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Abstract. Functional ANOVA models are considered in the context of gener-
alized regression, which includes logistic regression, probit regression and Pois-
son regression as special cases. The multivariate predictor function is modeled
as a speci�ed sum of a constant term, main e�ects and interaction terms.
Maximum likelihood estimates are used, where the maximizations are taken
over suitably chosen approximating spaces. We allow general linear spaces and
their tensor products as building blocks for the approximating spaces. It is
shown that the L2 rates of convergence of the maximum likelihood estimates
and their ANOVA components are determined by the approximation power
and dimension of the approximating spaces. When the approximating spaces
are appropriately chosen, the optimal rates of convergence can be achieved.

1. Introduction

Functional ANOVA models provide useful tools for a variety of multivariate
function estimation problems. While they are more 
exible than the classical lin-
ear and additive models, they retain the advantage of good interpretability. In
functional ANOVA models, the (multivariate) function of primary interest is mod-
eled as a speci�ed sum of a constant term, main e�ects (functions of one variable),
and interaction terms (functions of two or more variables). When only low-order
interaction terms are included in the model, the curse of dimensionality can be
overcome. Maximum likelihood estimates are often used to �t the models to data,
where the maximizations are taken over suitably chosen approximating spaces. The
goal of this paper is to study the L2 rates of convergence of maximum likelihood
estimates for functional ANOVA models in the context of generalized regression,
which includes logistic regression, probit regression and Poisson regression as special
cases.
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Generalized regression is an extension of generalized linear models. Accord-
ing to McCullagh and Nelder (1989), a generalized linear model consists of three
components: a random component, a systematic component, and a link function
which connects the other two components. The response variable Y is assumed to
have a one-parameter exponential family distribution of the form P (Y 2 dy; �) =
exp
�
�y � b(�)

	
�(dy); where � is the canonical or natural parameter. This is the

random component of the model. Note that the mean � of the distribution is re-
lated to the natural parameter � by � = b0(�). The vector x = (x1; : : : ; xL) of
covariates produces a linear predictor �(x) = xT�. This is the systematic compo-

nent of the model. It is also assumed that the conditional mean �(x) of Y given
X = x is related to the predictor function by g(�(x)) = �(x), where g(�) is called
the link function. Combining the three components, we can write the conditional
distribution of Y given X = x as:

P (Y 2 dy; x; �) = exp
�
B(xT�)y � C(xT�)

	
�(dy); (1)

where B = (g � b0)�1, C = bf(g � b0)�1g, and the symbol � denotes function com-

position. When g is the canonical link, i.e., g = b0
�1
, we have B(�) = � and

C(�) = b(�).
We set up the generalized regression framework following Stone (1994). Consider

a pair (X;Y ) of random variables, where Y is real valued and X = (X1; : : : ; XL)
ranges over a compact subset X of some Euclidean space; here Y is referred to as
a response or dependent variable and X as the vector of covariates or predictor

variables. The conditional distribution of Y given that X = x is assumed to have
the form

P (Y 2 dy; x; �) = exp
�
B(�(x))y � C(�(x))

	
�(dy); (2)

where B(�) and C(�) are known functions satisfying some restrictions that will be
described in Section 2. The function � = �(�) speci�es how the response depends
on the covariates; we refer it as a predictor function. Clearly, (1) is a special case of
(2) with �(x) = xT�. Our interest lies in estimating � based on a random sample
of size n from the distribution of (X;Y ).

In our generalized regression framework, it is assumed that the predictor function
� belongs to an arbitrary linear function space H, which speci�es the functional
form of �. When H consists of functions having the form of a speci�ed sum of
a constant term, main e�ects and interaction terms, we get a functional ANOVA
model. As a special case, in an additive model only the constant term and the main
e�ects are considered. On the other hand, including all interaction terms results in
a saturated model.

For a simple illustration of a functional ANOVA model, suppose that X = X1�
X2 � X3, where Xi � Rdi with di � 1 for 1 � i � 3. Allowing di > 1 enables us
to include covariates of spatial type. Suppose H consists of all square-integrable
functions on X that can be written in the form

�(x) = �; + �f1g(x1) + �f2g(x2) + �f3g(x3) + �f1;2g(x1; x2): (3)
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To make the representation in (3) unique, we require that each nonconstant compo-
nent be orthogonal to all possible values of the corresponding lower-order compo-
nents relative to the theoretical inner product (de�ned in Section 2). The expression
(3) can be viewed as a functional version of analysis of variance (ANOVA). Borrow-
ing terminology fromANOVA, we call �; the constant component, �f1g(x1); �f2g(x2),
and �f3g(x3) the main e�ect components, and �f1;2g(x1; x2) the two-factor interac-
tion component; the right side of (3) is referred to as the ANOVA decomposition of
�. Correspondingly, given a random sample, for a properly chosen approximating
space, the maximum likelihood estimate has the form

�̂(x) = �̂; + �̂f1g(x1) + �̂f2g(x2) + �̂f3g(x3) + �̂f1;2g(x1; x2); (4)

where each nonconstant component is orthogonal to all allowable values of the cor-
responding lower-order components relative to the empirical inner product (de�ned
in Section 2). As in (3), the right side of (4) is referred as the ANOVA decom-
position of �̂. We can think of �̂ as an estimate of �. Generally speaking, � need
not have the speci�ed form. In that case, we think of �̂ as estimating the best
approximation �� to � in H. As an element of H, �� has the unique ANOVA
decomposition

��(x) = ��; + ��f1g(x1) + ��f2g(x2) + ��f3g(x3) + ��f1;2g(x1; x2):

We expect that �̂ should be an accurate estimate of ��. In addition, we expect that
the components of the ANOVA decomposition of �̂ should be accurate estimates
of the corresponding components of the ANOVA decomposition of ��. If this is
the case, then examination of the components of the ANOVA decomposition of �̂
should shed light on the shape of �� and, to a lesser extent, on the shape of � as
well.

In this paper, a general theory will be developed for getting the rates of conver-
gence of �̂ to �� in functional ANOVA models. In addition, the rates of convergence
for the components of �̂ to the corresponding components of �� will be obtained.
We will see that the rates are determined by the smoothness of the ANOVA com-
ponents of �� and the highest order of interactions included in the model. By
considering models with only low-order interactions, we can ameliorate the curse
of dimensionality that the saturated model su�ers. We use general linear spaces of
functions and their tensor products as building blocks for the approximating space.
In particular, polynomials, trigonometric polynomials, univariate and multivariate
splines, and �nite element spaces are considered.

