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Abstract

We study a bootstrap method for stationary real-valued time series, which is
based on the method of sieves. We restrict ourselves to autoregressive sieve boot-
straps. Given a sample X1; : : : ; Xn from a linear process fXtgt2ZZ, we approxi-
mate the underlying process by an autoregressive model with order p = p(n), where
p(n)!1; p(n) = o(n) as the sample size n!1. Based on such a model a bootstrap
process fX�

t
gt2ZZ is constructed from which one can draw samples of any size.

We give a novel result which says that with high probability, such a sieve bootstrap
process fX�

t
gt2ZZ satis�es a new type of mixing condition. This implies that many

results for stationary, mixing sequences carry over to the sieve bootstrap process. As
an example we derive a functional central limit theorem under a bracketing condition.
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1 Introduction

In B�uhlmann (1995b) one of us investigated what we like to call the AR(1) sieve bootstrap
for time series. Following B�uhlmann (1995b) �rst de�ne an MA(1) (or linear) process
fXtgt2ZZ with expectation IE[Xt] = �X as follows:

Xt � �X =
1X
j=0

 j"t�j ;  0 = 1; (1.1)

where f"tgt2ZZ is an i.i.d. sequence with common distribution F , IE["t] = 0, IEj"tj <1 andP1
j=0 j j j < 1. The set of all joint distributions on IR1 induced by such fXtgt2ZZ is a

semiparametric model indexed by fF :
R
xdF (x) = 0g � ff jg

1
j=0 2 `1 :  0 = 1g. An

alternative de�nition leading to a slightly di�erent set would be to require (1.1) for more
restricted distributions F with IEj"tj2 <1, IE["t] = 0 but now only ask that f jg1j=0 2 `2.
We are concerned here with a subset of the MA(1) processes which we call AR(1),
namely all processes representable as in (1.1) but also satisfying,

1X
j=0

�j(Xt�j � �X) = "t; �0 = 1; (1.2)

with
P1

j=0 j�j j <1. As is remarked in B�uhlmann (1995a) an MA(1) process is AR( 1)
if

	(z) =
1X
j=0

 jz
j

has no zeros for jzj � 1, z 2 IC. Both the AR(1) and a fortiori MA(1) models are
very rich. In particular all stationary Gaussian processes can be approximated weakly by
AR(1) models, the approximation we refer to is in the sense of weak convergence of �nite
dimensional distributions of any order. In fact as we shall discuss elsewhere the sets of
stationary process distributions obtainable as limits from (1.1) or (1.2) is quite large but
far from exhaustive. Various authors, in particular Tsay (1992), implicitly, and Hjellvik
and Tj�stheim (1995) explicitly view `linear processes' as being AR(1) (or approximable
by AR(1)).

Given this point of view it is reasonable given a sequence fXtg, 1 � t � n, from the
process to try to detect departures from this hypothesis of `linearity' using various test
statistics. This is the point of view of Hjellvik and Tj�stheim (1995) and Tsay (1992), save
that Tsay considers parametric hypotheses such as Gaussian AR(k). When dealing with
the AR(1) hypothesis we face not only the choice of test statistics but also what critical
value to which we should refer these statistics. It is natural to try to estimate these critical
values using a bootstrap appropriate to this hypothesis. Such a bootstrap was suggested
by Kreiss (1988) and its properties were explored in part by B�uhlmann (1995b). The
results of that paper establish that the sieve bootstrap we discuss below gives correct
approximations to the distributions of linear statistics such as

Pn
t=1 h(Xt+1; : : : ; Xt+m),

where h is smooth, or smooth functions thereof.
The statistics of Hjellvik and Tj�stheim however involve estimates of the marginal

densities of Xt and statistics proposed by other authors, cf. Rao and Gabr (1980), quite
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naturally force us to look at complicated functionals of the empirical distribution of the
Xt's, (Xt; Xt+1)'s, etc.

In this paper we introduce and study a variant of the sieve bootstrap for which we
can show approximate validity of bootstrap critical values for such complicated nonlinear,
nonregular statistics. In particular we prove a functional central limit theorem under a
bracketing condition for this sieve bootstrap. Such a result immediately implies that the
sieve bootstrap works for estimators Tn which can be written as Tn = T (Pn), where T is
a (compactly-) di�erentiable functional, in the sense of functional analysis, and Pn is an
empirical measure. In doing this we introduce some new notions of mixing which may be
of independent interest.

In separate work joint with John Rice we shall develop systematically and study em-
pirically a number of test statistics and diagnostics to which the theory of this paper can
be applied.

2 The smoothed sieve bootstrap

The autoregressive sieve bootstrap has been studied in Kreiss (1988) and in B�uhlmann
(1995b). We brie
y recall the method as given in B�uhlmann (1995b). Let fXtgt2ZZ be
a real-valued, stationary linear process as given in (1.1) which satis�es also the in�nite
autoregressive representation as in (1.2). Given data X1; : : : ; Xn from an AR(1) model
as in (1.2), we use an autoregressive approximation as a sieve for the process fXtgt2ZZ. In
a �rst step we �t an autoregressive process, with increasing order p(n) as the sample size
n increases. We then estimate the coe�cients �̂1;n; : : : ; �̂p;n corresponding to model (1.2),
usually (but not necessarily) by the Yule-Walker estimates, which allows us to calculate
centered residuals. Then we resample by the bootstrap as in Efron (1979) from these
centered residuals yielding

"�t ; t 2 ZZ:

Finally we construct a sieve bootstrap sample according to an AR(p(n)) process with
coe�cients �̂1;n; : : : ; �̂p;n, i.e.,

p(n)X
j=0

�̂j;n(X
�
t�j � �X) = "�t : (2.1)

It is then also shown in B�uhlmann (1995b) that the sieve bootstrap process fX�
t gt2ZZ can

be again inverted and represented as a linear process

X�
t � �X =

1X
j=0

 ̂j;n"
�
t�j ;  ̂0;n = 1; (2.2)

where the coe�cients f ̂j;ng
1
j=0 arise by inverting the estimated autoregressive transfer

function �̂n(z) =
Pp(n)

j=0 �̂j;nz
j ; z 2 IC; jzj � 1, i.e.,

	̂n(z) = 1=�̂n(z) =
1X
j=0

 ̂j;nz
j ; z 2 IC; kzk � 1:
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Moreover the behavior of the coe�cients f ̂j;ng
1
j=0 is again controllable. Roughly speak-

ing, if
P1

j=0 j
rj jj < 1 (r 2 IN0) then there exists a random variable n0(!) such that

supn�n0
P1

j=0 j
rj ̂j;nj <1 almost surely, see B�uhlmann (1995a). However, the bootstrap

process as represented in (2.2) is not known to be mixing with mixing coe�cients that
can be bounded in some uniform sense over all realizations ! of the underlying probability
space. This is due to the fact that the distribution of the innovations "�t is discrete and
also changing with sample size n. All the literature for verifying some type of mixing
property of a linear process assumes that the distribution of the innovations has a density
or that the distribution is dominated by the Lebesgue measure in some neighborhood of
the expectation of the innovation, cf. Gorodetskii (1977), Doukhan (1994). We leave it
as an open question if the process in (2.1) or equivalently in (2.2) possesses some kind of
mixing property which holds uniformly over all !'s.

On the other hand, some type of mixing property of the sieve bootstrap process would
be desirable to describe and analyze the probabilistic behavior of the bootstrap process
as in (2.1) or in (2.2). It would basically say that if the underlying process as in (1.1)
is linear and mixing, then the sieve bootstrap process would be again linear and mixing.
In particular, many of the results for the underlying process fXtgt2ZZ would carry over to
the sieve bootstrap process fX�

t gt2ZZ. As an example, the sieve bootstrap for empirical
processes would work under similar conditions as for the original process; this would be
a result in the spirit of Gin�e and Zinn (1990), which says in the i.i.d. set-up that the
bootstrap for empirical processes works if and only if the corresponding empirical process
for the original observations converges properly.

We will present a modi�cation which achieves some mixing property for the sieve boot-
strap process. The idea is to resample residuals from a density estimate or equivalently, to
resample from a smooth empirical distribution of the residuals. The concept of construct-
ing bootstrap schemes by resampling from a smooth empirical distribution is not new
and has been studied in the i.i.d. set-up by Silverman and Young (1987), Hall, DiCiccio
and Romano (1989), Falk and Reiss (1989a,b). Somewhat related ideas are the Bayesian
bootstrap, introduced by Rubin (1981), the generally weighted bootstrap, cf. Haeusler,
Mason and Newton (1991), Mason and Newton (1992), and the `m out of n bootstrap',
cf. Arcones and Gin�e (1989), Bickel, G�otze and van Zwet (1994) and Politis and Romano
(1994). For time series, the idea of weighted bootstrapping with weights that are now cor-
related is considered in K�unsch (1989), formula (2.12), B�uhlmann (1993) and B�uhlmann
and K�unsch (1994). Summarizing, it is often desirable to use smooth over non-smooth
bootstrap techniques. Therefore, a smoothed sieve bootstrap can be justi�ed also from a
statistical point of view of gaining performance.

