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Abstract. A general theory on rates of convergence in multiple regression is
developed, where the regression function is modeled as a member of an ar-
bitrary linear function space (called a model space), which may be �nite- or
in�nite-dimensional. A least squares estimate restricted to some approximat-
ing space, which is in fact a projection, is employed. The error in estimation
is decomposed into three parts: variance component, estimation bias, and ap-
proximation error. The contributions to the integrated squared error from the
�rst two parts are bounded in probability by Nn=n, where Nn is the dimen-
sion of the approximating space, while the contribution from the third part is
governed by the approximation power of the approximating space. When the
regression function is not in the model space, the projection estimate converges
to its best approximation.

The theory is applied to a functional ANOVA model, where the multivari-
ate regression function is modeled as a speci�ed sum of a constant term, main
e�ects (functions of one variable), and interaction terms (functions of two or
more variables). Rates of convergence for the ANOVA components are also
studied. We allow general linear function spaces and their tensor products
as building blocks for the approximating space. In particular, polynomials,
trigonometric polynomials, univariate and multivariate splines, and �nite ele-
ment spaces are considered.

1. Introduction

Consider the following regression problem. LetX represent the predictor variable
and Y the response variable, where X and Y have a joint distribution. Denote the
range of X by X and the range of Y by Y. We assume that X is a compact subset
of some Euclidean space, while Y is the real line. Set �(x) = E(Y jX = x) and
�2(x) = var(Y jX = x), and assume that the functions � = �(�) and �2 = �2(�) are
bounded on X . Let (X1; Y1), : : : , (Xn; Yn) be a random sample of size n from the
distribution of (X;Y ). The primary interest is in estimating �.
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We model the regression function � as being a member of some linear function
space H, which is a subspace of the space of all square-integrable, real-valued func-
tions on X . Least squares estimation is used, where the minimization is carried
out over a �nite-dimensional approximating subspace G of H. We will see that
the least squares estimate is a projection onto the approximating space relative to
the empirical inner product de�ned below. The goal of this paper is to investi-
gate the rate of convergence of this projection estimate. We will give an uni�ed
treatment of classical linear regression and nonparametric regression. If H is �nite-
dimensional, then we can choose G = H; this is just classical linear regression.
In�nite-dimensional H corresponds to nonparametric regression. One interesting
special case is the functional ANOVA model considered below.

Before getting into the precise description of the approximating space and pro-
jection estimate, let us introduce two inner products and corresponding induced
norms. For any integrable function f de�ned on X , set En(f) =

1
n

Pn
i=1 f(Xi)

and E(f) = E[f(X)]. De�ne the empirical inner product and norm as hf1; f2in =
En(f1f2) and kf1k2n = hf1; f1in for square-integrable functions f1 and f2 on X .
The theoretical versions of these quantities are given by hf1; f2i = E(f1f2) and
kf1k2 = hf1; f1i.

Let G � H be a �nite-dimensional linear space of real-valued functions on X .
The space G may vary with sample size n, but for notational convenience, we
suppress the possible dependence on n. We require that the dimension Nn of G be
positive for n � 1. Since the space Gwill be chosen such that the functions inH can
be well approximated by the functions in G, we refer to G as the approximating
space. For example, if X � R and the regression function � is smooth, we can
choose G to be a space of polynomials or smooth piecewise polynomials (splines).
The space G is said to be identi�able (relative to X1; : : : ; Xn) if the only function
g in the space such that g(Xi) = 0 for 1 � i � n is the function that identically
equals zero. Given a sample X1, : : : , Xn, if G is identi�able, then it is a Hilbert
space equipped with the empirical inner product.

Consider the least squares estimate �̂ of � in G, which is the element g 2 G that
minimizes

P
i[g(Xi) � Yi]2. If X has a density with respect to Lebesgue measure,

then the design points X1; : : : ; Xn are unique with probability one and hence we
can �nd a function de�ned on X that interpolates the values Y1; : : : ; Yn at these
points. With a slight abuse of notation, let Y = Y (�) denote any such function.
Then �̂ is exactly the empirical orthogonal projection of Y onto G | that is, the
orthogonal projection onto G relative to the empirical inner product. We refer to
�̂ as a projection estimate.

We expect that if G is chosen appropriately, then �̂ should converge to � as
n!1. In general, the regression function � need not be an element of H. In this
case, it is reasonable to expect that �̂ should converge to the theoretical orthogonal
projection �� of � onto H | that is, the orthogonal projection onto H relative to
the theoretical inner product. As we will see, this is the case; in fact, we will reveal
how quickly �̂ converges to ��. Here, the loss in the estimation is measured by
the integrated squared error k�̂ � ��k2 or averaged squared error k�̂ � ��k2n. We
will see that the error in estimating �� by �̂ comes from three di�erent sources:
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variance component, estimation bias and approximation error. The contributions of
the variance component and the estimation bias to the integrated squared error are
bounded in probability by Nn=n, where Nn is the dimension of the space G, while
the contribution of the approximation error is governed by the approximation power
of G. In general, improving the approximation power of G requires an increase in
its dimension. The best trade-o� gives the optimal rate of convergence.

One interesting application of our theory is to the functional ANOVA model,
where the (multivariate) regression function is modeled as a speci�ed sum of a con-
stant term, main e�ects (functions of one variable) and interaction terms (functions
of two or more variables). For a simple illustration of a functional ANOVA model,
suppose that X = X1�X2�X3, where Xi � Rdi with di � 1 for 1 � i � 3. Allowing
di > 1 enables us to include covariates of spatial type. Suppose H consists of all
square-integrable functions on X that can be written in the form

�(x) = �; + �f1g(x1) + �f2g(x2) + �f3g(x3) + �f1;2g(x1; x2):(1)

To make the representation in (1) unique, we require that each nonconstant com-
ponent be orthogonal to all possible values of the corresponding lower-order com-
ponents relative to the theoretical inner product. The expression (1) can be viewed
as a functional version of analysis of variance (ANOVA). Borrowing the termi-
nology from ANOVA, we call �; the constant component, �f1g(x1); �f2g(x2), and
�f3g(x3) the main e�ect components, and �f1;2g(x1; x2) the two-factor interaction
component; the right side of (1) is referred to as the ANOVA decomposition of
�. Correspondingly, given a random sample, for a properly chosen approximating
space, the projection estimate has the form

�̂(x) = �̂; + �̂f1g(x1) + �̂f2g(x2) + �̂f3g(x3) + �̂f1;2g(x1; x2);(2)

where each nonconstant component is orthogonal to all allowable values of the
corresponding lower-order components relative to the empirical inner product. As
in (1), the right side of (2) is referred as the ANOVA decomposition of �̂. We can
think of �̂ as an estimate of �. Generally speaking, � need not have the speci�ed
form. In that case, we think of �̂ as estimating the best approximation �� to � in
H. As an element of H, �� has the unique ANOVA decomposition

��(x) = ��; + ��f1g(x1) + ��f2g(x2) + ��f3g(x3) + ��f1;2g(x1; x2):

We expect that �̂ should converge to �� as the sample size tends to in�nity. In
addition, we expect that the components of the ANOVA decomposition of �̂ should
converge to the corresponding components of the ANOVA decomposition of ��.
Removing the interaction component �f1;2g in the ANOVA decomposition of �, we
get the additive model. Correspondingly, we remove the interaction components in
the ANOVA decompositions of �̂ and ��. On the other hand, if we add the three
missing interaction components �f1;3g(x1; x3), �f2;3g(x2; x3) and �f1;2;3g(x1; x2; x3)
to the right side of (1), we get the saturated model. In this case, there is no
restriction on the form of �. Correspondingly, we let �̂ and �� have the unrestricted
form.

