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For �xed � 2 (0; 1), the quantile regression function gives the �th quantile ��(x) in the
conditional distribution of a response variable Y given the value X = x of a vector of
covariates. It can be used to measure the e�ect of covariates not only in the center of
a population, but also in the upper and lower tails. A functional that summarizes key
features of the quantile speci�c relationship between X and Y is the vector �� of weighted
expected values of the vector of partial derivatives of the quantile function ��(x). In a
nonparametric setting, �� can be regarded as a vector of quantile speci�c nonparametric
regression coe�cients. In survival analysis models (e.g. Cox's proportional hazard model,
proportional odds rate model, accelerated failure time model) and in monotone transfor-
mation models used in regression analysis, �� gives the direction of the parameter vector
in the parametric part of the model. �� can also be used to estimate the direction of the
parameter vector in semiparametric single index models popular in econometrics. We show
that, under suitable regularity conditions, the estimate of �� obtained by using the locally
polynomial quantile estimate of Chaudhuri (1991 Annals of Statistics), is n1=2-consistent
and asymptotically normal with asymptotic variance equal to the variance of the in
u-
ence function of the functional ��. We discuss how the estimate of �� can be used for
model diagnostics and in the construction of a link function estimate in general single index
models.
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1. Introduction. The quantile regression function is de�ned as the �th quantile ��(x) in
the conditional distribution FY jX(yjx) of a response variable Y given the value X = x of
a d-vector of covariates: for �xed �, 0 < � < 1, ��(x) = inffy : FY jX(yjx) � �g. It has
the advantage, over the commonly used mean regression, that by considering di�erent �,
it can be used to measure the e�ect of covariates not only in the center of a population,
but also in the upper and lower tails. For instance, the e�ect of a covariate can be very
di�erent for high and low income groups. Thus, in the latest presidential election, the
Democrats produced data showing that between 1980 and 1992, there was an increase in
the number of people in the high salary category as well as the number of people in the
low salary category. This phenomena could be demonstrated by computing the � = :90
quantile regression function �:90(x) of salary Y as a function of the covariate x = time and
comparing it with the � = :10 quantile regression function �:10(x). An increasing �:90(x)
and a decreasing �:10(x) would correspond to the Democrats' hypothesis that \the rich got
richer and the poor got poorer" during the Republican administration. The US Government
yearly conducts a sample survey of about 60,000 households [the yearly Current Population
Survey (CPS)] from which estimates of various quantiles can be obtained. Rose (1992)
reported data for 1979 and 1989, and there the 10th percentile and the 90th percentile
of the family income indeed show opposite trends over time. Recently Buchinsky (1994)
have reported an extensive study of changes in US wage structure during 1963{1987 using
linear parametric quantile regression. Similarly, in survival analysis, it is of interest to
study the e�ect of a covariate on high risk individuals as well the e�ect on median and
low risk individuals. Thus one can be interested in the quantiles �:1(x), �:5(x) and �:9(x)
of the survival time Y given a vector x of covariates. Quantile regression is also useful
in marketing studies as the in
uence of a covariate may be very di�erent on individuals
who belong to high, median and low consumption groups. Hendricks and Koenker (1992)
studied variations in electricity consumption over time using some nonparametric quantile
regression techniques.

1.1. Nonparametric quantile regression coe�cients. Statistical literature frequently
focuses on the estimation of the mean conditional response �(x) = E(Y jx). In linear
statistical inference, the partial derivatives @�(x)=@xi, where x = (x1; � � � ; xd), are assumed
to be constant and are called regression coe�cients. They are of primary interest since they
measure how much the mean response is changed as the ith covariate is perturbed while
other covariates are held �xed. However, this does not reveal dependence on the covariates
in the lower and upper tails of the response distribution [see e.g. Efron (1991) for a detail
discussion of this latter issue]. The quantile dependent regression coe�cient curves can be
de�ned as

�0�i(x) = @��(x)=@xi; i = 1; : : : ; d

which measure how much the �th response quantile is changed as the ith covariate is per-
turbed while the other covariates are held �xed. We consider the nonparametric setting
where the gradient vector r��(x) = (�0�1(x); : : : ; �

0
�d(x)) is estimated using some appropri-

ate smoothing technique, and we will focus on the average gradient vector

�� = (��1; : : : ; ��d) = E(r��(X)):

2



The vector ��, which gives a concise summary of quantile speci�c regression e�ects, will
be called the vector of (nonparametric) quantile regression coe�cients. Note that ��i gives
the average change in the quantile of the response as the ith covariate is perturbed while
the other covariates are held �xed. Note also that in the linear model Y =

Pd
j=1 
jXj + �,

the vector �� coincides with the vector 
 = (
1; � � � ; 
d) of regression coe�cients.
We next consider two examples which illustrate quantile speci�c regression e�ects when

the covariate is real valued.

EXAMPLE 1.1. >From Bailar (1991), we get Table 1 which gives the �rst, middle and
third quartiles of statistics professor salaries for the academic year 1991-92. Departments
of Biostatistics and Colleges of Education were excluded. The explanatory variable x is the
number of years in the rank of full professor. >From Table 1 and Figure 1, we see somewhat
di�erent trends over time in the three quartiles. Note that there is nonlinearity and some
heteroscedasticity in this data set. Table 2 illustrates the quantile regression coe�cient
curves for � = :25; :5; :75, and gives the estimated nonparametric quantile regression
coe�cients

(�̂:25; �̂:5; �̂:75) = (0:31; 0:67; 1:01);

computed as a weighted average of �̂0�(x) using the weights p̂(x), where the p̂(x) are the
relative frequencies of data points in the bins indicated in the top rows. Again, these
coe�cients reveal a big di�erence in the e�ects of the covariate on the three quantiles.

Table 1. Quartiles of salaries (in thousands of dollars) of
Statistics Professors 1991{1992. x is the number of years as

Full Professor. nx is the sample size.
P
nx = 469.

x 2 5 8 11 14 17 20 23 25+

�̂:25(x) 50.1 51.5 56.7 54.5 55.5 56.0 60.5 60.6 54.8

�̂:50(x) 54.0 62.2 63.8 61.5 62.8 69.0 70.9 66.9 62.2

�̂:75(x) 61.9 71.4 71.8 72.4 75.7 77.7 76.9 80.6 83.4
nx 79 69 48 65 63 52 30 27 36

(Figure 1 around here)
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Table 2. Quartile speci�c rates of change in salaries of Statistics
Professors as seniority increases. p̂(x) is the proportion of people in the indicated category.

x 2-5 5-8 8-11 11-14 14-17 17-20 20-23 23-25+ �̂�
�̂0:25(x) 0.47 1.73 -0.73 0.33 0.17 1.5 0.03 -1.93 0.31

�̂0:50(x) 2.73 0.53 -0.77 0.43 2.07 0.63 -1.33 -1.57 0.67

�̂0:75(x) 3.17 0.13 0.20 1.1 0.67 -0.27 1.23 0.93 1.01

p̂(x) .18 .14 .14 .16 .14 .10 .07 .08

EXAMPLE 1.2. We next consider a model where the quantile regression coe�cient
vector reveals interesting aspects of the relationship between X and Y in the tails of the
response distribution as well as the center. Consider the heteroscedastic model

Y = �(X) + � [�(X)]��

where � and X are independent, � has continuous distribution function F�, the mean of �
is zero, and � and � are real parameters. The log normal and gamma regression models
are of this form with � = 1 and �(x) =

Pd
j=1 xj
j , while the Poisson regression model is of

this form with � = 1
2
, [cf. Carroll and Ruppert (1988), p.12]. Let e� be an �th quantile of

F�, then

��(x) = �(x) + � [�(x)]�e�

r��(x) = r�(x) + ��[�(x)]��1r�(x)e�
�� = E(r�(X)) + ��Ef[�(X)]��1r�(X)ge�

When � = 0, the quantile regression coe�cient vector �� is, for any �xed �, equivalent to
the average derivative functional of H�ardle and Stoker (1989). Note that this model gives
dramatically di�erent ��(x), r��(x) and �� for di�erent �. For instance, if F� = �, the
N(0; 1) distribution, d = � = � = 1, and �(x) = 
1 + 
2x, we have �� = [1 + ��1(�)]
2.
Thus the quantile regression coe�cients turn out to be

�:1 = �0:282
2; �:5 = 
2; �:9 = 2:282
2:

This model, with 
2 > 0, nicely captures the \the rich get richer and the poor get poorer"
hypothesis.