We describe now our bootstrap scheme. Denote by X1; : : : ; Xn a sample from the
model as in (1.2). We always assume that the distribution of the innovations "t has a
density f"(:) with respect to the Lebesgue measure.

(I) Fit an autoregressive model of order p = p(n) ! 1, p(n) = o(n) (n ! 1) by
estimating the parameters with the Yule-Walker method (cf. Brockwell and Davis (1987),
Ch.8.1). We denote the corresponding estimates by �̂1;n; : : : ; �̂p;n and the residuals by

"̂t;n =

p(n)X
j=0

�̂j;n(Xt�j � �X); �̂0;n = 1 (t = p+ 1; : : : ; n):
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(II) Compute a kernel density estimate for f"(:), based on the residuals,

f̂"̂(x) = (n� p)�1h�1
nX

t=p+1

K(
x� "̂t;n

h
);

where h = h(n) is a bandwidth with h = h(n) ! 0; h(n)�1 = o(n) (n ! 1). Then
resample

"�t i:i:d: � f̂"̂(x+ �̂")dx; t 2 ZZ;

where �̂" =
R1
�1 xf̂"̂(x)dx. The centering forces that "�t has conditional mean zero.

(III) Generate the smoothed sieve bootstrap process fX�
t gt2ZZ as in (2.1).

In the following we denote bootstrap quantities which correspond to this resampling
scheme by an asterisk �. The smoothed sieve bootstrap inherits now the approximating
order p = p(n) and the bandwidth h = h(n) which have to be chosen by the statistician.

3 Mixing property of smoothed sieve bootstrap process

We will establish in this section some type of mixing property for the linear process fXtgt2ZZ
in (1.1) or (1.2) and its smoothed sieve bootstrap counterpart fX�

t gt2ZZ in (2.2) or (2.1),
respectively. Denote by Mb

a = �(fXj; a � j � bg) the �-algebras with events that belong
to the `time interval' [a; b]. Moreover we denote the strong-mixing coe�cients by

�(k) = supA2M0
�1;B2M1

k
jIP[A\ B]� IP[A]P [B]j:

For the bootstrap we analogously de�ne

��(k) = supA2�M0
�1

;B2�M1
k
jIP[A \ B]� IP[A]P [B]j;

where �Mb
a = �(fX�

j ; a � j � bg).
Showing the strong-mixing property for the smoothed sieve bootstrap seems to be a

di�cult task. We will introduce a weaker type of mixing condition which is still powerful
enough to establish quite general results and show that the smoothed sieve bootstrap
satis�es this weaker condition.

3.1 A new notion of mixing

The strong-mixing concept for a stationary process fXtgt2ZZ is based on the variation
norm between the joint probability and the product of the marginal probabilities. This
de�nition allows to bound covariances

jCov(Z1; Z2)j � 8kZ1kq1kZ2kq2�
1=q3(k); 1 � q1; q2; q3 � 1; q�11 + q�12 + q�13 = 1:

for any measurable variable Z1 2 M0
�1; Z2 2 M1

k , cf. Doukhan (1994, Th.3, Ch.1.2.2).
However, we often only want to bound

jCov(g1(X�d1+1; : : : ; X0); g2(Xk; : : : ; Xk+d2�1))j;
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with d1; d2 2 IN, g1; g2 measurable and `nice' functions.
This suggests two generalizations. First, we only consider separation between �nite-time
generated �-algebras, i.e., we consider M0

�d1+1
and Mk+d2�1

k , d1; d2 2 IN; this is not a
new generalization, cf. Doukhan (1994, Ch.1.1. and 1.3). Second, we restrict ourselves to
bound covariances only for certain subclasses of bounded functions. Our restrictions on
the function classes are in the same spirit as the su�cient and necessary conditions for
uniformity classes in the theory of weak convergence, cf. Bhattacharya and Rao (1976).
We restrict ourselves to such a subclass of functions so that we can estimate the di�erence
between the bootstrap and the underlying true covariances. In doing so we make use
of Berry's Smoothing Lemma (cf. Lemma 5.4) which works under such more restrictive
assumptions. The new idea is here that we do not aim to bound a variation norm (between
the joint and the corresponding product of marginal probabilities) over any measurable
events in a �-sub�eld; this approach is explained in Doukhan (1994, Ch.1.1), where various
notions for mixing are de�ned as measures of dependence between �-sub�elds.

Let fXtgt2ZZ be a stationary, real-valued process. We denote by !g(A) = supy;z2A jg(y)�

g(z)j, g : IRd ! IR; A � IRd, B(x; �) = fy; kx� yk � �g � IRd, x 2 IRd; � 2 IR+; k:k the
Euclidean norm in IRd, d 2 IN. Below we will also consider an averaged translated modulus
of oscillation, for this we denote by gy : IRd ! IR; gy(x) = g(x+y) (x;y 2 IRd) the trans-
lation of the function g(:). We also denote in the sequel by kgkq = (IEjg(X1; : : : ; Xd)j

q)1=q

(1 � q <1) and by kgk1 = supx jg(x1; : : :xd)j.
Our de�nition of mixing comes along with a class Cd of measurable functions from IRd

to IR which satis�es

sup
g2Cd

kgk1 <1;

sup
g2Cd

sup
y2IRd

IE[!gy (B((X1; : : : ; Xd); �))] � const:��; for all 0 < � < 1; for some � > 0;

d 2 IN: (3.1)

We then say that (Cd; �) satis�es (3.1). Of course, this depends also on the d-dimensional
marginal distribution of the underlying process fXtgt2ZZ, but we usually do not mention
it. If clear from the context, or if the value of � is not of particular interest, we suppress
the constant �.

We now present our new mixing notion and de�ne the so called �-mixing coe�cient
for the stationary process fXtgt2ZZ as

�(k; Cd1;Dd2) = supf

����Cov(g1(X�d1+1; : : : ; X0); g2(Xk; : : :Xk+d2�1))

4kg1k1kg2k1

���� ; g1 2 Cd1 ; g2 2 Dd2g;

where (Cd1 ; �1); (D
d2 ; �2) satisfy (3.1) for possibly di�erent �1; �2 > 0; d1; d2 2 IN:

The expectation in condition (3.1) is meant with respect to the probability measure of
the process fXtgt2ZZ for which we de�ne the �-mixing coe�cients. Whenever we write
�(:; Cd1;Dd2) we implicitly mean that (Cd1; �1); (D

d2 ; �2) satisfy (3.1) for some �1; �2 > 0.
We say that the stationary process fXtgt2ZZ is �-mixing with respect to (Cd1 ; Dd2) if
�(k; Cd1 ; Dd2)! 0 for k!1. The factor 1=(4kg1k1kg2k1) in the de�nition of �-mixing
is essential in order to get good bounds for estimating covariances as given in the following
Lemma.
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Lemma 3.1 Let fXtgt2ZZ be a stationary real-valued process and let Cd1 ; Dd2 (d1; d2 2 IN)
be classes of measurable functions that satisfy the condition (3.1). Then

(i) �(k; Cd1 ;Dd2) � �(k),

(ii) for g1 2 Cd1 ; g2 2 Dd2 , 1 � q1; q2; q3 � 1 with q�11 + q�12 + q�13 = 1,
jCov(g1(X�d1+1; : : : ; X0); g2(Xk; : : :Xk+d2�1))j � 8kg1kq1kg2kq2�

1=q3(k; Cd1;Dd2).