A general theory will be developed for getting the rate of convergence of �̂
to �� in functional ANOVA models. In addition, the rates of convergence for the
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components of �̂ to the corresponding components of �� will be studied. We will see
that the rates are determined by the smoothness of the ANOVA components of ��

and the highest order of interactions included in the model. By considering models
with only low-order interactions, we can ameliorate the curse of dimensionality
that the saturated model su�ers. We use general linear spaces of functions and
their tensor products as building blocks for the approximating space. In particular,
polynomials, trigonometric polynomials, univariate and multivariate splines, and
�nite element spaces are considered.

Several theoretical results for functional ANOVA models have previously been
developed. In particular, rates of convergence for estimation of additive models
were established in Stone (1985) for regression and in Stone (1986) for generalized
regression. In the context of generalized additive regression, Burman (1990) showed
how to select the dimension of the approximating space (of splines) adaptively in an
asymptotically optimal manner. Stone (1994) studied the L2 rates of convergence
for functional ANOVA models in the settings of regression, generalized regression,
density estimation and conditional density estimation, where univariate splines and
their tensor products were used as building blocks for the approximating spaces.
Similar results were obtained by Kooperberg, Stone and Truong (1995b) for hazard
regression. These results were extended by Hansen (1994) to include arbitrary
spaces of multivariate splines.

Using di�erent arguments, we extend the results of Stone and Hansen in the con-
text of regression. In particular, a decomposition of the error into three terms yields
fresh insight into the rates of convergence, and it also enables us to simplify the ar-
guments of Stone and Hansen substantially. With this decomposition, we can treat
the three error terms separately. In particular, a chaining argument well known
in the empirical process theory literature is employed to deal with the estimation
bias. On the other hand, by removing the dependence on the piecewise polynomial
nature of the approximating spaces, we are able to discern which properties of the
approximating space are essential in statistical applications. Speci�cally, we have
found that the rate of convergence results generally hold for approximating spaces
satisfying a certain stability condition. This condition is satis�ed by polynomials,
trigonometric polynomials, splines, and various �nite element spaces. The results
in this paper also play a crucial role in extending the theory to other settings,
including generalized regression [Huang (1996)] and event history analysis [Huang
and Stone (1996)].

The methodological literature related to functional ANOVA models has been
growing steadily in recent years. In particular, Stone and Koo (1986), Friedman
and Silverman (1989), and Breiman (1993) used polynomial splines in additive re-
gression. The monograph by Hastie and Tibshirani (1989) contains an extensive
discussion of the methodological aspects of generalized additive models. Friedman
(1991) introduced the MARS methodology for regression, where polynomial splines
and their tensor products are used to model the main e�ects and interactions re-
spectively, and the terms that are included in the model are selected adaptively
based on data. Recently, Kooperberg, Stone and Truong (1995a) developed HARE
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for hazard regression, and Kooperberg, Bose and Stone (1995) developed POLY-
CLASS for polychotomous regression and multiple classi�cation; see also Stone,
Hansen, Kooperberg and Truong (1995) for a review. In parallel, the framework of
smoothing spline ANOVA has been developed; see Wahba (1990) for an overview
and Gu and Wahba (1993) and Chen (1991, 1993) for recent developments.

This paper is organized as follows. In Section 2, we present a general result on
rates of convergence; in particular, the decomposition of the error is described. In
Section 3, functional ANOVA models are introduced and the rates of convergence
are studied. Section 4 discusses several examples in which di�erent linear spaces of
functions and their tensor products are used as building blocks for the approximat-
ing spaces; in particular, polynomials, trigonometric polynomials, and univariate
and multivariate splines are considered. Some preliminary results are given in Sec-
tion 5. The proofs of the theorems in Sections 2 and 3 are provided in Sections 6
and 7, respectively. Section 8 gives two lemmas, which play a crucial role in our
arguments and are also useful in other situations.

2. A general theorem on rates of convergence

In this section we present a general result on rates of convergence. First we give
a decomposition of the error in estimating �� by �̂. Let Q denote the empirical
orthogonal projection onto G, P the theoretical orthogonal projection onto G, and
P � the theoretical orthogonal projection onto H.

Let �� be the best approximation in G to � relative to the theoretical norm. Then
�� = P� = P��. We have the decomposition

�̂� �� = (�̂� ��) + (��� ��) = (QY � P�) + (P�� P ��):(3)

Since �̂ is the least squares estimate in G, it is natural to think of it as an estimate
of ��. Hence, the term �̂� �� is referred to as the estimation error. The term �����

can be viewed as the error in using functions in G to approximate functions in H,
so we refer to it as the approximation error. Note that

h�̂� ��; ��� ��i = hQY � P�; P�� � ��i = 0:

Thus we have the Pythagorean identity k�̂� ��k2 = k�̂� ��k2 + k��� ��k2.
Let ~� be the best approximation in G to � relative to the empirical norm. Then

~� = Q�. We decompose the estimation error into two parts:

�̂� �� = (�̂ � ~�) + (~�� ��) = (QY �Q�) + (Q�� P�):(4)

Note that h�̂; gin = hY; gin for any function g 2 G. Taking conditional expectation
given the design points X1; : : : ; Xn and using the fact that E(Y jX1; : : : ; Xn)(Xi) =
�(Xi) for 1 � i � n, we obtain that

hE(�̂jX1; : : : ; Xn); gin = hE(Y jX1; : : : ; Xn); gin = h�; gin = h~�; gin:

Hence, if G is identi�able, then ~� = E(�̂jX1; : : : ; Xn). Thus, we refer to �̂ � ~� as
the variance component and to ~�� �� as the estimation bias. Since

E(hQY � Q�;Q�� P�injX1; : : : ; Xn) = 0;
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we have the Pythagorean identity

E[k�̂� ��k2njX1; : : : ; Xn] = E[k�̂� ~�k2njX1; : : : ; Xn] + k~�� ��k2n:

Combining (3) and (4), we have the decomposition

�̂� �� = (�̂� ~�) + (~�� ��) + (��� ��)

= (QY � Q�) + (Q�� P�) + (P�� P ��);
(5)

where �̂� ~�, ~�� �� and ����� are the variance component, the estimation bias and
the approximation error, respectively. Moreover, E[h�̂� ~�; ~� � ��injX1; : : : ; Xn] =
0; h�̂� ~�; �� � ��i = 0 and h~� � ��; ��� ��i = 0. But now we do not have the nice
Pythagorean identity. Instead, by the triangular inequality,

k�̂� ��k � k�̂� ~�k+ k~�� ��k+ k��� ��k

and

k�̂� ��kn � k�̂� ~�kn + k~�� ��kn + k��� ��kn:

Using these facts, we can examine separately the contributions to the integrated
squared error from the three parts in the decomposition (5). We will see that the
rate of convergence of the variance component is governed by the dimension of the
approximating space, and the rate of convergence of the approximation error is
determined by the approximation power of that space. Note that the estimation
error equals the di�erence between the empirical projection and the theoretical
projection of � on G. We will use techniques in empirical process theory to handle
this term.

We now state the conditions on the approximating spaces. The �rst condition
requires that the approximating spaces satisfy a stability constraint. This condition
is satis�ed by polynomials, trigonometric polynomials and splines; see Section 4.
Condition 1 is also satis�ed by various �nite element spaces used in approximation
theory and numerical analysis; see Remark 1 following Condition 1. The second
condition is about the approximation power of the approximating spaces. There
is considerable literature in approximation theory dealing with the approximation
power of various approximating spaces. These results can be employed to check
Condition 2.

In what follows, for any function f on X , set kfk1 = supx2X jf(x)j. Given
positive numbers an and bn for n � 1, let an � bn mean that an=bn is bounded
away from zero and in�nity. Given randomvariablesWn for n � 1, letWn = OP (bn)
mean that limc!1 lim supn P (jWnj � cbn) = 0.

Condition 1. There are positive constants An such that, kgk1 � Ankgk for
all g 2 G.

Since the dimension of G is positive, Condition 1 implies that An � 1 for n � 1.
This condition also implies that every function in G is bounded.