1.2. Survival analysis and transformation models. Many models in statistics, in
particular in survival analysis, can be written in the form of a transformation model

h(Y ) =
dX

j=1

Xj
j + �;(1.1)

where Y is survival time, X = (X1; � � � ;Xd) is a vector of covariates, 
 = (
1; � � � ; 
d) is
a vector of regression coe�cients, � is a residual independent of X, and h is an increasing
function speci�c to the model being considered. For instance, Cox's proportional hazard
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model is of this form with h(y) = log f� log [1� F0(y)]g, and there the distribution F� of �
is equal to the extreme value distribution 1� expf� expftgg. Here F0 is an unknown con-
tinuous distribution function referred to as the baseline distribution: it is the distribution
of Y when the 
i's are all zero. Dabrowska and Doksum (1987) considered the estimation
of ��(x) in this model. Similarly, the proportional odds rate model is of the form (1.1)
with h(y) = log [F0(y)= f1 � F0(y)g] and F� = the logistic distribution 1= [1 + expf�tg].
See Doksum and Gasko (1990) for the details and history of these two and similar models.
A third important survival analysis model of the form (1.1) is the accelerated failure time
model where h(y) = log y and F� is unknown. In the above three models, the �rst two have
unknown h and known F�, while the third has known h and unknown F�. Other models
of the form (1.1) have parametric h and F�. For instance, Box and Cox (1964) and Bickel
and Doksum (1981) have h equal to a power transformation and let F� depend on a scale
parameter. Box and Cox consider normal F� while Bickel and Doksum consider robustness
questions for more general F�.

We consider model (1.1) with both h and F� unknown, and assume that h is continuous
and strictly monotone and F� is continuous. Since h is unknown, 
 is only identi�able up
to a multiplicative constant; in other words, only the direction of 
 is identi�able. We
drop the assumption that X and � are independent and add instead a weaker assumption
that the conditional quantile e� of � given X = x does not depend on x. Then, using the
notation g = h�1,

��(x) = g(xT
 + e�) and �� = c�
; where c� = E
h
g0(XT
 + e�)

i
:

It follows that �� has the same direction as 
, and we may without loss of generality
estimate ��. Note further that (��i=��j) = (
i=
j) so that ��i and ��j give the relative
importance of the covariates Xi and Xj.) One implication of this is that the coe�cients
in the Cox model can be given an interpretation similar to the usual intuitive idea of
what regression coe�cients are: the Cox regression coe�cients give the average change in
a quantile (e.g. median) survival time as the ith covariate is perturbed while the others
are held �xed. The quantile regression vector �� is a unifying concept that represents the
coe�cient vectors in the standard linear model, the Cox model, the proportional odds rate
model, the accelerated failure time model, etc.

REMARK 1.1. Let �� = ��=j��j, where j � j is the Euclidean norm. In model (1.1),
�� = � does not depend on � as long as � and X are independent, and � represents the
direction of 
 so that estimates of �� obtained at grid points �1; � � � ; �k can be combined
into an estimate of � by computing their weighted average. Conversely, if ��1 6= ��2 for two
di�erent values of �, then the model (1.1) with X independent of � does not hold, which
suggests that the conditional quantile approach can also be used for model diagnostics (see
Section 3).

REMARK 1.2. We obtain an estimating equation for g = h�1 by introducing Z =Pd
j=1Xj��j and noting that, if we let ��(Z) denote the �th quantile in the conditional

distribution of Y given Z, then g can be expressed as

g(Z) = �� (c�(Z � ��)) ;
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and we can estimate the \shape" of g and h using an estimate of the �th quantile function
��(Z) (note that g is identi�able up to a location and scale transformation of its argument).