Proof: Assertion (i) follows immediately by de�nition. Assertion (ii) follows in the
same way as in the case of �-mixing sequences. We note that a �rst step

jCov(g1(X�d1+1; : : : ; X0); g2(Xk; : : :Xk+d2�1))j � 4kg1k1kg2k1�(k; C
d1;Dd2)

follows immediately by the de�nition of the �-mixing coe�cient. Now in a second step we
consider the case kg1kp <1, kg2k1 <1, 1 < p <1.
De�ne gupp1 = g1(X�d1+1; : : : ; X0)1[jg1(X�d1+1;:::;X0)j>M ] and

glow1 = g1(X�d1+1; : : : ; X0)1[jg1(X�d1+1;:::;X0)j�M ]. Thus

jCov(g1(X�d1+1; : : : ; X0); g2(Xk; : : :Xk+d2�1))j

= jCov(glow1 + g
upp
1 ; g2(Xk; : : :Xk+d2�1))j

� 4Mkg2k1�(k; C
d1 ;Dd2) + 2kg2k1IEjg

upp
1 j:

Now by H�older's inequality IEjgupp1 j � kg1k
p
pM

�p+1. By choosingM such that kg1k
p
pM

�p =

�(k; Cd1 ;Dd2) we arrive at

jCov(g1(X�d1+1; : : : ; X0); g2(Xk; : : :Xk+d2�1))j

� 6kg1kpkg2k1�
1�1=p(k; Cd1;Dd2):

Now consider the situation kg1kp <1; kg2kq <1, p�1 + q�1 < 1. Analogously as above
we de�ne gupp2 and glow2 with a truncation point M 0. Then with the covariance inequality
above and H�older's inequality,

jCov(g1(X�d1+1; : : : ; X0); g2(Xk; : : :Xk+d2�1))j

� 6M 0kg1kp�
1�1=p(k; Cd1 ;Dd2) + 2M 0kg1kpkg

upp
2 kp=(p�1):

Again by H�older's inequality we get kgupp2 kp=(p�1) � kg2k
q(p�1)=p
q M 0�q(p�1)=p+1. Hence

by choosing M 0 such that kg2k
q(p�1)=p
q M 0�q(p�1)=p = �1�1=p(k; Cd1;Dd2) we complete the

proof. See also Doukhan (1994, Th.3, Ch.1.2.2) 2

Often one is interested in estimating covariances of products. Suppose that (Cd11 ; �1); : : : ;
(Cdrr ; �r) all satisfy (3.1) for some �s > 0; ds 2 IN (s = 1; : : : ; r). Then we de�ne


r
i=1 C

di
i = f gi1 � : : : � gim : IR

Qm

j=1
dij ! IR; gij 2 C

dij
ij
; ij 2 f1; : : : ; rg;

j = 1; : : : ; m; m � rg: (3.2)

Then every `subproduct' 
m
j=1C

dij
ij

� 
r
i=1C

di
i (j = 1; : : : ; m � r) and (
r

i=1C
di
i ; �) sat-

is�es again (3.1) with � = minf�s; 1 � s � rg. This fact enables us to establish the
same moment inequalities for centered sums as for �-mixing sequences. We abbreviate by

r
i=1C

d = 
r
i=1C

di
i with Cdii = Cd for i = 1; : : : ; r.
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Lemma 3.2 Let fXtgt2ZZ be a stationary real-valued process. Assume that g : IRd ! IR 2
Cd satisfying (3.1). Then the following holds true.

(i) (Yokoyama's inequality) If
P1

k=0(k+ 1)r�1��=(2r+�)(k;
2r�1
i=1 C

d;
2r�1
i=1 C

d) <1, � >
0, then

IE

�����n�1=2
nX
t=1

(g(Xt+1; : : : ; Xt+d)� IE[g(Xt+1; : : : ; Xt+d)])

�����
2r

� const:kgk2r2r+�; r 2 IN:

(ii) (Andrews and Pollard's inequality) Denote by Zt = g(Xt+1; : : :Xt+d)�IE[g(X1; : : : ; Xd)],
t 2 ZZ. Assume jZtj � 1 8t, IEjZtj

2 � �2+�; � > 0 andP1
k=0(k + 1)2r�2��=(2r+�)(k;
2r�1

i=1 C
d;
2r�1

i=1 C
d) <1. Then

IE

�����n�1=2
nX
t=1

(g(Xt+1; : : : ; Xt+d)� IE[g(Xt+1; : : : ; Xt+d)])

�����
2r

� const:
�
(n�2) + : : :+ (n�2)r

�
; r 2 IN:

Proof: By using Lemma 3.1 (ii) the statements follow as in Yokoyama (1980) and
Andrews and Pollard (1994), respectively. 2.

We remark that the bounds in Lemma 3.2 will often be applied to a class ~Cd = fg1 �
g2; g1; g2 2 C

dg. But ( ~Cd; �) satis�es (3.1) whenever (Cd; �) does with the same � > 0. This
property comes into play when proving stochastic equicontinuity for �-mixing sequences,
see section 4.

Example 3.1. (Indicator functions of intervals in IRd). The class of functions

Cd =
n
g : IRd ! IR; g = 1[(1;b1]�:::�(�1;bd]]; (b1; : : : ; bd) 2 IRd

o

satis�es (3.1) with � = 1 if the d-dimensional marginal distribution of fXtgt2ZZ has a
bounded density.

Example 3.2. (Simple functions of convex sets in IRd). The class of functions

Cd =

8<
:g : IRd ! IR; g =

mX
j=1

cj1[Cj]; cj 2 IR; Cj 2 fconvex sets in IRdg

9=
; ; m 2 IN;

satis�es (3.1) with � = 1 if the d-dimensional marginal distribution of fXtgt2ZZ has a
density f , such that f(x) = ~f(kxk) and ~f is di�erentiable with

R1
0 j ~f 0(y)jdy < 1 and

limy!1
~f(y) = 0, cf. Bhattacharya and Rao (1976, Th.3.1).

Example 3.3. (Lipschitz functions of order �). Denote by k:k the Euclidean norm on
IRd. The class of functions

Cd =

(
g : IRd ! IR; sup

x
jg(x)j <1; sup

x;y
fjg(x)� g(y)j=kx� yk�g � C <1

)
; 0 < � � 1;

satis�es (3.1) with the same �.
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For the smoothed sieve bootstrap process fX�
t gt2ZZ as described in section 2 we de�ne

��(k; Cd1;Dd2) = supf

�����Cov
�(g1(X

�
�d1+1

; : : : ; X�
0); g2(X

�
k ; : : :X

�
k+d2�1

))

4kg1k1kg2k1

����� ;
g1 2 C

d1 ; g2 2 D
d2g;

with (Cd1 ; �1); (Dd2 ; �2) satisfying (3.1), where the expectations in (3.1) is taken with
respect to the true underlying process fXtgt2ZZ.
Fortunately, it su�ces to take expectations in (3.1) with respect to the true underlying
probability measure so that this condition is veri�able.

3.2 Assumptions and main results

We present now the framework we are working with and make some general assump-
tions about the stationary, real-valued process fXtgt2ZZ from which we observe a sample
X1; : : : ; Xn.

(A1) Model (1.2) holds with �(z) =
P1

j=0 �jz
j bounded away from zero for jzj � 1 (z 2 IC)

and the autoregressive coe�cients decay like j�j j = O(j��); � > 3 (j !1).

(A2) The innovations f"tgt2ZZ are i.i.d., with IEj"tj
s < 1 and have a distribution which

admits a density f"(:) with respect to the Lebesgue measure. Moreover,
R1
�1 jf"(x)�

f"(x+ c)jdx � const:c, 8 c 2 IR.

As an example, ARMA(p,q) models (p <1, q <1) usually satisfy our assumptions (A1)
and (A2) with an exponential decay of the coe�cients f�jg

1
j=0.

Theorem 3.1 Assume that (A1) and (A2) with s=2 hold. Then

�(k) � const:k�
 ; 
 < � � 3=2:

Proof: This follows directly from Gorodetskii's (1977) result. 2

For the mixing property of the smoothed sieve bootstrap we assume in addition to
(A1) and (A2) the following general assumptions.

(A3) The kernel K(.) for estimating f"(:) satis�es: K(:) is a density of a probability
measure with

R1
�1 xK(x)dx = 0;

R1
�1 x2K(x)dx 6= 0,

R1
�1 jK(x) � K(x + c)jdx �

const:c 8 c 2 IR,
R1
�1 jxjsK(x)dx < 1 for the same s as in (A2). Moreover, the

bandwidth satis�es

h(n)�1 = o(n) (n!1)

h(n)�1maxf(log(n)p(n)=n)#=(2(#+1)); p(n)�#
2=(#+1)g = O(1) (n!1);

# < � � 1; # 2 IN;

for the same � as in (A1).

(A4) p(n) = o((n=log(n))1=(2(��1))) for the same � as in (A1).
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(A5) The pairs (Cd1; �1); (D
d2 ; �2) (d1; d2 2 IN) that come along with the de�nition of

the �-mixing coe�cients satisfy (3.1) for some �1; �2 > 0, where the expectation in
(3.1) is taken with respect to the probability measure of the process de�ned by (A1)
and (A2). Moreover we assume that infg12Cd1 kg1k1 > 0; infg22Dd2 kg2k1 > 0.

