enough observation for 2115 days.
On the other hand, if we are only interested in long term forecasting, then a

forecasting based on the long and short term trends would be more stable than that
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based on the whole data, because the variability of irregular component is much
larger than that of the long and short term trends.

6. Applications in Financial Engineering

Interest Rate Options Pricing

The series of daily increment of the interest rates and the swap rates can be approx-
imately expressed by a multivariate autoregressive model of order 2 on the basis of
the analysis given in this paper. On the other hand, a commonly used Ornstein-
Uhlenbeck process is a stochastic model of continuous time series and an autoregres-
sive model of order 1 is frequently employed for modeling such data as economic
indices by an analogy to the Ornstein-Uhlenbeck process. Our analysis shows that
autoregressive model of order 1 does not work well even for describing the irregular
series, because the lag 1 and the lag 2 coe�cient matrix A and B are both sig-
ni�cant, which are though quite free from non-stochastic component. This can be
understood if we recall the fact that sampling from continuous Ornstein-Uhlenbeck
process does not necessarily follow an autoregressive process of order 1, rather follows
an autoregressive moving average process. Our MAR(2) might be interpreted as an
approximation to such an autoregressive moving average process.
Furthermore, the principal component analysis applied to the residuals of the

MAR(2) in Section 4 provides that they have at least two main factors. This may
relate to the topic of the pricing theory of the derivatives with multi-factor stochastic
interest rates (for example, see Miura and Kishino, 1995 and Du�e, 1992).
Risk Management

Tomorrows interest rates and swap rates can be predicted by the formula given in
Section 5, with the error described. Those errors are the stochastic parts of the daily
move of the interest rates. The variance and covariance of the residuals of MAR(2) or
the prediction error can be used for the measurement ( especially the estimation of the
volatility) of the daily change of the value of the �nancial assets. For example, they
can be used for computing the Value at Risk (see Morgan Guaranty Trust Company,
1994).

7. Technical details

In this last section, we will explain some technical details of our data analysis for
those who are interested in re-analyzing our data or analyzing similar or updated
data. However, the following explanation does not perfectly describe our real process
of analyses because the real process is usually a series of trials and errors, which can
not, in general, be well organized beforehand.

7.1. Data Cleaning. An ASCII �le of the original data was obtained by the cour-
tesy of the Long Term Credit Bank of Japan. This raw data �le is now available
for public from stat.math.keio.ac.jp:/usr/pub/statlib/s.jpn by anonymous
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FTP. After reading the �le as a list in S by a function scan, we interpolated by S
function approx values for Sundays and holidays as well as for missing days. We also
adjusted the number of days in a year into 365 days by omitting values for the 29
th of February in leap years. The starting date is adjusted to the 1st of December,
1986 since in some of the series the data are not available prior to this date. The
o�cial discount rate was not included in the �le so that we picked up it from news
papers and organized as an S data set, too. Then we organized the seven interest
rates as a list yen.int of time series objects together with the o�cial discount rate,
in which each data has a time series attribute. The S list yen.int is also available
as an S dump �le yen int.s together with the yen int.d in a compressed tar �le
yen int.tar.Z by anonymous FTP as mentioned above.

7.2. Analysis. The decomposition of each series into three components, \long term
trend", \short term trend" and \irregular" is quite simply obtained by using the
following S function.

"decomp"<-
function(original, f1 = 365/length(original), f2 = f1/12)
{
#
# original: original time series
# f1: fraction of a yearly span
# f2: fraction of a monthly span

#
lowess1 <- lowess(original, f = f1)
long.trend <- lowess1$y
tsp(long.trend) <- tsp(original)
long.irregular <- original - long.trend
lowess2 <- lowess(long.irregular, f = f2)
short.trend <- lowess2$y
tsp(short.trend) <- tsp(original)
irregular <- long.irregular - short.trend

decomp <- list(long.trend = long.trend, short.trend = short.trend,
irregular = irregular)
class(decomp) <- "decomp"
return(decomp)
}

Fitting an MAR model to the vector time series of seven irregular series is done by
Splus (which is a commercial version of S) function ar. This function selects the order
of the autoregression so as to minimize AIC. We tried other larger orders like 3 or 4
than the 2 which is selected by this function, but we could not �nd any signi�cant
di�erence.
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The authors are indebted to Mr. Hirokazu Sugimoto at the Long Term Credit
Bank of Japan for his conversation with us on the behavior of interest rates.
A part of the results in this paper is previously reported in Shibata, Miura and

Uchida (1993).
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