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Abstract

A stepping stone model with site space a continuous, hierarchical group
is constructed via duality with a system of (delayed) coalescing \stable"
L�evy processes. This model can be understood as a continuum limit of
discrete state-space, two allele, genetics models with hierarchically struc-
tured resampling and migration. The existence of a process rescaling limit
on suitable large space and time scales is established and interpreted in
terms of the dynamics of cluster formation. This paper was inspired by
recent work of Klenke.
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1 Introduction and results

1.1 Background

In several physical and biological systems, the phenomenon of cluster formation
can be observed. One has systems in which spatially dispersed units can be one
of two or more possible types. There is a mechanism that attempts to impose
local agreement among units, possibly in the face of \noise" that can destroy
the agreement but may also spread it. One of the fundamental questions about
such systems is the manner in which clusters (that is, large regions of agreement)
grow and interact with each other.

A rather detailed picture on the growth of clusters in the simple voter model
on the one-dimensional lattice Zwas developed by Arratia [Arr82].

An analogous picture emerged for a certain class of stepping stone models
in the work of Klenke [Kle95, Theorem 2]. He considered a system of interact-
ing di�usions of the Fisher-Wright type with state-space [0; 1] indexed by the
countable hierarchical group

� :=
n
� = (�i)i2Z�

2 (ZN )
f:::;�2;�1g : �i = 0 for all i su�ciently small

o
(1)

where ZN is the cyclic Abelian group f0; : : : ; N � 1g of order N � 2 with the
operation of addition modulo N and addition in � is performed coordinatewise.
The reason for the nomenclature is that the sets

�k :=
n
(�i)i2Z�

: 0 = ��k�1 = ��k�2 = : : :
o
; k 2Z+ ;

are �nite subgroups of � with f0g = �0 � �1 � : : : Thus, each point of �
belongs to a unique coset of �1 along with N �1 other points, each coset of �1

is contained in a unique coset of �2 along with N � 1 other cosets of �1 , and
so on.

These models arise as the M ! 1 di�usion limits of a class of discrete
state-space models in population genetics in which the sites represent demes or
colonies of M individuals each possessing one of two possible genotypes. Here
the value of the process at a site is the proportion of the colony with a given
genotype. These proportions evolve by independent resampling within colonies
and migration of individuals between colonies. In this interpretation we can
think of the hierarchical structure of � as capturing the idea that colonies are
grouped into clans, clans are grouped into villages, villages are grouped into
counties, et cetera. Consonant with this interpretation, the strength of the
migratory 
ux between two sites is taken to be a function of how far apart the
sites are in this hierarchy. We refer the reader to Sawyer and Felsenstein [SF83]
for more discussion of the biology behind the original discrete models (see also
Sawyer [Saw76]). We will give a more precise description of the di�usion limits
in x 4.
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Klenke [Kle95] showed that if the migration rates coincide with the jump
rates of a \strongly recurrent" random walk on �, then as time evolves the sites
will tend to segregate into increasingly large clusters where the value of the
di�usion at the sites in the cluster is close to either 0 or 1; and, moreover, there
is a characteristic rate at which such clusters grow. Although we won't give the
precise de�nition of \strong recurrence" here, it might help the readers intuition
if we remark that the simple random walk on Zis strongly recurrent, whereas
onZ2 it is not.

Regimes in which the migration rates in interacting di�usions are the jump
rates of a recurrent, but not strongly recurrent random walk, were studied by
Fleischmann and Greven [FG94a, FG94b] and Cox et al. [CFG95]. The clus-
tering behavior for these latter models is di�erent and rather more subtle. (See
also Cox and Gri�eath [CG86] and Bramson et al. [BCG86] for similar results
concerning the related voter model.)

In [Kle95] and [FG94a] two quantitative phenomena are considered as proxies
for the somewhat imprecise notion of cluster formation. The �rst is the presence
of blocks of sites in which the average value over the block is close to 0 or 1,
and the second is the presence of signi�cant \correlations" between sites that
are far apart. The latter phenomenon is expressed in terms of the behavior of
a sequence of models that is obtained by \thinning out" sites so that a large
number of neighboring sites is replaced by a single representative.

1.2 Purpose of the paper

In this paper we consider a class of processes X that also arise as limits of the
kind of the simple discrete models described above. The di�erence here is that,
loosely put, we pass to a continuum limit with the space of sites, so that the
smallest geographic units become microscopic entities, rather than remaining
as mesoscopic entities as they do in [Kle95] and [FG94a]. Our processes X can
be thought of as in�nitesimal cousins of those in [Kle95]. Instead of [0; 1]�, the
state-space of our processes is the set of Borel functions in [0; 1]G, where G is
the hierarchical group of all semi-in�nite sequences,

G :=
n
g = (gi)i2Z2 (ZN )

Z: gi = 0 for all i su�ciently small
o

(2)

(again with coordinatewise addition), a group that can be topologized as a
non-discrete, locally compact, totally disconnected group. Our processes are
natural stochastic partial di�erential equation analogues (see (8) below) of the
in�nite system of stochastic di�erential equations considered in [Kle95] and arise
as limits of the latter processes (cf. the proof of Theorem 3 in x 4 below). In
particular, the \drift part" of the SPDE is determined by the jump rates of a
\stable" L�evy process on G.

We also remark that our processes are essentially particular examples of the
continuum stepping stone models considered in Shiga [Shi88].
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As well as being of interest in their own right, a signi�cant advantage of
our models is that they exhibit the same sort of cluster formation dynamics as
the models in [Kle95], but these phenomena can be more easily described and
understood in our setting. More precisely, our models can be rescaled at suitable
large time and space scales to obtain limiting processes that also have the Borel
functions from G to [0; 1] as their state-space. Results about the formation of
clusters in our original models can then be rephrased as easily proven facts about
the microscopic and macroscopic spatial structure at �xed times of these scaling
limits. In particular, there is no need to resort to \arti�ces" such as thinning or
block-averaging. These latter transformations can be seen as partial substitutes
for spatial rescalings that are unavailable in models with a discrete collection of
sites. Moreover, our point of view enables us to study the evolution of all the
clusters and not just the cluster containing the origin.

A model analogous to ours was considered in Mueller and Tribe [MT95] with
G replaced by R and the L�evy process that describes the migration replaced by
Brownian motion. This analogue arises as a suitable scaling limit of a long
range voter process on Z. It appears that it is possible to construct a sequence
of long range voter process-like particle systems on � that can be rescaled in
the manner of [MT95] to converge to our process, but we do not pursue this
matter in the present paper.

1.3 The site set G

Before we can describe more precisely the process we wish to consider, we need
to make a few simple remarks about the structure of the group G of (2). Via

jgj := N�k; where g 2 G and k := inf
�
i 2Z: gi 6= 0

	
; (3)

we introduce a translation invariant ultrametric on G, that is a translation
invariant metric satisfying

jg � g0j � jgj _ jg0j; g; g0 2 G:

With this metric, G is a non-discrete, locally compact, totally disconnected
Abelian group with countable base. Note that the balls

Gk :=
�
g 2 G : jgj � N�k

	
; k 2Z; (4)

are compact-open subgroups of G satisfying Gk � Gk+1 ; and that

jgj = N�k if and only if g 2 GknGk+1 : (5)

Denote by `(dg) = dg the Haar measure on G; normalized so that `(G0) = 1:
That is,

` assigns the mass N�k to Gk ; k 2Z; (6)
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and, conditioned on Gk ; it has i.i.d. coordinates gi for i � k; \uniformly"
distributed on ZN : In particular,

`
�
GknGk+1

�
= N�k(1� N�1); k 2Z: (7)

1.4 Description of the model: Existence of X

Symbolically, the process we wish to consider is the process X which has as its
state-space the space of Borel maps from G into [0; 1] and solves the stochastic
partial di�erential equation

dXt(g)
dg =
q
af
�
Xt(g)

�
w(dt
dg)+

�Z
G

�(dg0)
h
Xt(g+g

0)�Xt(g)
i�

dt
dg;

(8)
t > 0; g 2 G: Here w(dt 
 dg) is time-space white noise with directing mea-
sure the product of Lebesgue measure dt on R+ and Haar measure dg on G.
Moreover, f is the standard Fisher-Wright di�usion coe�cient

f(r) := r(1� r); 0 � r � 1; (9)

� is the L�evy measure
�(dg) := b jgj���1 dg (10)

where 1 < � < 1 and a; b > 0 are �xed constants, called the L�evy index,
di�usion constant and L�evy constant, respectively.

