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Abstract

We study a bootstrap method for stationary real-valued time series, which is
based on the method of sieves. We restrict ourselves to autoregressive sieve boot-
straps. Given a sample Xi,..., X, from a linear process {X;}icz, we approxi-
mate the underlying process by an autoregressive model with order p = p(n), where
p(n) — o0, p(n) = o(n) as the sample size n — 0. Based on such a model a bootstrap
process {X; }iew is constructed from which one can draw samples of any size.

We give a novel result which says that with high probability, such a sieve bootstrap
process { X7 }icm satisfies a new type of mixing condition. This implies that many
results for stationary, mixing sequences carry over to the sieve bootstrap process. As
an example we derive a functional central limit theorem under a bracketing condition.
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1 Introduction

In Bithlmann (1995b) one of us investigated what we like to call the AR(o0) sieve bootstrap
for time series. Following Biihlmann (1995b) first define an MA(oo) (or linear) process
{X¢}iem with expectation E[X¢] = px as follows:

Xi—px =3 e, to =1, (1.1)

i=0

where {e;},ez is an i.i.d. sequence with common distribution F, E[e;] = 0, E|e¢| < oo and
Y520 |¥j] < oo. The set of all joint distributions on IR* induced by such {X;}ez is a
semiparametric model indexed by {F' : [adF(z) = 0} x {{;}?2¢ € {1 : o = 1}. An
alternative definition leading to a slightly different set would be to require (1.1) for more
restricted distributions F' with Ele¢|* < oo, E[e;] = 0 but now only ask that {1;}2, € (.
We are concerned here with a subset of the MA(oo) processes which we call AR(00),
namely all processes representable as in (1.1) but also satisfying,

Y 6i(Ximj—px) = v, ¢0 = 1, (1.2)
7=0

with 3777 |¢;| < 0o. As is remarked in Biithlmann (1995a) an MA(oc) process is AR( o0)
if

U(z) =) ;2
7=0

has no zeros for |z| < 1, z € €. Both the AR(c0) and a fortiori MA(oo) models are
very rich. In particular all stationary Gaussian processes can be approximated weakly by
AR(00) models, the approximation we refer to is in the sense of weak convergence of finite
dimensional distributions of any order. In fact as we shall discuss elsewhere the sets of
stationary process distributions obtainable as limits from (1.1) or (1.2) is quite large but
far from exhaustive. Various authors, in particular Tsay (1992), implicitly, and Hjellvik
and Tjgstheim (1995) explicitly view ‘linear processes’ as being AR(o0) (or approximable
by AR(o0)).

Given this point of view it is reasonable given a sequence {X;}, 1 <t < n, from the
process to try to detect departures from this hypothesis of ‘linearity’ using various test
statistics. This is the point of view of Hjellvik and Tjgstheim (1995) and Tsay (1992), save
that Tsay considers parametric hypotheses such as Gaussian AR(k). When dealing with
the AR(oc0) hypothesis we face not only the choice of test statistics but also what critical
value to which we should refer these statistics. It is natural to try to estimate these critical
values using a bootstrap appropriate to this hypothesis. Such a bootstrap was suggested
by Kreiss (1988) and its properties were explored in part by Biihlmann (1995b). The
results of that paper establish that the sieve bootstrap we discuss below gives correct
approximations to the distributions of linear statistics such as Y7 A(Xi41,- ., Xegm),
where h is smooth, or smooth functions thereof.

The statistics of Hjellvik and Tjgstheim however involve estimates of the marginal
densities of X; and statistics proposed by other authors, cf. Rao and Gabr (1980), quite



naturally force us to look at complicated functionals of the empirical distribution of the
Xi's, (X, Xig1)'s, ete.

In this paper we introduce and study a variant of the sieve bootstrap for which we
can show approximate validity of bootstrap critical values for such complicated nonlinear,
nonregular statistics. In particular we prove a functional central limit theorem under a
bracketing condition for this sieve bootstrap. Such a result immediately implies that the
sieve bootstrap works for estimators 7}, which can be written as T,, = T'(P, ), where T is
a (compactly-) differentiable functional, in the sense of functional analysis, and P, is an
empirical measure. In doing this we introduce some new notions of mixing which may be
of independent interest.

In separate work joint with John Rice we shall develop systematically and study em-
pirically a number of test statistics and diagnostics to which the theory of this paper can
be applied.

2 The smoothed sieve bootstrap

The autoregressive sieve bootstrap has been studied in Kreiss (1988) and in Biihlmann
(1995b). We briefly recall the method as given in Biihlmann (1995b). Let {X;};ez be
a real-valued, stationary linear process as given in (1.1) which satisfies also the infinite
autoregressive representation as in (1.2). Given data Xy,..., X, from an AR(oco) model
as in (1.2), we use an autoregressive approximation as a sieve for the process {X;}iez. In
a first step we fit an autoregressive process, with increasing order p(n) as the sample size
n increases. We then estimate the coeflicients qAbLn, .. .,qum corresponding to model (1.2),
usually (but not necessarily) by the Yule-Walker estimates, which allows us to calculate
centered residuals. Then we resample by the bootstrap as in Efron (1979) from these
centered residuals yielding

g5, t €.

Finally we construct a sieve bootstrap sample according to an AR(p(n)) process with
coefficients ¢y, ..., ¢p,, e,

p(n) -
Z Gin( X, — X) = &f. (2.1)
7=0

It is then also shown in Bithlmann (1995b) that the sieve bootstrap process { X/ }iez can
be again inverted and represented as a linear process

X=X =Y Wjnci;, ton =1, (2.2)
j=0

where the coefficients {¢j7n}ﬁ0 arise by inverting the estimated autoregressive transfer

function ®,(z) = f(:%) </A5j7nzj, zeC, |z <1, ie.,

Uo(2) = 1/®u(2) = D jur’, 2 €T, |2 < 1.
7=0



Moreover the behavior of the coefficients {QLJ‘M}?‘;O is again controllable. Roughly speak-
ing, if 37724 7"[¢;] < oo (r € Nog) then there exists a random variable ng(w) such that
SUPp>ng D=0 jT|1Lj7n| < o0 almost surely, see Biithlmann (1995a). However, the bootstrap
process as represented in (2.2) is not known to be mixing with mixing coefficients that
can be bounded in some uniform sense over all realizations w of the underlying probability
space. This is due to the fact that the distribution of the innovations €} is discrete and
also changing with sample size n. All the literature for verifying some type of mixing
property of a linear process assumes that the distribution of the innovations has a density
or that the distribution is dominated by the Lebesgue measure in some neighborhood of
the expectation of the innovation, cf. Gorodetskii (1977), Doukhan (1994). We leave it
as an open question if the process in (2.1) or equivalently in (2.2) possesses some kind of
mixing property which holds uniformly over all w’s.

On the other hand, some type of mixing property of the sieve bootstrap process would
be desirable to describe and analyze the probabilistic behavior of the bootstrap process
as in (2.1) or in (2.2). It would basically say that if the underlying process as in (1.1)
is linear and mixing, then the sieve bootstrap process would be again linear and mixing.
In particular, many of the results for the underlying process {X;};cz would carry over to
the sieve bootstrap process { X/ }iez. As an example, the sieve bootstrap for empirical
processes would work under similar conditions as for the original process; this would be
a result in the spirit of Giné and Zinn (1990), which says in the i.i.d. set-up that the
bootstrap for empirical processes works if and only if the corresponding empirical process
for the original observations converges properly.