There is a considerable body of literature related to functional ANOVA models.
In particular, Stone and Koo (1986), Friedman and Silverman (1989), and Breiman
(1993) used polynomial splines in additive regression. The monograph by Hastie
and Tibshirani (1989) contains an extensive discussion of the methodological as-
pects of generalized additive models. The rates of convergence for estimation of
additive models were established in Stone (1985) for regression and in Stone (1986)
for generalized regression. In the context of generalized additive regression, Bur-
man (1990) showed how to select the dimension of the approximating space (of
splines) adaptively in an asymptotically optimal manner.
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To gain more 
exibility than additive models, Friedman (1991) introduced the
MARS methodology for regression, where polynomial splines and their tensor prod-
ucts are used to model the main e�ects and interactions respectively and the terms
that are included in the model are selected adaptively based on data. Using func-
tional ANOVA models, Kooperberg, Stone and Truong (1995a) developed HARE
for hazard regression, and Kooperberg, Bose and Stone (1995) developed POLY-
CLASS for polychotomous regression and multiple classi�cation; see also Stone,
Hansen, Kooperberg and Truong (1995) for a review. In the theoretical direction,
Stone (1994) studied the L2 rates of convergence for functional ANOVA models in
the settings of regression, generalized regression, density estimation and conditional
density estimation, where univariate splines and their tensor products were used
as building blocks for the approximating spaces. Similar results were obtained by
Kooperberg, Stone and Truong (1995b) for hazard regression. These results were
extended by Hansen (1994) to include arbitrary spaces of multivariate splines. In
the context of regression, Huang (1996) obtained more general rate of convergence
results, where the approximating spaces are built with general linear spaces and
their tensor products. In parallel, the framework of smoothing spline ANOVA has
been developed; see Wahba (1990) for an overview and Gu and Wahba (1993) and
Chen (1991, 1993) for recent developments.

The results in this paper are similar to those for regression established in Huang
(1996). Here, however, the maximum likelihood estimates cannot be viewed simply
as orthogonal projections, due to the nonlinear structure of the problem. A deeper
study of the properties of the log-likelihood function is needed to overcome the
di�culties. We will see that the concavity of the log-likelihood and expected log-
likelihood functions play a crucial role in our analysis.

Similar results have been obtained by Stone (1994) and Hansen (1994) when the
approximating spaces are built with polynomial splines and their tensor products.
Here we use general linear spaces of functions of one variable to model the main
e�ects and tensor products of such spaces to model the interactions. Though we are
considering more general approximating spaces, our arguments are more straight-
forward and much simpler than those of Stone and Hansen. Moreover, while a
strong assumption on the boundedness of conditional moment generating functions
is needed in the proofs of Stone and Hansen, it is relaxed here by only assuming
the boundedness of conditional second moments.

The paper is organized as follows. In Section 2, we state our main results. Firstly,
we describe the model assumptions in Section 2.1; in Section 2.2, we de�ne the
maximum likelihood estimates; a general theorem on rates of convergence is given
in Section 2.3; Section 2.4 studies the functional ANOVA models. We provide some
useful preliminary results in Section 3. The proofs of the theorems are deferred to
Sections 4 and 5.

2. Statement of Results

2.1. Model assumptions. Consider an exponential family of distributions onRof
the form eB(�)y�C(�)�(dy), where the parameter � ranges over an open subinterval
I of R. Here � is a nonzero measure on R that is not concentrated at a single point
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and Z
R

eB(�)y�C(�)�(dy) = 1; � 2 I:

(Note that � = B(�) is the natural parameter.) The function B(�) is required
to be twice continuously di�erentiable and its �rst derivative B0(�) is required to
be strictly positive on I. Consequently, B(�) is strictly increasing and C(�) is
twice continuously di�erentiable on I. The mean � of the distribution is given by
� = A(�) = C0(�)=B0(�) for � 2 I. The function A(�) is continuously di�erentiable
and A0(�) is strictly positive on I, so A(�) is strictly increasing on I. In addition,
it is required that there be a subinterval S of R such that � is concentrated on S
and

B00(�)y � C00(�) < 0; � 2 I; (5)

for all y 2
o
S, where

o
S denotes the interior of S. If S is bounded, it is also required

that (5) hold for at least one of its endpoints. Note that A(�) 2
o
S for � 2 I.

Consequently,

B00(�)A(�) �C00(�) < 0; � 2 I; (6)

Although (5) seems quite restrictive, it and the other requirements mentioned above
are satis�ed by many familiar exponential families.

Example 1. The binomial distribution with parameter n0 and �, with 0 < � < 1.
Using the logit link � = logit� = log

�
�=(1 � �)

�
, the density can be written in

the required form with B(�) = �, C(�) = n0 log
�
1 + e�

�
, I = R, and S = [0; n0].

Using the probit link � = ��1(�), the density can be put in the required form with
B(�) = log

�
�(�)=(1 � �(�))

�
, C(�) = �n0 log

�
1 � �(�)

�
, I = R, and S = [0; n0],

where � denotes the standard normal distribution function. Using the identity link
� = �, the density is of the required form with B(�) = log

�
�=(1 � �)

�
, C(�) =

�n0 log(1� �), I = (0; 1), and S = [0; n0].

Example 2. The Poisson distribution with mean � > 0. Using the logarithmic
link � = log�, the density has the required form, where B(�) = �, C(�) = exp �,
I = R, and S = [0;1). Using the identity link � = �, the density is of the required
form, where B(�) = log�, C(�) = �, I = (0;1), and S = [0;1).

Normal, gamma, geometric and negative binomial distributions can also be put
into this framework; see Stone (1986). Our setup is a little more general than that
used by Stone. For example, by relaxing the restriction that I = R, we can model
the mean of Poisson distribution directly.

Let X represent the predictor variable and Y the real-valued response variable,
and letX and Y have a joint distribution. We assume thatX ranges over a compact
subset X of some Euclidean space and has a positive density. If the conditional
distribution of Y given X = x has the above exponential family distribution with
parameter � = �(x), then E(Y jX = x) = A(�(x)). For any function h on X that
takes values in I, the expected log-likelihood is given by

�(h) = E
�
B(h(X))Y � C(h(X))

�
= E

�
B(h(X))A(�(X)) �C(h(X))

�
:
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It follows from the information inequality that �(�) is maximized by the true pre-
dictor function �.

More generally, suppose only that E(Y jX = x) = A(�(x)) for x 2 X , but the
conditional distribution of Y given X = x does not necessarily belong to the above
exponential family. Note that, for � 2 I, the function B(�)A(�) �C(�), � 2 I, has
a unique maximum at � = �. Thus, the function that maximizes �(�) is still given
by the true predictor function �.