1.3. Reduction of dimensionality and single index models. Nonparametric esti-
mation of the gradient vector r��(x) is subject to the \curse of dimensionality" in the
sense that accurate pointwise estimation is di�cult with the sample sizes usually available
in practice because of the sparsity of the data in subsets of Rd even for moderately large
values of d. An important semiparametric regression class of models is projection pursuit
regression, which has been used by a number of authors [e.g. Friedman and Tukey (1974),
Huber (1985)] while analyzing high dimensional data in an attempt to cope with the \curse
of dimensionality". The one term projection pursuit model, which gives the �rst step in
projection pursuit regression, has the form

Y = g(
TX) + �;(1.2)

where 
 is a d-dimensional parameter vector (the projection vector), � denotes random
error, and g is a smooth real valued function of a real variable. Stigler (1986, pp. 283-290)
pointed out that Francis Galton used a projection pursuit type analysis while computing
\mid-parents' heights" in course of his analysis of the data on the heights of a group of
parents and their adult children in the late 19th century. Note that when (1.2) holds, we
must have ��(x) = g(
Tx) + e�(x), where e�(x) is the �th quantile in the conditional
distribution of � given X = x. Therefore, if e�(x) is a constant free from x for some
0 < � < 1, the gradient vector r��(x) will be equal to a scalar multiple of 
 for all x.
Consequently, an estimate of �� gives an estimate of the projection direction j
j�1
. Note
that when the smooth function g is completely unspeci�ed, only the direction of 
 (and
not its magnitude) is identi�able as in the transformation model (1.1).

In recent econometric literature, there is a considerable interest in the so called single
index model [see, e.g., Han (1987), Powell, et al. (1989), Newey and Ruud (1991), Sherman
(1993)] de�ned by

Y = �(
TX; �);(1.3)

where � is a random error independent of X, and �, which is a real valued function of two
real variables, is typically assumed to be monotonic in both of its arguments. Duan and
Li (1991) considered a very similar model in their regression analysis under link violations.
They did not assume any monotonicity condition on the unknown link function �. Their
sliced inverse regression approach for estimating the direction of 
 is applicable under the
assumption of elliptic symmetry on the distribution of the regressor and the independence
between X and �. H�ardle and Stoker (1989) and Samarov (1993) investigated procedures
for estimating the direction of 
 in (1.2) and (1.3), using estimates of the gradient of the
conditional mean of Y given X = x. Their approach requires neither the elliptic symmetry
of the regressors nor the monotonicity of �. However, the use of the conditional mean of
the response makes the procedure non-robust, and it does not allow for the estimation of
the function � in (1.3) (see Section 3 on the estimation of �).

It is important to note that most of these earlier approaches require independence be-
tween the errors � and the regressor X, thus imposing a strong homoscedasticity condition.
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The approach of this paper allows one to weaken this assumption and only requires that,
for some 0 < � < 1, the �th conditional quantile e�(x) is a constant free from x, which is
some kind of a centering assumption for the distribution of the error �. It was considered,
e.g., by Manski (1988) in the context of binary response models, who called this assump-
tion quantile independence. Typically one would center the conditional distribution of the
response at �:5(x), and in that case e:5(x) is assumed to be a constant free from x, which
can be taken as zero without loss of generality. This centering device allows one to work
under possible dependence between the covariate X and the error �.

Note that model (1.1) is a special case of model (1.3), and model (1.2) is not a special
case of model (1.3) unless g is assumed to be monotonic. We will drop the assumption of
monotonicity of � with respect to its �rst argument and assume that � is strictly increasing
in its second argument. Note that this will cover (i) the regression model with product error
Y = e (
TX), where  is smooth and positive, (ii) the heteroscedastic one-term projection
pursuit model Y = g(
TX) + e (
TX), where g is smooth and  is smooth and positive,
and (iii) the heteroscedastic one-term projection pursuit model with transformation

h(Y ) =  1(

TX) + e 2(


TX);

where  1 is smooth, h is smooth and monotonic, and  2 is smooth and positive.
In model (1.3) with � monotonic only in its second argument,

��(x) = �f
Tx; e�(x)g;

and if there exists 0 < � < 1 such that e�(x) is a constant free from x, r��(x) will again
be a scalar multiple of 
 for all x. Hence, an estimate for �� can be used to estimate the
direction of 
 in this case too.

The rest of the paper is organized as follows. In the next section we consider non-
parametric estimation of the average gradient functional ��. We report some results from
a numerical study to illustrate the implementation of the methodology and discuss large
sample statistical properties of the estimate of �� in detail. A discussion of e�ciency, diag-
nostic applications, and estimation of the link function in model (1.3) are given in Section
3 while Section 4 contains the proofs.