We will present a modification which achieves some mixing property for the sieve boot-
strap process. The idea is to resample residuals from a density estimate or equivalently, to
resample from a smooth empirical distribution of the residuals. The concept of construct-
ing bootstrap schemes by resampling from a smooth empirical distribution is not new
and has been studied in the i.i.d. set-up by Silverman and Young (1987), Hall, DiCiccio
and Romano (1989), Falk and Reiss (1989a,b). Somewhat related ideas are the Bayesian
bootstrap, introduced by Rubin (1981), the generally weighted bootstrap, cf. Haeusler,
Mason and Newton (1991), Mason and Newton (1992), and the ‘m out of n bootstrap’,
cf. Arcones and Giné (1989), Bickel, Gotze and van Zwet (1994) and Politis and Romano
(1994). For time series, the idea of weighted bootstrapping with weights that are now cor-
related is considered in Kiinsch (1989), formula (2.12), Bithlmann (1993) and Biihlmann
and Kiinsch (1994). Summarizing, it is often desirable to use smooth over non-smooth
bootstrap techniques. Therefore, a smoothed sieve bootstrap can be justified also from a
statistical point of view of gaining performance.

We describe now our bootstrap scheme. Denote by X;p,..., X, a sample from the
model as in (1.2). We always assume that the distribution of the innovations ¢; has a
density f.(.) with respect to the Lebesgue measure.

(I) Fit an autoregressive model of order p = p(n) — oo, p(n) = o(n) (n — o0) by
estimating the parameters with the Yule-Walker method (cf. Brockwell and Davis (1987),
Ch.8.1). We denote the corresponding estimates by ¢y ,,,..., ¢, , and the residuals by

p(n)

b= Gin(Xeej = X), Gon=1(t=p+1,....0).

=0



(IT) Compute a kernel density estimate for f.(.), based on the residuals,

—17— = -l = £ n
folw) = n—p) 7 3D (AT,
t=p+1
where i = h(n) is a bandwidth with & = h(n) — 0, h(n)~! = o(n) (n — o). Then

resample
e i, ~ fo(x 4 po)dx, t € L,
where fi. = [*°_ 2 f:(z)dz. The centering forces that ¢* has conditional mean zero.

(III) Generate the smoothed sieve bootstrap process {X; }ez as in (2.1).

In the following we denote bootstrap quantities which correspond to this resampling
scheme by an asterisk *. The smoothed sieve bootstrap inherits now the approximating
order p = p(n) and the bandwidth h = h(n) which have to be chosen by the statistician.

3 Mixing property of smoothed sieve bootstrap process

We will establish in this section some type of mixing property for the linear process { X; }+cz
in (1.1) or (1.2) and its smoothed sieve bootstrap counterpart {X; },ez in (2.2) or (2.1),
respectively. Denote by M® = o({X;;a < j < b}) the o-algebras with events that belong
to the ‘time interval’ [a, b]. Moreover we denote the strong-mixing coefficients by

For the bootstrap we analogously define
0" (k) = supagerto_perane|P[AN B] - PAIP[B],

where *M? = o({X75a <5< b))

Showing the strong-mixing property for the smoothed sieve bootstrap seems to be a
difficult task. We will introduce a weaker type of mixing condition which is still powerful
enough to establish quite general results and show that the smoothed sieve bootstrap
satisfies this weaker condition.

3.1 A new notion of mixing

The strong-mixing concept for a stationary process {X;}:cz is based on the variation
norm between the joint probability and the product of the marginal probabilities. This
definition allows to bound covariances

(Coo(Zy, Z2)] < 81 Zull | Zallpa (k). 1< g1102005 < o0, a7 445" + 45" = L.

for any measurable variable Z; € M% _, Zy € M5, cf. Doukhan (1994, Th.3, Ch.1.2.2).

—0o0?
However, we often only want to bound

|COv(gl(X—d1+17 .- '7X0)792(Xk7 .- '7Xk+d2—1))|7



with dy, dy € IN, g1, g2 measurable and ‘nice’ functions.

This suggests two generalizations. First, we only consider separation between finite-time
generated o-algebras, i.e., we consider M(idl-l—l and Mg"’drl, dy,dy € IN; this is not a
new generalization, cf. Doukhan (1994, Ch.1.1. and 1.3). Second, we restrict ourselves to
bound covariances only for certain subclasses of bounded functions. Our restrictions on
the function classes are in the same spirit as the sufficient and necessary conditions for
uniformity classes in the theory of weak convergence, cf. Bhattacharya and Rao (1976).
We restrict ourselves to such a subclass of functions so that we can estimate the difference
between the bootstrap and the underlying true covariances. In doing so we make use
of Berry’s Smoothing Lemma (cf. Lemma 5.4) which works under such more restrictive
assumptions. The new idea is here that we do not aim to bound a variation norm (between
the joint and the corresponding product of marginal probabilities) over any measurable
events in a o-subfield; this approach is explained in Doukhan (1994, Ch.1.1), where various
notions for mixing are defined as measures of dependence between o-subfields.

Let { X, }:ez be a stationary, real-valued process. We denote by wy(A) = supy ,¢ 4 [9(y)—
9(z),9: R =R, ACR? B(x,6) = {y;|lx-y|| <6} CRY xe R 6§ € RF, ||.|| the
Euclidean norm in R?, d € IN. Below we will also consider an averaged translated modulus
of oscillation, for this we denote by gy : R? — R, gy(x) =g(x+y) (x,y € R?) the trans-
lation of the function g(.). We also denote in the sequel by ||g||, = B|g(X1, ..., Xq)|?)"/?
(1 <g < o0)and by [|g|lec = supy |g(@1,...24)|.

Our definition of mixing comes along with a class C? of measurable functions from R?
to R which satisfies

sup |l < o0,

gecd

sup sup Elw,y (B((X1,...,Xq),0))] < const.§", for all 0 < 6 < 1, for some A\ > 0,
geClyeR4

de N. (3.1)

We then say that (C¢, \) satisfies (3.1). Of course, this depends also on the d-dimensional
marginal distribution of the underlying process {X;}+cz, but we usually do not mention
it. If clear from the context, or if the value of A is not of particular interest, we suppress
the constant A.

We now present our new mixing notion and define the so called v-mixing coefficient
for the stationary process {X;}icz as

Cov(gi(X_ay4+15--+5X0) 92( Xy o - Xigdo—1))
A g1llsolg2ll
where (C%, A1), (D%, \y) satisfy (3.1) for possibly different Ay, Ay > 0, dy, dy € IN.

Z/(k;Cdl,Dd2) = sup{ 701 € Cdl, gz € Ddz’},

The expectation in condition (3.1) is meant with respect to the probability measure of
the process {X;}icz for which we define the v-mixing coefficients. Whenever we write
v(.;C%, D% we implicitly mean that (C%, A\;), (D%, \;) satisfy (3.1) for some A, Ay > 0.
We say that the stationary process {X;};ez is v-mixing with respect to (C%, D%) if
v(k;Ch, D¥) — 0 for k — oco. The factor 1/(4]|g1]|s0]|g2]|co) in the definition of v-mixing
is essential in order to get good bounds for estimating covariances as given in the following
Lemma.



Lemma 3.1 Let {X,}iez be a stationary real-valued process and let C*, D (d1, d2 € IN)
be classes of measurable functions that satisfy the condition (3.1). Then

(i) v(k;CH,D%) < a(k),

(ii) for g1 €CH, g2 € D2, 1 < q1, @2, g3 < 00 with ¢;' + ;' + 5" = 1,
1Cov(g1(X gyt X0)s 92( X -+« Xigdy—1))| < 8l|gallgr [lg2llg /% (ks CH, D).
)

Proof: Assertion (i) follows immediately by definition. Assertion (ii) follows in the
same way as in the case of a-mixing sequences. We note that a first step

1Cov(g1(X_ay41s-- > X0), 92( Xk - - Xiwdy—1))| < 4]01] 0|92l 0o (k5 C T, DP2)

follows immediately by the definition of the v-mixing coefficient. Now in a second step we
consider the case [|g1]], < 00, [|g2]lc0 < 00, 1 < p < 0.