Remark 1. Suppose X � Rd. Let the diameter of a set � � X be de�ned as
diam� = supfjx1�x2j : x1; x2 2 �g: Suppose there is a basis fBig of G consisting
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of locally supported functions satisfying the following Lp stability condition: there
are absolute constants 0 < C1 < C2 < 1 such that for all 1 � p � 1 and all
functions g =

P
i ciBi 2 G, we have that

C1kfh
d=p
i cigklp � kgkLp � C2kfh

d=p
i cigklp :

Here, hi denotes the diameter of the support of Bi, while k � kLp and k � klp are the
usual Lp and lp norms for functions and sequences, respectively. This Lp stability
condition is satis�ed by many �nite element spaces [see Chapter 2 of Oswald (1994)].
By ruling out pathological cases, we can assume that kgkL1 = kgk1, g 2 G.
Suppose the density of X is bounded away form zero. Then kgkL2

� Ckgk, g 2 G,
for some constant C. If maxi hi � mini hi � a for some positive constant a = an,
then Condition 1 holds with An � a�d=2. In fact, we have that kgkL1 � kfcigkl1 ,
kgkL2

� ad=2kfcigkl2 , and kfcigkl1 � kfcigkl2 . The desired result follows.

Remark 2. Condition 1 was used by Barron and Sheu (1991) to obtain rates of
convergence in univariate density estimation.

Condition 2. There are nonnegative numbers � = �(G) such that

inf
g2G

kg � ��k1 � �! 0 as n!1:

Conditions 1 and 2 together imply that �� is bounded.

Theorem 2.1. Suppose Conditions 1 and 2 hold and that limnA
2
nNn=n = 0 and

lim supnAn� <1. Then

k�̂� ~�k2 = OP (Nn=n); k�̂� ~�k2n = OP (Nn=n);

k~�� ��k2 = OP (Nn=n); k~�� ��k2n = OP (Nn=n);

k��� ��k2 = OP (�
2); k��� ��k2n = OP (�

2):

Consequently,

k�̂� ��k2 = OP (Nn=n+ �2) and k�̂� ��k2n = OP (Nn=n+ �2):

Remark 3. When H is �nite-dimensional, we can choose G = H, which does
not depend on the sample size. Then Condition 1 is automatically satis�ed with
An independent of n, and Condition 2 is satis�ed with � = 0. Consequently, �̂
converges to �� with the rate 1=n.

3. Functional ANOVA models

In this section, we introduce the ANOVA model for functions and establish the
rates of convergence for the projection estimate and its components. Our terminol-
ogy and notation follow closely those in Stone (1994) and Hansen (1994).

Suppose X is the Cartesian product of some compact sets X1; : : : ;XL, where Xl �
R
dl with dl � 1. Let S be a �xed hierarchical collection of subsets of f1; : : : ; Lg,

where hierarchical means that if s is a member of S and r is a subset of s, then
r is a member of S. Clearly, if S is hierarchical, then ; 2 S. Let H; denote the
space of constant functions on X . Given a nonempty subset s 2 S, let Hs denote
the space of square-integrable functions on X that depend only on the variables xl,
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l 2 s. Set H =
�P

s2S hs : hs 2 Hs

	
. Note that each function in H can have a

number of equivalent expansions. To account for this overspeci�cation, we impose
some identi�ability constraints on these expansions, which lead to the notion of the
ANOVA decomposition of the space H. We need the following condition.

Condition 3. The distribution of X is absolutely continuous and its density
function fX (�) is bounded away from zero and in�nity on X .

Under Condition 3, H is a Hilbert space equipped with the theoretical inner
product (see Lemma 5.3 and the discussion following it). Let H0

s denote the space
of all functions in Hs that are theoretically orthogonal to each function in Hr

for every proper subset r of s. Under Condition 3, it can be shown that every
function h 2 H can be written in an essentially unique manner as

P
s2S hs, where

hs 2 H0
s for s 2 S (see Lemma 5.3). We refer to

P
s2S hs as the theoretical

ANOVA decomposition of h, and we refer to H0
s , s 2 S, as the components of H.

The component H0
s is referred to as the constant component if #(s) = 0, as a main

e�ect component if #(s) = 1, and as an interaction component if #(s) � 2; here
#(s) is the number of elements of s.

We model the regression function � as a member of H and refer to the resulting
model as a functional ANOVA model. In particular, S speci�es which main e�ect
and interaction terms are in the model. As special cases, if maxs2S #(s) = L, then
all interaction terms are included and we get a saturated model; if maxs2S #(s) = 1,
we get an additive model.

We now construct the approximating space G and de�ne the corresponding
ANOVA decomposition. Naturally, we require that G have the same structure
as H. Let G; denote the space of constant functions on X , which has dimension
N; = 1. Given 1 � l � L, let Gl � G; denote a linear space of bounded, real-valued
functions on Xl, which varies with sample size and has �nite, positive dimension
Nl. Given any nonempty subset s = fs1; : : : ; skg of f1; : : : ; Lg, let Gs be the ten-
sor product of Gs1; : : : ; Gsk, which is the space of functions on X spanned by the
functions g of the form

g(x) =
kY
i=1

gsi(xsi); where gsi 2 Gsi for 1 � i � k:

Then the dimension of Gs is given by Ns =
Qk

i=1Nsi . Set

G =

(X
s2S

gs : gs 2 Gs

)
:

The dimension Nn of G satis�es maxs2S Ns � Nn �
P

s2S Ns � #(S)maxs2S Ns:
Hence, Nn �

P
s2S Ns.

Observe that the functions in the space G can have a number of equivalent ex-
pressions as sums of functions in Gs for s 2 S. To account for this overspeci�cation,
we introduce the notion of an ANOVA decomposition of G. Set G0

; = G; and, for

each nonempty set s 2 S, let G0
s denote the space of all functions in Gs that are
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empirically orthogonal to each function in Gr for every proper subset r of s. We
will see that if the space G is identi�able, then each function g 2 G can be written
uniquely in the form

P
s2S gs, where gs 2 G0

s for s 2 S (see Lemma 5.4). Corre-
spondingly, we refer to

P
s2S gs as the empirical ANOVA decomposition of g, and

we refer to G0
s, s 2 S, as the components of G.

As in the previous section, we use the projection estimate �̂ in G to estimate ��.
The general result in Section 2 can be applied to get the rate of convergence of �̂.
To adapt to the speci�c structure of the spaces H and G, we replace Conditions
1 and 2 by conditions on the subspaces Gs and Hs, s 2 S. These conditions are
su�cient for Conditions 1 and 2 and are easier to verify.

Condition 10. For each s 2 S, there are positive constants As = Asn such that
kgk1 � Askgk for all g 2 Gs.

Remark 4. (i) Suppose Condition 3 holds. If Condition 10 holds, then Condi-

tion 1 holds with the constant An =
�
�
1�#(S)
1

P
s2S A

2
s

�1=2
, where �1 is de�ned in

Lemma 5.3. In fact, for g 2 G, write g =
P

s2S gs where gs 2 Gs and gs ? Gr

for all proper subsets r of s. By the same argument as in Lemma 5.3, we have

that
P

s2S kgsk
2 � �

1�#(S)
1 kgk2. Applying Condition 10 and the Cauchy{Schwarz

inequality, we get that

kgk1 �
X
s2S

kgsk1 �
X
s2S

Askgsk �

 X
s2S

A2
s

!1=2 X
s2S

kgsk
2

!1=2

:

Hence

kgk1 �

 X
s2S

A2
s

!1=2�
�
1�#(S)
1 kgk2

�1=2
:

(ii) Suppose Condition 3 holds and let s = fs1; : : : ; skg 2 S. If kgk1 � anjkgk

for all g 2 Gsj , j = 1; : : : ; k, then kgk1 � Askgk for all g 2 Gs with As �
Qk

j=1 anj.
This is easily proved by using induction and the tensor product structure of Gs. The
statement is trivially true for k = 1. Suppose the statement is true for #(s) � k�1
with 2 � k � L. For each x 2 Xs1 � � � � � Xsk, write x = (x1; x2), where x1 2 Xs1
and x2 2 Xs2 � � � � � Xsk . Let C1; : : : ; C4 denote generic constants. Then, by the
induction assumption,

kgk21 = sup
x1

sup
x2

g2(x1; x2)

� C1 sup
x1

 
kY

j=2

a2nj

!Z
Xs2

�����Xsk

g2(x1; x2) dx2

� C1

 
kY

j=2

a2nj

!Z
Xs2

�����Xsk

sup
x1

g2(x1; x2) dx2:
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By the assumption,

sup
x1

g2(x1; x2) � C2a
2
n1

Z
Xs1

g2(x1; x2) dx1; x2 2 Xs2 � � � � � Xsk:

Hence,

kgk21 � C3

 
kY

j=1

a2nj

!Z
Xs1

�����Xsk

g2(x1; x2) dx1 dx2 � C4

 
kY

j=1

a2nj

!
kgk2:

(iii) This condition is easy to check for �nite element spaces satisfying the Lp
stability condition; see Remark 1 following Condition 1.