Assumption (A4) is a usual assumption in autoregressive approximation, cf. An et al.
(1982) and B�uhlmann (1995a). If the approximating order is chosen by the data through
AIC, then Shibata (1980) has shown that p̂AIC � const:n1=(2�), which satis�es (A4). As-
sumption (A3) describes the interplay between the bandwidth h(n) and the approximating
order p(n), both depending on the sample size n. By taking p(n) = const:n1=(2�) (this is of
the order of p̂AIC) and h(n) = const:n�1=5 (this is of the optimal order for estimating f"(:)
with respect to the mean square error), (A3) holds for any � > 3. Our assumption (A3)
restricts the bandwidth to be not too small; if the underlying density f" is very smooth, we
are allowed to take a large bandwidth h(n). Finally, we restrict ourselves to second-order
kernels K in (A3) so that we are able to resample from positive densities f̂"̂.

Theorem 3.2 Assume that (A1)-(A5) hold with � > 3 in (A1), s � 4 in (A2) and � > 0
in (A5). Then

��(k; Cd1;Dd2) � const:k
�
� s�

s(1+2�+d)+d in probability;

where d = d1 + d2, 

� = ([�]� 3)=2 if � =2 IN, 
� = (� � 4)=2 if � 2 IN.

Proof: The proof is given in section 5. 2

Theorem 3.2 describes the `loss' for the decaying speed of the bootstrap compared to
the original mixing coe�cients. By setting �(k) � const:k�
 (see Theorem 3.1), we can
always write

��(k; Cd1;Dd2) � const:k�
L; L <
(� � 4)s�

(2� � 3)(s(1 + 2�+ d) + d)
:

If (A1) holds for all s 2 IN, then L < �(� � 4)=((2� � 3)(1 + 2�+ d)). Note that often
the case d1 = d2 = 1 (d = 2) and � = 1 applies. We further note that the decay of
��(:; Cd1;Dd2) is still polynomial.

There is also some interest in the case where the autoregressive coe�cients �j in model
(1.2) decay exponentially. As examples we mention ARMA(p; q) models (p <1; q <1).
Then the mixing coe�cients decay also at an exponential rate. Under more restrictive
assumptions than before, the smoothed sieve bootstrap process fX�

t gt2ZZ is again �-mixing
with exponentially decaying coe�cients. We strengthen the assumptions as follows.

(A1') Model (1.2) holds with �(z) =
P1

j=0 �jz
j bounded away from zero for jzj � 1 + �

and
P1

j=0 j�j j(1 + �)j <1 for some � > 0.

(A3') The same assumptions for the kernel K(:) as in (A3) but the bandwidth satis�es

h(n)�1 = O(maxfnClog(1+�); n1=2��g); for some � > 0;

0 < � < minf�; exp(1=(2C))� 1g;

with the same � as in (A1') and the same C as in (A4') below.
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(A4') p(n)=(Clog(n))! 1 (n!1), C 2 IR+.

Assumption (A1') is almost the same as in Kreiss (1988). Assumption (A4') re
ects the
behavior of AIC, because p̂AIC � const:log(n), cf. Shibata (1980). However we allow a
general constant C 2 IR+. We now brie
y discuss a speci�c choice of the constant C in
(A4') which then would simplify (A3'). The error for estimating �(z) in jzj � 1 is given
by

sup
jzj�1

j�̂n(z)� �(z)j = O((log(n)=n)1=2) + O(
1X

j=p(n)+1

j�j j) almost surely:

If the behavior of the true coe�cients f�jg
1
j=0 were known, a typical approach would be to

choose p(n) such that
P1

j=p(n)+1 j�j j � const:n�1=2. Assuming that j�j j � const:(1+�)�j

(j !1), we then would choose p(n) = p�(n) = C�log(n) with C� = (2log(1+�))�1. Then,
for the condition on the bandwidth h(n) in (A3'), � < �, nC�log(1+�) = nlog(1+�)=(2log(1+�))

and hence the only remaining condition on the bandwidth would be

h(n)�1 = O(n1=2��); for some � > 0:

Even with less knowledge we can simplify. Suppose we only know � (but not necessarily
the largest � in (A1')), we then can set C = C� = (2log(1+ �))�1 and the only condition
on the bandwidth would be as above.

Theorem 3.3 Assume that (A1') with � > 0 and (A2) with s = 2 hold. Then

�(k) � const:�k; (1 + �)�1 < � < 1;

Proof: This follows directly from Gorodetskii's (1977) result. 2

For the smoothed sieve bootstrap we can show

Theorem 3.4 Assume that (A1') with � > 0, (A2) with s � 4, (A3'), (A4') with C 2 IR+

and (A5) with � > 0 hold. Then

��(k; Cd1 ;Dd2) � const:(��)k; in probability;

(1 + ~�)
� s�
s(1+2�+d)+d < �� < 1; d = d1 + d2;

where 0 < ~� < minf�; exp(1=(2C))� 1g and ~� is restricted to be appropriately close to
minf�; exp(1=(2C))� 1g.
In particular, by choosing C = C� = (2log(1+ �))�1 in (A4') we have

(1 + �)
� s�
s(1+2�+d)+d < �� < 1; d = d1 + d2:

Proof: The proof is outlined in section 5. 2

Our results are stated in probability. One way to extend them to hold almost surely
is to assume higher moments in (A2), a faster decay of the autoregressive coe�cients
in (A1) and then make use of the Borel-Cantelli Lemma, i.e., one would show complete
convergence.
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4 Smoothed sieve bootstrap and empirical processes

As an application of the results in section 3.2 we show that for the smoothed sieve boot-
strap, as some kind of conditionally stationary and mixing process, some general functional
central limit theorems hold. We closely follow the approach in Andrews and Pollard (1994),
which considers empirical processes for strong-mixing, stationary processes.

4.1 General empirical process

In the context of time series one often estimates a functional which depends on the q-
dimensional marginal distribution of the underlying real-valued process fXtgt2ZZ. To show
that the bootstrap works for estimating such (smooth) functionals, one therefore has to
consider the empirical process based on the vectorized samples fXt = (Xt; : : : ; Xt+q�1)g

n�q+1
t=1

and fX�
t = (X�

t ; : : : ; X
�
t+q�1)g

n�q+1
t=1 , respectively, cf. B�uhlmann (1994). We need then the

�-mixing property with respect to classes of functions: IRq ! IR.

Let F q be a class of measurable functions from IRq ! IR. We introduce now some
notation and terminology. Denote by P a probability measure on (IRq;B(IRq)), B(IRq) the
Borel �-algebra of IRd, and by Pf =

R
f(x)dP (x) for f 2 F q. Furthermore, we denote

by ) weak convergence in the function space l1(F q) (in the Ho�mann-J�rgensen sense,
cf. Gin�e and Zinn (1990)) for the metric induced by k:kFq ; here khkFq = supf2Fq jh(f)j,
where h : F q ! IR. We restrict ourselves to uniformly bounded classes F q which satisfy
a bracketing condition in the following sense. Let �(f) = kfk2 = (IEjf(X1)j2)1=2 be a
pseudo-norm on F q and denote by N(:) = N(:;F q; �) the bracketing number, which is
de�ned as

N(�) = min
M
f 9f1; : : : ; fM and b1; : : : bM with �(bi) � � 8i such that :

8f 2 F q 9i for which jf � fij � bi g:

A bracketing condition assumes now a certain decay of N(�) as a function of �.

Example 4.1. (Parametric family of Lipschitz functions). Consider the class of func-
tions

F q = ff : IRq ! IR; f = f(:; �); � 2 �g ;

with � a bounded subset of IRk such that

sup
�
kf(:; �)k1 <1;

sup
x;y

sup
�
jf(f(x; �)� f(y; �))=kx� yk
g � C <1; 0 < � � 1; k:k the Euclidean norm on IRq;

jf(x; �1)� f(x; �2)j � L(x)k�1� �2k
� ; andkLk2 <1; � > 0; k:k the Euclidean norm on IRk:

Then F q satis�es (3.1) with the same � and the bracketing number satis�es N(�;F q; �) �
const:��k=� . This example is a straightforward extension of the example in Andrews and
Pollard (1994, Sec.2).
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We study here the smoothed sieve bootstrapped empirical process. The empirical
process fZn(f)gf2Fq is de�ned by

Zn(f) = (n� q + 1)1=2(Pn(f)� Pf); Pn(f) = (n� q + 1)�1
n�q+1X
t=1

�Xt
(f);

where �x denotes the point mass at x 2 IRq. Its smoothed sieve bootstrapped counterpart
fZ�n(f)gf2Fq is de�ned by

Z�n(f) = (n � q + 1)1=2(P �n(f)� IE�[P �n(f)]); P
�
n(f) = (n� q + 1)�1

n�q+1X
t=1

�X�
t
(f):