Define g7 = g1(X_g, 41, - - '7X0)1[|g1(X_d1+1,...,X0)|>M] and

9 = g1(X—ay 41, - - -3 X0) gy (X_g, 41, X0)|<M]- Thus

|Cov(g1(X—g,+15--->X0)s 92(Xk» - o - Xigdy—1))]

|Cov(gt™ + 91", g2( X+ - Xipgdo—1))|
AM || ga||sov(k; C, DP2) + 2]\ g2 ol 9777

IN

Now by Hélder’s inequality E|gy™"| < [|g1(|2M ~P*!. By choosing M such that [|g;[|[EM 7 =
v(k;Ch, D) we arrive at

|Cov(gi(X 415+, X0)s 92(Xis o - Xigrdp—1))]
< 6llgillpllgalloor’ TP (k; C% D®).

Now consider the situation ||g1||, < o0, [|g2]l; < 00, p~' 4+ ¢! < 1. Analogously as above

we define g, and g with a truncation point M’. Then with the covariance inequality

above and Hélder’s inequality,

|Cov(gi(X—g 415+, X0), 92(Xk» -« - Xigdo—1))]
< 6M||gallpr' TPk M D)+ 2M g1l 1195 oy o—1)-

Again by Holder’s inequality we get [|gy™[],/(p-1) < ngHg(p‘l)/pM’—q@—l)/pH. Hence
by choosing M’ such that ngHg(p‘l)/pM’—q@—l)/p = v VP(k; M D®) we complete the
proof. See also Doukhan (1994, Th.3, Ch.1.2.2) O

Often oneis interested in estimating covariances of products. Suppose that (C{l1 J AL
(Cdr, \,) all satisfy (3.1) for some Ay > 0, ds € N (s =1,...,7). Then we define

®f:1Cidi ={ 9y -9, rIDZ 4 —R;y;, ECZiJ, i; €{l,...,r},
j=1,...,m, m<r}. (3.2)
Then every ‘subproduct’ ®}”:ch"] C g:lcidi (j=1,...,m < r)and ( f:lcfli,/\) sat-
isfies again (3.1) with A = min{As;;1 < s < r}. This fact enables us to establish the

same moment inequalities for centered sums as for a-mixing sequences. We abbreviate by
r_Cl= fZICZ»di with CZ»di =Clfori=1,...,r.



Lemma 3.2 Let {X;}icz be a stationary real-valued process. Assume that g : RY— R €
C? satisfying (3.1). Then the following holds true.

(i) (Yokoyama’s inequality) If 3% (k + 1) =W G+ @¥ 71cd, 027710 < 00, § >
0, then

n 2r

E ‘"_1/2 Y (0(Xerts o Xepa) = Elg(Xegr, -0 Xega)])

t=1

< const.||g||5r4s, T € N.

(ii) (Andrews and Pollard’s inequality) Denote by Z; = g( Xi41, - - - Xegad)—Elg( X1, ..., Xa)],
t € 7. Assume |Z; < 1Vt, EB|Z* < m2%°, 6 > 0 and
S22 ok + )220/ Crtd) (ke @210t @370 < 00 Then

n 2r

n~/? Z(Q(XH-h coos Xeyd) —E[g( X1, -+ o, Xigd)])

t=1

E

< const. ((nTQ) +...+ (nTz)T) , me N

Proof: By using Lemma 3.1 (ii) the statements follow as in Yokoyama (1980) and
Andrews and Pollard (1994), respectively. a.

We remark that the bounds in Lemma 3.2 will often be applied to a class C% = {g; —
g2: 01, g2 € Cd}. But (éd, A) satisfies (3.1) whenever (Cd, A) does with the same A > 0. This
property comes into play when proving stochastic equicontinuity for v-mixing sequences,
see section 4.

Example 3.1. (Indicator functions of intervals in R?). The class of functions

Cd = {g : ]Rd — ]R;g = 1[(oo,bl]><...><(—oo,bd]]7 (bl, .. .,bd) € ]Rd}
satisfies (3.1) with A = 1 if the d-dimensional marginal distribution of {X;}:cz has a
bounded density.

Example 3.2. (Simple functions of convex sets in R?). The class of functions

cl = {g:]Rd —R;g= Zle[OJ]; ¢; € R, C; € {convex sets in ]Rd}}, m € N,

J=1

satisfies (3.1) with A = 1 if the d-dimensional marginal distribution of {Xt}tez has a
density f, such that f(x) = f(|[x[|) and f is differentiable with [ [f'(y)|dy < oo and
limy_o f(y) = 0, cf. Bhattacharya and Rao (1976, Th.3.1).

Example 3.3. (Lipschitz functions of order A). Denote by ||.|| the Euclidean norm on
R?. The class of functions

cd = {g ‘RY — ]R;sg{p lg(x)| < o0, qu}II){|g(X)— ay)|/lIx— YHA} <O < oo} ,0< A<,

satisfies (3.1) with the same A.



For the smoothed sieve bootstrap process { X} }:cz as described in section 2 we define

CO’U*(gl(Xidl_l_l,...7X8)792(X;7.--X;+d2_1)) .
Alg1lloo llg2ll 0 ’
g1 € Cd17 g2 € Dd2}7

v (k; Cdl,Dd2) = sup{

with (C%, ), (D%, \y) satisfying (3.1), where the expectations in (3.1) is taken with
respect to the true underlying process {X;}icz.

Fortunately, it suffices to take expectations in (3.1) with respect to the true underlying
probability measure so that this condition is verifiable.

3.2 Assumptions and main results

We present now the framework we are working with and make some general assump-
tions about the stationary, real-valued process {X;}:cz from which we observe a sample
X1, Xoe

(A1) Model (1.2) holds with ®(z) = >-%2, ¢;27 bounded away from zero for |z| < 1 (z € C)
and the autoregressive coefficients decay like |¢;| = O(;77), B > 3 (j — o0).

(A2) The innovations {e;}iez are i.i.d., with E|e;|* < oo and have a distribution which
admits a density f.(.) with respect to the Lebesgue measure. Moreover, [~ _|f.(z)—

fel@ + ¢)|dz < const.c, ¥ ¢ € R.

As an example, ARMA(p,q) models (p < 00, ¢ < 00) usually satisfy our assumptions (A1)
and (A2) with an exponential decay of the coefficients {¢;}2,.

Theorem 3.1 Assume that (A1) and (A2) with s=2 hold. Then
a(k) < const.k™7, v < —3/2.

Proof: This follows directly from Gorodetskii’s (1977) result. O

For the mixing property of the smoothed sieve bootstrap we assume in addition to
(Al) and (A2) the following general assumptions.

(A3) The kernel K(.) for estimating f.(.) satisfies: K(.) is a density of a probability
measure with [*_ oK (z)de =0, [*_ 2*K(z)dz # 0, [*_|K(z)— K(z + ¢)|de <
const.c ¥ ¢ € R, [Z_|z]°K(z)dx < oo for the same s as in (A2). Moreover, the
bandwidth satisfies

h(n)™! = o(n) (n — )
h(n) ™ maz{(log(n)p(n)/n)" CCT, p(n)="/FD} = O(1) (n — o),
P< -1, 9€NN,

for the same 3 as in (A1).

(A4) p(n) = o((n/log(n))"/2B=1)) for the same 3 as in (Al).



(A5) The pairs (C%, \;), (D%, );) (dy, do € IN) that come along with the definition of
the v-mixing coefficients satisfy (3.1) for some Ay, A3 > 0, where the expectation in
(3.1) is taken with respect to the probability measure of the process defined by (A1)
and (A2). Moreover we assume that inf, ca, [|g1]|oo > 0, inf cpa; [|g2][oo > 0.