Recall that �� is the theoretical orthogonal projection of � onto H and that its
ANOVA decomposition has the form �� =

P
s2S �

�
s, where �

�
s 2 H0

s for s 2 S.

Condition 20. For each s 2 S, there are nonnegative numbers �s = �s(Gs) such
that infg2Gs

kg � ��sk1 � �s ! 0 as n!1.

Remark 5. (i) If Condition 20 holds, then Condition 2 holds with � �
P

s2S �s.
In fact, we have that maxs2S �s � � �

P
s2S �s � #(S)maxs2S �s:

(ii) The positive numbers �s can be chosen such that �r � �s for r � s.

Recall that �̂ is the projection estimate. Since Conditions 10 and 20 are su�cient
for Conditions 1 and 2, the rate of convergence of �̂ to �� is given by Theorem 2.1.
We expect that the components of the ANOVA decomposition of �̂ should converge
to the corresponding components of ��. This is justi�ed in next result. Recall that
~� = Q� and �� = P� are respectively the best approximations to � in G relative
to the empirical and theoretical inner products. The ANOVA decompositions of �̂,
~�, and �� are given by �̂ =

P
s2S �̂s, ~� =

P
s2S ~�s, and �� =

P
s2S ��s, respectively,

where �̂s; ~�s; ��s 2 G0
s for s 2 S. As in (5), we have an identity involving the various

components: �̂s � ��s = (�̂s � ~�s) + (~�s � ��s) + (��s � ��s). The following theorem
describes the rates of convergence of these components.

Theorem 3.1. Suppose Conditions 10, 20 and 3 hold and that limnA
2
sNs=n = 0

and lim supAs�s <1 for each s 2 S. Then

k�̂s � ~�sk
2 = OP

 X
s2S

Ns=n

!
; k�̂s � ~�sk

2
n = OP

 X
s2S

Ns=n

!
;

k~�s � ��sk
2 = OP

 X
s2S

Ns=n

!
; k~�s � ��sk

2
n = OP

 X
s2S

Ns=n

!
;

k��s � ��sk
2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
; k��s � ��sk

2
n = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:

Consequently,

k�̂s � ��sk
2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
and k�̂s � ��skn = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:
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4. Examples

In this section, we give some examples illustrating the rates of convergence for
functional ANOVA models when di�erent approximating spaces are used. In the
�rst three examples, �nite-dimensional linear spaces of univariate functions and
their tensor products are used as building blocks for the approximating spaces.
Three basic classes of univariate approximating functions are considered: polyno-
mials, trigonometric polynomials, and splines. Application of multivariate splines
and their tensor products is given in the last example.

In the �rst three examples, we assume thatX is the Cartesian product of compact
intervals X1; : : : ;XL. Without loss of generality, it is assumed that each of these
intervals equals [0; 1] and hence that X = [0; 1]L.

Let 0 < � � 1. A function h on X is said to satisfy a H�older condition with
exponent � if there is a positive number  such that jh(x)�h(x0)j � jx�x0j� for

x0; x 2 X ; here jxj =
�PL

l=1 x
2
l

�1=2
is the Euclidean norm of x = (x1; : : : ; xL) 2 X .

Given an L-tuple � = (�1; : : : ; �L) of nonnegative integers, set [�] = �1+ � � �+ �L
and let D� denote the di�erential operator de�ned by

D� =
@[�]

@x�11 : : : @x�LL
:

Let m be a nonnegative integer and set p = m + �. A function on X is said to be
p-smooth if it is m times continuously di�erentiable on X and D� satis�es a H�older
condition with exponent � for all � with [�] = m.

Example 1 (Polynomials). A polynomial on [0; 1] of degree J or less is a function
of the form

PJ (x) =
JX

k=0

akx
k; ak 2 R; x 2 [0; 1]:

Let Gl be the space of polynomials on X of degree J or less for l = 1; : : : ; L, where
J varies with the sample size. Then kgk1 � Alkgk for all g 2 Gl, l = 1; : : : ; L,
with Al � J [see Theorem 4.2.6 of DeVore and Lorentz (1993)]. By Remark 4(ii)
following Condition 10, we know that Condition 10 is satis�ed with As � J#(s) for
s 2 S. Assume that ��s is p-smooth for each s 2 S. Then Condition 20 is satis�ed
with �s � J�p [see Section 5.3.2 of Timan (1966)].

Set d = maxs2S #(s). If p > d and J3d = o(n), then the conditions in Theo-
rems 2.1 and 3.1 are satis�ed. Thus we have that k�̂s � ��sk

2 = OP (Jd=n + J�2p)
for s 2 S and k�̂ � ��k2 = OP (J

d=n + J�2p). Taking J � n1=(2p+d), we get that
k�̂s � ��sk

2 = OP (n
�2p=(2p+d)) for s 2 S and k�̂� ��k2 = OP (n

�2p=(2p+d)). These
rates of convergence are optimal [see Stone (1982)].

Example 2 (Trigonometric Polynomials). A trigonometric polynomial on [0; 1] of
degree J or less is a function of the form

TJ (x) =
a0
2
+

JX
k=1

ak cos(2k�x) + bk sin(2k�x); ak; bk 2 R; x 2 [0; 1]:
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Let Gl be the space of trigonometric polynomials of degree J or less for l = 1; : : : ; L,
where J varies with the sample size. We assume that ��s is p-smooth for each s 2 S.
We also assume that ��s can be extended to a function de�ned onR

ds and of period 1
in each of its arguments; this is equivalent to the requirement that �� satisfy certain
boundary conditions. As in Example 1, we can show that Conditions 10 and 20 are
satis�ed with As � J#(s)=2 and �s � J�p for s 2 S [see Theorem 4.2.6 of DeVore
and Lorentz (1993) and Section 5.3.1 of Timan (1966)]. Set d = maxs2S #(s). If
p > d=2 and J2d = o(n), then the conditions in Theorems 2.1 and 3.1 are satis�ed.
Consequently, we get the same rates of convergence as in Example 1. (Note that we
require only that p > d=2 here, which is weaker than the corresponding requirement
p > d in Example 1. But we need the additional requirement that ��s be periodic.)

Example 3 (Univariate Splines). Let J be a positive integer, and let t0, t1; : : : ; tJ ,
tJ+1 be real numbers with 0 = t0 < t1 < � � � < tJ < tJ+1 = 1. Partition [0; 1] into
J + 1 subintervals Ij = [tj; tj+1), j = 0; : : : ; J � 1, and IJ = [tJ ; tJ+1]. Let m be a
nonnegative integer. A function on [0; 1] is a spline of degree m with knots t1; : : : ; tJ
if the following hold: (i) it is a polynomial of degree m or less on each interval Ij ,
j = 0; : : : ; J ; and (ii) (for m � 1) it is (m � 1)-times continuously di�erentiable on
[0; 1]. Such spline functions constitute a linear space of dimension K = J +m+ 1.
For detailed discussions of univariate splines, see de Boor (1978) and Schumaker
(1981).

