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Abstract

The work of Harper and subsequent authors has shown that �nite
sequences (a0; � � � ; an) arising from combinatorial problems are often
such that the polynomial A(z) :=

Pn
k=0 akz

k has only real zeros. Basic
examples include rows from the arrays of binomial coe�cients, Stir-
ling numbers of the �rst and second kinds, and Eulerian numbers.
Assuming the ak are non-negative, A(1) > 0 and that A(z) is not
constant, it is known that A(z) has only real zeros i� the normalized
sequence (a0=A(1); � � � ; an=A(1)) is the probability distribution of the
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number of successes in n independent trials for some sequence of suc-
cess probabilities. Such sequences (a0; � � � ; an) are also known to be
characterized by total positivity of the in�nite matrix (ai�j) indexed
by non-negative integers i and j. This papers reviews inequalities and
approximations for such sequences, called P�olya frequency sequences

which follow from their probabilistic representation. In combinatorial
examples these inequalities yield a number of improvements of known
estimates.

1 Introduction

The work of Harper [58] and subsequent authors [60, 94, 62, 128, 119, 15, 16]
has shown that �nite sequences (a0; � � � ; an) arising from combinatorial prob-
lems are often such that the polynomial A(z) :=

Pn
k=0 akz

k has only real ze-
ros. Typically ak = ank is the number of elements ! of some �nite set 
n such
that Sn(!) = k, for some function Sn : 
n ! f0; 1; � � � ; ng. The normalized
sequence (a0=A(1); � � � ; an=A(1)) then describes the probability distribution of
Sn(!) for ! picked uniformly at random from 
n. See Section 4 for examples
and further references, and [39] for de�nition of probabilistic terms.

A sequence of real numbers (ak)k2K indexed by a subset K of the non-
negative integers is called a P�olya frequency sequence of order r, abbreviated
PFr if the in�nite matrix M := (ai�j)i;j=0;1;2;���, where ak = 0 for k =2 K, is
totally positive of order r. That is to say, for each 1 � s � r, each s � s
minor of M has a non-negative determinant. The sequence (ak) is called a
P�olya frequency (PF ) sequence if it is PFr for every r = 1; 2; � � �. See Karlin
[74] and Ando [4] for background on total positivity, and Brenti [16, 17] for
recent combinatorial developments of this concept.

Proposition 1 [81, 108] Let (a0; � � � ; an) be a sequence of non-negative real
numbers with associated polynomial A(z) :=

Pn
k=0 akz

k such that A(1) > 0.
The following conditions are equivalent:

(i) the polynomial A(z) is either constant or has only real zeros;
(ii) (a0; � � � ; an) is a PF sequence;
(iii) the normalized sequence (a0=A(1); � � � ; an=A(1)) is the distribution

of the number Sn of successes in n independent trials with probability pi of
success on the ith trial, for some sequence of probabilities 0 � pi � 1. The
roots of A(z) are then given by �(1� pi)=pi for i with pi > 0.
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The equivalence (i), (ii) is due to Aissen, Schoenberg and Whitney [1, 108].
This equivalence is a special case of the more general representation of totally
positive in�nite sequences due to Edrei [33], which is recalled in Section 5. See
also Chapter 8 of Karlin [74], Theorem 1.2 and Corollary 3.1. The equivalence
(i) , (iii), due to P. L�evy [80, 81], follows easily from the interpretation of
A(z)=A(1) as a probability generating function. Call an array of real numbers

(ank) = (ank; 0 � k � n; n = 1; 2; � � �)

a PF array i� (ank; 0 � k � n) is a PF sequence for every n = 1; 2; 3; � � �.
Basic examples of PF arrays are provided by the binomial coe�cients, the
Stirling numbers of the �rst and second kinds, and the Eulerian numbers.
Harper [58] and others have exploited the implication (i) ) (iii) to deduce
normal approximations for the nth row of a PF array from the normal ap-
proximation to the distribution of Sn as in (iii). Normal approximations have
also been obtained for sequences of combinatorially de�ned distributions sat-
isfying other conditions [20, 40, 41, 46]. But results in the probability and
statistics literature, reviewed in Section 2, show that PF sequences satisfy
a number of useful inequalities which do not hold for just any sequence that
is approximately normal. As shown in Section 4, even for the two Stirling
arrays which have been extensively studied, the probabilistic bounds yield
some improvements of known estimates.

The notion of a PFr sequence was developed early in this century by
Fekete, P�olya, Schoenberg and others. See [74] for a survey of this develop-
ment. Polynomials with real coe�cients and only real zeros were the subject
of intensive study in the 19th and early 20th century, by Lagrange, Laguerre,
P�olya, and many other authors. Much information about such polynomials
can be found in [92, 101]. See also [68] and papers cited there. As ob-
served by Schoenberg [108], a sequence of non-negative reals (ak) is PF2 i�
it is log-concave (a2k � ak�1ak+1) and has no internal zeros ( i < j < k
and aiak > 0 ) aj > 0). Sequences with these properties, and the weaker
property of unimodality, have been extensively studied in probability and
statistics[76, 75, 130, 19, 122, 109, 56], and in combinatorics and other �elds
[116]. The PFr property for r � 3 is harder to describe intuitively. But see
Brenti [16] for recent combinatorial interpretations of total positivity.