2. Estimation and main results. Let (X1; Y1); � � � ; (Xn; Yn) be n independent random
vectors distributed as (X; Y ), X 2 Rd; Y 2 R1. For �xed 0 < � < 1, let �(x) be the
conditional �th quantile of Y given X = x and let f(x) denote the density of X. We want
to estimate

� =
Z
fr�(x)gw(x) f(x) dx ;(2.1)

where the dependence of �(x) and � on � is suppressed as long as it does not cause an
ambiguity, and w(x) is a smooth weight function with a compact support within the interior
of the support of f(x).

The weight function is introduced to obtain functionals and estimates that are not
overly in
uenced by outlying x values (high leverage points). It allows our functional � to
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focus on quantile dependent regression e�ects without being unduly in
uenced by the tail
behaviour of f(x). It also reduces boundary e�ects that occur in nonparametric smoothing.
The weight function does not alter the fact that � has the same direction as 
 in the single
index model with an unknown monotonic link. In a more general nonparametric setting, we
would recommend using a smooth weight function which equals one except in the extreme
tails of the X distribution.

We will consider two estimators of �. The �rst one is the direct plug-in estimator

(2:2) �̂1 = n�1
Xn

r�̂(Xi)
o
w(Xi);

where r�̂(Xi) is a nonparametric estimator of the gradient of the conditional quantile
�(x) at x = Xi. The second estimator is based on the observation that, under the above
assumptions on the weight function w(x), integration by parts gives:

� = �
Z
�(x)rfw(x)f(x)gdx;

the sample version of which gives:

(2:3) �̂2 = �1

n

nX
i=1

�̂(Xi)
rw(Xi)f̂(Xi) + w(Xi)rf̂(Xi)

f̂ (Xi)

= �1

n

nX
i=1

�̂(Xi)frw(Xi) + w(Xi)^̀(Xi)g;

where ^̀(Xi) = rf̂(Xi)=f̂ (Xi), and f̂ and rf̂ are some nonparametric estimators of the
density and its gradient. We will use here leave-one-out kernel estimators

(2:4) f̂(Xi) =
1

(n� 1)hdn

X
j 6=i

W (
Xj �Xi

hn
);

and

(2:5) rf̂(Xi) =
1

(n� 1)hd+1
n

X
j 6=i

W (1)(
Xj �Xi

hn
);

where W : Rd ! R1 and W (1) : Rd ! Rd are multivariate kernels for the density and its
gradient, respectively, and hn is a (scalar) bandwidth such that hn ! 0 as n ! 1. The
bandwidth in rf̂ does not have to be same as that in f̂ (cf. Lemma 4.3).

While various nonparametric estimators of conditional quantiles could be used in (2.2)
and (2.3), including kernel, nearest neighbor, and spline estimators [see, e.g., Truong (1989),
Bhattacharya and Gangopadhyay (1990), Dabrowska (1992), Koenker, et al (1992, 1994)],
we will consider here the locally polynomial estimators [cf. Chaudhuri (1991a,b)]. The
reason is that in order to develop asymptotic results for �̂1 and �̂2, we need to consider
local polynomials in d variables with arbitrary degrees, and Chaudhuri's results provide
Bahadur-type expansions of estimators of �(x) as well as of estimators of r�(x) which can
be readily adapted for our purposes.

8



Consider a positive real sequence �n ! 0, which will be chosen more explicitly later.
Let Cn(Xi) be a cube in Rd centered at Xi with side legth 2�n, and let Sn(Xi) be the index
set de�ned by

Sn(Xi) = fj : 1 � j � n; j 6= i;Xj 2 Cn(Xi)g; and Nn(Xi) = #(Sn(Xi)):

For u = (u1; : : : ; ud), a d-dimensional vector of nonnegative integers, set [u] = u1+ : : :+
ud. Let A be the set of all d-dimensional vectors u with nonnegative integer components
such that [u] � k for some integer k � 0. Let s(A) = #(A) and let c = (cu)u2A be a vector
of dimension s(A). Also, given X1;X2 2 Rd, de�ne Pn(c;X1;X2) to be the polynomialP
u2A cu[(X1 � X2)=�n]u (here, if z 2 Rd and u 2 A, we set zu =