Throughout the remaining part of this paper, it is only required that E(Y jX =
x) = A(�(x)), x 2 X , where the range of �(�) is contained in a compact subinterval

K0 of I. Thus A(�(�)) ranges over a compact subinterval of
o
S. In addition, we

assume that the following hold: (i) P (Y 2 S) = 1; (ii) (5) holds for all y 2
o
S and,

if S is bounded, (5) holds for at least one of its endpoints; (iii) there is a positive
constant D such that,

var(Y jX = x) � D; x 2 X : (7)

These assumptions are all satis�ed if the conditional distribution of Y given X = x
belongs to the exponential family described above.

Let (X1; Y1); : : : ; (Xn; Yn) be random sample of size n from the joint distribution
of X and Y . Our goal is to estimate �(�).
2.2. Maximum likelihood estimation. For any function f de�ned on X , set
En(f) =

1
n

Pn
i=1 f(Xi) and E(f) = E[f(X)]. For any two functions f1 and f2 on

X , de�ne the empirical inner product and norm as

hf1; f2in = En(f1f2) and kf1k2n = En(f
2
1 ):

The theoretical versions of these quantities are given by

hf1; f2i = E(f1f2) and kf1k2 = E(f21 ):

Let H be a linear subspace of the space of all real-valued functions on X . Let H�

consist of those functions in H whose range is contained in a compact subinterval
of I. The model assumptions in the previous subsection imply that the expected
log-likelihood �(�) is strictly concave over functions in H�. That is, given any two
essentially di�erent functions h0; h1 2 H� we have that

�
�
h0 + t(h1 � h0)

�
> (1� t)�(h0) + t�(h1); t 2 (0; 1): (8)

Here, h0 and h1 are said to be essentially di�erent if their di�erence is nonzero on
a set of positive Lebesgue measure. In fact, it follows from (6) that, for 0 < t < 1,

d2

dt2
�
�
h0 + t(h1 � h0)

�
= E

n
(h1(X) � h0(X))2

�
B00(ht(X))A(�(X)) � C00(ht(X))

�o
< 0;

where ht = h0 + t(h1 � h0). This implies (8). We assume that there is a function
�� 2 H� such that �(��) = maxh2H� �(h) (see Condition 1). Since �(�) is strictly
concave on H�, �� is essentially uniquely determined. If � 2 H�, then �� = �
almost everywhere.
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Let G � H be a �nite-dimensional linear space of real-valued functions on X .
The space G may vary with sample size n, but for notational convenience, we
suppress the possible dependence on n. We require that the dimension Nn of G
be positive for n � 1. Since the space G will be chosen, hopefully, such that the
functions in H can be well approximated by the functions in G, we refer to G
as the approximating space. For example, if X � R and the predictor function
� is smooth, we can choose G to be a space of polynomials or smooth piecewise
polynomials (splines). The space G is said to be identi�able (relative toX1; : : : ; Xn)
if the only function g in the space such that g(Xi) = 0 for 1 � i � n is the function
that identically equals zero. Given a sample X1, : : : , Xn, if G is identi�able, then
it is a Hilbert space equipped with the empirical inner product.

Let G� consist of the functions in G whose range is contained in a compact
subinterval of I. Given a function g 2 G�, let

`(g) =
1

n

nX
i=1

�
B(g(Xi))Yi � C(g(Xi))

�
denote the (scaled) log-likelihood function corresponding to the random sample of
size n. If �̂ 2 G� and `(�̂) = maxg2G� `(g), then �̂ is referred to as a maximum
likelihood estimate. As we will see, under some conditions, �̂ exists except on an
event whose probability tends to zero as n!1 (Lemma 4.4). It is easily shown by
using (5) that `(g) is concave on G�. That is, given any two functions g0; g1 2 G�

that do not identically equal to each other we have that

`
�
g0 + t(g1 � g0)

� � (1� t)`(g0) + t`(g1); t 2 (0; 1): (9)

If `(g) is strictly concave on G� (that is, if (9) holds with strict inequality), then
there is at most one maximumlikelihood estimate (i.e., if �̂ exists, then it is unique).
Suppose tentatively that (5) holds for all y 2 S. Then, for 0 < t < 1,

d2

dt2
`
�
g0 + t(g1 � g0)

�
= En

n
(g1(X) � g0(X))2

�
B00(gt(X))Y � C00(gt(X))

�o
< 0;

where gt = g0 + t(g1 � g0). Consequently, if G is identi�able, then `(g) is strictly
concave. Generally, (5) need not hold for all y 2 S, e.g., Poisson regression with
identity link. In this case, some e�ort is needed to establish the strict concavity of
`(g); see Corollary 4.1.

We can model the function � as being a member of the space H�. Then, for
properly chosen G, �̂ will converge to � as n!1. In general, the function � need
not be an element of H�. In this case, �̂ will converge to ��, the best approximation
of � in H�.

2.3. A general theorem on rates of convergence. In this subsection, we
present a general theorem on rates of convergence. Let �� = argmaxg2G� �(g)
denote the best approximation in G� to �. By the strict concavity of �(�), �� is
uniquely de�ned if it exists. In fact, �� exists for n su�ciently large (Lemma 4.2).
We have the decomposition �̂� �� = (�̂� ��) + (��� ��). The term �̂� �� is referred
to as the estimation error and �� � �� as the approximation error. We will see that
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the contribution of the estimation error to the integrated squared error is bounded
in probability by Nn=n, where Nn is the dimension of the space G, while the con-
tribution of the approximation error is governed by the approximation power of
G.

In what follows, for any function f on X , set kfk1 = supx2X jf(x)j. Given
positive numbers an and bn for n � 1, let an � bn mean that an=bn is bounded
away from zero and in�nity. Given randomvariablesWn for n � 1, letWn = OP (bn)
mean that limc!1 lim supn P (jWnj � cbn) = 0.

Before giving the theorem, we state some conditions. Condition 1 says that the
best approximation of � in H� exists. Stone (1994) veri�ed this condition in the
case of I = R under similar model assumptions as ours. Condition 2 requires that
the approximating spaces satisfy a stability constraint. It is satis�ed by polynomi-
als, trigonometric polynomials, splines, and various �nite element spaces used in
approximation theory and numerical analysis; see Remarks 1 and 2 and Section 4 of
Huang (1996). Condition 3 is about the approximation power of the approximating
spaces.

Condition 1. There exists a function �� 2 H� such that �(��) = maxh2H� �(h).

Condition 2. There exist positive constants An such that kgk1 � Ankgk for
all g 2 G.

Since the dimension of G is positive, Condition 2 implies that An � 1 for n � 1.
This condition also implies that, if a function in G is zero almost everywhere, then
it is identically zero.