According to Newton's inequality ([57], p. 52), if a polynomial
P
akz

k

with real coe�cients has only real roots, and in particular if (a0; � � � ; an) is a
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PF sequence, then

a2k � ak�1ak+1

�
1 +

1

k

��
1 +

1

n � k

�
(1)

which is stronger than the log-concavity implied by the PF2 condition. L�evy
[80, 81] noted that (1) is a constraint on the probabilities ak := P (Sn = k) for
Sn the number of successes in n independent trials. L�evy also observed that
(1) cannot be improved: given non-negative ak�1; ak; ak+1 satisfying (1) for
some 1 � k � n, there exists a PF sequence (a0; � � � ; an) with these terms
at places k � 1; k; k + 1. As shown by Samuels [107], further applications
of Newton's inequality imply that for each r = 1; 2; � � � the sequence of rth
order di�erences derived from a �nite PF sequence has at most r strict sign
changes.

2 Review of Probabilistic Results.

Let (a0; � � � ; an) be a frequency sequence, that is a sequence of non-negative
real numbers. Let A0(z) and A00(z) denote the �rst two derivatives of the
polynomial A(z) =

P
i aiz

i. Abbreviate A = A(1); A0 = A0(1); A00 = A00(1),
and assume throughout that A(1) > 0. Let P denote the probability distribu-
tion on f0; 1; � � � ; ng de�ned by normalization of (a0; � � � ; an). So for example
P (k) := ak=A and for an interval [b; c]

P [b; c] :=
X

b�j�c

P (j) =
1

A

X
b�j�c

aj (2)

Let � and � denote the mean and standard deviation of P . That is

� :=
1

A

nX
k=0

kak =
A0

A
(3)

�2 :=
1

A

nX
k=0

(k � �)2ak =
A00

A
+
A0

A
�
 
A0

A

!2
(4)

In probabilistic language, if S is a random variable with distribution P , then
S has expectation � and variance �2. If (a0; � � � ; an) is a PF sequence then call
P a PF distribution. Say a random variable X has Bernoulli(p) distribution
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if X assumes the values 0 and 1 with probabilities P (X = 1) = p and
P (X = 0) = 1 � p. According to Proposition 1, a probability distribution
P on f0; 1; � � � ; ng is a PF distribution i� P is the distribution of a sum
of independent variables Sn := X1 + � � � + Xn, where Xi has Bernoulli(pi)
distribution. So for a PF distribution P there are the following standard
probabilistic expressions [39], which can also be checked algebraically using
the fact that the �(1� pi)=pi are the roots of A(z):

� =
X
i

pi and �
2 =

nX
i=1

pi(1� pi) (5)

History and Terminology. What is called here a PF distribution is called
in the statistics literature the distribution of the number of successes in in-
dependent trials. Such trials with two possible outcomes, success and failure,
and varying probabilities of success, are known as Poisson trials or Poisson-
binomial trials. The distribution of the number of successes Sn is sometimes
called a Poisson-binomial distribution, but that term has also acquired other
meanings. Study of the distribution of Sn dates back to the 1837 monograph
of Poisson [99]. Chebyshev [24] established bounds for tail probabilities and
the law of large numbers for the distribution Sn. The work of subsequent
authors, reviewed below, has provided sharper bounds for tail probabilities,
precise estimates for location of the mode and median, and error bounds for
normal and Poisson approximations.

The binomial(n; p) array. The array of binomial coe�cients is a PF array
due to the factorization of the associated polynomials

nX
k=0

 
n

k

!
zk = (1 + z)n (6)

Replace z by pz=q in (6) and normalize to obtain the polynomial associated
with the Binomial (n; p) distribution. The corresponding PF array with pa-
rameter 0 � p � 1, which describes the distribution of the number of suc-
cesses in n independent trials with constant success probability p, may be
presented as follows:

Pn;p(k) :=

 
n

k

!
pk(1 � p)n�k (0 � k � n) (7)
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Hoe�ding's Inequalities [64]. Let P be a PF distribution on f0; 1; � � � ; ng
and let Pn;p as in (6) denote the binomial(n; p) distribution with the same
mean as P , that is with p = �=n. Then for all integers b and d with
0 � b � �� 1 and �+ 1 � d � n,

P [0; b] � Pn;p[0; b] and P [d; n] � Pn;p[d; n] (8)

Also, for every convex function g, there is the inequality
nX

j=0

g(j)P (j) �
nX

j=0

g(j)Pn;p(j) (9)

These inequalities make very precise sense of the following idea: amongst all
PF distributions on f0; 1; � � � ; ng with a given mean �, the binomial(n; p)
distribution for p = �=n is the one that is \most spread out". See Gleser [47]
for re�nements, and Marshall-Olkin [84] for a survey of related inequalities.
Hoe�ding showed also that for an arbitrary real-valued function g any PF
distribution P that maximizes the sum on the left side of (9) over all PF
distributions on f0; 1; � � � ; ng is necessarily a shifted binomial distribution.
That is to say P (k) = Pm;p(k � h) for all h � k � h + m for some integers
h and m with 0 � h � h + m � n and some p with 0 � p � 1. For
g(j) = 1(j � k) this result dates back to Chebychev [24], who combined it
with bounds on binomial probabilities to obtain a weak law of large numbers.