Assumption (A4) is a usual assumption in autoregressive approximation, cf. An et al.
(1982) and Biithlmann (1995a). If the approximating order is chosen by the data through
AIC, then Shibata (1980) has shown that pajc ~ const.n’/(?%) which satisfies (A4). As-
sumption (A3) describes the interplay between the bandwidth h(n) and the approximating
order p(n), both depending on the sample size n. By taking p(n) = const.n'/(?7) (this is of
the order of pasc) and h(n) = const.n="/% (this is of the optimal order for estimating f.(.)
with respect to the mean square error), (A3) holds for any 8 > 3. Our assumption (A3)
restricts the bandwidth to be not too small; if the underlying density f. is very smooth, we
are allowed to take a large bandwidth h(n). Finally, we restrict ourselves to second-order
kernels K in (A3) so that we are able to resample from positive densities fé.

Theorem 3.2 Assume that (A1)-(A5) hold with 3 >3 in (A1), s >4 in (A2) and A >0
in (A5). Then

* SA
V*(k;Cdl,Dd2) < const.k” " STEDFIEE in probability,

where d = dy +dy, v = ([8] = 3)/2if ¢ N, 4" = (B —4)/2 if B € N.

Proof: The proof is given in section 5. O

Theorem 3.2 describes the ‘loss’ for the decaying speed of the bootstrap compared to
the original mixing coefficients. By setting a(k) < const.k™ (see Theorem 3.1), we can
always write

(B —4)sA
(26 = 3)(s(1+2X+d)+d)
If (A1) holds for all s € IN, then L < A(8 —4)/((26 — 3)(1 4+ 2A + d)). Note that often

the case dy = dy = 1 (d = 2) and A = 1 applies. We further note that the decay of
v*(.;C™N,Dy,) is still polynomial.

v*(k; %, D) < const. k™, I <

There is also some interest in the case where the autoregressive coefficients ¢; in model
(1.2) decay exponentially. As examples we mention ARMA(p, ¢) models (p < 00, ¢ < o).
Then the mixing coeflicients decay also at an exponential rate. Under more restrictive
assumptions than before, the smoothed sieve bootstrap process { X; }:cz is again v-mixing
with exponentially decaying coefficients. We strengthen the assumptions as follows.

A1’) Model (1.2) holds with ®(z) = %%, .27 bounded away from zero for |z| < 1+ &
7=0%7
and Y22 |¢;](1+ k)7 < oo for some k> 0.

(A3’) The same assumptions for the kernel K(.) as in (A3) but the bandwidth satisfies

h(n)™t = O(max{n®I0+2) 17221 for some 5 > 0,
0 < A < min{k,exp(1/(2C")) -1},

with the same x as in (A1’) and the same C' as in (A4’) below.

10



(A4°) p(n)/(Clog(n)) — 1 (n — ), C € RY.

Assumption (A1’) is almost the same as in Kreiss (1988). Assumption (A4’) reflects the
behavior of AIC, because pajc ~ const.log(n), cf. Shibata (1980). However we allow a
general constant C' € IR*. We now briefly discuss a specific choice of the constant C' in
(A4’) which then would simplify (A3’). The error for estimating ®(z) in |z| < 1 is given
by

sup |®,(2) — ®(2)| = O((log(n)/n)"'?) + O( f: |¢;]) almost surely.
1<t i=p(n)+1

If the behavior of the true coefficients {¢; }?‘;0 were known, a typical approach would be to

choose p(n) such that 372 )1y ;] ~ const.n™'/2. Assuming that |¢;| ~ const.(14 k)77
(j — o), we then would choose p(n) = ps(n) = Cilog(n) with C,, = (2log(1+k))™'. Then,
for the condition on the bandwidth 2(n)in (A3), A < &, nCrleg(1+2) = plog(1+2)/(2og(1+x))
and hence the only remaining condition on the bandwidth would be

h(n)™t = O(n*/?7"), for some 7 > 0.

Even with less knowledge we can simplify. Suppose we only know s (but not necessarily
the largest # in (A1%)), we then can set C' = C,, = (2log(1+ ))™" and the only condition
on the bandwidth would be as above.

Theorem 3.3 Assume that (A1°) with k > 0 and (A2) with s = 2 hold. Then
a(k) < const.p®, (1+ k)< p<1,

Proof: This follows directly from Gorodetskii’s (1977) result. O

For the smoothed sieve bootstrap we can show

Theorem 3.4 Assume that (A1°) with k > 0, (A2) with s > 4, (A3°), (A4’) with C € RT
and (A5) with A > 0 hold. Then

V*(k;Cdl,Dd2) < const.(p*)k, in probability,

(14 k) TFF0 < p" < 1, d = dy + dy,
where 0 < £ < min{k, exp(1/(2C")) — 1} and & is restricted to be appropriately close to

min{x, exp(1/(2C))— 1}.
In particular, by choosing C = C, = (2log(1 + k))™" in (A4’) we have

SA
(1 + I{)_S(1+2>‘+d)+d < p* < 1, d= d1 + dg.

Proof: The proof is outlined in section 5. a

Our results are stated in probability. One way to extend them to hold almost surely
is to assume higher moments in (A2), a faster decay of the autoregressive coefficients
in (Al) and then make use of the Borel-Cantelli Lemma, i.e., one would show complete
convergence.
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4 Smoothed sieve bootstrap and empirical processes

As an application of the results in section 3.2 we show that for the smoothed sieve boot-
strap, as some kind of conditionally stationary and mixing process, some general functional
central limit theorems hold. We closely follow the approach in Andrews and Pollard (1994),
which considers empirical processes for strong-mixing, stationary processes.

4.1 General empirical process

In the context of time series one often estimates a functional which depends on the g-
dimensional marginal distribution of the underlying real-valued process { X;}:cz. To show
that the bootstrap works for estimating such (smooth) functionals, one therefore has to
consider the empirical process based on the vectorized samples {X; = (X, ..., X¢44-1) ?:—qu-l
and {X7 = (X7,..., X/, ) "It respectively, of. Bithlmann (1994). We need then the
v-mixing property with respect to classes of functions: R? — IR.

Let F? be a class of measurable functions from R? — R. We introduce now some
notation and terminology. Denote by P a probability measure on (R?, B(R?)), B(R?) the
Borel g-algebra of R%, and by Pf = [ f(x)dP(z) for f € F9. Furthermore, we denote

by = weak convergence in the function space {**(F?) (in the Hoffmann-Jgrgensen sense,
cf. Giné and Zinn (1990)) for the metric induced by |[|.||4; here [|h||7e = suppezq [A( )],
where h : F4 — R. We restrict ourselves to uniformly bounded classes F? which satisfy
a bracketing condition in the following sense. Let p(f) = ||f|l2 = (E|f(X1)>)"/? be a
pseudo-norm on F? and denote by N(.) = N(.;F9 p) the bracketing number, which is
defined as

N(8) = m]\;[n{ Af1,. .., far and by, .. .0y with p(b;) < 6 Vi such that :

Vf e F9 i for which |f — fi| <b; }.

A bracketing condition assumes now a certain decay of N(¢) as a function of 6.