Let Gl be the space of splines of degree m for l = 1; : : : ; L, where m is �xed. We
allow J , (tj)

J
1 and thus Gl to vary with the sample size. Suppose that

max0�j�J(tj+1 � tj)

min0�j�J (tj+1 � tj)
� 

for some positive constant . Then kgk1 � Alkgk for all g 2 Gl, l = 1; : : : ; L, with
Al � J1=2 [see Theorem 5.1.2 of DeVore and Lorentz (1993)]. By Remark 4(ii)
following Condition 10, we know that Condition 10 is satis�ed with As � J#(s)=2 for
s 2 S. Assume that ��s is p-smooth for each s 2 S. Then Condition 20 is satis�ed
with �s � J�p [see (13.69) and Theorem 12.8 of Schumaker (1981)].

Set d = maxs2S #(s). If p > d=2 and J2d = o(n), then the conditions in
Theorems 2.1 and 3.1 are satis�ed. Thus we have that k�̂s � ��sk

2 = OP (J
d=n +

J�2p) for s 2 S and k�̂� ��k2 = OP (Jd=n+ J�2p). Taking J � n1=(2p+d), we get
that k�̂s � ��sk

2 = OP (n
�2p=(2p+d)) for s 2 S and k�̂ � ��k2 = OP (n

�2p=(2p+d)).
These rates of convergence are optimal [see Stone (1982)].

We can achieve the same optimal rates of convergence by using polynomials,
trigonometric polynomials or splines. But the required assumption p > d on the
smoothness of the theoretical components ��s for using polynomials is stronger
than the corresponding assumption p > d=2 for using trigonometric polynomials or
splines. The results from Examples 1{3 tell us that the rates of convergence are
determined by the smoothness of the ANOVA components of �� and the highest
order of interactions included in the model. They also demonstrate that, by using
models with only low-order interactions, we can ameliorate the curse of dimension-
ality that the saturated model su�ers. For example, by considering additive models
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(d = 1) or by allowing interactions involving only two factors (d = 2), we can get
faster rates of convergence than by using the saturated model (d = L).

Using univariate functions and their tensor products to model �� restricts the
domain of �� to be a hyperrectangle. By allowing bivariate or multivariate func-
tions and their tensor products to model ��, we gain more exibility, especially
when some explanatory variable is of spatial type. In the next example, multivari-
ate splines and their tensor products are used in the functional ANOVA models.
Throughout this example, we assume that X is the Cartesian product of compact
sets X1; : : : ;XL, where Xl � Rdl with dl � 1 for 1 � l � L.

Example 4 (Multivariate Splines). Loosely speaking, a spline is a smooth, piece-
wise polynomial function. To be speci�c, let �l be a partition of Xl into disjoint
(measurable) sets and, for simplicity, assume that these sets have common diameter
a. By a spline function on Xl, we mean a function g on Xl such that the restriction
of g to each set in �l is a polynomial in xl 2 Xl and g is smooth across the bound-
aries. With dl = 1, dl = 2, or dl � 3, the resulting spline is a univariate, bivariate,
or multivariate spline, respectively.

Let Gl be a space of splines de�ned as in the previous paragraph for l = 1; : : : ; L.
We allowGl to vary with the sample size. Then, under some regularity conditions on
the partition �l, Gl can be chosen to satisfy the Lp stability condition. Therefore

kgk1 � Alkgk for all g 2 Gl with Al � a�dl=2, 1 � l � L [see Remark 4(iii)
following Condition 10 and Oswald (1994, Chapter 2)]. By Remark 4(ii), we know
that Condition 10 is satis�ed with As � a�ds=2, where ds =

P
l2s dl, for s 2 S. Note

that Nl � a�dl and Ns � a�ds , so Nn � maxs2S Ns � a�d, where d = maxs2S ds.
We assume that the functions ��s; s 2 S, are p-smooth and that the spaces Gs are
chosen such that infg2Gs

kg � ��sk = O(ap) for s 2 S | that is, Condition 20 is
satis�ed with �s � ap. To simplify our presentation, we avoid writing the exact
conditions on ��s and Gs. For clear statements of these conditions, see Chui (1988),
Schumaker (1991), or Oswald (1994) and the references therein.

Recall that d = maxs2S
P

l2s dl. If p > d=2 and na2d !1, then the conditions

in Theorems 2.1 and 3.1 are satis�ed. Thus we have that k�̂s���sk
2 = Op(a

�d=n+

a2p) for s 2 S and k�̂ � ��k2 = Op(a
�d=n + a2p). Taking a � n�1=(2p+d), we get

that k�̂s � ��sk
2 = OP (n�2p=(2p+d)) for s 2 S and k�̂ � ��k2 = OP (n�2p=(2p+d)).

When dl = 1 for 1 � l � L, this example reduces to Example 3. The result of this
example can be generalized to allow the various components �� to satisfy di�erent
smoothness conditions and the sets in the triangulations �l to have di�erent diam-
eters. Employing results from approximation theory, we can obtain such a result
by checking Conditions 10 and 20; see Hansen (1994, Chapter 2).

5. Preliminaries

Several useful lemmas are presented in this section. The �rst lemma reveals
that the empirical inner product is uniformly close to the theoretical inner product
on the approximating space G. As a consequence, the empirical and theoretical
norms are equivalent over G. Using this fact, we give a su�cient condition for the
identi�ability of G.
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Lemma 5.1. Suppose Condition 1 holds and that limnA
2
nNn=n = 0, and let t > 0.

Then, except on an event whose probability tends to zero as n!1,

jhf; gin � hf; gij � t kfk kgk; f; g 2 G:

Consequently, except on an event whose probability tends to zero as n!1,

1

2
kgk2 � kgk2n � 2kgk2; g 2 G:(6)

Proof. The result is a special case of Lemma 8.1 below.

Corollary 5.1. Suppose Condition 1 holds and that limnA
2
nNn=n = 0. Then,

except on an event whose probability tends to zero as n!1, G is identi�able.

Proof. Suppose (6) holds, and let g 2 G be such that g(Xi) = 0 for 1 � i � n.
Then kgk2n = 0 and hence kgk2 = 0. By Condition 1, this implies that g is identically
zero. Therefore, if (6) holds, then G is identi�able. The desired result follows from
Lemma 5.1.

The following lemmaand corollary are important tools in handling the estimation
bias. De�ne the unit ball in G relative to the theoretical norm as Gub = fg 2 G :
kgk � 1g.

Lemma 5.2. Suppose Condition 1 holds and that limnA
2
nNn=n = 0. Let M be a

positive constant. Let fhng be a sequence of functions on X such that khnk1 �M
and hhn; gi = 0 for all g 2 G and n � 1. Then

sup
g2Gub

��hhn; gin�� = OP

��Nn

n

�1=2�
:

Proof. The result is a special case of Lemma 8.2 below.

Corollary 5.2. Suppose Condition 1 holds and that limnA
2
nNn=n = 0. Let M be

a positive constant. Let fhng be a sequence of functions on X such that khnk1 �M
and kPhnk1 �M for n � 1. Then kQhn � Phnk2n = OP (Nn=n).

Proof. Let ~hn = hn � Phn. Then k~hnk1 � 2M and h~hn; gi = 0 for all g 2 G.
Recall that Q is the empirical projection onto G. Since Phn 2 G, we see that
Qhn � Phn = Q~hn and thus hQhn � Phn; gin = h~hn; gin. Hence, by Lemma 5.1,
except on an event whose probability tends to zero as n!1,

kQhn � Phnkn = sup
g2G

hQhn � Phn; gin
kgkn

= sup
g2G

h~hn; gin
kgkn

= sup
g2G

�
h~hn; gin
kgk

�
kgk

kgkn

�
� 2 sup

g2Gub

h~hn; gin:

The conclusion follows from Lemma 5.2.