Lemma 4.1 (Stochastic Equicontinuity) Assume that (A1)-(A4) hold with s � 4 in (A2)
and that the function class F q satis�es (A5) for some � > 0. Moreover assume that
every f 2 F q has at most countably many discontinuities. In addition we assume that the
parameters s in (A2), � in (A5) and the dimension q are such that

1X
k=1

k2r�2k
�
� s�C

(s(1+2�+4rq�2q)+4rq�2q)(2r+C) <1;

where r 2 IN, C > 0 and 
� as in Theorem 3.2. Moreover assume that

Z 1

0
x�C=(2+C)N(x;F q; �)1=rdx <1

for the same r and C. Then 8� > 0 9� > 0 such that

lim sup
n!1

(IE�j sup
�(f�g)<�

jZ�n(f)� Z�n(g)j
r)1=r < � in probability:

Proof: We use the �-mixing property of fX�
t gt2ZZ with respect to the pair (


2r�1
i=1 F

q;
2r�1
i=1 F

q)
(see Theorem 3.2) and follow the proof of Theorem 2.2 in Andrews and Pollard (1994). In
particular, we make use of our Lemma 3.2 (ii). First, we work with ��(f) = (IE�jf(X�

1)j
2)1=2

and then use the fact that

sup
f2Fq

j��(f)2 � �(f)2j = oP (1)

This inequality holds since X�
1

d�
�! X1 in probability (cf. Lemma 5.5 below) and, by (A5),

F q is a uniformity class, cf. Bhattacharya and Rao (1976, Th.2.4). 2

Under the conditions of Lemma 4.1 the empirical process Zn(:) converges weakly to
some Gaussian process Z(:), indexed by F q, with �-continuous sample paths and with
IE[Z(f)] = 0, f 2 F q and

Cov(Z(f); Z(g)) =
1X

k=�1

Cov(f(X0); g(Xk));

see Andrews and Pollard (1994, Cor.2.3).
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In the following we sometimes make statements about weak convergence, holding in
probability in a universal sense over all f 2 F q. Let R�n(f) be a random variable with
respect to the bootstrap measure IP� and R(f) a random variable of the underlying original
probability space. We say that

R�n(f1); : : :R
�
n(fh)

d�
�! R(f1); : : : ; R(fh) in probability universal over F q

if the following holds. For every continuity point x 2 IRh of the distribution of
(R(f1); : : : ; R(fh)), 8� > 0 9n0 = n0(�) 9 a sequence fAngn2IN of (universal) sets such
that,

jIP�[R�n(f1); : : :R
�
n(fh) � x]� IP[R(f1); : : : ; R(fh) � x]j � � on the set An; 8n � n0;

IP[An]! 1 (n!1);

where for each n 2 IN, the set An is universal 8 f1; : : : ; fh 2 F q; h 2 IN.

Theorem 4.1 Assume the conditions of Lemma 4.1. Moreover assume �di-convergence

(Z�n(f1); : : : ; Z
�
n(fh))

d�
�! (Z(f1); : : : ; Z(fh)) in probability universal over F q:

Then

Z�n ) Z in probability:

Proof: The result follows directly from �di-convergence and Lemma 4.1. 2

Fidi-convergence of Z�n is usually not directly available because fX�
t gt2ZZ satis�es by

Theorem 3.2 only a �-mixing property. This does not allow to use one of the usual blocking
techniques.

Theorem 4.2 Assume the conditions of Lemma 4.1. Then

Z�n ) Z in probability:

Proof: It remains to show �di-convergence

(Z�n(f1); : : : ; Z
�
n(fh))

d�
�! (Z(f1); : : : ; Z(fh)) in probability universal over F q:

We remark here that every f 2 F q is Q-continuous, Q being the probability measure
of (X1; : : : ; Xq), which admits a density with respect to the Lebesgue measure, i.e., f is
continuous except on a set with Q-probability zero. This is a requirement we will need.
For simplicity we sketch here the case with h = 1 and q = 1, the general case for h 2 IN
follows by the Cram�er-Wold device, and for q 2 IN in a straightforward, but notationally
more awkward way. We follow the same strategy as in B�uhlmann (1995b, proof of Th. 3.3)
by applying a truncation technique to the moving average representation of X�

t , see (2.2).
We write X�

t;M =
PM

j=0  ̂j;n"
�
t�j and de�ne Z�n;M (:) by means of the variables fX�

t;Mg
N
t=1.

By exploiting theM -dependence we get in a straightforward way as in B�uhlmann (1995b),

Z�n;M (f)
d�
�! ZM (f) in probability universal over F q: (4.1)
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Here ZM(f) is the limit based on the truncated Xt;M 's, Xt;M =
PM

j=0  j"t�j .
Then we show that the e�ect of replacing Z�n(f) by Z

�
n;M(f) and Z(f) by ZM(f) becomes

negligible for large M . We �rst show that

IP[ZM(f) � c]! IP[Z(f) � c] (M !1); c 2 IR: (4.2)

Formula (4.2) follows by showing

MX
k=�M

Cov(f(X0;M); f(Xk;M))!
1X

k=�1

Cov(f(X0); f(Xk)) (M !1):

But this holds true by using the mixing property of fXtgt2ZZ, the boundedness and Q-

continuity of f and (X0;M ; Xk;M)
d
�! (X0; Xk) (M ! 1), c.f. Bhattacharya and Rao

(1976, Th 1.3).
Finally we show that 8� > 0 9M0(�) 9n0(�) such that

V ar�(Z�n;M (f)� Z�n(f)) � � on a set An;1; 8n � n0 8M �M0 (4.3)

where An;1 is universal 8 f 2 F
q and IP[An;1]! 1 (n!1).

We have by the mixing property of fX�
t;Mgt2ZZ (see Theorem 3.2, the bounds for the mixing

coe�cients translate directly to the truncated process fX�
t;Mgt2ZZ),

V ar�(Z�n;M (f)� Z�n(f))

� const:(IE�jf(X�
0)� f(X�

0;M)� IE�[f(X�
0 ] + IE�[f(X�

0;M)]j2+�)2=(2+�)

� const:(IE�jf(X�
0)� f(X�

0;M)j2)2=(2+�) on a set An;2; � > 0

where An;2 is universal 8 f 2 F
q and IP[An;2]! 1 (n!1); we have used the boundedness

of f 2 F q and the covariance inequality in Lemma 3.1 (ii).
Now by using the convergence of the bootstrap probabilities to the original probabilities
(see also Lemma 5.5), these convergences holding on some set An;3, universal 8f 2 F q,
with IP[An;3]! 1 (n!1), we arrive at, cf. Bhattacharya and Rao (1976, Th 1.3),

IE�jf(X�
0)� f(X

�
0;M)j2 � IEjf(X0)� f(X0;M)j2 = o(1) on the set An;3: (4.4)

But IEjf(X0) � f(X0;M)j2 ! 0 (M ! 1), hence by setting An;1 = An;2 \ An;3 we have
shown (4.3).

By (4.1)-(4.3) we have shown Z�n(f)
d�
�! Z(f) in probability universal over F q. 2

We just remark that by replacing (A1), (A3) and (A4) by (A1'), (A3') and (A4') re-
spectively, we get better bounds on the �-mixing coe�cients and hence need less conditions
on the bracketing numbers.

4.2 Empirical process on IRq

We specialize now our results from section 4.1 to the classical empirical process on IRq ,
q 2 IN, based on the vectorized observations fXtg

n�q+1
t=1 and fX�

tg
n�q+1
t=1 , respectively.

That is F q = f1(�1;x];x 2 IRqg, where (�1;x] = �q
i=1(�1; xi]. By Example 3.1 we

know that (A5) holds for F q with � = 1 , if the q-dimensional marginal distribution of the
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process fXtgt2ZZ has a bounded density. Denote the c.d.f. of Xt and X�
t by F

(q)(:) and
F (q)�(:), respectively. De�ning `�' componentwise, the empirical process and its bootstrap
counterpart can then be written as

Zn(x) = (n� q + 1)�1=2
n�q+1X
t=1

(1[Xt�x] � F
(q)(x)); x 2 IRq;

Z�n(x) = (n� q + 1)�1=2
n�q+1X
t=1

(1[X�
t�x]

� F (q)�(x)); x 2 IRq:

Corollary 4.1 Assume that (A1)-(A4) hold with s � 4 in (A2) and supx2IR f"(x) < 1.
In addition we assume that the parameters s in (A2) and the dimension q are such that

1X
k=1

k2r�2k
�
� sC

(s(3+4rq�2q)+4rq�2q)(2r+C) <1; for some C > 0; r 2 IN

with r >
2q

1� C=(2 + C)
; 
� as in Theorem 3.2:

Then

Z�n ) Z in probability;

where Z is the limiting Gaussian process of Zn with mean zero and

Cov(Z(x); Z(y)) =
1X

k=�1

Cov(1[X0�x]; 1[Xk�y]):

Proof: The result is basically a consequence of Theorem 4.2. Note that the assumption
supx2IR f"(x) < 1 implies that the q-dimensional marginal distribution of (Xt; : : : ; Xt+q)
has a bounded density and hence � = 1. We remark that it is su�cient to work in the
cadlag-space D([0; 1]q). This claim follows by applying the Continuous Mapping Theorem
to the continuous map

H : D([0; 1]q)! D(IRq); z 7! z � (F (1); : : : ; F (1))T ;

cf. B�uhlmann (1994, Remark on p.998).
We work with � = 1 (see above) for the condition in Lemma 4.1, the bracketing condition
then holds since the index space [0; 1]q is compact and hence N(�) � const:��2q . 2.