Condition 3. There exist nonnegative numbers � = �(G) such that infg2G kg�
��k1 � �! 0 as n!1.

Under Conditions 2 and 3, by a compactness argument, there is a g 2 G such
that kg � ��k1 = infg2G kg � ��k1.

Theorem 2.1. Suppose Conditions 1{3 hold and that limnA
2
nNn=n = 0 and

limnAn� = 0. Then

k�̂ � ��k2 = OP (Nn=n); k�̂ � ��k2n = OP (Nn=n);

k�� � ��k2 = OP (�
2); k�� � ��k2n = OP (�

2):

Consequently,

k�̂ � ��k2 = OP (Nn=n+ �2) and k�̂ � ��k2n = OP (Nn=n+ �2):

Remark 1. The condition that limnAn� = 0 is required in the proof of Lemma4.2.
If I = R, then this condition can be weakened to lim supnAn� <1.

Remark 2. Note that we do not require that the dimension of G go to in�nity
with the sample size. Thus this theorem covers the classical parametric models.
When H is �nite-dimensional, we can choose G = H, which does not depend on the
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sample size. Then Condition 2 is automatically satis�ed with An independent of n,
and Condition 3 is satis�ed with � = 0. If Condition 1 holds, then the integrated
squared error of �̂ to �� converges to zero at the rate 1=n.

2.4. Functional ANOVA models. In this section, we introduce the ANOVA
model for functions and establish the rates of convergence for the maximum like-
lihood estimate and its components. Our terminology and notation follow closely
those in Stone (1994) and Hansen (1994). See also Huang (1996).

Suppose X is the Cartesian product of compact sets X1; : : : ;XL. Let S be a
nonempty hierarchical collection of subsets of f1; : : : ; Lg. Here hierarchical means
that if s is a member of S and r is a subset of s, then r is a member of S. Clearly, if
S is hierarchical, then ; 2 S. Let H; denote the space of constant functions on X .
Given a nonempty set s 2 S, let Hs denote the space of square-integrable functions
on X that depend only on the variables xl, l 2 s. Set H =

�P
s2S hs : hs 2 Hs

	
.

Note that each function in H may have a number of equivalent representations. To
account for this overspeci�cation, we introduce the notion of the ANOVA decom-
position of the space H. We need the following condition.

Condition 4. The distribution of X is absolutely continuous and its density
function fX (�) is bounded away from zero and in�nity on X .

Under Condition 4, H is a complete subspace of the space of square-integrable
functions on X (see Lemma 3.2 and the discussion following it). Set H0

; = H; and,

for a nonempty subset s of f1; : : : ; Lg, let H0
s denote the space of all functions in

Hs that are theoretically orthogonal to each function in Hr for every proper subset
r of s. Under Condition 4, it can be shown that every function h 2 H can be
written in an essentially unique manner as

P
s2S hs, where hs 2 H0

s for s 2 S (see
Lemma 3.2). We refer to

P
s2S hs as the theoretical ANOVA decomposition of h,

and we refer to H0
s , s 2 S, as the components of H. The component H0

s is referred
to as the constant component if #(s) = 0, as a main e�ect component if #(s) = 1,
and as an interaction component if #(s) � 2; here #(s) is the number of elements
of s.

As in Section 2.2, let H� consist of those functions in H whose range is contained
in a compact subinterval of I. We model the predictor function � as a member of
H� and refer to the resulting model as a functional ANOVA model. In particular,
S speci�es which main e�ect and interaction terms are in the model. As special
cases, if maxs2S #(s) = L, then all interaction terms are included and we get a
saturated model; if maxs2S #(s) = 1, we get an additive model.

We now construct the approximating space G and the corresponding ANOVA
decomposition. Let G; denote the space of constant functions on X , which has
dimension N; = 1. Given 1 � l � L, let Gl � G; denote a linear space of bounded,
real-valued functions on Xl which varies with sample size and has �nite, positive
dimension Nl. Given any nonempty subset s = fs1; : : : ; skg of f1; : : : ; Lg, let Gs be
the tensor product of Gs1; : : : ; Gsk, which is the space of functions on X spanned



10 JIANHUA HUANG

by the functions g of the form

g(x) =
kY
i=1

gsi(xsi); where gsi 2 Gsi for 1 � i � k:

Then the dimension of Gs is given by Ns =
Qk

i=1Nsi . Set

G =

(X
s2S

gs : gs 2 Gs

)
:

The dimension Nn of G satis�es maxs2S Ns � Nn �
P

s2S Ns � #(S)maxs2S Ns:

Hence, Nn � P
s2S Ns. Set G0

; = G; and, for each nonempty set s 2 S, let G0
s

denote the space of all functions in Gs that are empirically orthogonal to each
function in Gr for every proper subset r of s. We will see that if the space G is
identi�able, then each function g 2 G can be written uniquely in the form

P
s2S gs,

where gs 2 G0
s for s 2 S (see Lemma 3.3). If so, we refer to

P
s2S gs as the empirical

ANOVA decomposition of g, and we refer to G0
s, s 2 S, as the components of G.

As in Section 2.2, let G� consist of the functions in G whose range is contained
in a compact subinterval of I. Recall that �̂ is the maximum likelihood estimate
in G� and �� is the best approximation in H� to �. The general result in the
previous subsection can be applied to get the rate of convergence of �̂ to ��. To
adapt to the speci�c structure of the spaces H and G in this subsection, we now
replace Conditions 2 and 3 by conditions on the subspaces Gs and Hs, s 2 S. These
conditions are su�cient for Conditions 2 and 3 and are easier to verify.

Condition 20. For each s 2 S, there are nonnegative constants As = Asn such
that, kgk1 � Askgk for all g 2 Gs.

Remark 3. (i) Suppose Condition 4 holds. If Condition 20 holds, then Condi-

tion 2 holds with the constant An =
�
�
1�#(S)
1

P
s2S As

�1=2
, where �1 is de�ned in

Lemma 3.2. See Remark 4(i) of Huang (1996) for proof.
(ii) Suppose Condition 4 holds and let s = fs1; : : : ; skg 2 S. If kgk1 � anjkgk

for all g 2 Gsj , j = 1; : : : ; k, then kgk1 � ankgk for all g 2 Gs with an �
Qk

j=1 anj.

See Remark 4(ii) of Huang (1996) for proof.

Recall that �� is the best approximation in H� to � and its ANOVA decompo-
sition has the form �� =

P
s2S �

�
s , where �

�
s 2 H0

s for s 2 S.

Condition 30. For each s 2 S, there are positive numbers �s = �s(Gs) such
that infg2Gs

kg � ��sk1 � �s ! 0 as n!1.