We now turn to the properties of ANOVA decompositions. Let jX j denote the
volume of X . Under Condition 3, let M1 and M2 be positive numbers such that

M�1
1

jX j
� fX (x) �

M2

jX j
; x 2 X :
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Then M1;M2 � 1.

Lemma 5.3. Suppose Condition 3 holds. Set �1 = 1 �
q
1�M�1

1 M�2
2 2 (0; 1).

Then khk2 � �
#(S)�1
1

P
s2S khsk

2 for all h =
P

s hs, where hs 2 H0
s for s 2 S.

Lemma 5.3, which is Lemma 3.1 in Stone (1994), reveals that the theoretical
components H0

s , s 2 S, of H are not too confounded. As a consequence, each
function in H can be represented uniquely as a sum of the components in the
theoretical ANOVA decomposition. Also, it is easily shown by using Lemma 5.3
that, under Condition 3, H is a complete subspace of the space of all square-
integrable functions on X equipped with the theoretical inner product.

The next result, which is Lemma 3:2 in Stone (1994), tells us that each function
g 2 G can be represented uniquely as a sum of the components gs 2 G0

s in its
ANOVA decomposition.

Lemma 5.4. Suppose G is identi�able. Let g =
P

s2S gs, where gs 2 G0
s for s 2 S.

If g = 0, then gs = 0 for each s 2 S.

According to the next result, the components G0
s, s 2 S, of G are not too

confounded, either empirically or theoretically.

Lemma 5.5. Suppose Conditions 10 and 3 hold and that limnA
2
sNs=n = 0 for each

s 2 S. Let 0 < �2 < �1. Then, except on an event whose probability tends to zero

as n ! 1, kgk2 � �
#(S)�1
2

P
s2S kgsk

2 and kgk2n � �
#(S)�1
2

P
s2S kgsk

2
n for all

g =
P

s gs, where gs 2 G0
s for s 2 S.

Proof. This lemma can be proved by using our Lemma 5.1 and the same
argument as in the proof of Lemma 3:1 of Stone (1994).

Let Q0
s and Qs denote the empirical orthogonal projections onto G0

s and Gs,
respectively. Then we have the following result.

Lemma 5.6. Suppose Conditions 10 and 3 hold and that limnAsNs=n = 0 for each

s 2 S. Let g 2 G, g0s = Q0
sg, and gs = Qsg. Then

kgk2n � �
1�#(S)
2

X
s2S

kg0sk
2
n � �

1�#(S)
2

X
s2S

kgsk
2
n:

Proof. Assume that G is identi�able. (By Corollary 5.1, this holds except on
an event whose probability tends to zero as n!1). Then, we can write g uniquely
as g =

P
s2S fs, where fs 2 G0

s for s 2 S. Observe that

kgk2n =
X
s2S

hfs; gin =
X
s2S

hfs; g
0
sin �

X
s2S

kfsknkg
0
skn:

By the Cauchy{Schwarz inequality and Lemma 5:5, the last right-hand side is
bounded above by X

s2S

kfsk
2
n

!1=2 X
s2S

kg0sk
2
n

!1=2

�
�
�
1�#(S)
2 kgk2n

�1=2 X
s2S

kg0sk
2
n

!1=2

:

Thus the desired results follow.
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6. Proof of Theorem 2:1

The proof of Theorem 2.1 is divided into three lemmas. Lemmas 6.1, 6.2 and 6.3
handle the variance component, the estimation bias, and the approximation error
respectively.

Lemma 6.1 (Variance Component). Suppose Condition 1 holds and that

limnA
2
nNn=n = 0. Then k�̂� ~�k2 = OP (Nn=n) and k�̂� ~�k2n = OP (Nn=n).

Proof. Assume that G is identi�able. (By Corollary 5.1, this holds except
on an event whose probability tends to zero as n ! 1.) Let f�j; 1 � j � Nng
be an orthonomal basis of G relative to the empirical inner product. Recall that
�̂ = QY and ~� = Q�. Thus �̂ � ~� =

P
jh�̂ � ~�; �jin�j =

P
jhY � �; �jin�j and

k�̂� ~�k2n =
P

jhY � �; �ji2n. Observe that E[hY � �; �jinjX1; : : : ; Xn] = 0 and

E[(Yi � �(Xi))(Yj � �(Xj))jX1; : : : ; X2] = �ij�
2(Xi);

where �ij is the Kronecker delta. Moreover, by the assumptions on the model, there
is a positive constant M such that �2(x) �M for x 2 X . Thus,

E[hY � �; �ji
2
njX1; : : : ; Xn] =

1

n2

nX
i=1

�2j (Xi)�
2(Xi) �

M

n
k�jk

2
n =

M

n
:

Hence E[k�̂� ~�k2njX1; : : : ; Xn] � M (Nn=n) and therefore k�̂ � ~�k2n = OP (Nn=n).
The �rst conclusion follows from Lemma 5.1.

Lemma 6.2 (Estimation Bias). Suppose Conditions 1 and 2 hold and that

limnA
2
nNn=n = 0 and lim supnAn� < 1. Then k~� � ��k2 = OP (Nn=n) and

k~�� ��k2n = OP (Nn=n).

Proof. According to Condition 2, �� is bounded and we can �nd g 2 G such
that kg � ��k1 � 2�. By Condition 1,

kP (g � ��)k1 � AnkP (g � ��)k � Ankg � ��k � Ankg � ��k1:

Hence

kP�k1 � kgk1 + kP (g � ��)k1 � k��k1 + (An + 1)kg � ��k1:

Since lim supnAn� < 1, we see that functions P� are bounded uniformly in n.
Furthermore, by our assumption, � is bounded. Note that ~� � �� = Q� � P�, so
the result of the lemma follows from Corollary 5.2 and Lemma 5.1.

Lemma 6.3 (Approximation Error). Suppose Conditions 1 and 2 hold and that

limnA
2
nNn=n = 0. Then k��� ��k2 = O(�2) and k��� ��k2n = OP (�

2).

Proof. From Condition 2, we can �nd g 2 G such that k�� � gk1 � 2� and
hence k�� � gk � 2� and k�� � gkn � 2�. Since P is the theoretical orthogonal
projection onto G, we have that

k��� gk2 = kP (�� � g)k2 � k�� � gk2:(7)
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Hence, by the triangle inequality,

k��� ��k2 � 2k��� gk2 + 2k�� � gk2 � 4k�� � gk2 = O(�2):

To prove the result for the empirical norm, using Lemma 5.1 and (7), we have
that, except on an event whose probability tends to zero as n!1,

k��� gk2n � 2k��� gk2 � 2k�� � gk2:

Hence, by the triangle inequality and Condition 2,

k��� ��k2n � 2k��� gk2n + 2k�� � gk2n = OP (�
2):

Theorem 2.1 follows immediately from Lemmas 6.1, 6.2 and 6.3.

7. Proof of Theorem 3.1

Write �̂ =
P

s2S �̂s, ~� =
P

s2S ~�s, and �� =
P

s2S ��s, where �̂s; ~�s; ��s 2 G0
s.

Recall that �̂ � ~� is the variance component and ~� � �� the estimation bias. The
following lemma gives the rates of convergence of the components of �̂ � ~� and
~�� ��.

Lemma 7.1. Suppose Conditions 10, 20 and 3 hold and that limnA
2
sNs=n = 0 and

lim supnAs�s <1 for s 2 S. Then, for each s 2 S,

k�̂s � ~�sk
2 = OP

 X
s2S

Ns=n

!
and k�̂s � ~�sk

2
n = OP

 X
s2S

Ns=n

!
;

k~�s � ��sk
2 = OP

 X
s2S

Ns=n

!
and k~�s � ��sk

2
n = OP

 X
s2S

Ns=n

!
:

Proof. By Remarks 4 and 5 following Conditions 10 and 20, respectively, the
conditions of Lemmas 6.1 and 6.2 are satis�ed. Thus the desired results follow from
Lemmas 5:5, 6.1 and 6.2.