Example 4.1. (Parametric family of Lipschitz functions). Consider the class of func-
tions

Fi={f:R'—=R;f=f(;0), 00O},
with © a bounded subset of R* such that

sngf(-,@)Hoo < o0,

supsup |[{(f(x,0) — f(y,0))/||x—y|"} <C < o0, 0< A< 1, ||.|| the Euclidean norm on R,
Xy ¢

| f(x,61) — f(x,02)] < L(x)||61 = 62]|7, and||L||z < oo, 7 > 0, |.]| the Euclidean norm on RE.
Then F1 satisfies (3.1) with the same A and the bracketing number satisfies N(8; F9,p) <

const.6~%/7. This example is a straightforward extension of the example in Andrews and
Pollard (1994, Sec.2).
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We study here the smoothed sieve bootstrapped empirical process. The empirical
process {Z,(f)}rerq is defined by

n—g+1

Zo(f) = (n =g+ DA PS) =PI Palf)=(n—q+ 17" D ox, (/)

where 6x denotes the point mass at x € R?. Its smoothed sieve bootstrapped counterpart

{Z:(f)}seraq is defined by

n—g+1
Zi(f) = (n=q+ DR =B IP(ODs Pr(f)=(n—q+1)7" > dx:(f).
=1

Lemma 4.1 (Stochastic Equicontinuity) Assume that (A1)-(A4) hold with s > 4 in (A2)
and that the function class F? satisfies (A5) for some X > 0. Moreover assume that
every [ € F? has at most countably many discontinuities. In addition we assume that the
parameters s in (A2), X in (A5) and the dimension ¢ are such that

o0 * sAC

ZkQT—Qk_W A2 Hrg—29)+74—29) 27+ 0) < 00,

k=1

where r € N, C' > 0 and v* as in Theorem 3.2. Moreover assume that
1
/ 2 EFOIN (2 FO o) < o0
0

for the same r and C'. Then Vn > 0 36 > 0 such that

limsup(E*| sup |Z:(f) = Z2(9)|")" < n in probability.
n—00 p(f—g)<5

Proof: We use the v-mixing property of { X;};cz with respect to the pair (@' F?, @7 1 F9)
(see Theorem 3.2) and follow the proof of Theorem 2.2 in Andrews and Pollard (1994). In
particular, we make use of our Lemma 3.2 (ii). First, we work with p*(f) = (E*| f(X7})[?)"/?
and then use the fact that

sup [p"(f)* = p(f)*] = op(1)

JeF4
This inequality holds since X7 4, X1 in probability (cf. Lemma 5.5 below) and, by (A5),
F?is a uniformity class, cf. Bhattacharya and Rao (1976, Th.2.4). O

Under the conditions of Lemma 4.1 the empirical process Z,(.) converges weakly to
some Gaussian process Z(.), indexed by F9, with p-continuous sample paths and with

E[Z(f)]=0, f € F?and

CoolZ(f). Z(g) = 3" Cou(f(Xo). g(X1).

k=—0c0

see Andrews and Pollard (1994, Cor.2.3).
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In the following we sometimes make statements about weak convergence, holding in
probability in a universal sense over all f € F9. Let R%(f) be a random variable with
respect to the bootstrap measure IP* and R( f) a random variable of the underlying original
probability space. We say that

RY(f1),... R (fn) 4, R(f1),..., R(fn) in probability universal over F¢

if the following holds. For every continuity point x € R” of the distribution of
(R(f1)s.. ., R(fn)), Y > 0 dng = no(n) 3 a sequence {A,},en of (universal) sets such
that,

PR (f1),.. . R:(fn) <a]=TP[R(f1),..., R(fr) < z]| < non theset A,, Yn > ng,
P[A,] — 1 (n — ),
where for each n € IN, the set A, is universal V fy,..., fp € F4, h € IN.

Theorem 4.1 Assume the conditions of Lemma 4.1. Moreover assume fidi-convergence

(Z2( 1)y s Z0( 1)) AN (Z(f1),-.-, Z(fn)) in probability universal over F1.
Then
Zr = 7 in probability.

Proof: The result follows directly from fidi-convergence and Lemma 4.1. a

Fidi-convergence of Z7 is usually not directly available because { X/ };cy satisfies by
Theorem 3.2 only a v-mixing property. This does not allow to use one of the usual blocking
techniques.

Theorem 4.2 Assume the conditions of Lemma 4.1. Then
Zr = 7 in probability.
Proof: It remains to show fidi-convergence
(Z2( 1)y s Z0( 1)) =, (Z(f1),..., Z(fr)) in probability universal over F*.

We remark here that every f € F? is ()-continuous, ) being the probability measure
of (X1,...,X,), which admits a density with respect to the Lebesgue measure, i.e., f is
continuous except on a set with -probability zero. This is a requirement we will need.

For simplicity we sketch here the case with h = 1 and ¢ = 1, the general case for h € IN
follows by the Cramér-Wold device, and for ¢ € N in a straightforward, but notationally
more awkward way. We follow the same strategy as in Bithlmann (1995b, proof of Th. 3.3)
by applying a truncation technique to the moving average representation of X, see (2.2).
We write X/, = Z]‘]\io QLJ‘me’i?_j and define Zy ,,(.) by means of the variables {X;M}{f\;l.
By exploiting the M-dependence we get in a straightforward way as in Biithlmann (1995b),

wu(f) &, Zny(f) in probability universal over F9. (4.1)
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Here Zps(f) is the limit based on the truncated X ar’s, X¢ s = Z]‘]\io piei_;.
Then we show that the effect of replacing Z(f) by Z;; \,(f) and Z(f) by Za(f) becomes
negligible for large M. We first show that

P[Zu(f) < ] — PIZ(f) < ] (M — o), ¢ € R. (4.2)

Formula (4.2) follows by showing

M o0
> Cov(f(Xom), [(Xpa) — D, Cov(f(Xo), f(Xk)) (M — ).
k=—M

k=—0c0

But this holds true by using the mixing property of {X;};cz, the boundedness and Q-

continuity of f and (Xoar, X&) N (X0, Xk) (M — o0), c.f. Bhattacharya and Rao
(1976, Th 1.3).
Finally we show that ¥Yn > 0 3Mq(n) Ing(n) such that

Var*(Z; y(f) = Z3(f)) <nonaset Ay y,Vn > ng VM > Mo (4.3)

where A, 1 is universal V f € F? and P[4, 1] — 1 (n — o0).
We have by the mixing property of { X}, }iez (see Theorem 3.2, the bounds for the mixing
coefficients translate directly to the truncated process { X/ }iez),

Var'(Z; s(f) - Z:(0)
const. (B°11(X5) = F(XG ap) =B [FOXG) + B LFNG pp )24/ 4
< const(E71J(X5) = FXGEa) PP+ on aset 4,5, 8> 0

A IA

where A,, 5 is universal V f € F? and IP[A,, 3] — 1 (n — o0); we have used the boundedness
of f € F? and the covariance inequality in Lemma 3.1 (ii).

Now by using the convergence of the bootstrap probabilities to the original probabilities
(see also Lemma 5.5), these convergences holding on some set A, 3, universal Vf € F4,
with IP[A,, 3] — 1 (n — 00), we arrive at, cf. Bhattacharya and Rao (1976, Th 1.3),

E*|f(X]) - f( §7M)|2 —E|f(Xo) — f(Xom)* = o(1) on the set A, 3. (4.4)

But E|f(Xo) — f(Xom)]? — 0 (M — o00), hence by setting A,1 = A,2 N A, 3 we have
shown (4.3).

By (4.1)-(4.3) we have shown Z}(f) AN Z(f) in probability universal over F4. o
We just remark that by replacing (A1), (A3) and (A4) by (A1), (A3") and (A4) re-

spectively, we get better bounds on the v-mixing coefficients and hence need less conditions
on the bracketing numbers.