Qd
i=1 z

ui
i with the

convention that 00 = 1). Let ĉn(Xi) be a minimizer with respect to c of

(2:6)
X

j2Sn(Xi)

��fYj � Pn(c;Xi;Xj)g;

where ��(s) = jsj + (2� � 1)s. Since 0 < � < 1, ��(s) tends to 1 as jsj ! 1, and so
the above minimization problem always has a solution [see Chaudhuri (1991a, b) for more
on the uniqueness and other properties of the solution of this minimization problem]. We
now set �̂(Xi) = ĉn;0(Xi) and r�̂(Xi) = ĉn;1(Xi)=�n, where ĉn;0(Xi) and ĉn;1(Xi) are the
components of the minimizing vector of coe�cients ĉn(Xi) corresponding to the zero and
�rst degree coe�cients, respectively.

Note that (2.6) de�nes a leave-one-out estimator, i.e. ĉn(Xi) does not involve Yi. This
simpli�es the use of the conditioning argument at various places in the proofs in Section
4. It may be pointed out however that even if ĉn(Xi) is allowed to involve all the data
points including the ith one, the asymptotic behavior of the resulting estimates �̂1 and �̂2

remains same. As a matter of fact, the leave-one-out and the non-leave-one-out versions of
the estimates of � are asymptotically �rst order equivalent in the sense that their di�erence
converges to zero at a rate faster than n�1=2.

2.1. Some numerical results. We consider \Boston housing data" that has been
analyzed by several statisticians in the recent past [see e.g. Doksum and Samarov (1995) for
a recent analysis of the data and other related references]. There are n = 506 observations
in the data set and the response variable (Y ) is the median price of a house in a given area.
We focus on three important covariates that are RM = average number of rooms per house
in the area, LSTAT = the percentage of population having lower economic status in the
area and DIS = weighted distance to �ve Boston employment centers from houses of the
area. One note-worthy feature of the data is that the Y -values larger or equal to $50,000
have been recorded as $50,000 (the data was collected in early 70's). Such a truncation in
the upper tail of the response variable makes quantile regression, which is not in
uenced
very much by extreme values of the response, a very appropriate methodology.

We computed normalized nonparametric quantile regression coe�cients �̂� = �̂�j�̂�j�1

using locally quadratic quantile regression. All covariates were standardized so that each
of them has zero mean and unit variance. For weighted averaging, we used the weight
function de�ned as : w(z1; z2; z3) = w0(z1)w0(z2)w0(z3), where w0(z) = 1 if jzj � 2:4,
w0(z) = [1� f(z + 2:4)=0:2g2]2 if �2:6 � z � �2:4, w0(z) = [1 � f(z � 2:4)=0:2g2]2 if
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2:4 � z � 2:6 and w0(z) = 0 for all other values of z. We considered estimation of �� with
varying choices of the bandwidth �n in order to get a feeling for the e�ect of bandwidth
selection on the resulting estimates. �̂� was observed to be fairly stable with respect to
di�erent choices of the bandwidth �n as we tried 1.0, 1.2, and 1.4 as values for �n. Table
3 summarizes the results for �n = 1:2. The local quadratic �t requires the local �tting of
ten parameters. For three points near the boundary in x space with positive w(x), there
were not enough data points in the �n neighborhood to do a local quadratic �t. For these
three points we doubled �n (see, e.g., Rice (1984) for a similar approach to the boundary
problem).

Table 3. Normalized nonparametric quantile regression coe�cients
for \Boston housing data".

� 0.10 0.25 0.50 0.75 0.90

RM 0.438 0.443 0.533 0.553 0.505
LSTAT -0.676 -0.848 -0.844 -0.814 -0.812
DIS 0.593 0.291 0.066 -0.178 -0.292

The following conclusions are immediate from the �gures in Table 3. Firstly, LSTAT
appears to be the most important covariate for all percentile levels by comparing the
absolute values of the normalized coe�cients. This observation is in conformity with the
�ndings reported in Doksum and Samarov (1995). Secondly, covariates do seem to have
di�erent e�ects on di�erent percentiles of the conditional distribution of the response. In
particular, the sign of the coe�cient of DIS changes from positive to negative as we move
from lower percentiles to upper ones.