The reader familiar with the Fleming-Viot process may notice some sim-
ilarity between that process and ours. The di�erence is that in our process
resampling only occurs within the individuals at each site, rather than across
the whole population.

An existence and uniqueness theorem for this type of SPDE is stated with
a brie
y sketched proof as Theorem 5.1 (ii) in [Shi88]. As we wish to consider
rescaling limits ofX that don't appear to be solutions to SDPEs, it will be more
convenient for us to de�ne the process X by describing it as a Feller process
with an explicitly given semigroup.

The key to such a description is the observation in [Shi88] that a solution to
the equation (8) is dual , via moment functions, to a (delayed) coalescing L�evy
process. That is, the dual can be thought of as a �nite system of unlabeled
particles that move independently in G as \stable" L�evy processes with L�evy
measure � of (10), but additionally, each pair of colliding particles coalesces to
a single particle at rate a times their collision local time (that is, the local time
at 0 of the di�erence of their positions.)

This description of the dual is not quite what we will use. Instead, we will
consider a slightly enhanced model in which we have a �nite system of particles
labeled by f1; : : : ; ng, n 2 N, that move independently in G as L�evy processes
with L�evy measure �; but additionally, each particle can be killed and sent to
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an adjoined cemetery state y at rate a times the total of the collision local
times between the particle and the other living particles with smaller labels.
We will denote this latter process by (#;Pg) = (#;P

g
a;b) when the initial state

is g = (g1; : : : ; gn) 2 Gn
y := (G[fyg)n. We call it the (delayed) coalescing L�evy

process. A fuller description is given in xx 3.1.

As a �nal preliminary, we need to say something about the state-space B that
we will use for our process X. Let B denote the set of equivalence classes of Borel
functions fromG into [0; 1], where we declare that two functions are equivalent if
they are equal `-a.e. (recall that ` is the Haar measure on G). We can associate
x 2 B with the Radon measure x(g)dg on G: Via this identi�cation, we can
think of B as a closed subset of the space of all Radon measures on G endowed
with the vague topology. (In this sense, the process X to be constructed can be
understood as a measure-valued di�usion.)

Alternatively, we can regard B as a closed subset of L1 = L1(G; `); fur-
nished with its weak* topology as the dual of L1 = L1(G; `):

These two relative topologies on B coincide. As both are metrizable, to see
this it su�ces to show that for x0 ; x1 ; ::: 2 BZ

G

dg xj(g)'(g) ��!
j!1

Z
G

dg x0(g)'(g)

holds for all ' in the set Cc(G) of all continuous function ' on G with compact
support, if and only if it holds for all ' 2 L1: But this is immediately clear since
Cc(G) is dense in L1 and the xj are uniformly bounded.

By Corollary V.4.3 of Dunford and Schwartz [DS58], this B is a compact
metrizable space.

De�nition 1 (product brackets) If x is a function de�ned on G; and n 2 N;
we set

[x;g] :=
Q

i 1fgi 6= ygx(gi); g = (g1 ; :::; gn) 2 Gn
y : 3

Lemma 2 (weight functions) For n 2 N and ' 2 L1(Gn; `n), the function
I'n : B! R de�ned by

I'n (x) :=

Z
Gn

dg '(g) [x;g]; x 2 B; (11)

is continuous.

Proof For ' of the form '(g) = '1(g1) � � � 'n(gn) with 'i 2 Cc(G), the
claim is immediate. The general statement follows once we note that linear
combinations of such functions are dense in L1(Gn; `n), and if f'jg1j=1 is a

sequence in L1(Gn; `n) that converges to ', then fI
'j
n g1j=1 converges uniformly

to I'n .
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Our �rst result is the following existence theorem, the proof of which is
postponed to x 4.

Theorem 3 (existence of the stepping stone process X) For a; b > 0
there exists a unique strongly continuous semigroup S = Sa;b =

�
Sa;b(t) : t � 0

	
of Markov linear operators Sa;b(t) : C(B) ! C(B) (that is a Feller semigroup)
such that

Sa;b(t)I
'
n (x) =

Z
Gn

dg '(g)P
g
a;b[x; #t]; (12)

t�0; n�1; '2L1(Gn; `n); x2B: Moreover, there is a Hunt process (X;Pxa;b)
on B with continuous sample paths and semigroup Sa;b .

This (X;Pxa;b) is our stepping stone process with di�usion constant a and
L�evy constant b:

1.5 The limiting cluster process Y

In order to describe the large scale space-time properties of X, we need to
introduce another B-valued process. By analogy with the de�nition of the
coalescing L�evy process #, we can consider an instantaneously coalescing L�evy
process. This is a �nite system of labeled particles that move independently in
G as L�evy processes with L�evy measure �; but additionally, when two particles
collide the one with the higher label is sent to the cemetery y instantaneously.
The state-space of this process is the set �Gn

y consisting of n-tuples (g1; : : : ; gn) 2
Gn
y for which gi = gj 6= y does not hold for 1 � i 6= j � n. We will denote

this instantaneously coalescing L�evy process by (�;Q
g
b ) when the initial state is

g = (g1; : : : ; gn) 2 �Gn
y . A fuller description is given in xx 3.2.

Next we state the existence of the limiting cluster process Y which is proved
in x 4.

Theorem 4 (existence of the cluster process Y ) For b > 0 there exists
a unique strongly continuous semigroup T = Tb = fTb(t) : t � 0g of Markov
linear operators Tb(t) : C(B)! C(B) (that is a Feller semigroup) such that

Tb(t)I
'
n (x) =

Z
�Gn

dg '(g)Q
g
b [x; �t]; (13)

t�0; n�1; '2L1(Gn; `n); x2B: For each F 2 C(B),

lim
a!1

Sa;b(t)F = Tb(t)F:

Moreover, there is a Hunt process (Y;Qyb ) on B with continuous sample paths
and semigroup Tb .

We call (Y;Qyb ) the cluster process of X with L�evy constant b: Intuitively,
the a ! 1 transition speeds up unboundedly the di�usion part in X which
should imply that each component X(g) of X will be trapped at the boundary
f0; 1g of the interval [0; 1]: (See Theorem 6 (iv) below.)
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1.6 Scaling properties of X and Y

Let � : G! G denote the shrinking automorphism which moves all the coordi-
nates of a point g 2 G by one step to the right, so that j�gj = N�1jgj. Using
this with a slight abuse of notation, de�ne � : B ! B by �x = x � �, x 2 B,
to get an associated bijection on B: With another slight abuse of notation, we
will also let � denote the map from the space of probability measures � on B
into itself by that is given by

R
(��)(dx)F (x) =

R
�(dx)F (�x) for F a bounded

Borel function on B.
Finally, we introduce a group of space-time scaling transformations � =�

�m;s : m; s 2Z
	
on D(R+;B) (the Skorohod space of c�adl�ag paths from R+

to B) by
(�m;sz)t := ��mzN�st; z 2 D(R+;B); t � 0: (14)

(Recall that � is the index of our \stable" L�evy process.)
It turns out that �m;sX (resp. �m;sY ) is the same sort of process as X

(resp. Y ).