4.2 Empirical process on R’

We specialize now our results from section 4.1 to the classical empirical process on RY,
g € IN, based on the vectorized observations {Xt}?:_lq-l_1 and {X7 ?:—qu-l’ respectively.
That is 77 = {1(_ox;x € R?}, where (—o00,x]| = x?_ (—o0,;]. By Example 3.1 we
know that (A5) holds for 77 with A = 1, if the ¢g-dimensional marginal distribution of the
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process {X;}icz has a bounded density. Denote the c.d.f. of X; and X} by F(q)(.) and
F(q)*(.), respectively. Defining ‘<’ componentwise, the empirical process and its bootstrap
counterpart can then be written as

n—g+1

Zu(x)=(n—q+ )7 3 (Ix,e = FV(x)), x € RY,
t=1
n—g+1

Zix)=(n—q+ )7 3 (Ixrc - FP"(x)), x € R

t=1

Corollary 4.1 Assume that (A1)-(A4) hold with s > 4 in (A2) and sup,cg f-(z) < cc.
In addition we assume that the parameters s in (A2) and the dimension q are such that

o0

Z k2T-2k_W*(S(3+4Tq—2q>j4crq—2q>(2r+C> < 00, for some C' >0, r e N
k=1
ith r > 29 * s in Th 3.2
with r > ——————— as in Theorem 3.2.
1-c/i2+cy )

Then
Zr = 7 in probability,

where Z is the limiting Gaussian process of Z, with mean zero and

k=—0c0

Proof: The result is basically a consequence of Theorem 4.2. Note that the assumption
sup,ep fe(x) < co implies that the ¢g-dimensional marginal distribution of (X, ..., X¢yg)
has a bounded density and hence A = 1. We remark that it is sufficient to work in the
cadlag-space D([0, 1]9). This claim follows by applying the Continuous Mapping Theorem
to the continuous map

H :D([0,1]7) — D(R?), 2 — zo (F(l)7 .. _7F(1))T7

cf. Bithlmann (1994, Remark on p.998).
We work with A = 1 (see above) for the condition in Lemma 4.1, the bracketing condition
then holds since the index space [0,1]7 is compact and hence N(§) < const.67%9. d.

5 Proofs

In the sequel we denote by B(.5) the Borel o-algebra of a metric space 5. We first outline
the idea for proving Theorem 3.2, the same idea is used for proving Theorem 3.4. The
strategy is to split the problem into two cases with small and large separation lags k.

If k is large (or arbitrary), we use Gorodetskii’s (1977) result by exploiting the linear
representation (2.2) and the fact that ¥ i.i.d. ~ fo(x 4 ji.)dz. We will show in Lemma
5.3 that a*(k) < const.h(n)~'k~"" in probability, yielding for k& > h(n)~'/¢, ¢ € RT,

v*(k;Ch, D) < o*(k) < const.k™("=%) in probability. (5.1)
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On the other hand, we use first the general fact that

Vi (k;C, D) < a(k)

|Cov (g1( X7 g 415+ X0), 92( X555 Xjipg,—1))
Morll 20

COv(gl(X—drl-lv .- '7X0)792(Xk7 .- '7Xk+d2—1))|

- Morlo 92l g

+ supf

where the supremum is over all g; € C%, g, € D%,

The denominator 4||gy|s||g2]|cc can be bounded by a constant, uniformly over €%, D9
by assumption (A5). For bounding the difference of the covariances we introduce now a
moment (pseudo-) norm

1€1 = Qallear par = sup{] /Q(X)(dQl —dQ2)(2)|;9 € ¢ © DR, (5.2)

where Q1, Qo are probability measures on (R %, B(R% %)), (for the definition of C @ D
see (3.2)).

The difference of covariances can now be bounded like

|COU*(91(Xid1+1a o X3)s 920 X1 Xiga, 1)

COv(gl(X—drl-lv ) XO)?Q?(ka ) Xk+d2—1))|

‘/RM 9192 (3)(dP* — dIP)(x)

_ / (XA (x) / g (x)dP*(x) + / gi(x)dP(x) / d gg(x)d]P(X)‘
R R%*2 R R
< P = Pllea paz + [P = Pllea pa, ([[1]]e0 + [|g2[]o0)-
This means that we bound
v*(k;Ch D) < a(k) + const.||P* — P||oq Dia- (5.3)

In Lemma 5.5 we will give the bound ||IP* —IP[|ca; pa, = Op(b(n)), where b(n)is a function
of the tuning parameters p(n) and h(n) and of the sample size n. In particular under the
assumptions about the bandwidth f(n) in (A3) we get ||IP* — P||ca; pa, = Op(h(n)°) for
some ¢ € RY, yielding then for k < h(n)~'¢, |[|IP* = P||pa, pi < const.k™C¢ in probability
and hence for k < h(n)~1/¢,

v*(k; €™M, D%) < const.k™¢° in probability. (5.4)
Putting (5.1) and (5.4) together, we minimize over (.

We now give some preliminary results. The first one is dealing with moving-average
representations of autoregressive approximations. We recall the definition for the coeffi-
cients {QLJ‘M}?‘;O, which arise by inverting the estimated autoregressive transfer function,
compare with (2.1) and (2.2).

Lemma 5.1 Assume that model (1.2) holds with ; i.i.d.,E[e;] = 0, E|e,|* < 00. Suppose
that ®(z) is bounded away from zero for |2| <1 (2 € C) (see (A1)), 32724 5"|¢;] < 00 and
p(n) = o((n/log(n))"/?+2)) + € N. Then
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(i) there exists a random variable no(w) such that

o0
sup Z]'TW]‘M < oo almost surely.

(ii) for a(n) — oo, a(n) = o(n) (n — o),

sta(n)

Sup Z i — 5] = Oa(n)p(n)™") + O(a(n)(log(n)/n)"'?) almost surely.

s€Np 7=s+1

Proof: Assertion (i) is Theorem 3.1 in Bithlmann (1995a). Assertion (ii) follows from
Theorem 3.2 in Bithlmann (1995a). o

Lemma 5.2 Assume the conditions of Lemma 5.1, but more generally we assume that
Ele)|* < o0, s > 4. Suppose that the kernel K(.) for estimating f.(.) is a probability
density and it satisfies [ axK(x)dx =0, [*_ 2*K(x )dw £0, [7 |2 K(2)de < > for
the same s and the bandwidth satisfies h(n) — 0, h(n)~! o(n) (n — o0). Then

(i) B*[(7)"] = B[()"] = Op(h(n)*) + Op(p(n)(log(n)/n)"/?) + op(p(n)™"), w < s.
(i) E¥|e7|* = Op(1).
Proof: We have

E[(e])Y] = /OO Jlo+i)de = (n—p)y 3 /OO Bt o+ €4y — fio )V K (w)du

t=p+1
= (n—p)™" > (&2)" + Op(jic + h(n)?). (5.5)
t=p+1
We write
Etn=¢Et+ Qe+ R — (X — 1ix) Z o;, (5.6)
7=0

where Qi = 0_o(Sjn = djn)(Ximj = X), Ri = S520(Gjin — 65)(Xi—j = X). Here ¢, =
(1,5 - - - Pp,n) are the solutions of the theoretical Yule-Walker equations , ,¢, = —7,, cf.
Brockwell and Davis (1987, Ch.8.1). Now similarly as in Bithlmann (1995b, proof of Lem.

5.3),

Qual € max (60— 050l (Z) Xej -
= O((log(n)/n) 1/2 Z | X¢—; — X|, the O-term being a.s., (5.7)
=0
cf. Hannan and Kavalieris (1986, Th.2.1).,
E|R: ,|" < const.(lil |6;1)" = o(p(n)™"), (5.8)
J=p+
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here we have used Baxter’s inequality, cf. Bithlmann (1995a, proof of (3.1)).
Since fi. = (n —p)~' 3f_, 4 é1,n We complete the proof by using (5.5)-(5.8) and applying
a binomial expansion for (é;,)".

The assertion (ii) follows immediately by using the representation as in (5.5). o

5.1 Mixing property for large separation lags

Lemma 5.3 Assume that (A1)-(A4) hold with s = 4 in (A2). Then
a*(k) < const.h(n) k™" in probability,

where v* is defined as in Theorem 3.2.