Large Deviation Bounds. Good bounds for binomial tail probabilities
were obtained by Okamoto [93] using the method of Cherno� [25]. Com-
bined with Hoe�ding's inequality (8), these bounds show that every PF
distribution P on f0; 1; � � � ; ng is subject to

P [b; n] �
�
�

b

�b �n� �

n� b

�n�b
for �+ 1 � b � n (10)

By an obvious reversal, the same function of (�; b; n) is an upper bound on
P [0; b] for 0 � b � � � 1. Numerous other bounds for binomial probabilities
are known [39, 83, 112, 66, 14, 86, 69], any of which can be used to bound the
tails of a PF sequence via (8). Appendix A of [3] derives the following simpler
bounds for all PF distributions P which are adequate for many purposes.
For all c > 0,

P [0; �� c] � exp

 
� c2

2�

!
and P [�+ c; n] � exp

 
� c2

2�
+

c3

2�2

!
(11)
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See [64, 63, 44, 39, 3, 69] for variations, re�nements and generalizations of
these inequalities, and references to earlier results. If both the variance �2 and
the mean � are known or can be bounded, further tail bounds are available
for a PF distribution which are sharper than either the above estimates or
Chebychev's inequality [12, 69].

Quite a di�erent kind of bound, discovered by Nicholas Bernoulli for
binomial probabilities around 1713, is presented in Section 16.3 of Hald [54].
This bound generalizes as follows to any PF2 distribution on the integers,
derived as in (2) by normalization of a summable PF2 sequence (ak): for
integers b � m � c with am > 0,

P [b; c] � 1�max(ab; ac)=am (12)

The bound is non-trivial only if both ab and ac are less than am, so the best
choice of m is a mode of the distribution, as discussed in the next paragraph.
Note that the bound can be computed without knowing the constant of
normalization A :=

P
k ak when P is de�ned via (2). Let

P
[i; j] =

P
i�k�j ak.

By choosing b; c and m so that max(ab; ac)=am < �, the probability outside
[b; c] is at most �. Probabilities P [i; j] for b � i � j � c are therefore
approximated from above by

P
[i; j]=

P
[b; c] with a relative error of at most

�.

Darroch's Rule for the Mode [27]. As a well known consequence of
Newton's inequality (1), a PF sequence (a0; � � � ; an) has either a unique index
m or two consecutive indices m such that am = maxk ak. Darroch showed
that such a mode m di�ers from the mean � by less than 1. This remark-
able result seems to be quite unknown to combinatorialists, though it has
numerous combinatorial applications indicated in the next section. To be
more precise, acording to Theorem 4 of [27], for integer k with 0 � k � n

m = k if k � � < k + 1
k+2

m = k or k + 1 or both if k + 1
k+2 � � � k + 1� 1

n�k+1

m = k + 1 if k + 1 � 1
n�k+1 < � � k + 1

(13)

Jogdeo-Samuels [70] gave a similar result for the median instead of the mode.
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Bounds for Consecutive Ratios. By Newton's inequality, the consecu-
tive ratios ak=ak+1 derived from a PF sequence are strictly increasing over
the range where they are well de�ned. Useful bounds for these ratios can be
obtained as follows.

Given a frequency sequence (ak) and � > 0, consider the tilted sequence
(ak�k) associated with A(�z). The mean of the probability distribution ob-
tained by normalization of the tilted sequence is

�(�) :=
�A0(�)

A(�)
(14)

and its variance is found from (4) to be

�2(�) :=
�2A00(�)

A(�)
+
�A0(�)

A(�)
�
 
�A0(�)

A(�)

!2

= � �0(�) (15)

Let m(�) be the least m such that am=am+1 � �. If (ak) is a PF sequence,
then so is the tilted sequence (ak�k), and m(�) is a mode of this tilted se-
quence. So Darroch's rule gives

jm(�)� �(�)j < 1 (� > 0) (16)

Asuming both ak > 0 and ak+1 > 0, the more precise version of Daroch's
rule stated above gives

ak
ak+1

� � if �(�) � k +
1

k + 2
(17)

ak
ak+1

� � if �(�) � k + 1 � 1

n � k + 1
(18)

Let ` be the least k and r the greatest k such that ak > 0. For (ak) with
` < r it follows from (15) that �0(�) > 0, hence that �(�) is continuous and
strictly increasing from ` to r as � increases from 0 to 1. For 0 < x <1 let

�(x) be the unique positive solution of �A0(�)=A(�) = x. (19)

Then (17) and (18) combine to show that if a polynomial A(z) :=
Pn

k=0 akz
k

with non-negative coe�cients has only real zeros, then

�
�
k +

1

k + 2

�
� ak
ak+1

� �
�
k + 1 � 1

n� k + 1

�
(20)
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Because �(x) is a strictly increasing function of x, (20) implies

� (k) <
ak
ak+1

< � (k + 1) (21)

The Normal Approximation. ([58, 127, 10, 21, 98]). Let

�(x) =
1p
2�

e�
1

2
x2 (22)

denote the standard normal density function, and let

�(z) =
Z z

�1
�(x)dx (23)