5 Proofs

In the sequel we denote by B(S) the Borel �-algebra of a metric space S. We �rst outline
the idea for proving Theorem 3.2, the same idea is used for proving Theorem 3.4. The
strategy is to split the problem into two cases with small and large separation lags k.

If k is large (or arbitrary), we use Gorodetskii's (1977) result by exploiting the linear
representation (2.2) and the fact that "�t i:i:d: � f̂"(x + �̂")dx. We will show in Lemma
5.3 that ��(k) � const:h(n)�1k�


�

in probability, yielding for k � h(n)�1=� , � 2 IR+,

��(k; Cd1;Dd2) � ��(k) � const:k�(

���) in probability. (5.1)
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On the other hand, we use �rst the general fact that

��(k; Cd1;Dd2) � �(k)

+ supf
jCov�(g1(X

�
�d1+1

; : : : ; X�
0); g2(X

�
k ; : : : ; X

�
k+d2�1

))

4kg1k1kg2k1

�
Cov(g1(X�d1+1; : : : ; X0); g2(Xk; : : : ; Xk+d2�1))j

4kg1k1kg2k1
g;

where the supremum is over all g1 2 C
d1 ; g2 2 D

d2 .
The denominator 4kg1k1kg2k1 can be bounded by a constant, uniformly over Cd1 ; Dd2

by assumption (A5). For bounding the di�erence of the covariances we introduce now a
moment (pseudo-) norm

kQ1 � Q2kCd1 ;Dd2 = supfj

Z
g(x)(dQ1� dQ2)(x)j; g 2 C

d1 
 Dd2g; (5.2)

where Q1; Q2 are probability measures on (IRd1d2 ;B(IRd1d2)), (for the de�nition of C 
 D
see (3.2)).
The di�erence of covariances can now be bounded like��Cov�(g1(X�

�d1+1; : : : ; X
�
0); g2(X

�
k ; : : : ; X

�
k+d2�1))

� Cov(g1(X�d1+1; : : : ; X0); g2(Xk; : : : ; Xk+d2�1))j

=

����
Z
IRd1d2

g1g2(x)(dIP
� � dIP)(x)

�

Z
IRd1

g1(x)dIP
�(x)

Z
IRd2

g2(x)dIP
�(x) +

Z
IRd1

g1(x)dIP(x)

Z
IRd2

g2(x)dIP(x)

����
� kIP� � IPkCd1;Dd2 + kIP

� � IPkCd1 ;Dd2 (kg1k1 + kg2k1):

This means that we bound

��(k; Cd1;Dd2) � �(k) + const:kIP� � IPkCd1 ;Dd2 : (5.3)

In Lemma 5.5 we will give the bound kIP��IPkCd1 ;Dd2 = OP (b(n)), where b(n) is a function
of the tuning parameters p(n) and h(n) and of the sample size n. In particular under the
assumptions about the bandwidth h(n) in (A3) we get kIP� � IPkCd1;Dd2 = OP (h(n)c) for

some c 2 IR+, yielding then for k � h(n)�1=�, kIP�� IPkCd1;Dd2 � const:k��c in probability

and hence for k � h(n)�1=� ,

��(k; Cd1;Dd2) � const:k��c in probability: (5.4)

Putting (5.1) and (5.4) together, we minimize over �.

We now give some preliminary results. The �rst one is dealing with moving-average
representations of autoregressive approximations. We recall the de�nition for the coe�-
cients f ̂j;ng

1
j=0, which arise by inverting the estimated autoregressive transfer function,

compare with (2.1) and (2.2).

Lemma 5.1 Assume that model (1.2) holds with "t i:i:d:, IE["t] = 0, IEj"tj
4 <1. Suppose

that �(z) is bounded away from zero for jzj � 1 (z 2 IC) (see (A1)),
P1

j=0 j
rj�jj <1 and

p(n) = o((n=log(n))1=(2r+2)), r 2 IN. Then
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(i) there exists a random variable n0(!) such that

sup
n�n0(!)

1X
j=0

jrj ̂j;nj <1 almost surely:

(ii) for a(n)!1; a(n) = o(n) (n!1),

sup
s2IN0

s+a(n)X
j=s+1

j ̂j;n �  j j = O(a(n)p(n)�r) + O(a(n)(log(n)=n)1=2) almost surely:

Proof: Assertion (i) is Theorem 3.1 in B�uhlmann (1995a). Assertion (ii) follows from
Theorem 3.2 in B�uhlmann (1995a). 2

Lemma 5.2 Assume the conditions of Lemma 5.1, but more generally we assume that
IEj"tjs < 1, s � 4. Suppose that the kernel K(:) for estimating f"(:) is a probability
density and it satis�es

R1
�1 xK(x)dx = 0,

R1
�1 x2K(x)dx 6= 0,

R1
�1 jxjsK(x)dx < 1 for

the same s and the bandwidth satis�es h(n)! 0, h(n)�1 = o(n) (n!1). Then

(i) IE�[("�t )
w]� IE[("t)

w] = OP (h(n)
2) +OP (p(n)(log(n)=n)

1=2) + oP (p(n)
�r); w � s:

(ii) IE�j"�t j
s = OP (1).

Proof: We have

IE�[("�t )
w] =

Z 1

�1
xw f̂"(x+ �̂")dx = (n� p)�1

nX
t=p+1

Z 1

�1
(hu+ "̂t;n � �̂")

wK(u)du

= (n� p)�1
nX

t=p+1

("̂t;n)
w +OP (�̂" + h(n)2): (5.5)

We write

"̂t;n = "t + Qt;n +Rt;n � ( �X � �X)
1X
j=0

�j ; (5.6)

where Qt;n =
Pp

j=0(�̂j;n��j;n)(Xt�j� �X), Rt;n =
P1

j=0(�j;n��j)(Xt�j � �X). Here �p =
(�1;n; : : : ; �p;n)

0 are the solutions of the theoretical Yule-Walker equations �p�p = �
p, cf.
Brockwell and Davis (1987, Ch.8.1). Now similarly as in B�uhlmann (1995b, proof of Lem.
5.3),

jQt;nj � max
0�j�p(n)

j�̂j;n � �j;nj
p(n)X
j=0

jXt�j � �Xj

= O((log(n)=n)1=2)
pX

j=0

jXt�j � �X j; the O-term being a.s.; (5.7)

cf. Hannan and Kavalieris (1986, Th.2.1).,

IEjRt;nj
w � const:(

1X
j=p+1

j�j j)
w = o(p(n)�wr); (5.8)
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here we have used Baxter's inequality, cf. B�uhlmann (1995a, proof of (3.1)).
Since �̂" = (n� p)�1

Pn
t=p+1 "̂t;n we complete the proof by using (5.5)-(5.8) and applying

a binomial expansion for ("̂t;n)
w.

The assertion (ii) follows immediately by using the representation as in (5.5). 2

5.1 Mixing property for large separation lags

Lemma 5.3 Assume that (A1)-(A4) hold with s = 4 in (A2). Then

��(k) � const:h(n)�1k�

�

in probability;

where 
� is de�ned as in Theorem 3.2.

Proof: We use representation (2.2) and check the conditions in Gorodetskii (1977).
His condition (i) follows immediately by (A3), (ii) follows by Lemma 5.2 and (iii) by (A1)
and (A4), cf. B�uhlmann (1995a, Lem.2.2 and Th.3.1). The constant 
� shows up by using
Lemma 5.1 (i) (note that this Lemma handles only r 2 IN). 2

We remark here that Lemma 5.3 holds true if we weaken the assumptions on the
bandwidth h(n) in (A3) to the only condition h(n) = o(1); h(n)�1 = o(n) (n!1).