Proposition 5 (scaling properties) Consider m; s 2 Z and a law � on B:
The distribution of �m;sX under P�a;b (resp. �m;sY under Q�b ) is that of X

under P�
�m�

N�s�ma; N�(s�m)b
(resp. Y under Q�

�m�
N�(s�m)b

).

1.7 Main result: Cluster formation of X

Let Bf0;1g denote the Borel subset of B consisting of equivalence classes with
a representative that takes values in the set f0; 1g. Now we have together all
ingredients to formulate our main result.

Theorem 6 (cluster formation) Suppose that � is a shift-invariant and er-
godic probability measure on B with intensity � 2 (0; 1) :Z

�(dx)

Z
dg f(g)x(g) = �

Z
dg f(g); f 2 B: (15)

Then the following statements hold.

(i) The law of �m;mX under P�a;b converges to the law of Y under Q�1b as
m!1.

(ii) The law of the D(R+;B)
Z-valued random variable (�m�j;mX)j2Zunder

P
�
a;b converges to the law of

�
��j;0Y

�
j2Zunder Q�1b as m!1.

(iii) For t > 0, the law of (��j;0Y )t under Q�1b converges to the two-point
mixture

��1 + (1 � �)�0 as j !1;

and to the point mass
��1 as j !�1:
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(iv) For t > 0 �xed, Yt belongs to Bf0;1g, Q
�1
b -a.s.

Thus, if we observe X on a suitable collection of large space-time scales,
then we see the cluster process Y in the limit. Varying the relationship between
the growth of the time and space scales when taking the limit is equivalent to
observing Y on di�erent space scales. If we observe Yt on a microscopic scale,
then we �nd ourselves in the middle of a cluster of 0's or 1's. On the other hand,
if we observe Yt macroscopically, the clusters of 0's and 1's will be averaged,
leading to a constant density �:

The sequence of block-averaging limits studied in [Kle95] correspond in our
setting to the sequence of random variables�Z

G0

dg��j;0Yt(g )
�
j2Z

=
�
N j

Z
Gj

dg Yt(g)
�
j2Z

:

It is immediate from the spatial stationarity of Yt that this sequence is a mar-
tingale, a phenomenon noted in [Kle95].

As an aside, we note that the cluster state Yt is certainly random because of
the randomness of the j ! 1 limit. Moreover, the distribution of Yt can't be
just such a two-point mixture because then the j !�1 limit would not hold.

Finally, we remark that a fortiori we have for t > 0 and a sequence (cj)j2N
of positive integers that as j ! 1 the distribution of XN�j t(�

�cj � ) converges
to the mixture

��1 + (1� �)�0 if
cj
j ! 0;

and to the point mass
��1 if cj

j ! +1:

2 Stable L�evy process of index �

The purpose of this section is to introduce the underlying migration process, a
particular L�evy process Z on G; a little more formally and collect some of its
properties.

2.1 More about G

Our standard reference for basic facts on group theory needed here is Vilenkin
[Vil63].

For k 2Z, consider the quotient group G=Gk ; and the related quotient map
�k : G ! G=Gk : Since j � j de�ned in (3) is constant on the cosets of Gk other
than Gk itself, in G=Gk we get a translation invariant ultrametric via

j�gj :=

(
jgj if �kg = �g 6= 0

0 if �g = �0 =: 0
; �g 2 G=Gk : (16)
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The balls

(G=Gk)j :=
n
�g 2 G=Gk : j�gj � N�k+j

o
; j � 0; (17)

are �nite subgroups of G=Gk : In particular, (G=Gk)0 = f0g; and (G=Gk)1
is isomorphic to the cyclic group ZN : Note also that if � is the countable
hierarchical group de�ned in (1), then

for all k 2Z; the quotient group G=Gk is isomorphic to �: (18)

Recall that Gy = G[fyg, where y is adjoined as an isolated cemetery point.
Adjoin to G=Gk an isolated cemetery point that we will also denote by the
symbol y : Extend the quotient maps �k to Gy by setting �k(y) := y :

We also need the dual group G� of G: It can be de�ned as G in (2) except
we re
ect the index j 2Zto �j: That is, the elements h of G� have the zeros
at the right end. Set

jhj := Nk; where h 2 G� and k := sup
�
j 2Z: hj 6= 0

	
+ 1;

as well as
G�
k :=

�
h 2 G� : jhj � Nk

	
; k 2Z: (19)

Then
jhj = Nk if and only if h 2 G�

knG
�
k�1 : (20)

The pairing hg; hi between G and G� is just given by

hg; hi := exp
h
2�i
N

P
j2Zgjhj

i
; g 2 G; h 2 G�; (21)

where for the gj ; hj 2 ZN = f0; :::; N � 1g the product gjhj is de�ned by the
usual multiplication in Z: Note that

G�
k =

n
h 2 G� : hg; hi = 1 8g 2 Gk

o
; k 2Z; (22)

that is G�
k is the annihilator of Gk . If � is a �nite measure on G; we de�ne the

Fourier transform b� of � by

b�(h) := Z
G

�(dg) hg; hi; h 2 G�: (23)

Write also b' instead of b� if �(dg) = '(g)dg; that is if ' is the density function
of �:

Example 7 (Fourier transforms of some indicators) The Fourier trans-
form of the indicator function 1Gk of the compact-open subgroup Gk is given
by d1Gk = N�k1G�

k
; k 2Z: (24)
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In fact, if h 2 G�
k ; then hg; hi = 1 (recall (22)), and (24) follows for such h from

`(Gk) = N�k: On the other hand, if h 62 G�
k ; then there is a j � k such that

the jth coordinate hj of h is di�erent from 0: But gj is \uniform" on ZN ; andPN�1
gj=0 exp

�
2�i
N gjhj

�
= 0; hj = 1; :::; N � 1;

which implies that (24) is also true for those h: 3

Lemma 8 (approximate identity) If ' 2 L1(Gn; `n), n 2 N, then

lim
k!1

Nnk

Z
Gn
k

dh '(g + h) = '(g) `n�a:e: and in L1(Gn; `n):

Proof It su�ces to consider the case when ' is supported on Gn
�r for some

r 2 N. Then for k 2 N the function g 7! N�nrNnk
R
Gn
k
dh '(g + h) is just the

conditional expectation of ' under the probability measure N�nr`n
�
� \Gn

�r

�
given the �-�eld generated by the cosets of Gn

k , and the result follows from the
martingale convergence theorem.

2.2 Stable L�evy process Z on G

Let Z :=
�
Zt : t � 0

	
denote the \stable" L�evy process on G with L�evy measure

� as de�ned in (10) with the index 1 < � < 1 �xed, and b > 0: That is, Z is
a c�adl�ag jump process with stationary independent increments, where a jump
with value g occurs in the interval dt with rate �(dg)dt: Consequently, by (5)
and (7),

Z makes a jump of size jgj = N�k at rate bNk�(1�N�1); k 2Z: (25)

Note that � is indeed a L�evy measure by the �niteness of

�(GnGk) =
1X
j=0

�
�
Gk�1�jnGk�j

�
= bNk� 1�N�1

N� � 1
; k 2Z: (26)

For more about processes such as Z we refer to Evans [Eva89, Section 2]. Denote
by P g = P g

b the law of Z starting at Z0 = g: In what follows, we simply call
(Z;P g

b ) the L�evy process (with L�evy constant b):
Next we want to calculate the characteristic function of Zt (recall (21)).