Proof: We use representation (2.2) and check the conditions in Gorodetskii (1977).
His condition (i) follows immediately by (A3), (ii) follows by Lemma 5.2 and (iii) by (A1)
and (A4), cf. Bithlmann (1995a, Lem.2.2 and Th.3.1). The constant v* shows up by using
Lemma 5.1 (i) (note that this Lemma handles only r € IN). 0

We remark here that Lemma 5.3 holds true if we weaken the assumptions on the

bandwidth A(n) in (A3) to the only condition h(n) = o(1), h(n)™! = o(n) (n — ).

5.2 Moment norm between bootstrap and true measure

Denote by ]Pk;dl,dQ[C] = ]P[(X—d1+17‘“7X07Xk7“‘7Xk+d2—1) S C], C € B(]Rd), d =
di + do, E € IN. Analogously we define ]Pz;dl,dz)[-] for the bootstrap. By the definition

of the v-mixing coefficients and the boundedness of g; € C%, g, € D% from above and
below we have, cf. (5.3),

v*(k; 0™, D) < alk) + const.|Pra, 4, — P o lleas pazs [-llear car as in (5.2).
Our next aim is to bound

1%y dp — Phidy o llcar pas -

To do so we will compare this quantity with the variation norm of a ‘smoothed difference’
kedy.dy — Phidy,dp- The variation norm for a probability measure () on (R9, B(R?)) is
defined as

1Qllv;a =2 sup [Q[C]].
CeB(RY)

In the sequel we denote by ()1 x Q5 the convolution of some signed measures ()1 and 5.
Lemma 5.4 (Berry’s Smoothing Lemma)

Let 6(n) = o(1) (n — 00) and {Ks(n)neN be a sequence of probability measures on R4
with sup,en Ksi({llz] < 6(n)}) > 1/2 ¥n € N, ||.|| the Euclidean norm on R?. Assume
that (A1) and (A2) hold and (C%, A1), (D%, \y) satisfy (3.1), with expectations taken with
respect to the probability measure of the true underlying process as defined by (A1) and
(A2). ThenVn € N, Vk € N

1P, 4y = Prady sl paz < const.|(Phy, 4, — Pridy dy) * Kooy lvia + const.é(n)?,

where A = min{ Ay, Ao}, d = dy + ds.
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Proof: We use formula (11.26) in Bhattacharya and Rao (1976). To bound the covari-
ance norm we need a bound for some type of modulus of oscillation; but our assumption
(Ab) is exactly tailored to this problem so that we can bound this modulus of oscillation
uniformly over the classes C%, D% by const.6(n)’. O

Now we make use of the smoothing idea: choose Ks(,) smooth such that its Fourier
transform vanishes for large arguments. Together with Berry’s Lemma (Lemma 5.4) we
will show

Lemma 5.5 Assume that (A1)-(A5) hold with s > 4 in (A2) and X > 0 in (A5). Then
Vdy,dy € N, Vk € N
sA
IP%idrdy = Prsar sz llewr pae = Op(E(n) THAFITE), d = dy + do,
where £(n) = max{h(n), p(n)(log(n)/n)"/2, p(n)=" /DY 9 < 5 -1, ¥ € N.
Moreover, the assumptions about the bandwidth h(n) in (A3) yield
R
H]P};§d1,d2 - ]Pk;dudzucdl ,Dd2 = OP(h(n)S(HHde)v d=dy +dy,

Proof: To simplify notation we always denote by ¥ an integer < — 1. By Lemma 5.4
we want to bound

Py dy — Priay.ap) * Kseyllvia =2 sup  |[(Prg, gy — Proay ap) * Ky [C]]-
CEB(RY)

We choose K, similar as in Bhattacharya and Rao (1976, (13.8)-(13.11)), i.e., K(, has
a density

sin(ax)

)*m a density on IR.

n
H gé(n),zs(wi), ga,zm(w) = const.(
i=1 ax

Then sup,en Ksin)lllz]| < 6(n)] > 1/2 for n large enough (this is a condition in Lemma
5.4) and for the Fourier-transform of Ks(,) we have

/Rd exp(iy - X)Ks(ny(dx) = 0if y ¢ [—2s6(n)~", 256(n)_1]d, (5.9)

where y - x = Y4, y;2;, cf. Bhattacharya and Rao (1976, (10.9)).
In the sequel we denote by J(n;d) = [~2s8(n)~",2s6(n)"1]%. Let C € B(R?). Then by

Fourier inversion
0P 0, = Pt K € conste [ [ lefi 30 = ot a,(o)ldbedy. (5:10)

where g4, 4,(x) = Elexp(ix - X)], X = (X_g;415---> X0, Xty - - - Xp4dy—1), and analo-
gously for ¢ ;4 -

To bound (5.10) much of the work boils down in estimating [¢}.4, 4,(X) = @y 0, (X)]-
We use the linear representations (1.1) and (2.2) and write

o0 k-|—d2—1
sy (X) = eap(ix - px1) [ @e(h;-x) J[ e:(f; - %),
7=0 j=1
_ o0 R k-|—d2—1 R
Gty (%) = eaplix- X1 [ perlhy - x) [ lfy - %),
=0 j=1
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where h; = (¢j—d1j-17 B O TN L) N A ¢j+k+d2—1)/7 f; = (¢k—j7 ceey ¢k+d2—1—j)/7 h; and f;
analogously with v, ,, instead of ¢, x = (z1,...24,, Zg,41,- .-, 24), X = (Tay41,-- ., 2q),
@e(2) = Elexp(izeo)], ger () = E[exp(izey)], * € R. Here we made the convention that
¢j2¢j7n:0f0rj<0.

We then obtain

|k dy (X) = Phisdy do (X))
q(n)
< lewp(ix- X1) — exp(ix - px1)| + | [ wer(hj-x) = ] ¢=(h; - x)|

7=0
o0 R o0 k-l—dQ 1 k-l—dQ 1
+ 1 II eeyx)= I welhy-xl+1 I eer(fi-%) H p-(f; - %)
j=q(n)+1 j=q(n)+1 j=1

= I(x)+1I(x)+ 111(x)+ IV(x), (5.11)
where ¢(n) — oo, q(n) = o(n) (n — o).
By a Taylor expansion we get

sup  I(x) < 6(n)"t0Op(n1?), (5.12)

x€eJ(n;d)

Again by using a Taylor expansion we get

o0

sup III(x)< sup > |per(hy-x) = oe(hy - x)|
x€J(n;d) xeJ(mid) j—g(n)+1

< sup Z (|h; - x|+ |h; - x|) < const.6(n) Lq(n)~" almost surely, (5.13)
XEJ(n;d) j:q(n)-l—l

where the last inequality follows from Lemma 5.1 (i) and |¢;| = O(j7") (j — o), which

implies Z(]?iq(n)—l—l |h;| = o(q(n)~%).
Most work is needed for bounding //(x) (and similarly IV (x)). We have

q(n)
I(x) < ZI%*(BJ"X)—%*(hJ"X)|+les*(hy"X)—%(hy"X)l

i=0
= I1.1(x)+ 11.2(x).
By a Taylor expansion we get
(n) k+q(n)+ds—1 R
sup [I1.1(x) < const.é(n Z %7 —Yin| + Z |05 — V5l
x€eJ(n;d) j= i=k

= 5(n)™" (Olg(m)p(n)™") + O(q(n)(log(n)/n)'1)) almost surely, (5.14)

where we used Lemma 5.1(ii) for the last inequality.
For bounding I1.2(x) we consider

per(hj - x) — pe(hy - x)
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n 00

= (n—p)™* Z exp(th; - x(é, — ,&5))/ exp(th; - xuh(n))K(u)du — p.(h; - x)

t=p+1 e
= =YD ewpliby X — AN+ B(h(0):5,0) - pelly x), (5.15)
t=p+1
where
k)| < by exl(n) [ julK (a)da
< const.h(n)h; - x|.