5.2 Moment norm between bootstrap and true measure

Denote by IPk;d1;d2 [C] = IP[(X�d1+1; : : : ; X0; Xk; : : : ; Xk+d2�1) 2 C], C 2 B(IRd); d =
d1 + d2; k 2 IN. Analogously we de�ne IP�k;d1;d2 [:] for the bootstrap. By the de�nition

of the �-mixing coe�cients and the boundedness of g1 2 Cd1 ; g2 2 Dd2 from above and
below we have, cf. (5.3),

��(k; Cd1 ;Dd2) � �(k) + const:kIP�k;d1;d2 � IPk;d1 ;d2kCd1 ;Dd2 ; k:kCd1;Cd2 as in (5:2):

Our next aim is to bound

kIP�k;d1;d2 � IPk;d1;d2kCd1 ;Dd2 :

To do so we will compare this quantity with the variation norm of a `smoothed di�erence'
IP�k;d1;d2 � IPk;d1;d2 . The variation norm for a probability measure Q on (IRd;B(IRd)) is
de�ned as

kQkV ;d = 2 sup
C2B(IRd)

jQ[C]j:

In the sequel we denote by Q1 ? Q2 the convolution of some signed measures Q1 and Q2.

Lemma 5.4 (Berry's Smoothing Lemma)
Let �(n) = o(1) (n ! 1) and fK�(n)gn2IN be a sequence of probability measures on IRd

with supn2INK�(n)(fkxk � �(n)g) > 1=2 8n 2 IN, k:k the Euclidean norm on IRd. Assume

that (A1) and (A2) hold and (Cd1 ; �1); (D
d2 ; �2) satisfy (3.1), with expectations taken with

respect to the probability measure of the true underlying process as de�ned by (A1) and
(A2). Then 8n 2 IN, 8k 2 IN

kIP�k;d1;d2 � IPk;d1;d2kCd1;Dd2 � const:k(IP�k;d1;d2 � IPk;d1;d2) ?K�(n)kV ;d + const:�(n)�;

where � = minf�1; �2g, d = d1 + d2.

19



Proof: We use formula (11.26) in Bhattacharya and Rao (1976). To bound the covari-
ance norm we need a bound for some type of modulus of oscillation; but our assumption
(A5) is exactly tailored to this problem so that we can bound this modulus of oscillation
uniformly over the classes Cd1 ; Dd2 by const:�(n)�. 2

Now we make use of the smoothing idea: choose K�(n) smooth such that its Fourier
transform vanishes for large arguments. Together with Berry's Lemma (Lemma 5.4) we
will show

Lemma 5.5 Assume that (A1)-(A5) hold with s � 4 in (A2) and � > 0 in (A5). Then
8d1; d2 2 IN, 8k 2 IN

kIP�k;d1;d2 � IPk;d1;d2kCd1 ;Dd2 = OP (�(n)
s�

s(1+�+d)+d ); d = d1 + d2;

where �(n) = maxfh(n); p(n)(log(n)=n)1=2; p(n)�#
2=(#+1)g, # < � � 1; # 2 IN.

Moreover, the assumptions about the bandwidth h(n) in (A3) yield

kIP�k;d1;d2 � IPk;d1;d2kCd1;Dd2 = OP (h(n)
s�

s(1+�+d)+d ); d = d1 + d2;

Proof: To simplify notation we always denote by # an integer < �� 1. By Lemma 5.4
we want to bound

k(IP�k;d1;d2 � IPk;d1;d2) ? K�(n)kV ;d = 2 sup
C2B(IRd)

j(IP�k;d1;d2 � IPk;d1;d2) ? K�(n)[C]j:

We choose K�(n) similar as in Bhattacharya and Rao (1976, (13.8)-(13.11)), i.e., K�(n) has
a density

nY
i=1

g�(n);2s(xi); ga;2m(x) = const:(
sin(ax)

ax
)2m a density on IR:

Then supn2INK�(n)[kxk � �(n)] > 1=2 for n large enough (this is a condition in Lemma
5.4) and for the Fourier-transform of K�(n) we haveZ

IRd
exp(iy � x)K�(n)(dx) = 0 if y =2 [�2s�(n)�1; 2s�(n)�1]d; (5.9)

where y � x =
Pd

i=1 yixi, cf. Bhattacharya and Rao (1976, (10.9)).
In the sequel we denote by J(n; d) = [�2s�(n)�1; 2s�(n)�1]d. Let C 2 B(IRd). Then by
Fourier inversion

j(IP�k;d1;d2 � IPk;d1;d2) ? K�(n)[C]j � const:

Z
C

Z
J(n;d)

j'�k;d1;d2(x)� 'k;d1;d2(x)jdxdy;(5.10)

where 'k;d1;d2(x) = IE[exp(ix �X)]; X = (X�d1+1; : : : ; X0; Xk; : : :Xk+d2�1)
0, and analo-

gously for '�k;d1;d2 .
To bound (5.10) much of the work boils down in estimating j'�k;d1;d2(x)�'k;d1;d2(x)j.

We use the linear representations (1.1) and (2.2) and write

'k;d1;d2(x) = exp(ix � �X1)
1Y
j=0

'"(hj � x)
k+d2�1Y
j=1

'"(fj � ~x);

'�k;d1;d2(x) = exp(ix � �X1)
1Y
j=0

'"�(ĥj � x)
k+d2�1Y
j=1

'"�(f̂j � ~x);
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where hj = ( j�d1+1; : : : ;  j;  j+k; : : : ;  j+k+d2�1)
0, fj = ( k�j ; : : : ;  k+d2�1�j)

0, ĥj and f̂j
analogously with  ̂j;n instead of  j , x = (x1; : : :xd1 ; xd1+1; : : : ; xd)

0, ~x = (xd1+1; : : : ; xd)
0,

'"(x) = IE[exp(ix"0)], '"�(x) = IE�[exp(ix"�0)], x 2 IR. Here we made the convention that
 j =  ̂j;n = 0 for j < 0.
We then obtain

j'�k;d1;d2(x)� 'k;d1;d2(x)j

� jexp(ix � �X1)� exp(ix � �X1)j+ j

q(n)Y
j=0

'"�(ĥj � x)�

q(n)Y
j=0

'"(hj � x)j

+ j
1Y

j=q(n)+1

'"�(ĥj � x)�
1Y

j=q(n)+1

'"(hj � x)j+ j
k+d2�1Y
j=1

'"�(f̂j � ~x)�
k+d2�1Y
j=1

'"(fj � ~x)j

= I(x) + II(x) + III(x) + IV (x); (5.11)

where q(n)!1; q(n) = o(n) (n!1):
By a Taylor expansion we get

sup
x2J(n;d)

I(x) � �(n)�1OP (n
�1=2); (5.12)

Again by using a Taylor expansion we get

sup
x2J(n;d)

III(x)� sup
x2J(n;d)

1X
j=q(n)+1

j'"�(ĥj � x)� '"(hj � x)j

� sup
x2J(n;d)

1X
j=q(n)+1

(jĥj � xj+ jhj � xj) � const:�(n)�1q(n)�# almost surely; (5.13)

where the last inequality follows from Lemma 5.1 (i) and j�j j = O(j��) (j ! 1), which
implies

P1
j=q(n)+1 jhj j = o(q(n)�#).

Most work is needed for bounding II(x) (and similarly IV (x)). We have

II(x) �
q(n)X
j=0

j'"�(ĥj � x)� '"�(hj � x)j+
q(n)X
j=0

j'"�(hj � x)� '"(hj � x)j

= II:1(x) + II:2(x):

By a Taylor expansion we get

sup
x2J(n;d)

II:1(x)� const:�(n)�1

0
@q(n)X

j=0

j ̂j;n �  j;nj+

k+q(n)+d2�1X
j=k

j ̂j;n �  j;nj

1
A

= �(n)�1
�
O(q(n)p(n)�#) +O(q(n)(log(n)=n)1=2)

�
almost surely; (5.14)

where we used Lemma 5.1(ii) for the last inequality.
For bounding II:2(x) we consider

'"�(hj � x)� '"(hj � x)
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= (n� p)�1
nX

t=p+1

exp(ihj � x("̂t;n � �̂"))
Z 1

�1
exp(ihj � xuh(n))K(u)du� '"(hj � x)

= (n� p)�1
nX

t=p+1

exp(ihj � x("̂t;n � �̂"))(1+ E(h(n); j;x))� '"(hj � x); (5.15)

where

jE(h(n); j;x)j � jhj � xjh(n)
Z 1

�1
jujK(u)du

� const:h(n)jhj � xj:

On the other hand,

(n� p)�1
nX

t=p+1

exp(ihj � x("̂t;n � �̂"))� '"(hj � x)