Lemma 9 (characteristic function of Zt) For each t > 0; the characteristic
function of Zt under P 0

b is given by

P 0
b



Zt ; g

�
�
= exp

�
� c b t jg�j�

�
; t � 0; g� 2 G�; (27)

with the constant c = cN;� := 1�N���1

N��1 :
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Proof Since Z is a L�evy process with L�evy measure �; for t > 0 �xed we have

P 0
b



Zt ; g

�
�
= exp

h
� t

Z
G

�(dg)
�
1� hg; g�i

�i
; g� 2 G�;

see [Eva89, Proposition 1] (send there N !1): It remains to show thatZ
�(dg)

�
1� hg; g�i

�
= cN;� b jg

�j�; g� 6= 0: (28)

Decompose the l.h.s. into a sum of the contributions from each \annulus"
GjnGj+1 and apply (5) to conclude that the l.h.s. is

b
P

j2ZN (�+1)j

Z
GjnGj+1

dg
�
1� hg; g�i

�
:

Using (7) and (24), we may continue with

= b
P

j2ZN�j
h
1G�nG�

j
�N�11G�nG�

j+1

i
(g�):

Assume now that jg�j = Nk; k 2Z: Then the latter expression coincides with

b
X
j<k

N�j � bN�1
X

j<k�1

N�j = bN�(k�1)+ b(1�N�1)
X

j<k�1

N�j:

But this equals the r.h.s. of (28), �nishing the proof.

Recall that � denotes the shrinking automorphism de�ned in the beginning
of xx 1.6. Sometimes we write Z(t) instead of Zt :

Corollary 10 (scaling for Z) For m 2Z; s 2 R; and g 2 G, the distribution

of the process �mZ(N�s�) under P g
b is that of the process Z under P �mg

N�(s�m)b
.

Proof Using the L�evy property, without loss of generality we may set g = 0.
It su�ces by the Markov property and a simple induction argument to show
that for all t � 0 the distribution of the random variable �mZ(N�st) under P 0

b

is that of the random variable Z(t) under P 0
N�(s�m)b

.
Let �� : G� ! G� denote the \adjoint" shrinking automorphism that moves

every coordinate of g� to the left, so that j��g�j = N�1jg�j and hg; ��g�i =
h�g; g�i for g� 2 G� and g 2 G. Then the characteristic function of �mZ(N�st)
under P 0

b is given by

P 0
b

D
Z(N�st); (��)mg�

E
= exp

h
� c bN�(s�m)tjg�j�

i
;

where we used Lemma 9. Applying that lemma again, the claim follows.

Corollary 11 (transition density of Z) The L�evy process Z has a jointly
continuous transition density p =

�
pt(g) : t > 0; g 2 G

	
that is strictly

positive and uniformly bounded on each set of the form [";1)�G; where " > 0:
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Proof It follows from Lemma 9, the characterization (20), and Example 7
that

P 0
b



Zt ; g

�
�
=
P

k2Zck (t)1G�
k
(g�) =

P
k2Zck (t) dNk1Gk (g

�)

g� 2 G�; where we set

ck(t) := exp
�
� c b tNk�

�
� exp

�
� c b tN (k+1)�

�
:

Thus, P 0
b fZt 2 dgg = pt(g) `(dg) where pt(g) :=

P
k2Z ck (t)Nk1Gk : It is

immediate that the transition density p has the desired properties.

Corollary 12 (equivalence of restricted laws) For " > 0 and g; h 2 G; the
restrictions of P g

b and P h
b to the sub-�-�eld �fZt : t � "g are equivalent.

Proof This is immediate from Corollary 11 and the Markov property.

2.3 Local time � for Z

Later on we will make use of the following fact.

Proposition 13 (local time of Z) For each g 2 G we have P g
b -a.s. that there

is a jointly continuous local time (t; h) 7! �(t; h), (t; h) 2 R+ �G, such thatZ t

0

ds f(Xs) =

Z
G

dh�(t; h)f(h)

for all bounded Borel functions f and all t � 0. In particular, P g
b -a.s.

�(t; h) = lim
k!1

Nk

Z t

0

ds 1
n
jZs � hj � N�k

o
(29)

uniformly for (t; h) in compact subsets of R+ � G. Moreover, for �xed h 2 G,

inf
�
t > 0 : Zt = h

	
= inf

�
t > 0 : �(t; h) > 0

	
< 1 P g

b �a:s: (30)

Proof 1� (existence) For � > 0; write

u�(g) :=

Z 1

0

dt e��t pt(g); g 2 G;

for the �-potential density of Z: By (27), its Fourier transform cu� is

cu�(g�) = Z 1

0
dt exp

h
� �t� c b t jg�j�

i
=

1

� + c b jg�j�
=
P

k2Zdk 1G�
k
(g�);

g� 2 G�; where we set

dk :=
1

�+ c bNk�
�

1

�+ c bN (k+1)�
� 0; k 2Z:
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Note that
dk is of order N�jkj� as jkj ! 1; (31)

in particular, dk is summable in k 2 Z. Now by (24), 1G�
k
is the Fourier

transform of Nk1Gk ; for each k 2Z. Hence,

0 � u�(g) =
P

k2ZdkN
k1Gk(g) � u�(0) <1; g 2 G: (32)

Therefore, u� is a bounded continuous function on G; and from

u�(0)� u�(g) =
P

k 1
�
N�k < jgj

	
dkN

k

and (31) we conclude

lim
06=g!0

u�(0)� u�(g)

jgj��1
= kb;N;�;�

for some constant kb;N;�;� 2 (0;1): As in the proof of Lemma 7.2 of [Eva88],
we can check Dudley's metric entropy condition to conclude that there is a
version of the centered, stationary Gaussian process on G with covariance kernel
(g; g0) 7! u1(g0 � g) that has continuous sample paths. The existence of a
continuous local time � then follows from Theorem 1 of Marcus and Rosen
[MR92]. The limit relation (29) follows from general theory.

2� (stopping time identity) Fix g; h 2 G: Write Vh and Wh, respectively, for
the stopping times on the l.h.s. and on r.h.s. of (30). Observe that the right
continuity of Z implies that ZVh = h on the event fVh <1g, P g

b -a.s. Similarly,
ZWh = h on the event fWh <1g, and Vh � Wh , P

g
b -a.s.

Let us �rst show that

P g0

b fWh0 <1g > 0 for all g0; h0 2 G: (33)

By Fubini's theorem,
R
deP 0

b �(t; e) = P 0
b

R
de�(t; e) = t for all t � 0, and so

P 0
b fWe < 1g > 0 for some e 2 G. By Corollary 12 we get P f

b fWe < 1g > 0
for all f 2 G, and combining this with the L�evy property establishes (33).

Let us now show that Vh = Wh, P
g
b -a.s. It su�ces by applying the strong

Markov property at time Vh on the event fVh <1g to show that

P h
b fWh = 0g = 1; (34)

but this follows by applying the strong Markov property at time Wh on the
positive probability event fWh <1g (recall (33)).

We are thus left with showing that P g
b fVh < 1g = 1. By (34) we know

that the random set ft > 0 : Zt = hg is non-empty P h
b -a.s. We have from

Corollary 10 that under P 0
b ; the distribution of Z is the same as that of the

process �kZ(N�k�), for all k 2 Z. Consequently, by the L�evy property, under
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P h
b ; the distribution of the random set ft : Z(t) = hg is the same as that of�
t : Z(N�kt) = h

	
= N��kft : Z(t) = hg. Sending k ! �1, we see that

the random set ft : Z(t) = hg is unbounded P h
b -a.s. Thus, by Corollary 12,

the random set ft : Z(t) = hg is unbounded P g
b -a.s., hence P g

b fVh < 1g = 1
follows.