Remark 4. (i) If Condition 30 holds, then Condition 3 holds with � �Ps2S �s.
(ii) The positive numbers �s can be chosen such that �r � �s for r � s.

Since Conditions 10 and 20 are su�cient for Conditions 1 and 2, the rate of
convergence of �̂ to �� is given by Theorem 2.1. We expect that the components of
the ANOVA decomposition of �̂ should converge to the corresponding components
of ��. This is veri�ed in next result. Recall that �� is the best approximation in
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G� to �. The ANOVA decompositions of �̂ and �� are given by �̂ =
P

s2S �̂s and
�� =

P
s2S ��s, where �̂s; ��s 2 G0

s for s 2 S, while the ANOVA decompositions of ��

is given by �� =
P

s2S �
�
s , where �

�
s 2 H0

s for s 2 S. We have an identity involving
the various components: �̂s � ��s = (�̂s � ��s) + (��s � ��s). The following theorem
describes the rates of convergence of these components.

Theorem 2.2. Suppose Conditions 1, 20, 30 and 4 hold and that limnAs�s = 0
and limnA

2
sNs=n = 0 for s 2 S. Then, for each s 2 S,

k�̂s � ��sk2 = OP

 X
s2S

Ns=n

!
; k�̂s � ��sk2n = OP

 X
s2S

Ns=n

!
;

k��s � ��sk2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
; k��s � ��sk2n = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:

Consequently,

k�̂s � ��sk2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
and k�̂s � ��skn = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:

We now give an example illustrating how to get the rates of convergence for
functional ANOVA models when speci�c approximating spaces are used. Through-
out this example, we assume that X is the Cartesian product of compact intervals
X1; : : : ;XL. Without loss of generality, it is assumed that each of these intervals
equals [0; 1] and hence that X = [0; 1]L. In addition, we assume that Condition 4
holds. Let m be a nonnegative integer and set p = m+ �. A function on X is said
to be p-smooth if it is m times continuously di�erentiable on X and D� satis�es a
H�older condition with exponent � for all � with [�] = m; see Section 4 of Huang
(1996) for the de�nition of H�older condition.

Example 3 (Univariate Splines). Let J be a positive integer, and let t0, t1; : : : ; tJ ,
tJ+1 be real numbers with 0 = t0 < t1 < � � � < tJ < tJ+1 = 1. Partition [0; 1] into
J + 1 subintervals Ij = [tj; tj+1), j = 0; : : : ; J � 1, and IJ = [tJ ; tJ+1]. Let m be a
nonnegative integer. A function on [0; 1] is a spline of degree m with knots t1; : : : ; tJ
if the following hold: (i) it is a polynomial of degree m or less on each interval Ij ,
j = 0; : : : ; J ; and (ii) (for m � 1) it is (m � 1)-times continuously di�erentiable on
[0; 1]. Such spline functions constitute a linear space of dimension K = J +m+ 1.
For detailed discussions of univariate splines, see de Boor (1978) and Schumaker
(1981).

Let Gl be the space of splines of degree m for l = 1; : : : ; L, where m is �xed. We
allow J , (tj)J1 and thus Gl to vary with the sample size. Suppose that

max0�j�J(tj+1 � tj)

min0�j�J (tj+1 � tj)
� 


for some positive constant 
. Set d = maxs2S #(s). Suppose p > d=2 and J2d =
o(n). Following the same argument as in Example 3 of Huang (1996), we can
see that the conditions in Theorems 2.1 and 2.2 are satis�ed. Thus we have that
k�̂s � ��sk2 = OP (J

d=n + J�2p) for s 2 S and k�̂ � ��k2 = OP (J
d=n + J�2p).
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Taking J � n1=(2p+d), we get that k�̂s � ��sk2 = OP (n
�2p=(2p+d)) for s 2 S and

k�̂ � ��k2 = OP (n
�2p=(2p+d)). These rates of convergence are optimal [see Stone

(1982)].

We can obtain similar rate of convergence results when polynomials or trigono-
metric polynomials and their tensor products are used as building blocks for the
approximating spaces. The same arguments as in Section 4 of Huang (1996) can
be used to check the conditions in Theorems 2.1 and 2.2.

The result from the previous example tells us that the rates of convergence are
determined by the smoothness of the ANOVA components of �� and the highest
order of interactions included in the model. It also demonstrates that, by using
models with only low-order interactions, we can ameliorate the curse of dimension-
ality that the saturated model su�ers. For example, by considering additive models
(d = 1) or by allowing interactions involving only two factors (d = 2), we can get
faster rates of convergence than by using the saturated model (d = L).

Using univariate functions and their tensor products to model �� restricts the
domain of �� to be a hyperrectangle. By allowing bivariate or multivariate functions
and their tensor products to model ��, we gain more 
exibility, especially when
some predictor variable is of spatial type. Our theorems also apply to these cases,
where the approximating spaces are built with multivariate splines and their tensor
products or more general, �nite element spaces and their tensor products. The
same argument as in Example 4 of Huang (1996) can be employed to check the
conditions of the theorems.

3. Preliminaries

In this section, we collect some useful facts. Lemma 3.1 states that the empirical
norm on G is equivalent to its theoretical counterpart. Corollary 3.1 gives us a suf-
�cient condition for the identi�ability of G. Lemma 3.2 reveals that the theoretical
components of H are not too confounded. Lemma 3.3 tells us that each function
in G can be represented uniquely as a sum of the components in the empirical
ANOVA decomposition. Lemma 3.4 states that the components of G are not too
confounded, either empirically or theoretically.

The following lemma and corollary are borrowed from Huang [1996, Lemma 5.1,
Corollary 5.1].

Lemma 3.1. Suppose Condition 2 holds with limnA
2
nNn=n = 0, and let t > 0.

Then, except on an event whose probability tends to zero as n!1,

jhf; gin � hf; gij � t kfk kgk; f; g 2 G:

Consequently, except on an event whose probability tends to zero with n,

1

2
kgk2 � kgk2n � 2kgk2; g 2 G:

Corollary 3.1. Suppose Condition 2 holds with limnA
2
nNn=n = 0. Then, except

on an event whose probability tends to zero as n!1, G is identi�able.
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Let jX j denote the volume of X . Under Condition 4, let M1 and M2 be positive
numbers such that

M�1
1

jX j � fX (x) � M2

jX j ; x 2 X :

Then M1;M2 � 1. The following two fundamental lemmas were established in
Stone [1994, Lemma 3.1, Lemma 3.2].