Then for every PF distribution P on f0; 1; � � � ; ng with mean �, variance �2,

max
0�k�n

�����P [0; k]� �

 
k � �

�

!����� < 0:7975

�
(24)

and there exists a universal constant C such that

max
0�k�n

������P (k)� �

 
k � �

�

!����� < C

�
(25)

The estimate (24) follows from a re�nement of the Berry-Esseen theorem
[127]. The bound (25) is due to Platonov [98], Theorem 11.2. According to
Remark 4 of Vatutin and Mikhailov [128], the more general result claimed by
Platonov is false, but his argument is correct for a PF distribution. See also
Can�eld [21] for a local limit bound of a weaker form with explicit constants
that applies to more general sequences. An explicit C in (25) can doubtless
be obtained by a more careful analysis using the Fourier method of [98].

As a consequence of the above estimates, if (Sn) is a sequence of random
variables such that Sn has a PF distribution with mean �n and variance �2n,
the asymptotic distribution of (Sn � �n)=�n is standard normal i� �n !1
as n!1. Also, as a consequence of the estimate (24) and a standard weak
convergence result( [13], Theorem 14.2) no other continuous limit distribu-
tion besides the normal can be obtained as the asymptotic distribution of
(Sn � bn)=cn for a sequence of random variables (Sn), each with a PF dis-
tribution with �nite range, and sequences of constants (bn) and (cn). Note
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that this result is not true for a sequence of random variables Sn each with
a PF distribution over the set of positive integers. See Section 5 for further
discussion.

Following the method used by Bender [10] for Stirling numbers, an ap-
proximation to any individual term ak in a �nite PF sequence may be ob-
tained as follows. Replace (aj) by the tilted sequence (aj�j) and apply (25)
to see that for every PF sequence (a0; � � � ; an)

ak =
1p

2��(�)

A(�)

�k
(1 + �k) (26)

for � = �(k) as in (19) and �2(�) as in (15), and where the error term
�k = �(a0; � � � ; an; k) is bounded by

j�kj � C=�(�) (27)

for C as in (25). The Edgeworth expansion [38, 96] suggests that in (27) the
error can be bounded by C=�2 rather than C=�. The asymptotic formula
(26) is a close relative of Hayman's [61] generalization of Stirling's formula.
The basic method traces back to Laplace [79].

See also Holst [65] for a related probabilistic method applied to occupancy
problems and [106, 10, 11, 20, 77, 40, 41, 46] for normal approximations to
various other kinds of combinatorial sequences.

The Poisson Approximation. From (2) and (4) the mean � and vari-
ance �2 of the probability distribution P derived from a PF distribution on
f0; 1; � � � ; ng are such that

� � �2 =
nX
i=1

p2i � 0 (28)

By formula (1.23) of [9], there is the following bound on the total variation
distance between P and the Poisson(�) distribution:

X
k

�����P (k) � e���k

k!

����� � (1� e��)

 
� � �2

�

!
(29)

So the Poisson approximation to a PF distribution will be good whenever
� � �2 << �. See also Theorems 6.B and 6.H of [9] for other settings in
which the same bound applies, and Corollary 3.D.1 of [9] which shows that
the bound (29) cannot be improved by much more than a constant factor.
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Further Inequalities and Approximations. A number of more re�ned
inequalities and approximations for PF sequences can be read from the
probabilistic literature. Typically these involve third and higher order mo-
ments of the distribution to obtain sharper approximations. See for instance
[95, 7, 29, 120].

3 Operations

The collection of all �nite PF sequences is closed under a number of oper-
ations which arise naturally in combinatorial applications. In particular, if
(a0; � � � ; an) is a PF sequence, then so is the sequence (b0; � � � bn) obtained by
each of the following operations. For those operations for which the closure
property is not obvious, the works cited provide proofs, references to original
sources, and various related results:

Reversal: bk = an�k

Geometric Tilting: bk = �kak for arbitrary � > 0.

Factorial Tilting: ([100], [15] Th 2.4.1) bk = ak=k!

Binomial Moments: ([74], Th. 8.6.2) bk =
Pn

i=0

�
i

k

�
ai

Further, if (a0; � � � ; an) and (b0; � � � ; bn) are two PF sequences, then so is each
of the sequences (c0; � � � ; cn) de�ned by

Convolution: ck =
Pk

j=0 ajbk�j .

Product: ([92] Satz 7.4,[15] Th. 4.7.8) ck = akbkk! and hence also ck = akbk

Closure under the product operations is useful in combinatorial examples,
but not at all obvious probabilistically. An interpretation of the probability
distribution derived from (akbk) can be given as follows. Let Sn be the
number of successes in some sequence of n independent trials P (Sn = k) =
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ak=A, and let Tn be the number of successes in some further sequence of n
independent trials with success probabilities arranged so that P (Tn = k) =
bk=B. Assuming the two sets of n trials are independent, the conditional
distribution of Sn given Sn = Tn is the distribution obtained by normalization
of (akbk). But it is not at all apparent probabilistically why this distribution
is representable as the distribution of the number of successes in some other
set of n trials.