Corollary 14 (collision local time)Let
�
~Zt ; ~P

~g
b

�
be a copy of (Zt ; P

g
b ). Then

for g; ~g 2 G we have P g
b �

~P ~g
b �a:s: that the limit

L(t) := lim
k!1

Nk

Z t

0

ds 1
n��Zs � ~Zs

�� � N�k
o

exists uniformly on compact subsets of R+ , and this collision local time L(t) of
Z and ~Z is continuous in t: Moreover,

inf
�
t > 0 : Zt = ~Zt

	
= inf

�
t > 0 : L(t) > 0

	
< 1 P g

b �
~P ~g
b �a:s: (35)

Proof This is immediate from Proposition 13 and the observation that the
law of Z � ~Z under P g

b �
~P ~g
b is the same as the law of Z under P g�~g

2b :

We extend the Markov process (Z;P g
b ) to the state-space Gy = G [ fyg by

declaring that y is an absorbing point.

3 Coalescing processes

The purpose of this section is to introduce the coalescing L�evy process #; a
non-locally coalescing L�evy process k# ; the coalescing random walk k# ; the
instantaneously coalescing L�evy process �; and to relate these processes.

3.1 Coalescing L�evy processes # and k#

We will give a sample path construction of #. In fact, we will couple the con-
struction of # with that of a sequence of non-locally coalescing L�evy processes
k#; in which particles die at a rate proportional to the weighted amount of time
they have spent within distance N�k of other living particles.

Fix n 2 N and g = (g1 ; :::; gn) 2 Gn
y . On some probability space with

probability measure denoted by Pg = P
g
b let Z = (Z1 ; :::; Zn) be a vector of

independent L�evy processes (with L�evy constant b) starting at g. For k 2 Z;
1 � i < j � n with both gi and gj di�erent from y ; and t � 0; we introduce the
following approximate collision local time of Zi and Zj :

kLi;j(t) := Nk

Z t

0

ds 1
n��Zi(s) � Zj(s)

�� � N�k
o
: (36)
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Note that the limit

1Li;j(t) := lim
k!1

kLi;j(t) uniformly on compacts; P
g
b �a:s:; (37)

is the collision local time of the ith and jth particle (Corollary 14). For the
other pairs 1 � i < j � n such that gi = y or gj = y set kLi;j � 0.

On the same probability space as Z is de�ned, suppose that we also have
de�ned a family �i; j; 1 � i < j � n; of random variables that are exponentially
distributed with mean 1; independent and jointly independent of Z.

Recall that a > 0 is a given (di�usion) constant. For k 2Z:=Z[ f1g and
1 � i < j � n; set

kUi;j := inf
�
t : a kLi;j(t) > �i;j

	
: (38)

We will say that the jth particle coalesces into the ith one at time kUi;j ; pro-
vided that at time kUi;j� both had still be alive. That is, a kLi;j serves as
a clock under which the ith particle tries to kill the jth one, as long as both
are not yet killed. To be more precise, recall that Z(0) = g 2 Gn

y and de�ne a

f0; 1gn-valued c�adl�ag process kI :=
��

kIj(t)
�
1�j�n

: t � 0
	
starting at

kIj(0) :=

(
0 if gj 6= y;

1 if gj = y;
k 2Z; 1 � i � n;

by setting

kIj(t) :=
kIj(0) +

P
i<j 1

�
kUi;j � t

	�
1� kIi

�
kUi;j �

���
1� kIj

�
kUi;j �

��
:

As the kUi;j are Pg-a.s. distinct, there is no problem with this de�nition. The
interpretation is that kIi(t) is the indicator of the event that at time t the ith
particle is dead. Here we are allowing some particles to be already dead at time
0:

De�ne a Gn
y -valued process k# :=

��
k#i(t)

�
1�i�n

: t � 0
	
starting at g by

k#i(t) :=

(
Zi(t) if kIi(t) = 0;

y if kIi(t) = 1:
(39)

That is, killed particles are sent to y where they stay forever. Let kP
g
a;b denote

the law of k# starting at g 2 Gn
y : For k 2Z; we call

k# a non-locally coalescing
L�evy process, and drop the word \non-locally" in the case of 1#: We also write
simply (#;P

g
a;b) instead of (1#; 1P

g
a;b): The following result is immediate from

the properties of Z and �i;j .

Lemma 15 ((non-locally) coalescing L�evy process)
�
k#; kP

g
a;b

�
is a time-

homogeneous strong Markov process, for each k 2Z.
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Remark 16 (Feller property) Because we can write Zi starting at gi 2 G as

gi + eZi with eZi(0) = 0; and

lim
k!1

Nk

Z t

0
ds 1

n��gi + eZi(s) � �gj + eZj(s)��� � N�k
o

is continuous in (t; gi ; gj) 2 R+�G2; by Proposition 13 it is not hard to demon-
strate that k# is actually Feller for each k 2Z: 3

3.2 Instantaneously coalescing L�evy processes �

Fix n 2 N and g = (g1; : : : ; gn) 2 �Gn
y (here gi = gj 6= y does not hold by

de�nition, see the beginning of xx 1.5). Let Pg and Z be as in xx 3.1.
For 1 � i < j � n with both gi and gj di�erent from y, set

Vi;j = inf
�
t � 0 : Zi(t) = Zj(t)

	
for the hitting time of Zi and Zj : Recall that Vi;j < 1 with Pg-probability
one (Corollary 14). If i0 =2 fi; jg, then Zi0 (Vi;j) 6= Zi(Vi;j) = Zj(Vi;j), Pg-a.s.,
by the independence of the coordinates of Z and the fact that the distribution
of Zi0(t) is absolutely continuous for all t > 0 when gi0 6= y. In particular,
Vi;j 6= Vi0;j0 ; P

g-a.s., when (i; j) 6= (i0; j0). For 1 � i < j � n such that gi = y
or gj = y, put Vi;j :=1.

De�ne a f0; 1gn-valued c�adl�ag process J :=
��
Jj(t)

�
1�j�n

: t � 0
	
starting

at

Jj(0) :=

(
0 if gj 6= y;

1 if gj = y;
1 � j � n;

by setting

Jj(t) := Jj(0) +
P

i<j 1fVi;j � tg
�
1� Ji(Vi;j�)

��
1� Jj(Vi;j�)

�
:

As the Vi;j are Pg-a.s. distinct, there is again no problem with this de�nition,
and the interpretation is that Ji(t) is the indicator of the event that at time t
the ith particle is dead. Here we are allowing some particles to be already dead
at time 0:

De�ne a �Gn
y -valued process � :=

��
�i(t)

�
1�i�n

: t � 0
	
starting at g 2 �Gn

y

by

�i(t) :=

(
Zi(t) if Ji(t) = 0;

y if Ji(t) = 1;
(40)

and denote its law by Qg = Q
g
b : We call

�
�;Q

g
b

�
an instantaneously coalescing

L�evy process. The following result is immediate by construction.

Lemma 17 (instantaneously coalescing L�evy process) (�;Q
g
b ) is a time-

homogeneous strong Markov process.
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3.3 An absolute continuity property of # and �

Consider the coalescing L�evy process # with #(0) 6= y (that is at least one of
the #i(0) is di�erent from y): Let Rt � N denote the set of all labels of particles
alive at time t, that is Rt :=

�
i : #i(t) 6= y

	
; and write jRtj for its cardinality.

De�ne St analogously for the instantaneously coalescing L�evy process �.

Lemma 18 (absolute continuity) Let n 2 N and g 2 Gn
y with g 6= y : Take

; 6= R � f1; : : : ; ng and t > 0: Then the (subprobability) measure

P
g
a;b

�
Rt = R;

�
#i(t)

�
i2R

2 dh
�

on GjRj is absolutely continuous with respect to the Haar measure `jRj on GjRj

and, in fact, has a (subprobability) density function ~pt
�
g; R ; �

�
that satis�es

~pt
�
g; R ; h

�
�
Q

i2R pt(hi � gi); h 2 GjRj;

(with p the transition density of the underlying L�evy process). An analogous re-
sult holds for St with the resulting density function being denoted by ~qt

�
g; S ; �

�
.