Lemma 3.2. Suppose Condition 4 holds. Set �1 = 1 �
q
1�M�1

1 M�2
2 2 (0; 1].

Then khk2 � �
#(S)�1
1

P
s2S khsk2 for all h =

P
s hs, where hs 2 H0

s for s 2 S.
Lemma 3.3. Suppose Conditions 2 and 4 hold and that G is identi�able. Let g =P

s2S gs, where gs 2 G0
s for s 2 S. If g = 0, then gs = 0 for s 2 S.

As a consequence of Lemma 3.2, each function in H can be represented uniquely
as a sum of the components in the theoretical ANOVA decomposition. Since Hs,
s 2 S, are Hilbert spaces equipped with the theoretical inner product, it is easily
shown by using Lemma 3.2 that, under Condition 4, H is a complete subspace
of the space of all square-integrable functions on X equipped with the theoretical
inner product. Lemma 3.3 tells us that each function g 2 G can be represented
uniquely as a sum of the components in the empirical ANOVA decomposition.

According to next result, the components G0
s, s 2 S, of g are not too confounded,

either empirically or theoretically. This result was established in Huang [1996,
Lemma 5.5].

Lemma 3.4. Suppose Conditions 20 and 4 hold and that limnA
2
sNs=n = 0 for s 2

S. Let 0 < �2 < �1. Then, except on an event whose probability tends to zero

as n ! 1, kgk2 � �
#(S)�1
2

P
s2S kgsk2 and kgk2n � �

#(S)�1
2

P
s2S kgsk2n for all

g =
P

s2S gs, where gs 2 G0
s for s 2 S.

4. Proof of Theorem 2.1

The proof of Theorem 2.1 is divided into two parts. The approximation error
and the estimation error are handled separatedly. Let range(h) denote the range
of a real-valued function h.

4.1. Approximation error.

Lemma 4.1. Let K be a compact subinterval of I. Suppose �� exists and that

range(��) � K. Then there are positive numbers M3 and M4 such that

�M3kh� ��k2 � �(h)� �(��) � �M4kh� ��k2

for all h 2 H with range(h) � K.
Proof. Given h 2 H with range(h) � K, set h(t) = (1� t)�� + th. Then

d

dt
�(h(t))

����
t=0

= 0
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and hence

�(h)� �(��) =

Z 1

0

(1� t)
d2

dt2
�(h(t)) dt

(integrate by parts). Observe that

d2

dt2
�(h(t)) = E

n
(h(X) � ��(X))2

�
B00(h(t)(X))A(�(X)) � C00(h(t)(X))

�o
:

By (5) and the continuity of the functions A(�), B00(�) and C00(�),
inf
�2K
�2K0

�
B00(�)A(�) �C00(�)

�
:= �2M3 < 0

and

sup
�2K
�2K0

�
B00(�)A(�) �C00(�)

�
:= �2M4 < 0:

The desired result now follows.

Lemma 4.2. Suppose Conditions 1{3 hold and that limnAn� = 0. Then �� exists

for n su�ciently large and satis�es k�� � ��k2 = O(�2) and k�� � ��k2n = OP (�
2).

Proof. Condition 3 implies that there is a function g� 2 G such that kg� �
��k1 � �. Let a denote a positive constant (to be determined later). Choose g 2 G
with kg � ��k � a�. Then, by Condition 2,

kg � g�k1 � Ankg � g�k � An

�kg � ��k+ k�� � g�k� � An(a� + �):

Note that �� takes values in a compact subinterval of I. Since limn � = 0 and
limnAn� = 0, we have that, for n su�ciently large, there is a compact subinterval
K of I such that range(g�) � K and range(g) � K for all g 2 G with kg���k � a�.
Thus, it follows from Lemma 4.1 that, for n su�ciently large,

�(g)� �(��) � �M4a
2�2 for all g 2 G with kg � ��k = a� (10)

and

�(g�)� �(��) � �4M3�
2: (11)

Let a be chosen such that a > max(
p
(4M3=M4); 1). Then kg� � ��k < a�, and it

follows from (10) and (11) that, for n su�ciently large,

�(g) < �(g�) for all g 2 G with kg � ��k = a�:

Note that, for n su�ciently large, g� 2 G� and g 2 G� for all g 2 G with kg���k �
a�. Therefore, by the de�nition of �� and the concavity of �(g) as a function of g, ��
exists and satis�es k��� ��k < a� for n su�ciently large. Hence k��� ��k2 = O(�2).
To prove that k�� � ��k2n = OP (�2), by the triangle inequality and Lemma 3.1, we
have that

k�� � ��kn � k�� � g�kn + kg� � ��kn
� 2k�� � g�k+ kg� � ��k1 � 2k�� � ��k+ 3kg� � ��k1;

except on an event whose probability tends to zero as n !1. The desired result
now follows.
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4.2. Estimation error. Let f�j; 1 � j � Nng be an orthonormal basis of G
relative to the theoretical inner product. Then each g 2 G can be represented
uniquely as g =

P
j �j�j, where �j = hg; �ji for j = 1; : : : ; Nn. Let ��� denote

the Nn-dimensional vector with entries �j . To indicate the dependence of g on
���, we write g(�) = g(�;���). Let j � j denote the Euclidean norm on RNn. Then
kg(�;���)k = j���j.

We write `(g(�;���)) as `(���). Let S(���) = @
@��� `(���) denote the score at ���, that is,

the Nn-dimensional vector having entries

@

@�j
`(���) =

1

n

X
i

�j(Xi)
�
B0(g(Xi;���))Yi � C0(g(Xi;���))

�
;

and let D(���) = @2

@���@���T
`(���) be the Nn � Nn Hessian matrix, which has entries

@2

@�j1@�j2
`(���) =

1

n

X
i

�j1(Xi)�j2(Xi)
�
B00(g(Xi;���))Yi � C00(g(Xi;���))

�
:

Lemma 4.3. Suppose Condition 2 holds with limnA
2
nNn=n = 0. Let K be a compact

subinterval of I. Then, there is a positive constant M5 such that, except on an event

whose probability tends to zero as n!1,

d2

dt2
`
�
g0 + t(g1 � g0)

� � �M5kg1 � g0k2

for 0 < t < 1 and all g0; g1 2 G with range(g0); range(g1) � K.

Proof. Let ���0 = (�0j) and ���1 = (�1j) be given by the equations g0 =
P

j �0j�j
and g1 =

P
j �1j�j. Then kg1 � g0k2 = j���1 � ���0j2. Moreover,

d2

dt2
`
�
g0 + t(g1 � g0)

�
=

d2

dt2
`
�
���0 + t(���1 � ���0)

�
= (���1 � ���0)

TD
�
���0 + t(���1 � ���0)

�
(���1 � ���0)

(12)

for 0 < t < 1. We need the following result (to be proved later):

Claim 1. There exists a positive constant �1 and a compact subinterval S0 of
S such that P (Y 2 S0jX = x) � �1 for x 2 X and B00(�)y � C00(�) < 0 for � 2 I
and y 2 S0.