4 Examples

Throughout this section, arrays are indexed by n and k with n = 1; 2 � � � and
0 � k � n. Call (ank) a combinatorial array if the ank are non-negative inte-
gers. A combinatorial array is usually de�ned by letting ank be the number
of elements ! in some �nite set 
n such that Sn(!) = k for some function
Sn : 
n ! f0; 1; � � � ; ng. Then Sn may be viewed as a random variable de-
�ned on the combinatorial probability space de�ned by 
n equipped with the
uniform probability distribution. For example, take 
n = f0; 1gn and Sn(!)
to be the number of 1's in the sequence ! to obtain the array of binomial
coe�cients ank =

�
n

k

�
.

According to Proposition 1, a combinatorial array is a PF array i�
for each n the random variable Sn de�ned on an associated combinato-
rial probability space has the same distribution as Ŝn =

Pn
k=1Xnk where

(Xnk; 1 � k � n) are independent Bernoulli(pnk) random variables de�ned
on some probability space 
̂n for some sequence (pnk). Given a combinato-
rial PF array, it may or may not be possible to implement this construction
of independent Xnk on a combinatorial probability space 
n equipped with
uniform distribution. It is easy to do this for the array of binomial coe�-
cients, and for the array of Stirling numbers of the �rst kind, as indicated
below. But such a construction is impossible for the array of Stirling num-
bers of the second kind. Still, for any PF array, Xnk can be de�ned as the
kth co-ordinate map on 
̂n := f0; 1gn equipped with the product measure
Pn determined by the pnk = Pn(Xnk = 1).

Let [n] := f1; � � � ; ng. The notation for Stirling numbers follows [52].
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The number of cycles of a random permutation of [n]. The array of
unsigned Stirling numbers of the �rst kind [26] is de�ned by

"
n
k

#
= number of permutations of [n] with k cycles (30)

The associated polynomial admits the elementary factorization

nX
k=0

"
n
k

#
zk = z(z + 1) � � � (z + n� 1) =

�(n+ z)

�(z)
(31)

whose probabilistic interpretation is well known [51, 39]. In this case it is
easy to construct independent random variables X1; � � � ;Xn as functions on
the set 
n of all permutations ! of [n] such that the number of cycles of ! is
X1(!) + � � � +Xn(!) and Xi has Bernoulli (i=n) distribution. For instance,
write ! in standard cycle notation, and let Xi be the indicator that some
cycle ends at the ith place in the cycle notation [39]. Or see [113, 71] for
alternatives. Let An(z) denote the polynomial associated with the nth row
of the array, as displayed in (31). The function �(n; �) derived from An(z)
as in (14) is easily calculated as

�(n; �) = �[ (n+ �)�  (�)] =
nX

j=1

�

� + j � 1
(32)

where  (�) := �0(�)=�(�) is the digamma function. Erd�os [35] showed that
for n � 3 the nth row of these Stirling numbers has a unique mode mn.
According to Darroch's rule, jmn��(n; 1)j < 1, with more precise evaluations
for some n. This complements the result of Hammersley [55] that mn =
log(n)+O(1). For � > 0 the function �(n; �) gives the mean exactly, and the
mode and median to within 1, for the sequence whose polynomial is An(�z).
This sequence de�nes the distribution of the number of parts in a random
partition of n governed by the Ewens sampling formula with parameter � >
0. See [36, 32, 5, 8, 37]. Bender [10], Example 5.1 shows how the normal
approximation (26) in this case yields the leading term of an asymptotic
expansion for the Stirling numbers of the �rst kind due to Moser and Wyman
[89]. There is no shortage of asymptotic approximations for these Stirling
numbers [88, 124, 131, 67, 125], but little in the way of easily computable
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bounds. Consider for instance the problem of computing the ratio

r(n; k) :=

"
n
k

# "
n

k + 1

#�1
(33)

for large n and k. According to (20),

�(n; k) < r(n; k) < �(n; k + 1) (1 � k < n) (34)

where �(n; k) is the unique root � of �(n; �) = k. Working in Mathematica,
the functions r(n; k); �(n; �) and �(n; k) can each be de�ned as follows by
one line programs:

r[n ; k ] := Abs[StirlingS1[n;k]=StirlingS1[n; k+ 1]]==N

mu[n ; t ] := t(PolyGamma[n+ t]� PolyGamma[t])==N

theta[n ; k ] := (fr = FindRoot[mu[n; t] == k; t; 1]; fr = fr[[1]]; t=:fr)

In my implementation of Mathematica the StirlingS1 routine involved in
direct computation of r(n; k) produces the response \Out of memory. Exit-
ing" for n > 500. However the routines for computing �(n; k) and �(n; k) are
fast and apparently stable even for very large n. To illustrate, for n = 1010

and k = 103, the bounds (34) so computed are

52:4216 < r(1010; 103) < 52:477 (35)

The number of subsets in a random partition of [n] The array of
Stirling numbers of the second kind, is de�ned by(

n
k

)
= number of partitions of [n] into k subsets (36)

Let Bn(z) denote the associated polynomial:

Bn(z) :=
nX

k=0

(
n
k

)
zk =

1X
j=0

e�zzjjn

j!
(37)
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The second equality follows from the well known double generating function
for the array [26]. For z � 0 the in�nite sum identi�es Bn(z) as the nth
moment of the Poisson distribution with parameter z, as observed by Riordan
[104]. Let Bn = Bn(1), the total number of partions of [n], known as the nth
Bell number. Even B3(z) = z(1+ 3z+ z2) does not factor over the rationals,
so there no way to represent the number of subsets in a random partition of
N3 as a sum of 3 independent indicator variables de�ned on a combinatorial
probability space with equally likely outcomes. Still, Harper [58] proved
that the Stirling numbers of the second kind form a PF array by showing
by induction that the associated sequence of polynomials Bn(z) is a Sturm
sequence, that is to say they have interlaced simple real zeros. Let mn be the
mode and �n the mean of the distribution de�ned by the nth row of Stirling
numbers of the second kind. It is known [31] that mn is unique. Harper
used the formula �n = Bn+1=Bn � 1 to read asymptotics for �n from those
for Bn due to Szekeres and Binet [123], and Harper gave a crude bound
for jmn � �nj using the normal approximation. The problem of obtaining
asymptotics for mn has been discussed by a number of subsequent authors
(see Menon [87] and papers cited there). Darroch's formula jmn � �nj < 1
shows that asymptotics for either sequence can be simply be read from the
other.

Consecutive ratios of Stirling numbers of the second kind can be estimated
by the method described above for Stirling numbers of the �rst kind, using the
formula �n(�) = Bn+1(�)=Bn(�) � 1 and approximating Bn+1(�) and Bn(�)
either by appropriate truncation of the in�nite series expression (37), or by
the asymptotic methods of [123]. The discussion of the classical occupancy
problem below provides an even simpler approach to the estimation of these
ratios for large k. See [53, 106, 45, 6] for further results about uniform random
partitions of [n], and see [110] for a survey of inequalities and probabilistic
interpretations of Stirling numbers of both kinds.

The Hypergeometric Distribution. Suppose a random sample of size
n is taken without replacement from a population of G good and B bad
elements. The probability that the sample contains exactly k good elements
is

Pn;G;B(k) =

 
G

k

! 
B

n� k

! 
G+B

n

!�1
(38)
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For each �xed pair of non-negative integers G and B each 1 � n � G + B,
this formula de�nes a probability distribution Pn;G;B on f0; 1; � � � ; ng, called
the hypergeometric distribution with parameters (n;G;B). The formula (38)
displays Pn;G;B(k) as the product of a binomial sequence, a shifted binomial
sequence, and a constant. So it follows from the closure of PF sequences
under these operations that the hypergeometric distribution is a PF dis-
tribution for all (n;G;B). Vatutin-Mikhailov [128] obtained this result by
showing directly that the generating polynomial has only real zeros. See also
Kou-Ying [132] for another derivation involving Jacobi polynomials, and a
statistical application. Many results in the statistics literature concerning
the hypergeometric distribution, �rst obtained by other methods, can be
read from the general properties of PF distributions described in Section
2. For example, Hoe�ding's inequalities (8) and (9) yield inequalities of
Hoe�ding [63] and Uhlmann [126] comparing the hypergeometric (n;G;B)
distribution for sampling without replacement with the binomial(n; p) dis-
tribution for sampling with replacement from the same population, that is
with p = G=(G + B). The well known normal and Poisson approximations
for the hypergeometric distribution follow similarly.

The Classical Occupancy Problem In the classical occupancy problem
[28], n labelled balls are thrown independently at random into N boxes. The
probability distribution of the number of occupied boxes On;N is then given
by

P [On;N = k] =

(
n
k

) 
N

k

!
k!

Nn
(0 � k � n) (39)

If balls labelled by [n] are regarded as partitioned by the boxes, this scheme
induces a particular non-uniform distribution for a random partition of [n]
into On;N non-empty subsets. Lieb [82] showed that the generating polyno-
mial has only real zeros for N = n. Harris and Park [60] showed this for all
N and n. So the distribution of On;N de�ned by (39) is a PF distribution
for every N and n. Since the �rst two factors in (39) are PF sequences, and
the remaining factor is k! times a constant, this result can also be read from
product rule of Section 3. The approximate normality of the distribution of
On;N , provided the variance of On;N is su�ciently large, has been known for
a long time. Englund [34] obtained the estimate (24) in this case by another
method, with a constant of 10.4 instead of 0.7975. See also [102] for similar
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but weaker bounds in a more general occupancy problem.
Another PF distribution was obtained by Park [94] from the variation of

the classical occupancy problem where each ball falls through its box with
some constant probability, independent of all other balls. Vatutin-Mikhailov
[128] obtained a family of PF distributions from the number of occupied
boxes after the following allocation scheme: �rst N1 balls are placed one per
box in each of N1 boxes picked at random from N boxes, then independently
N2 balls are placed inN2 boxes picked at random from the sameN boxes, and
so on, for some arbitrary �nite sequence of positive integers (N;N1; � � � ; Nj)
with N � Ni for 1 � i � j. The family of PF distributions so de�ned
includes both the clasical occupancy distribution and the hypergeometric
distibution as special cases. Another special case is the distribution of the
number of occupied boxes amongst M particular boxes when n balls are
placed independently at random in N boxes. (Take N1 = N � M;N2 =
� � � = Nn+1 = 1). As shown in [128], the approach to normal and Poisson
approximations for this family of occupancy distributions via general results
for PF distributions is a substantial simpli�cation of earlier approaches. See
also [59].