Proof For a Borel subset B of GjRj,

P
g
a;b

�
Rt = R;

�
#i(t)

�
i2R

2 B
�
� P

g
b

��
Zi(t)

�
i2R

2 B
�
:

This implies the claim.

3.4 Coalescing random walk k#

For each k 2 Z, the quotient map �k from G to G=Gk transforms the L�evy
process Z on G to a random walk k�Z := �kZ on G=Gk : In order to calculate
the jump rates of k�Z, recall that the Haar measure ` assigns mass N�k to Gk

and each of its cosets (see (6)), and if g belongs to a coset of Gk other than
Gk itself then jgj = j�gj, where �g = �kg 2 G=Gk (recall (16)). Hence, by the
de�nition (10) of �; the jump �g 6= 0 occurs in the walk k�Z with rate

kq�g := bN�kj�gj���1; �g 2 G=Gk ; �g 6= 0: (41)

Note that the total jump rate is �nite:
P

�g 6=0
kq�g = �(GnGk) <1 (recall (26)).

If in the construction of xx 3.1 we put k�Z := (�kZ1; : : :�kZn), then for pairs
(i; j); i < j; such that both gi 6= y and gj 6= y, by (36) we have

kLi;j(t) = Nk

Z t

0

ds 1
�
k�Zi(s) =

k�Zj(s)
	
: (42)

That is, kLi;j from (36) is now the \weighted" collision local time of k�Zi and
k�Zj :



Continuum stepping stone model 19

Recall (18) saying that G=Gk is isomorphic to the countable hierarchical
group �: Delayed coalescing random walks on � are described in [Kle95] and
[FG94a] as systems of unlabeled particles. As we remarked in xx 1.4 for the case
of the usual description of (delayed) coalescing L�evy processes, it is possible
to enhance such a model by assigning labels to the particles and, rather than
thinking of two particles merging into one, think instead of one of the particles
being sent to the cemetery y at the time of \coalescence". It is this latter process
that we will refer to as a (delayed) coalescing random walk k# on G=Gk [ fyg:

Combining the above observations and taking into account in particular the
identity (42) leads immediately to the following result.

Lemma 19 (coalescing random walk) Let n 2 N; g 2 Gn
y and k 2Z: Un-

der kP
g
a;b ; the process k# :=

�
�k

k#1; :::; �k
k#n

�
is a coalescing random walk

on G=Gk[fyg with jump rates kq of (41), coalescing rate aNk; and initial state
�g = (�g1 ; :::;�gn) =

�
�kg1 ; :::; �kgn

�
:

3.5 Convergence of coalescing processes

In this section we will make precise one sense in which the coalescing random
walks k# converge to the coalescing L�evy process # as k ! 1, resp. the coa-
lescing L�evy process # tends to the instantaneously coalescing L�evy process �
as a!1.

Recall the de�nition of the state-space B given in xx 1.4. For k 2Z; de�ne
the averaging transformation Mk : B! B by

(Mkx)(g) := Nk

Z
Gk

dg0 x(g0 + g); g 2 G: (43)

That is, Mkx (g) is the average of x over the coset g+Gk : Note that Mk is well-
de�ned as a map from B into itself because the r.h.s. of (43) does not depend
on which particular representative for x we use to compute the integral. Since
Mkx is constant on the cosets of Gk ; we can think of Mkx(�) as a function on
the quotient group G=Gk and write �Mkx instead of Mkx in this case.

By analogy with the product brackets pairing of De�nition 1, we can intro-
duce a pairing between [0; 1]G=Gk and (G=Gk [ fyg)n, n 2 N, that we will also
denote by [� ; � ].

Recalling the identi�cation Lemma 19, the convergence of the coalescing
random walk k# to that of the coalescing L�evy process # and the convergence
of # to the instantaneously coalescing L�evy process � can now be expressed as
follows.

Proposition 20 (convergence) Suppose n 2 N, ' 2 L1(Gn; `n); and t � 0:
Then Z

Gn

dg '(g) kP
g
a;b

�
�Mkx;

k#t
�
��!
k!1

Z
Gn

dg '(g)P
g
a;b[x; #t] (44)
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and Z
Gn

dg '(g)P
g
a;b[x; #t] ��!

a!1

Z
Gn

dg '(g)Q
g
b [x; �t]; (45)

uniformly in x 2 B.

Proof Fix n; ' and t as in the proposition. First consider (44). Note that
the r.h.s. of (44) is well-de�ned (that is, does not depend on which particular
representative we choose for x) by the absolute continuity Lemma 18. Using the
de�nition (43) of the average Mkx, the construction of k#t provided in xx 3.1,
and interchanging the order of expectation and integration, the l.h.s. of (44) can
be written asZ

Gn

dg '(g)Nnk

Z
Gn
k

dh P
g
b

nY
i=1

x1�
kIi(t)

�
Zi(t)� hi

�
:

Since for h 2 Gn
k the law of (Z � h ; kI) under P

g
b is the same as the law of

(Z ; kI) under P
g�h
b ; the latter expectation equals

P
g�h
b

Qn
i=1 x

1� kIi(t)
�
Zi(t)

�
:

Interchanging the order of integration (twice) and using the shift invariance of
the Haar measure dg; the l.h.s. of (44) can be rewritten asZ

Gn

dg Nnk

Z
Gn
k

dh '(g + h) P
g
b

nY
i=1

x1�
kIi(t)

�
Zi(t)

�
:

The di�erence between the l.h.s. and the r.h.s. of (44) can be written as a
sum of two terms by subtracting and adding the quantityZ

Gn

dg '(g) P
g
b

nY
i=1

x1�
kIi(t)

�
Zi(t)

�
: (46)

The absolute value of the �rst term in this sum can be estimated from above byZ
Gn

dg

����Nnk

Z
Gn
k

dh '(g + h)� '(g)

���� ��!
k!1

0;

where the convergence follows from Lemma 8. It therefore remains to check
that (46) converges uniformly in x 2 B toZ

Gn

dg '(g) P
g
b

nY
i=1

x1�
1Ii(t)

�
Zi(t)

�
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as k ! 1: Note that our �xed t � 0 is P
g
b -a.s. di�erent from 1Ui;j (recall

(38)) for any 1 � i < j � n, and these random variables are P
g
b -a.s. distinct.

Moreover, kLi;j(t) converges uniformly on compacts to 1Li;j(t) as k!1; P
g
b -

a.s. (recall (37)). Thus, the kUi;j converge P
g
b -a.s. to the 1Ui;j as k !1, and

we have P
g
b -a.s. for 1 � i � n that kIi(t) = 1Ii(t) for all k 2 Z su�ciently

large.

The proof of (45) is similar and easier. Write 1aUi;j and
1
aIi in place of

1Ui;j
and 1Ii for the moment, to emphasis the dependence on a in the de�nition.
We need to check thatZ

Gn

dg '(g) P
g
b

nY
i=1

x1�
1
aIi(t)

�
Zi(t)

�
converges uniformly toZ

Gn

dg '(g) Q
g
b

nY
i=1

x1�Ji(t)
�
Zi(t)

�
as a!1. It follows from Corollary 14 that P

g
b -a.s. the random variable 1aUi;j

converges to the hitting time Vi;j as a ! 1. An argument similar to the one

above establishes we have P
g
b -a.s. for 1 � i � n that 1

aIi(t) = Ji(t) for all a
su�ciently large, implying the claim.

3.6 Scaling of coalescing processes

The shrinking automorphism � de�ned in the beginning of xx 1.6 can be ex-
tended to Gy by setting �y := y ; and to Gn

y by �(g1 ; :::; gn) := (�g1 ; :::; �gn);
for each n 2 N:

Lemma 21 (scaling for # and �) For m 2Z; s 2 R; and g 2 Gn
y ; n 2 N; the

distribution of the process #(N�s�) under P
��mg
a;b (resp. �(N�s�) under Q

��mg
b )

is the same as the distribution of the process ��m# under P
g
N�s�ma;N�(s�m)b

(resp. ��m� under Q
g
N�(s�m)b

).