= (n� p)�1
nX

t=p+1

exp(ihj � x"t)(1 +D(h(n); t; j;x))� '"(hj � x); (5.16)

where

jD(h(n); t; j;x)j � jhj � xjj"̂t;n � �̂" � "tj;

and hence, see (5.7)-(5.8),

(n� p)�1
nX

t=p+1

jD(h(n); t; j;x)j= jhj � xj
�
OP (p(n)(log(n)=n)

1=2) + oP (p(n)
�#)
�
:(5.17)

(Here the OP -terms are uniformly bounded in j and x).
Moreover, by the i.i.d. structure of f"tgt2ZZ and the boundedness of exp(ix); x 2 IR, we
get by some well known exponential inequalities, e.g. Bernstein's inequality,

sup
jxj�nr

j(n� p)�1
nX

t=p+1

exp(ix"t)� '"(x)j = OP (n
�1=2+�); for any O < � < 1=2;

where r is an arbitrary exponent in IR+. This is a stronger version of formula (2.4) in
Singh (1981). But this implies

sup
x2J(n;d)

j(n� p)�1
nX

t=p+1

exp(ihj � x"t)� '"(hj � x)j

= OP (n
1=2��); for any O < � < 1=2; (5.18)

where the OP -term is uniformly bounded in j.
Therefore by (5.15)-(5.18) we get

sup
x2J(n;d)

II:2(x)� �(n)�1
�
OP (h(n)) +OP (p(n)(log(n)=n)

1=2) + oP (p(n)
�#)
�

+ OP (q(n)n
�1=2+�); � > 0: (5.19)
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Hence by (5.14) and (5.19)

sup
x2J(n;d)

II(x) (5.20)

= �(n)�1
�
OP (h(n)) + OP ((q(n) + p(n))(log(n)=n)1=2) + OP (q(n)p(n)

�#)
�

+ OP (q(n)n
�1=2+�); � > 0: (5.21)

Similarly we get

sup
x2J(n;d)

IV (x) = O( sup
x2J(n;d)

II(x)): (5.22)

Then we have by (5.11)-(5.13), (5.20)-(5.22),

sup
x2J(n;d)

j'�k;d1;d2(x)� 'k;d1;d2(x)j

� �(n)�1
�
OP (q(n)

�#) + OP (h(n)) + OP ((q(n) + p(n))(log(n)=n)1=2) +OP (q(n)p(n)
�#)
�

+ OP (q(n)n
�1=2+�)

= �(n)�1
�
OP (q(n)

�#) + OP (h(n)) + OP ((q(n) + p(n))(log(n)=n)1=2) +OP (q(n)p(n)
�#)
�
;

(5.23)

where the last bound follows since � > 0 is arbitrary.

What remains is to integrate the error term in (5.23), see (5.10). Let r(n)!1; r(n) =
o(n) (n!1). Denote by C1 = C \ [�r(n); r(n)]d; C2 = C nC1. By Markov's inequality
we get

jIPk;d1;d2 ? K�(n)[C2]j = O(r(n)�s); jIP�k;d1;d2 ? K�(n)[C2]j = OP (r(n)
�s): (5.24)

Hence by (5.10), (5.23) and (5.24)

j(IP�k;d1;d2 � IPk;d1;d2) ? K�(n)[C]j

� r(n)d�(n)�d�1
�
OP (q(n)

�#) +OP (h(n)) + OP ((q(n) + p(n))(log(n)=n)1=2) + OP (q(n)p(n)
�#)
�

+ OP (r(n)
�s);

and therefore by Lemma 5.4

kIP�k;d1;d2 � IPk;d1;d2kCd1;Dd2 = OP (r(n)
d�(n)�d�1�(n)) +OP (r(n)

�s) +O(�(n)�); (5.25)

where �(n) = maxfq(n)�#; h(n); (q(n)+ p(n))(log(n)=n)1=2; q(n)p(n)�#g.
By choosing q(n) = p(n)#=(#+1) we get �(n) = maxfh(n); p(n)(log(n)=n)1=2; p(n)�#

2=(#+1)g.
By choosing the optimal orders for r(n) and �(n) the right hand side in (5.25) is of the
order

OP (�(n)
s�

s(1+�+d)+d ):

This completes the proof. 2
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5.3 Proofs of Theorem 3.2 and Theorem 3.4

We �rst give the proof of Theorem 3.2. To do this, we combine the results in Section 5.1
and 5.2. By Lemma 5.3 we know

��(k; Cd1;Dd2) � ��(k) � const:h(n)�1k�

�

in probability;

and hence,

if k � (h(n)�1)1=� then ��(k; Cd1 ;Dd2) � const:k�(

���); � 2 IR+: (5.26)

On the other hand we have by (5.3), Theorem 3.1 and Lemma 5.5 for k < (h(n)�1)1=�,

��(k; Cd1 ;Dd2) � �(k) + const:kIP�k;d1 ;d2 � IPk;d1;d2kCd1;Dd2

� const:k�
 +OP (h(n)
s�

s(1+�+d)+d )

� const:k�
 + const:k
� �s

s(2+d)+d in probability; � 2 IR+: (5.27)

By choosing � yielding the best rate for ��(k; Cd1;Dd2), i.e., � = 
�(s(1+�+d)+d)=(s(1+
2�+ d) + d), we obtain by (5.26) and (5.27) the result of Theorem 3.2.

We now sketch the arguments for proving Theorem 3.4 which are very similar to the
proof of Theorem 3.2.

We �rst show the following: there exists a random variable n0(!) such that

sup
n�n0(!)

p(n)X
j=0

j�̂j;nj(1 + ~�)j <1 almost surely; 0 < ~� < minf�; exp(1=(2C))� 1g: (5.28)

We have for any 0 < c < 1=2,

sup
jzj�1+~�

j�̂n(z)� �(z)j � max
1�j�p(n)

j�̂j;n � �j j(1 + ~�)p(n) +
1X

j=p(n)+1

j�j j(1 + ~�)j

= O((log(n)=n)1=2)O(n1=2�c) + o(1) = o(1) almost surely:

(Use the result of Hannan and Kavalieris (1986, Th.2.1) and Baxter's inequality, compare
with (5.7) and (5.8)).
Formula (5.28), together with (A1'), implies that, for n su�ciently large, we can invert
�̂n(z) in jzj � 1 + ~�, we then get instead of Lemma 5.1,

sup
n�n0(!)

j ̂j;nj � const:(1 + ~�)�j almost surely;

sup
s2IN0

s+a(n)X
j=s+1

j ̂j;n �  j j = O(a(n)(1 + ~�)�p(n)) + O(a(n)(log(n)=n)1=2) almost surely:

Lemma 5.2 remains the same with p(n) = O(log(n)). Lemma 5.3 becomes

��(k) � const:h(n)�1~�k; almost surely; (1 + ~�)�1 < ~� < 1: (5.29)
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(Compare with Theorem 3.3).
Lemma 5.4 remains exactly the same. It is plausible that we get the same bound as in
Lemma 5.5, since the assumptions (A1)-(A5) are generally weaker than the assumptions
of Theorem 3.4, i.e.,

kIP�k;d1;d2 � IPk;d1;d2kCd1 ;Dd2 = OP (h(n)
s�

s(1+�+d)+d ); d = d1 + d2: (5.30)

However, we have to re-examine the interplay of the tuning parameters h(n) and p(n).
Some quantities change now, we choose q(n) = const:log(n) such that the (old) expres-
sion q(n)�# becomes something of the order n�1=2. By (A4'), p(n) � Clog(n) and in-
stead of the (old) expression p(n)�# we have (1 + ~�)�p(n). Then �(n) in (5.25) equals
maxfh(n); n�1=2+�; log(n)(1+ ~�)�p(n)g, note that for deriving this the OP (q(n)n

�1=2+�)-
term in (5.20) dominates in the derivation of (5.23).
By choosing ~� appropriately close to minf�; exp(1=(2C))� 1g, we know that by (A3')
maxfh(n); log(n)(1+ ~�)�p(n)g = O(h(n)). This then explains that (5.30) holds.

Now by (5.29), for k > �log(h(n)�1)=log(�); ~� < � < 1,

��(k; Cd1;Dd2) � const:(~�=�)k in probability;

and by (5.30), for k � �log(h(n)�1)=log(�); ~� < � < 1

��(k; Cd1;Dd2) � const:�
k s�
s(1+�+d)+d in probability:

By choosing � = ~�
s(1+�+d)+d
s(1+2�+d)+d we arrive at

��(k; Cd1;Dd2) � const:~�
k s�
s(1+2�+d)+d = const:(��)k in probability;

(1 + ~�)
� s�

s(1+2�+d)+d < �� < 1:
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