Recall that ��s 2 H0
s , s 2 S, are components in the ANOVA decomposition of

��. Condition 20 tells us that there are good approximations to ��s in Gs for each
s 2 S. In fact, we can pick good approximations to ��s in G

0
s. This is proved in the

following lemma.

Lemma 7.2. Suppose Conditions 10, 20 and 3 hold and that limnA
2
sNs=n = 0 and

lim supnAs�s < 1 for s 2 S. Then, for each s 2 S, there are functions gs 2 G0
s

such that,

k��s � gsk
2 = OP

 X
r�s;r 6=s

Nr

n
+ �2s

!
(8)

and

k��s � gsk
2
n = OP

 X
r�s;r 6=s

Nr

n
+ �2s

!
:(9)
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Proof. By Condition 20, we can �nd g 2 Gs such that k��s � gk1 � 2�s.
Thus ��s is bounded and hence the functions g are bounded uniformly in n. Write
g = gs + (g � gs), where gs 2 G0

s and g � gs 2
P

r�s;r 6=sGr. We will verify that gs
has the desired property.

Recall that Qr is the empirical orthogonal projection onto Gr. Let Pr denote
the theoretical orthogonal projection onto Gr. We �rst show that kQrg �Prgk2n =
OP (Nr=n) for each proper subset r of s. Since ��s ? Hr � Gr, we have that
Pr�

�
s = 0. Thus

kPrgk = kPr(g � ��s)k � kg � ��sk1 � 2�s(10)

and hence kPrgk1 � ArkPrgk � 2Ar�s. Therefore, the functions Prg are bounded
uniformly in n. The desired result follows from Corollary 5.2.

It follows from Lemma 5.6 that kg � gsk2n � �
1�#(s)
2

P
r�s;r 6=s kQrgk2n. By the

triangle inequality, for each proper subset r of s, kQrgk2n � 2kQrg � Prgk2n +
2kPrgk2n. We just proved that kQrg�Prgk2n = OP (Nr=n). Moreover, according to
Lemma 5.1 and (10), kPrgkn � 2kPrgk � 4�s, except on an event whose probability
tends to zero as n!1. Consequently,

kg � gsk
2
n = OP

 X
r�s;r 6=s

Nr

n
+ �2s

!

and, by Lemma 5.1,

kg � gsk
2 = OP

 X
r�s;r 6=s

Nr

n
+ �2s

!
:

The desired results now follow from the triangle inequality.

Recall that �� � �� is the approximation error. Write �� =
P

s2S ��s, where

��s 2 G0
s, and �� =

P
s2S �

�
s, where �

�
s 2 H0

s . The next lemma gives the rates of
convergence of the components of ��� ��.

Lemma 7.3. Suppose Conditions 10, 20 and 3 hold and that limnA
2
sNs=n = 0 and

lim supnAs�s <1 for s 2 S. Then, for each s 2 S,

k��s � ��sk
2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!

and

k��s � ��sk
2
n = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:

Proof. By Lemma 7:2, for each s 2 S, there are functions gs 2 G0
s such that (8)

and (9) hold. Write g =
P

s2S gs. Then kg � ��k2 = OP (
P

s2S Ns=n+
P

s2S �
2
s),

so

kg � ��k2 = kP (g� ��)k2 � kg � ��k2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:
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Therefore, by Lemmas 5.1 and 5.5, except on an event whose probability tends to
zero as n!1,

kgs � ��sk
2 � 2kgs � ��sk

2
n � 2�1�#(s)2 kg � ��k2n

� 4�
1�#(s)
2 kg � ��k2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:

Hence, the desired results follow from (8), (9), and the triangle inequality.

Theorem 3.1 follows immediately from Lemmas 7.1 and 7.3.

8. Two useful Lemmas

In this section, we state and prove two lemmas that are analogues of Lemmas 5.1
and 5.2 for more generally de�ned theoretical and empirical inner products and
norms. These more general results are needed in Huang and Stone (1996). Consider
a W-valued random variable W , where W is an arbitrary set. Let W1; : : : ;Wn be
a random sample of size n from the distribution of W . For any function f on W,
set E(f) = E[f(W )] and En(f) =

1
n

Pn
i=1 f(Wi). Let U be another arbitrary set.

We consider a real-valued functional 	(f1; f2;w) de�ned on w 2 W and functions
f1; f2 on U . For �xed functions f1 and f2 on U , 	(f1; f2;w) is a function on W.
For notational simplicity, we write 	(f1; f2) = 	(f1; f2;w). We assume that 	 is
symmetric and bilinear in its �rst two arguments: given functions f1; f2 and f on
U , 	(f1; f2) = 	(f2; f1) and 	(af1 + bf2; f) = a	(f1; f) + b	(f2; f) for a; b 2 R.
We also assume that there are constants M3 and M4 such that	(f1; f2)1 �M3kf1k1kf2k1

and

var
�
	(f1; f2)

�
� M4kf1k

2kf2k
2
1:

Throughout this section, let the empirical inner product and norm be de�ned by

hf1; f2in = En

�
	(f1; f2)

�
and kf1k

2
n = hf1; f1in;

and let the theoretical versions of these quantities be de�ned by

hf1; f2i = E
�
	(f1; f2)

�
and kf1k

2 = hf1; f1i:

In particular, this more general de�nition of the theoretical norm is now used in
Condition 1 and in the formula Gub = fg 2 G : kgk � 1g.

Lemma 8.1. Suppose Condition 1 holds and that limnA
2
nNn=n = 0. Let t > 0.

Then, except on an event whose probability tends to zero as n!1,

jhf; gin � hf; gij � t kfk kgk; f; g 2 G:

Consequently, except on an event whose probability tends to zero as n!1,

1

2
kgk2 � kgk2n � 2kgk2; g 2 G:
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Proof. We use a chaining argument well known in the empirical process theory
literature; for a detailed discussion, see Pollard (1990, Section 3).

Let f1; f2; g1; g2 2 Gub, where kf1 � f2k � �1 and kg1 � g2k � �2 for some
positive numbers �1 and �2. Then, by the bilinearity and symmetry of 	, the
triangle inequality, the assumptions on 	, and Condition 1,	(f1; g1)� 	(f2; g2)


1
�
	(f1 � f2; g1)


1
+
	(f2; g1 � g2)


1

�M3kf1 � f2k1kg1k1 +M3kf2k1kg1 � g2k1

�M3A
2
nkf1 � f2k kg1k+M3A

2
nkf2k kg1 � g2k

�M3A
2
n(�1 + �2)

and

var
�
	(f1; g1) �	(f2; g2)

�
� 2 var

�
	(f1 � f2; g1)

�
+ 2var

�
	(f2; g1 � g2)

�
� 2M4kg1k

2
1kf1 � f2k

2 + 2M4kf2k
2
1kg1 � g2k

2

� 2M4A
2
n(kg1k

2kf1 � f2k
2 + kf2k

2kg1 � g2k
2)

� 2M4A
2
n(�

2
1 + �22):

Applying the Bernstein inequality, we get that

P
���(En � E)

�
	(f1; g1) �	(f2; g2)

��� > ts
�

� 2 exp

�
�

n2t2s2=2

2M4nA2
n(�

2
1 + �22) + 2M3A2

n(�1 + �2)nts=3

�
:

Therefore,

P
���(En � E)

�
	(f1; g1) �	(f2; g2)

��� > ts
�

� 2 exp

�
�

t2

8M4

� n

A2
n

�� s2

�21 + �22

��
+ 2 exp

�
�

3t

8M3

� n

A2
n

�� s

�1 + �2

��
:

(11)

We will use this inequality in the following chaining argument.
Let �k = 1=3k, and let fg � 0g = G0 � G1 � � � � be a sequence of subsets of

Gub with the property that ming�2Gk kg � g�k � �k for g 2 Gub. Such sets can
be obtained inductively by choosing Gk as a maximal superset of Gk�1 such that
each pair of functions in Gk is at least �k apart. The cardinality of Gk satis�es

#(Gk) �
�
(2 + �k)=�k

�Nn � 3(k+1)Nn. (Observe that there are #(Gk) disjoint
balls each with radius �k=2, which together can be covered by a ball with radius
1 + (�k=2).)