On the other hand,
(n=p)=" D eap(ihy-x(én = fic)) = ¢e(hy - X)

= (n—-p)! Z exp(th; -xe)(14 D(h(n),t;j,%x)) — ¢-(h; - x), (5.16)

where
|D(h(n)vt;jvx)| < |hj 'X||ét7n — fle — 5t|7

and hence, see (5.7)-(5.8),

(n= )™t 3 D), 53)| = by - x] (Op(p(n)(log(w)/m)/?) + op(p(n) ")) .(5.17)

t=p+1

(Here the Op-terms are uniformly bounded in j and x).
Moreover, by the i.i.d. structure of {¢;};cz and the boundedness of exp(iz), =z € IR, we
get by some well known exponential inequalities, e.g. Bernstein’s inequality,

n

sup (n—p)™" > expliner) — e(w)| = Op(n™/**7), for any O < 5 < 1/2,
T _nr t:p-l—l

where r is an arbitrary exponent in R*. This is a stronger version of formula (2.4) in
Singh (1981). But this implies

n

sup |(n— p)_1 Z exp(th; - xet) — .(h; - x)|
x€J(n;d) t=p+1

= Op(n'/*7), for any O < 5 < 1/2, (5.18)

where the Op-term is uniformly bounded in j.
Therefore by (5.15)-(5.18) we get

(o 11.200) < o(n)”" (Op(h(n)) + Op(p(n)(log(n)/n)!/?) + op(p(n)™"))
+ Op(g(n)n=217), 5 > 0. (5.19)
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Hence by (5.14) and (5.19)

su(p )II(X) (5.20)
xeJ(n;d

= 6(n)™" (Op(h(n)) + Op((q(n) + p(n))(log(n)/n)'/%) + Op(g(n)p(n)™"))

+ Op(g(n)n=' 1), 5> 0. (5.21)

Similarly we get

sup IV(x)=0( sup [1I(x)). (5.22)
x€eJ(n;d) x€eJ(n;d)

Then we have by (5.11)-(5.13), (5.20)-(5.22),
xeS}l(p ) | Chidy dp (X) — Py do (X))
6(n)™" (Op(g(n)™") + Op(h(n)) + Op((g(n) + p(n))(log(n)/n)'/?) + Op(q(n)p(n)~"))
Op(q(n)n=/>¥7)
)7 (0p(a(n)™) + Op(h(n)) + Op((q(n) + p(n)(log(n)/n)/) + Op(q(n)p(n) ")) ,
(5.23)

+ A

8(n

where the last bound follows since n > 0 is arbitrary.

What remains is to integrate the error term in (5.23), see (5.10). Let 7(n) — oo, r(n) =
o(n) (n — o). Denote by Cy = C' N [—r(n),r(n)]?, Cy = C\ Ci. By Markov’s inequality
we get

P sy do * Koy [C2]] = Or(0)™%), [Phiay g, * K[ Co]l = Op(r(n)™%). (5.24)
Hence by (5.10), (5.23) and (5.24)
|(]Pz;d1,d2 - ]Pk;d17d2) * ](5(71)[0”

< () s(n) 1 (0p(g(n) ™) + Op(h(n)) + Op((q(n) + p(n))(log(n)/n)/%) + Op(g(n)p(n)™"))
+ Op(r(n)™),

and therefore by Lemma 5.4
Pty = Prity s lleas pe = Op(r(n)!6(n)~71E(n)) + Op(r(n) ™) + O(8(n)"), (5.25)

where £(n) = max{q(n)~", h(n), (g(n) + p(n))(log(n)/n)"/%, q(n)p(n)~"}. 2

By choosing g(n) = p(n)"/"+1) we get £(n) = max{h(n), p(n)(log(n)/n)'/2, p(n)=7"/(T+1)}.

By choosing the optimal orders for r(n) and é(n) the right hand side in (5.25) is of the
order

Op(¢(n)THITT3),

This completes the proof. a
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5.3 Proofs of Theorem 3.2 and Theorem 3.4

We first give the proof of Theorem 3.2. To do this, we combine the results in Section 5.1
and 5.2. By Lemma 5.3 we know

v (k; €M, D% < (k) < const.h(n) k™" in probability,
and hence,
if k> (h(n)"")Y¢ then v*(k;CH, D%) < const.k= "=, ¢ e R, (5.26)
On the other hand we have by (5.3), Theorem 3.1 and Lemma 5.5 for k < (h(n)~")'/¢,
v (k;Ch, D2y < a(k)+ const. [Py 4, — Pray apllcer pa

const. k™7 + Op(h(n)m)

A

g
< const.k™" + const.k” +d%d in probability, ( € RT. (5.27)

By choosing ¢ yielding the best rate for v*(k;C%, D), ie., ¢ = v*(s(1+A+d)+d)/(s(1+
2A +d) + d), we obtain by (5.26) and (5.27) the result of Theorem 3.2.

We now sketch the arguments for proving Theorem 3.4 which are very similar to the
proof of Theorem 3.2.
We first show the following: there exists a random variable ng(w) such that

p(n)
sup Z |6;.n|(1+ R)! < 0o almost surely, 0 < & < min{x,exp(1/(2C)) - 1}. (5.28)
nzno(w) j=0

We have for any 0 < ¢ < 1/2,

sip [B,(2) = (=) € max |G — G+ RP £ S I+ &)
|2|<1+7 1<j<p(n) j=p(n)+1

= O((log(n)/n)""*O(n**7¢) + o(1) = o(1) almost surely.

(Use the result of Hannan and Kavalieris (1986, Th.2.1) and Baxter’s inequality, compare
with (5.7) and (5.8)).

Formula (5.28), together with (A1’), implies that, for n sufficiently large, we can invert
®,(2)in |2| <1+ &, we then get instead of Lemma 5.1,

sup |1Lj,n| < const.(1 + /%)_j almost surely,
n>ng(w)
sta(n) R
sup i — 5] = O(a(n)(1+ &)"P™) + O(a(n)(log(n)/n)*/?) almost surely.
s€No j=s+1

Lemma 5.2 remains the same with p(n) = O(log(n)). Lemma 5.3 becomes

o*(k) < const.h(n)™1p*, almost surely, (14 #)7! < p < 1. (5.29)
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(Compare with Theorem 3.3).

Lemma 5.4 remains exactly the same. It is plausible that we get the same bound as in
Lemma 5.5, since the assumptions (A1)-(A5) are generally weaker than the assumptions
of Theorem 3.4, i.e.,

SA
1P dr — Phidr,dslleas paz = Op(h(n)s0H333+d ) d = dy + ds. (5.30)

However, we have to re-examine the interplay of the tuning parameters h(n) and p(n).
Some quantities change now, we choose ¢(n) = const.log(n) such that the (old) expres-
sion ¢(n)~Y becomes something of the order n='/2. By (A4’), p(n) ~ Clog(n) and in-
stead of the (old) expression p(n)~? we have (1 4+ #)~P("). Then £(n) in (5.25) equals
max{h(n),n=?+7 log(n)(1+ &)~P(M}, note that for deriving this the Op(g(n)n="/2+m)-
term in (5.20) dominates in the derivation of (5.23).

By choosing i appropriately close to min{x,exp(1/(2C)) — 1}, we know that by (A3’)
max{h(n),log(n)(1+ #)~P(M} = O(h(n)). This then explains that (5.30) holds.

Now by (5.29), for k > —log(h(n)™4)/log(T), p < T < 1,

v*(k;C%, D%) < const.(p/7)F in probability,
and by (5.30), for k < —log(h(n)™')/log(t), p< T < 1

SA
V*(k;Cdl,Dd2) < const.TF TA+DFE i probability.

s(14+A+d)+d
By choosing 7 = g:(0+2x+d+d we arrive at

SA
V*(k;Cdl,Dd2) < const.ﬁk s(1+23+d)+d = const.(p*)k in probability,

(14 &) TR0 < p* < 1.
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