By Claim 1 and the continuity of B00 and C00, there is a positive constant �2 such
that

B00(�)y � C00(�) � ��2; � 2 K and y 2 S0: (13)
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Set In = fi : 1 � i � n and Yi 2 S0g. By (5) and (13), except on an event whose
probability tends to zero as n!1,�

���1 � ���0
�T
D
�
���0 + t(���1 � ���0)

��
���1 � ���0

�
=

1

n

X
i

n�
g1(Xi)� g0(Xi)

�2
�
h
B00
�
[g0 + t(g1 � g0)](Xi)

�
Yi �C00

�
[g0 + t(g1 � g0)](Xi)

�io
� ��2

n

X
i2In

�
g1(Xi)� g0(Xi)

�2
(14)

for all g0; g1 2 Gwith range(g0); range(g1) � K. Set In = #(In). Then limn P (In �
�1n=2) = 1. Observe that, given In = fi1; : : : ; iIng, the covariates Xj ; j 2 In, are
independent and have the common density

f
�
x
��Y 2 S0

�
=

fX (x)P
�
Y 2 S0

��X = x
�

P
�
Y 2 S0

� :

Note that �1fX (x) � f
�
x
��Y 2 S0

� � (1=�1)fX (x). Therefore, it follows from
Lemma 3.1 that

�2
n

X
i2In

�
g1(Xi)� g0(Xi)

�2 �M5kg1 � g0k2; (15)

for all g0; g1 2 G with range(g0); range(g1) � K, except on an event whose proba-
bility tends to zero as n!1. Lemma 4.3 now follows from (14) and (15).

Proof of Claim 1. By the model assumptions in Section 2.1, P (Y 2 S) = 1
and �(�) takes values in a compact subinterval K0 of I. Since A(�) is continuous and
increasing, E(Y jX = x) = A(�(x)) ranges over a compact subinterval S1 = [c1; c2]

of
o
S. We consider three cases.
Case I. S = R. By (7) and Chebyshev inequality,

P
���Y �E(Y jX = x)

�� � p
2D
��X = x

� � 1� var(Y jX = x)

2D
� 1

2
; x 2 X :

Therefore, Claim 1 holds with S0 = [c1 �
p
2D; c2 +

p
2D] and �1 = 1=2.

Case II.
o
S = (�1; a) or (a;1) for some a 2 R. Without loss of generality,

suppose that
o
S = (0;1). Otherwise, we can replace Y by �Y + a or Y � a. Thus

0 < c1 < c2. By (7),

E(Y 2jX = x) = var(Y jX = x) +
�
E(Y jX = x)

�2 � D + c22:

By an obvious modi�cation of Markov inequality, for any M > 0,

E
�
Y ind(Y > M )jX = x

� � E(Y 2jX = x)

M
� D + c22

M
;
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here ind(A) denotes the indicator function of the set A. Hence, for any �;M 2 R
with M > � > 0,

c1 � E(Y jX = x)

= E
�
Y ind(Y < �)

��X = x
�

+ E
�
Y ind(� � Y �M )

��X = x
�
+E

�
Y ind(Y > M )

��X = x
�

� � +MP
�
� � Y �M jX = x

�
+
D + c22
M

:

This implies that

P
�
� � Y � M

��X = x
� � c1 � � � (D + c22)=M

M
:

Letting � = c1=3 and M = 3(D + c22)=c1, we get that

P
�
� � Y �M

��X = x
� � c21

9(D + c22)
> 0:

Therefore, Claim 1 holds with S0 = [c1=3; 3(D + c22)=c1] and �1 = c21=(9(D + c22)).

Case III.
o
S = (a1; a2) for a1; a2 2 Rand (5) holds at y = a1 or y = a2. Without

loss of generality, suppose that
o
S = (0; 1) and (5) holds at y = 1. Otherwise, we

can replace Y by (Y � a1)=(a2 � a1) or (�Y + a2)=(a2 � a1). Thus Y � 1 and
c1 > 0. Note that, for � > 0,

c1 � E(Y jX = x) � � + P (Y � �jX = x); x 2 X :
Let � = c1=2. Then P (Y � c1=2jX = x) � c1=2 for x 2 X . Therefore, Claim 1
holds with S0 = [c1=2; 1] and �1 = c1=2.

The proof of Lemma 4.3 is complete.

Corollary 4.1. Suppose Condition 2 holds with limnA
2
nNn=n = 0. Then the log-

likelihood `(g) is strictly concave on G� except on an event whose probability tends

to zero as n!1.

Lemma 4.4. Suppose Conditions 1{3 hold and that limnA
2
nNn=n = 0 and

limnAn� = 0. Then �̂ exists except on an event whose probability tends to zero as

n!1. Moreover, k�̂ � ��k2 = OP (Nn=n):

Proof. Recall that �̂ is the maximum likelihood estimate and �� is the best

approximation in G� to �. Let �̂�� = (�̂j) and ���� = (��j) be given by the equations

�̂ =
P

j �̂j�j and �� =
P

j
��j�j. Then k�̂ � ��k2 = ���̂�� � ����

��2 and kg � ��k2 = ����� � ����
��2

for g = g(�;���). Moreover, the following identity holds:

`(���) = `(����) + (��� � ����)TS(����)

+ (��� � ����)T
�Z 1

0

(1� t)D
����� + t(��� � ����)

�
dt

�
(��� � ����):

(16)

To complete the proof of the lemma, we need the following two results (to be
proved later):
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Claim 2. For any positive constant M ,

lim
a!1

lim sup
n!1

P
���S(����)�� �Ma

�Nn

n

�1=2�
= 0:

Claim 3. There is a positive constant M6 such that, for any �xed positive
constant a,

(��� � ����)T
�Z 1

0

(1� t)D
�
���� + t(��� � ����)

�
dt

�
(��� � ����)

� �M6

����� � ����
��2 for all ��� 2 RNnwith

����� � ����
�� = a

�Nn

n

�1=2
on an event 
n(a) with limnP (
n(a)) = 1.

Choose ��� 2 RNn such that
������ ����

�� = a(Nn=n)
1=2. Then by Condition 2, we have

that kg(�;���) � ��k1 � Ankg(�;���) � ��k = a(A2
nNn=n)1=2 = o(1). Note that �� 2 G�.