Stam [114] describes a way to construct a uniform random partition of
[n] by suitably randomizing N which relates asymptotics for uniform random
partitions to those for the classical occupancy scheme. See [97] for further
discussion of Stam's scheme, and [73] for recent work on large deviation
bounds in the classical occupancy problem. As observed by Janson [69],
such bounds follow immediately from the PF representation.

It is known [77, (1.1.4)] that the random variable On;N with distribution
(39) has mean N �N(1 � 1=N)n. From (39), for 1 � k � N ,

P (On;N = k)=P (On;N = k + 1) = r2(n; k)=(N � k) (40)

where

r2(n; k) =

(
n
k

)(
n

k + 1

)�1

(41)

Darroch's rule applied to the PF distribution of On;N yields

r2(n; k) � N � k if N �N(1 � 1=N)n � k +
1

k + 2
(42)

r2(n; k) � N � k if N �N(1 � 1=N)n � k + 1� 1

n� k + 1
(43)
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For k � 1 let x(n; k) denote the unique real root in [1;1) of the equation
x� x(1� 1=x)n = k. Then (42) and (43) combined yield

bx(n; k)c � k < r2(n; k) < dx(n; k + 1)e � k (44)

To illustrate, for n = 1000 and k = 700 these bounds are

612 < r2(1000; 700) < 618 (45)

Laplace's asymptotic formula for Stirling numbers of the second kind ([79,
28]), which is similar to (26) but much easier to compute, gives

r2(1000; 700) � 614:938::: (46)

Note that because the bounds in (44) are necessarily integers, these bounds
will only be tight for k much larger than the mean, that is k >> n= log(n).

Leaves of a Random Tree. Let 
n be the set of all nn�2 trees labelled by
[n], and for ! 2 
n let Ln(!) be the number of leaves of !, that is the number
of vertices of degree 1. As observed by R�enyi [103], the well known Pr�ufer
coding of random trees implies that the distribution of Ln(!) for ! picked
uniformly at random from 
n is identical to the distribution of the number
of empty boxes when n� 2 balls are thrown independently at random into n
boxes. That is to say the distribution of Ln is the reversal of the distribution
of On�2;n for On;N as in the classical occupancy problem. Since On�2;n has a
PF distribution, so does Ln. Steele [119] uses this example to illustrate in-
terpretations of the one-parameter exponential family of Gibbs' distributions
on a �nite outcome space 
, with a real parameter �, obtained by tilting the
uniform distribution by a factor of �S(!) for an arbitrary function S de�ned
on 
 and � = e��. If S has a PF distribution with generating function
A(z)=A(1) when ! is assigned uniform distribution, then under the Gibbs'
distribution S has the PF distribution with generating function A(�z)=A(�)
as considered in Section 2.

Generalized Stirling Numbers. Various generalizations of both kinds of
Stirling numbers are known to de�ne PF arrays. See [18, 23] for background,
and [15] for the PF results. The Munch numbers also form a PF array [85].
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Random Mappings. Let M(n; k) be the number of mappings from [n]
to [n] whose associated digraph has exactly k components. See [78, 90] for
background. Brenti [15] obtained the formula

M(n; k) =
nX
i=1

 
n� 1

i� 1

!
nn�i

"
i
k

#
(47)

and used it to show that M(n; k) is a PF array. Asymptotic normality in
this case is due to Stepanov [121]. See also [40] for another approach, and
[2] for related asymptotics and further references.

Matchings. Let G be a graph, with multiple edges allowed, and let ak be
the number of matchings of size k in G. That is, ak is the number of k-element
setsM of edges of G, no two edges inM having a common vertex. Heilmann
and Lieb ([62], theorem 4.2) showed using Sturm sequences that (a0; � � � ; am)
is a PF sequence. Special cases of this construction include both the binomial
coe�cients and the Stirling numbers of the second kind. Other special cases
include the coe�cient sequences of rook polynomials [91], and several of
the classical families of orthogonal polynomials. In this connection, see also
[50, 48, 129, 116]. The consequent asymptotic normality of various arrays
associated with sequences of graphs was treated by Godsil [49]. Godsil's
results have recently been re�ned by Kahn [72].

Partitions of Multisets. Another extension of the PF property of the
Stirling numbers of the second kind is the following result obtained by Simion
[111], also using Sturm sequences. Call a sequence of non-negative integers
n := (n1; n2; � � �) with 0 <

P
i ni <1 a multiset. For a multiset n let a(n; k)

be the number of sequences of multisets (n1; � � � ;nk) such that
Pk

i=1 ni = n.
Then for each multiset n with

P
i ni = n the sequence (a(n; k); 0 � k � n) is

PF . Take n to be the sequence (1; 1; � � � ; 1) of length n to deduce that the

array

(
n
k

)
k! is a PF array. As noted by Simion, this is a stronger result

than the PF property of the array

(
n
k

)
, due to the general factorial tilting

rule of Section 3.
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Eulerian Numbers Let 
n be the set of permutations of [n]. For � 2 
n

let
Dn(�) = #f1 � i < n : �i+1 < �ig

be the number of descents of �, and let Ank be the number of � 2 
n

such that D(�) = k. The numbers Ank form the array of Eulerian numbers
[43, 42]. It was known already to Frobenius that for each n � 2 the Eulerian
polynomial