Proof We will consider the claim for #. The proof for � is similar and is
omitted. In the notation of xx 3.1, we have from Corollary 10 that the distribu-

tion of Z(N�s� ) under P
��mg
b is the same as the distribution of ��mZ under

P
g
N�(s�m)b

. Therefore the distribution of
�
Z(N�s�);

�
1Li;j(N�s�)

�
1�i<j�n

�
un-

der P
��mg
b is the same as the distribution of

�
��mZ;

�
N�s�m1Li;j

�
1�i<j�n

�
under P

g
N�(s�m) ; and the result is immediate from the construction of xx 3.1.
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4 Existence and uniqueness for X and Y

This section is devoted to the proof of Theorems 3 and 4. We begin with the
following simple observation. Recall the function I'n of (11).

Lemma 22 (the algebra A) Let A � Cc(G) denote the set of functions of
the form 1H , where H is a coset of Gk for some k 2 Z; and write A for the
linear span of the setn

I'n : n 2 N; ' =
Nn

i=1 'i; 'i 2 A
o
[
�
constant functions on B

	
:

Then A is a dense subspace of C(B).

Proof The result will be immediate from the Stone-Weierstrass theorem (see,
for example, Theorem 36A of Simmons [Sim63]), once we know that the algebra
A separates points. But if for x1; x2 2 B;Z

G

dg x1(g)'(g) =

Z
G

dg x2(g)'(g); ' 2 A;

then x1 = x2 :

Proof of Theorem 3

1� (reformulation of the r.h.s. of (12)) Fix t; n; '; x as in the theorem. Recall
the notation Rt (introduced in xx 3.3) for the set of all labels of particles of
# alive at time t: Decompose the r.h.s. of (12) into a sum with 2n � 1 terms
by introducing into the expectation expression under the integral the indicator
functions 1fRt = Rg ), for ; 6= R � f1; :::; ng. By Lemma 18 we know that #t
restricted to fRt = Rg has an absolutely continuous subprobability distribution
with density function ~pt(g; R ; � ): Hence, for a typical summand we getZ

Gn

dg '(g)Pg1fRt = Rg[x; #t] =

Z
Gn

dg '(g)

Z
GjRj

dh ~pt(g; R ;h) [x;h]:

Introduce the function

'Rt (h) :=

Z
Gn

dg '(g) ~pt(g; R ;h); h 2 GjRj: (47)

Note that it belongs to L1
�
GjRj; `jRj

�
: In fact, since the ~pt(g; R ; � ) are subprob-

ability densities,Z
GjRj

dh
��'Rt (h)�� � Z

GjRj

dh

Z
Gn

dg j'(g)j ~pt(g; R;h) �

Z
Gn

dg j'(g)j <1:
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Using this function, the r.h.s. of (12) can thus be written asZ
Gn

dg '(g)Pg[x; #t] =
P

R I
'Rt
jRj (x) 2 C(B): (48)

In particular, we see that the r.h.s. of (12) is well-de�ned (that is, it does not
depend on the choice of the representative of x).

2� (uniqueness) By Lemma 22 we know that at most one semigroup exists
with the required properties.

3� (existence of transition kernels) Fix k 2Z: Using the isomorphismG=Gk
�=

� (recall (18)), we may make use of the well-known model of interacting Fisher-
Wright di�usions labeled by the countable hierarchical group � (see, for exam-
ple, [Kle95] or [FG94a]). De�ne kX to be such a process with the resampling
mechanism given by Nkaf , where f is as given by (9), and with migration
determined by the random walk k�Z in G=Gk introduced in the beginning of
xx 3.4.

More precisely, given the starting point �x 2 [0; 1]G=Gk; we may construct
kX as the unique strong solution of the following [0; 1]G=Gk-valued system of
stochastic di�erential equations,

kX0(�g) = �x(�g)

d kX t(�g) =
q
Nkaf

�
kX t(�g)

�
w(dt; �g) +

X
�g0 6=0

kq�g0
h
kXt(�g+�g0) � kX t(�g)

i
dt;

�g 2 G=Gk ; where w(�; �g); �g 2 G=Gk ; are i.i.d. standard Brownian motions
and the migration rates kq�g0 are given by (41). Write kP�xa;b for the law of kX

starting at �x 2 [0; 1]G=Gk:
Shiga's [Shi80] duality relation between interacting Fisher-Wright di�usions

and coalescing random walks may be expressed in our notation as follows. For
k 2 Z, n 2 N, t � 0, �x 2 [0; 1]G=Gk and �g 2 (G=Gk)n of the form �g =
(�g1; : : : ; �gn) = (�kg1; : : : ; �kgn) = �kg for g = (g1; : : : ; gn) 2 G,

kP�xa;b
�
kX t ; �g

�
= kP

g
a;b

�
�x ; k#t

�
: (49)

Recall the convergence Proposition 20. Using the duality observation (49) we
may rewrite the l.h.s. in the convergence statement (44) asZ

Gn

dg '(g) kP
�Mkx
a;b

�
kXt ; �kg

�
: (50)

In order to express this in terms of the functions I'n from (11), we introduce the
liftings Lk : [0; 1]

G=Gk ! B by

(Lk�x)(g) := �x(�kg); �x 2 [0; 1]G=Gk; g 2 G:
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Observe that the composition �Mk�Lk is the identity map on [0; 1]G=Gk; whereas
Lk � �Mk = Mk on G: Now (50) and hence the l.h.s. in (44) equals

kP
�Mkx
a;b I'n

�
Lk

kX t

�
=:

Z
k�t(x; dy) I

'
n (y);

where k�t(x; � ) denotes the distribution of Lk
kX t under kP

�Mkx
a;b . From the

convergence statement (44), linearity, and the Lemma 22, we conclude that
there exist probability laws �t(x; � ) on B; such thatZ

�t(x; dy) I
'
n (y) =

Z
Gn

dg '(g)P
g
a;b[x; #t]: (51)

4� (Feller property) It is immediate from (48) and (51) that for t � 0, n 2 N
and ' 2 L1(Gn; `n) the map B 3 x 7!

R
�t(x; dy) I'n (y) is continuous. There-

fore, by linearity and Lemma 22, there is an operator Sa;b(t) : C(B) ! C(B)
such that

B 3 x 7!

Z
�t(x; dy)F (y) = Sa;b(t)F (x) (52)

for F 2 C(B), and Sa;b(t) satis�es (12).

5� (semigroup property) Now we want to check the Chapman-Kolmogorov
property of the kernels �t(x;dy) from (51). It su�ces to show thatZ

�t(x; dy)

Z
�s(y; dz) I

'
n (z) =

Z
�t+s(x; dz) I

'
n (z): (53)

According to (51) and (48), the interior integral can be rewritten to get for the
l.h.s. of (53) P

R

Z
�t(x; dy) I

'Rs
jRj (y):

Again by (51) we may continue with

=
P

R

Z
GjRj

dh 'Rs (h)P
h
a;b[x; #t]:

Inserting (47) and interchanging the order of integration leads toZ
Gn

dg '(g)
P

R

Z
GjRj

dh ~ps(g; R;h)P
h
a;b[x; #t]:

Applying the Markov property of # and (51) once more, we arrive at the r.h.s.
of (53).