Let K be an integer such that (2=3)K � t=(4M3A
2
n). For each g 2 Gub, let g�K

be an element in GK such that kg� g�Kk � 1=3K. Fix a positive integer k � K. For
each gk 2 Gk, let g�k�1 denote an element in Gk�1 such that kgk � g�k�1k � �k�1.



MULTIPLE REGRESSION 21

De�ne f�k for k � K in a similar manner. By the triangle inequality,

sup
f;g2Gub

��(En � E)
�
	(f; g)

���
� sup

f;g2Gub

��(En �E)
�
	(f; g) �	(f�K ; g

�
K)
���

+
KX
k=1

sup
fk;gk2Gk

��(En �E)
�
	(fk; gk) �	(f�k�1; g

�
k�1)

���:
Observe that��(En �E)

�
	(f; g) � 	(f�K ; g

�
K)
��� � 2

	(f; g) � 	(f�K ; g
�
K)

1

� 4M3A
2
n=3

K � t=2K :

Hence,

P

�
sup

f;g2Gub

��(En � E)
�
	(f; g)

��� > t

�

� P

�
sup

f;g2Gub

��(En � E)
�
	(f; g) � 	(f�K ; g

�
K)
��� > t

1

2K

�
(= 0)

+
KX
k=1

P

�
sup

fk;gk2Gk

��(En � E)
�
	(fk; gk)� 	(f�k�1; g

�
k�1)

��� > t
1

2k

�

�
1X
k=1

[#(Gk)]
2 sup
fk;gk2Gk

P

���(En � E)
�
	(fk; gk)� 	(f�k�1; g

�
k�1)

��� > t
1

2k

�
:

Thus, by (11),

P

�
sup

f;g2Gub

��(En �E)
�
	(f; g)

��� > t

�

�
1X
k=1

2 exp

��
2(k + 1) log3

�
Nn �

t2

8M4

� n

A2
n

� (1=2k)2

(1=3k�1)2 + (1=3k�1)2

�

+
1X
k=1

2 exp

��
2(k + 1) log3

�
Nn �

3t

8M3

� n

A2
n

� 1=2k

1=3k�1+ 1=3k�1

�
:

Since limnA
2
nNn=n = 0, the right side of above inequality is bounded above by

2
1X
k=1

�
exp

�
�

t2

16M4

� n

A2
n

�� 1

18

��3
2

�2k�
+ exp

�
�

3t

16M3

� n

A2
n

��1
6

��3
2

�k��

for n su�ciently large. By the inequality exp(�x) � e�1=x for x > 0, this is
bounded above by

2e�1
1X
k=1

�
288M4

t2
A2
n

n

�2
3

�2k
+
32M3

t

A2
n

n

�2
3

�k�
;

which tends to zero as n!1.
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Consequently, except on an event whose probability tends to zero as n!1,

sup
f;g2G

��hf; gin � hf; gi��
kfk kgk

= sup
f;g2Gub

��(En � E)
�
	(f; g)

��� � t:

The second result follows from the �rst one by taking t = 1=2.

Lemma 8.2. Suppose Condition 1 holds and that lim supnA
2
nNn=n <1. Let M be

a positive constant. Let fhng be a sequence of functions on X such that khnk1 �M
and hhn; gi = 0 for all g 2 G and n � 1. Then

sup
g2Gub

��hhn; gin�� = OP

��Nn

n

�1=2�
:

Proof. Observe that Ehhn; gin = hhn; gi for all g 2 G. Hence, by the assump-
tions on 	 and Condition 1, for g1; g2 2 Gub,	(hn; g1 � g2)


1
�M3khnk1kg1 � g2k1

�M3Ankhnk1kg1 � g2k �M3MAnkg1 � g2k

and

var
�
	(hn; g1 � g2)

�
�M4khnk

2
1kg1 � g2k

2 �M4M
2kg1 � g2k

2:

Now applying the Bernstein inequality, we get that, for C > 0; t > 0,

P
�
jhhn; g1 � g2inj � Ct(Nn=n)

1=2
�

= P

 ����
nX
i=1

	(hn; g1 � g2)

���� � Ct(nNn)
1=2

!

� 2 exp

�
�

C2t2nNn=2

nM4M2kg1 � g2k2 +M3MAnkg1 � g2kCt(nNn)1=2=3

�
:

Therefore,

P
�
jhhn; g1 � g2inj � Ct(Nn=n)

1=2
�

� 2 exp

�
�
1

4

� C2

M4M2

� t2Nn

kg1 � g2k2

�

+ 2 exp

�
�
3

4

� C

M3M

�� n

A2
nNn

�1=2 tNn

kg1 � g2k

�
:

(12)

Let �k = 1=3k. De�ne the sequence of sets G0 � G1 � � � � as in Lemma 8.1.
Then #(Gk) � 3(k+1)Nn. Let K be an integer such that

(2=3)K �
�
C=(M3M )

�
[Nn=(nA

2
n)]

1=2:

For each g 2 Gub, let g�K be an element in GK such that kg � g�Kk � 1=3K. Fix a
positive integer k � K. For each gk 2 Gk, let g�k�1 denote an element in Gk�1 such
that kgk � g�k�1k � �k�1. Observe that��hhn; g � g�Kin

�� � k	(hn; g � g�K)k1 �M3MAn
1

3K
� C

�Nn

n

�1=2 1

2K
:
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Thus, by the triangle inequality,

P

�
sup
g2Gub

��hhn; gin�� > C
�Nn

n

�1=2�

� P

�
sup
g2Gub

��hhn; g � g�Kin
�� > C

�Nn

n

�1=2 1

2K

�

+
KX
k=1

P

�
sup
gk2Gk

��hhn; gk � g�k�1in
�� > C

�Nn

n

�1=2 1
2k

�

�
1X
k=1

[#(Gk)] sup
gk2Gk

P

���hhn; gk � g�k�1in
�� > C

�Nn

n

�1=2 1
2k

�
:

Hence, by (12),

P

�
sup
g2Gub

��hhn; gin�� > C
�Nn

n

�1=2�

�
1X
k=1

2 exp

�
[(k + 1) log 3]Nn �

1

36

� C2

M4M2

��3
2

�2k
Nn

�

+
1X
k=1

2 exp

�
[(k + 1) log3]Nn �

1

4

� C

M9M

��3
2

�k� n

A2
nNn

�1=2
Nn

�
:

For C su�ciently large, the right side of the above inequality is bounded above by

2
1X
k=1

exp

�
�

1

72

� C2

M4M2

��3
2

�2k
Nn

�

+ 2
1X
k=1

exp

�
�
1

8

� C

M9M

��3
2

�k� n

A2
nNn

�1=2
Nn

�
:

Using the inequality exp(�x) � e�1=x for x > 0, we can bound this above by

2e�1
1X
k=1

�
72
M4M

2

C2

�2
3

�2k 1

Nn
+ 8
�M9M

C

��2
3

�k�A2
nNn

n

�1=2 1

Nn

�
:

Hence

lim
C!1

lim sup
n!1

P

�
sup
g2Gub

��hhn; gin�� > C
�Nn

n

�1=2�
= 0:

This completes the proof of the lemma.

Take W = U = X and 	(f1; f2) = f1 f2. Then the assumptions on 	 are
satis�ed with M3 = M4 = 1. Thus, Lemmas 5.1 and 5.2 follow from Lemmas 8.1
and 8.2, respectively.
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