Thus g(�;���) 2 G� for n su�ciently large. Fix � > 0. By Claim 2, we can choose
a su�ciently large such that

��S(����)�� < M6a(Nn=n)1=2 except on an event whose
probability is less than �. On the nonexceptional event,

��(��� � ����)TS(����)
�� < M6a

2
�Nn

n

�
for all ��� 2 RNnwith

����� � ����
�� = a

�Nn

n

�1=2
: (17)

Moreover, it follows from Claim 3 that, except on an event whose probability tends
to zero as n!1,

(��� � ����)T
�Z 1

0

(1� t)D
�
���� + t(��� � ����)

�
dt

�
(��� � ����)

� �M6a
2
�Nn

n

�
for all ��� 2 RNnwith

����� � ����
�� = a

�Nn

n

�1=2
:

(18)

Suppose (17) and (18) hold. Then, by (16), `(���) < `(����) for all ��� 2 RNn with������ ����
�� = a(Nn=n)

1=2. Hence by the concavity of `(���) as a function of ���, �̂ = g(�; �̂��)
exists and statis�es k�̂ � ��k � a(Nn=n)1=2. Since � is arbitrary, the conclusion of
the lemma follows.

Proof of Claim 2. Since ���� maximizes

�
�
g(�;���)� = E

�
B(g(X;���))Y � C(g(X;���))

�
;

we have that

d

d���
�
�
g(�;���)�����

���=����

= 0:

This implies that

E
�
�j(X)

�
B0(��(X))Y �C0(��(X))

��
= 0; 1 � j � Nn:
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Thus

E
���S(����)��2� =X

j

E
h @

@�j
`(����)

i2

=
1

n

X
j

var
�
�j(X)

�
B0(��(X))Y � C0(��(X))

��
:

Note that

var
�
�j(X)

�
B0(��(X)))Y � C0(��(X))

��
= E

h
var
�
�j(X)

�
B0(��(X)))Y �C0(��(X))

���X�i
+ var

h
E
�
�j(X)

�
B0(��(X))Y � C0(��(X))

���X�i
= E

�
�2j(X)

�
B0(��(X))

�2
�2(X)

�
+ var

�
�j(X)

�
B0(��(X))A(�(X)) � C0(��(X))

��
�ME

�
�2j(Xi)

�
for some positive constant M by Lemma 4.2, (7), and the continuity of B0(�), C0(�),
and A(�). Consequently,

E
���S(����)��2� � M

n

X
j

E
�
�2j (Xi)

�
=

M

n

X
j

k�jk2 = M
Nn

n
;

which yields Claim 2.

Proof of Claim 3. Choose g 2 G such that kg � ��k2 = a(Nn=n)
1=2. Then by

Condition 2, kg� ��k1 � Ankg � ��k = Ana(Nn=n)1=2 = o(1): Thus by Lemma 4.2,
for n su�ciently large, there is a compact subinterval K of I such that range(��) � K
and range(g) � K for all g 2 G with kg � ��k = a(Nn=n)

1=2. Hence it follows from
Lemma 4.3 that, except on an event whose probability tends to zero as n!1,

d2

dt2
`
�
�� + t(g � ��)

� � �M5kg � ��k2

for 0 < t < 1 and all g 2 G with kg � ��k = a(Nn=n)
1=2. Equivalently, by (12),

(��� � ����)TD
�
���� + t(��� � ����)

�
(��� � ����) � �M5

����� � ����
��2

for 0 < t < 1 and all ��� 2 RNn with
����� � ����

�� = a(Nn=n)1=2 on an event 
n(a) with

limn P (
n(a)) = 1. Claim 3 now follows with M6 = M5=
R 1
0 (1� t) dt =M5=2.

The proof of Lemma 4.4 is complete.

Theorem 2.1 follows from Lemmas 3.1, 4.2 and 4.4.
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5. Proof of Theorem 2.2

Recall that the estimation error has the ANOVA decomposition �̂��� =Ps2S

�
�̂s�

��s
�
, where �̂s; ��s 2 G0

s. The following lemma gives the rates of convergence of the
various components of �̂ � ��.

Lemma 5.1. Suppose Conditions 1, 20, 30 and 4 hold and that limnA
2
sNs=n = 0

and limnAs�s = 0 for s 2 S. Then, for each s 2 S,

k�̂s � ��sk2 = OP

 X
s2S

Ns=n

!
and k�̂s � ��sk2n = OP

 X
s2S

Ns=n

!
:

Proof. By Remark 3(i) following each of Conditions 20 and 30, the conditions of
Lemma 4.4 are satis�ed. Thus the desired results follow from Lemmas 3.4 and 4.4.

Recall that ��s 2 H0
s , s 2 S, are the components in the ANOVA decomposition

of ��. Condition 30 tells us that there exist good approximations to ��s in Gs for
each s 2 S. The following lemma tells us that we can pick good approximations to
��s in G0

s. It is Lemma 7.2 of Huang (1996).

Lemma 5.2. Suppose Conditions 1, 20, 30 and 4 hold and that limnA
2
sNs=n = 0

and lim supnAs�s < 1 for s 2 S . Then, for each s 2 S, there exist functions

gs 2 G0
s such that,

k��s � gsk2 = OP

 X
r�s;r 6=s

Nr

n
+ �2s

!
(19)

and

k��s � gsk2n = OP

 X
r�s;r 6=s

Nr

n
+ �2s

!
: (20)

Recall that ��� �� is the approximation error. We have the ANOVA decomposi-
tions �� =

P
s2S ��s and �� =

P
s2S �

�
s , where ��s 2 G0

s and ��s 2 H0
s for s 2 S. The

next lemma gives the rates of convergence of the various components of �� � ��.

Lemma 5.3. Suppose Conditions 1, 20, 30 and 4 hold and that limnA
2
sNs=n = 0

and limnAs�s = 0. Then, for each s 2 S,

k��s � ��sk2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!

and

k��s � ��sk2n = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:
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Proof. By Lemma5:2, for each s 2 S, there are functions gs 2 G0
s such that (19)

and (20) hold. Write g =
P

s2S gs. Then kg� ��k2 � OP (
P

s2S Ns=n+
P

s2S �
2
s).

Thus, by Lemma 4.2,

kg � ��k2 � 2kg � ��k2 + 2k�� � ��k2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:

Therefore, by Lemma 3.4, except on an event whose probability tends to zero as
n!1,

kgs � ��sk2 � �
1�#(s)
2 kg � ��k2 = OP

 X
s2S

Ns

n
+
X
s2S

�2s

!
:

Hence, the desired results follow from (19), (20), the triangle inequality, and Lemma3.1.

Theorem 2.2 follows from Lemmas 5.1 and 5.3.
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