6� (strong continuity) We have established the existence of a Markov semi-
group of operators Sa;b(t) : C(B) ! C(B). In order to show that this semi-
group Sa;b is strongly continuous, it su�ces by the Remark after Theorem I.9.4
in Blumenthal and Getoor [BG68], to show that

lim
t#0

Sa;b(t)F (x) = F (x); F 2 C(B); x 2 B: (54)
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By linearity and Lemma 22, it in turn su�ces to check (54) for F = I'n for
all ' 2 C(Gn); n 2 N: Write a typical term from the l.h.s. of (54) as in (12).
Recalling the construction of # in xx 3.1, we will use��� Z

Gn

dg '(g)P
g
a;b[x; #t]�

Z
Gn

dg '(g)Pg[x;Z(t)]
��� (55)

� const

Z
Gn

dg '(g)Pg
n
a coalescence has occured by time t

o
:

Since this tends to 0 as t # 0; it su�ces to replace # by Z; that is to consider
the second term in (55). Reversing time, it equalsZ

Gn

dh [x;h]Ph'
�
Z(t)

�
�!
t#0

Z
Gn

dh [x;h]'(h) = I'n (x);

as required.

7� (Hunt process) From general Markov theory (see, for example, Theorem
I.9.4 of Blumenthal and Getoor [BG68]), we can conclude from parts 1� { 6�

that there is a Hunt process (X;Pxa;b) with semigroup Sa;b :

8� (continuous sample paths) The general theory only yields that the Hunt
process X has c�adl�ag paths. In order to show that X has continuous paths, it
will su�ce to show that the distribution of the continuous process Lk kX under
kP

�Mkx
a;b converges to the distribution of X under Pxa;b in the sense of convergence

of distributions on the Skorohod space D(R+;B) (cf. Theorem 3.10.2 of Ethier
and Kurtz [EK86]).

As arguments similar to those in parts 1� - 6� establish that
�
kX; kP�xa;b

�
has

a Feller semigroup. The latter convergence statement will follow from Theorem
4.2.11 of [EK86] if we can show that

sup�x2[0;1]G=Gk

��� kP�xa;b I'n �Lk kX t

�
�PLk�xa;b I

'
n (Xt)

��� ��!
k!1

0: (56)

The supremum can also be written as

supx2B

��� kP�Mkx
a;b I'n

�
Lk

kX t

�
�PMkx

a;b I'n (Xt)
���:

It follows from Proposition 20 that

supx2B

��� kP�Mkx
a;b I'n

�
Lk

kX t

�
�Pxa;b I

'
n (Xt)

��� ��!
k!1

0:

Using Lemma 18 we have

Pxa;b I
'
n (Xt) =

X
R

Z
Gn

dg '(g)

Z
GjRj

dh ~pt(g; R;h) [x;h]
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and

P
Mkx
a;b I'n (Xt) =

X
R

Z
Gn

dg '(g)

Z
GjRj

dh ~pt(g; R;h)N
jRjk

Z
G
jRj
k

dh0 [x;h+ h0]:

Thus we can bound
��PMkx

a;b I'n (Xt) �P
x
a;bI

'
n (Xt)

�� above byX
R

Z
Gn

dg j'(g)j

Z
GjRj

dh

����~pt(g; R;h)� N jRjk

Z
G
jRj
k

dh0 ~pt(g; R;h� h0)

����:
By Lemma 8, the internal integral converges to 0 as k ! 1; for `n-almost all
g 2 Gn: Therefore, by dominated convergence,

supx2B

���PMkx
a;b I'n (Xt)�P

x
a;bI

'
n (Xt)

��� ��!
k!1

0;

hence (56) holds.

Proof of Theorem 4 The proof is very similar to that of Theorem 3 and
rather easier, so we will omit the details. Essentially, we just replace the occur-
rences of (44) and kX in the above proof by (45) and X, respectively. As X and
Y have the same state-space, there is no need for an analogue of the liftings,
Lk, and so in the counterpart of part 8� it is possible to replace the application
of Theorem 4.2.11 of [EK86] by one of Theorem 4.2.5 of [EK86].

5 Scaling results

The purpose of this section is to verify the cluster formation Theorem 6. This
requires the following preparation.

Proof of Proposition 5 Consider �rst the claim regarding X. Fix m; s 2Z:
A simple induction argument shows that it su�ces to establish for �xed t > 0

Sa;b(N
�st)(F � ��m) =

�
SN�s�ma;N�(s�m)b(t)F

�
� ��m;

for all F 2 C(B). By Lemma 22 it in turn su�ces to consider the special case
F = I'n for n 2 N and ' 2 L1(Gn; `n).

Observe that by de�nition of the shrinking operation,Z
Gn

dg '(g) [x; ��mg] = Nmn

Z
Gn

dg '(�mg) [x;g]; x 2 B:

Hence, by the de�nition (11) of I'n we get I'n ��
�m = NmnI'��

m

n (x): Thus, by
(12),

Sa;b(N
�st)(I'n � �

�m)(x) = Nmn

Z
Gn

dg '(�mg)P
g
a;b

�
x; #(N�st)

�
=

Z
Gn

dg '(g)P
��mg
a;b

�
x; #(N�st)

�
:
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By Lemma 21 we may continue with

=

Z
Gn

dg '(g)P
g
N�s�ma;N�(s�m)b

[x; ��m#(t)]

= (SN�s�ma;N�(s�m)bI
'
n ) � �

�m:

Lemma 23 (ergodic theorem) Let � be as in Theorem 6. Then the sequence
of probability measures ��m� converges weakly to the point mass ��1 as m !
1.

Proof For k 2Zand m � k; in L2 = L2(B; �) we haveZ
Gk

dg ��mx(g) = N�m

Z
Gk�m

dg x(g) = N�kNk�m

Z
Gk�m

dg

Z
G0

dh x(g + h)

by the stationarity of �: Since � is ergodic, from the L2-ergodic Theorem 6.4.1
of Krengel [Kre85] it follows that the latter expression converges in L2 to

N�k

Z
�(dx)

Z
G0

dh x(h) = �

Z
Gk

dh

as m !1; where we used the assumption (15). Consequently, if H is a coset
of Gk we have thatZ

dg 1H(g)�
�mx(g) ���!

m!1
�

Z
dg 1H(g)

in L2. Thus, in the notation of Lemma 22 we getZ
��m�(dx) I'n (x) ���!

m!1

Z
��1(dx) I

'
n (x)

for ' =
Nn

i=1 'i with 'i 2 A, 1 � i � n, n 2 N, and the result follows by
Lemma 22.

Proof of Theorem 6 (i) This follows directly from Proposition 5, Lemma
23, Theorem 4, and Theorem 4.2.5 of [EK86].

(ii) This is immediate from part (i) and the observation that ��j;0 ��m;m =
�m�j;m .

(iii) From Proposition 5 we see that the distribution of ��j;0Y under Q�1b is

the same as the distribution of Y under Q�1N�jb . For ' 2 L1(Gn; `n), n 2 N, by
(13) we have

Q�1N�jb I
'
n (Yt) =

Z
�Gn

dg '(g)Q
g
N�jb�

jStj (57)
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(recall that St = fi : �i(t) 6= yg).
If we take the j ! 1 limit in (57), then, by the construction of xx 3.1 and

Corollary 14, we get

�

Z
�Gn

dg '(g) = �I'n (1):

On the other hand, if we take the j ! �1 limit in (57), then we obtain

�n
Z
�Gn

dg '(g) = I'n (�1):

Both claims then follow by Lemma 22.

(iv) From Lemma 8 we know that Q�1b -a.s. for `-a.e. g 2 G we have

Yt(g) = lim
k!1

Nk

Z
Gk

dh Yt(g + h):

As Yt is (spatially) stationary under Q�1b , the kth term in the sequence on the
r.h.s. has the same distribution as I'1

�
(��k;0Y )t

�
, where ' = 1G0 . By part

(iii),

Q
�1
b I'1

�
(��k;0Y )t

��
1� I'1

�
(��k;0Y )t

��
��!
k!1

0;

and so Q�1b -a.s. for `-a.e. g 2 G we have Yt(g) 2 f0; 1g.
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