P
kAnkz

k has only real zeros. So the Eulerian numbers form a
PF array. The mean and variance of Dn, viewed as a function of a uniformly
distributed random permutation �, are easily shown to be (n � 1)=2 and
(n�1)=12. The asymptotic normality of the distribution of Dn was deduced
in [22] and [10] from the PF property of Eulerian numbers. There is another
probabilistic representation of the Eulerian numbers related to the formula
[26, p. 243]

Ank =
kX
i=0

(�1)i(k � i)n
 
n+ 1

i

!
: (48)

Comparison of this formula with the formula of Laplace [79] for the distribu-
tion of the sum U1+ � � �+Un of independent uniform [0; 1] random variables
U1; � � � ; Un, reviewed in Feller [38] and Diaconis-Efron [30], shows that the
probability that a random permutation of [n] has k descents is

P (Dn = k) =
Ank

n!
= P (k � 1 � U1 + � � �+ Un < k) (49)

This identity allows exceptionally accurate normal approximations for the
Eulerian numbers to be deduced from corresponding approximations for the
sum U1+ � � �+Un [38]. Stanley [115] gives a geometric proof of (49) without
involving the explicit formula (48). A quick probabilistic proof of (49) can
be given as follows. Let Sn = U1 + � � �+ Un and let Vn be Sn modulo 1. It is
easily veri�ed that V1; � � � ; Vn are independent and uniform on [0; 1] and that

Sn = bSnc+ Vn where (50)

bSnc = #f1 � i < n : Vi+1 < Vig = #f1 � i < n : �i+1 < �ig (51)

where �i = #f1 � j � n : Vj � Vig, and the possibility of ties among the Vi
can be ignored as such ties occur with probability zero. Thus bSnc = D(�)
with probability one where � is a uniformly distributed random permutation
of [n], and the formula (49) follows immediately.
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Further Examples. See Brenti [15] for extensive discussion of techniques
for proving that a sequence is PF and a wealth of further examples. See
[105, 116, 16, 117, 118] for still more instances of PF arrays, and further
results regarding log-concave and unimodal sequences.

5 In�nite Polya Frequency Sequences

Associate the sequence (a0; a1; � � �) with its generating function

A(z) :=
1X
i=1

aiz
i (52)

According to the result of Edrei [33] presented in [74] as Theorem 5.3 of Ch.
8, a sequence (a0; a1; � � �) with a0 = 1 is a PF sequence i� its generating
function can be expressed as

A(z) = e�z
1Y
i=1

(1 + �iz)

(1 � �iz)
(53)

for some � � 0; �i � 0; �i � 0 where
P

i(�i+�i) <1. To interpret this result
probabilistically, let the probability distribution of a non-negative integer
valued random variable X be described either by a sequence of probabilities
P (X = 0); P (X = 1); � � � or by the corresponding probability generating
function

P
i P (X = i)zi. In particular, the probability generating function

of X with Bernoulli (p) distribution on f0; 1g is (1 � p) + pz. Say X has a
geometric (p) distribution if

X
i

P (X = i)zi =
X
i

pqizi =
p

(1� qz)
(54)

In the representation (53), write (1 + �iz) = (qi + piz)=qi where pi + qi = 1,
and the apply standard properties of probability generating functions [39],
to deduce the following proposition. Combined with the representation for-
mula (53) this result contains the equivalence of conditions (ii) and (iii) in
Proposition 1 as the special case when the sequence (a0; a1; � � �) has only a
�nite number of non-zero entries.
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Proposition 2 Let (a0; a1; � � �) be a sequence of non-negative real numbers
such that 0 < A < 1 where A :=

P
i ai. The sequence is a PF sequence i�

the normalized sequence (a0=A; a1=A; � � �) is the distribution ofX
j

Xj +
X
j

Yj + Z (55)

for independent random variables X1;X2; � � �, Y1; Y2; � � �, Z, where Xj has
Bernoulli (pj ) distribution, Yj has geometric (�j) distribution, and Z has
Poisson (�) distribution, for some 0 � pi � 1 and 0 � �i < 1 such thatP

i(pi + �i) <1, and 0 � � <1.

Conditions for asymptotic normality of a sequence of PF sequences can easily
be deduced from Lindeberg's theorem ([13] Th. 27.2). Note that due to the
possibility of geometric components, for in�nite sequences a large variance
alone is not enough to ensure a good normal approximation. Because a PF
sequence is obtained by restriction to a lattice of a P�olya frequency function
de�ned on the whole line [74], any probability distribution on (0;1) whose
density is a given by such a function, for instance an exponential or gamma
distribution, may be obtained as a weak limit of some sequence of rescaled PF
distributions on f0; 1; 2; � � �g. Theorem 9.5 of Ch 8. of Karlin [74] provides
the analog of the representation (53) for a PF sequence indexed by the
set of integers, which for a summable sequence has a similar probabilistic
interpretation.
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