2.2. Asymptotic behavior of the estimators. In this section we give results on
the asymptotic behaviour of the estimators �̂1 and �̂2. We �nd that by assuming certain
smoothness conditions on f(x) and �(x) and by using local polynomials of su�ciently
high degree, we can establish the asymptotic normality of

p
n(�̂j � �); j = 1; 2; in a

nonparametric setting. Moreover, we show that �̂1 and �̂2 have the same in
uence function
and this in
uence function equals the in
uence function of the functional �, which indicates
that, with additional regularity conditions, asymptotic nonparametric e�ciency can be
achieved. We also investigate how much e�ciency �̂1 and �̂2 loose in parametric models
by comparing them with the Koenker and Basset (1978) quantile regression estimator in a
linear model, and �nd that the e�ciency loss is small.

In what follows, the asymptotic relations such as a = O(1); o(1); Op(1); or op(1),
applied to a vector a, will be understood componentwise. We will also use notation
rn(X) = OL2(an) and rn(X) = oL2(an); with a real sequence an, meaning that, as n!1,
E(rn(X)=an)2 is bounded and converges to zero, respectively.

Let V be an open convex set in Rd. We will say that a function m : Rd ! R1 has the
order of smoothness p on V with p = l + 
, where l � 0 is an integer and 0 < 
 � 1, and
will write m 2 Hp(V ), if (i) partial derivativesDum(x) := @[u]m(x)=@xu11 : : : @xudd exist and
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are continuous for all x 2 V and [u] � l. (ii) there exists a constant C > 0 such that

jDum(x1)�Dum(x2)j � Cjx1 � x2j
 for all x1;x2 2 V and [u] = l:

The orders of smoothness pj, j = 1; : : : ; 4, in Conditions 1 through 4 below will be
speci�ed later.

Condition 1 : The marginal density f(x) of X is positive on V and f 2 Hp1(V ).

Condition 2 : The weight function w is supported on a compact set with nonempty
interior, supp(w) � V and w 2 Hp2(V ).

Condition 3 : The conditional density f�jX(ejx) of � = Y ��(X) givenX = x, considered
as a function of x, belongs to Hp3(V ) for all e in a neighborhood of zero (zero being the
�th quantile of the conditional distribution). Further, the conditional density is positive
for e = 0 for all values of x 2 V , and its �rst partial derivative w.r.t. e exists continuously
for values of e in a neighborhood of zero for all x 2 V .

Condition 4 : The conditional �th quantile function �(x) of Y given X = x has the
order of smoothness p4 , i.e. �(x) 2 Hp4(V ).

Condition 4 implies that for every x 2 V , k = [p4], and all su�ciently large n, �(x+t�n)
can be approximated by the k-order Taylor polynomial

(2:7) ��n(x+ t�n;x) =
X
u2A

cn;u(x)t
u;

with the coe�cients cn;u(x) = (u!)�1Du�(x)�[u]n , where u! = u1! : : : ud!, and the remainder
r(t�n;x) = �(x+ t�n)� ��n(x+ t�n;x) satis�es the inequality

(2:8) jr(t�n;x)j � C(jtj�n)p4;
uniformly over jtj � 1 and x 2 V .

Condition 5 : Let k0 � 1 be an integer. a) The kernel W : Rd ! R1 is a bounded
continuous function with bounded variation on its support, which is contained in the unit
cube [�1; 1]d. Further, W (t) = W (�t), R W (t)dt = 1, andZ

W (t)tudt = 0 for [u] � k0:

b) The components W (1)
� (t); � = 1; : : : ; d; of the kernel W (1) : Rd ! Rd are bounded

continuous functions with bounded variation on their support (contained in [�1; 1]d),
W (1)

� (t) = �W (1)
� (�t), and Z

W (1)
� (t)tudt = ��1[u]�1u�

for [u] � k0, where �ab is the Kroneker delta.

THEOREM. Let 
 be a real number in (0; 1]. For the \plug in" estimator �̂1, assume
that conditions 1, 2, and 3 hold with p1 = p2 = p3 = 1 + 
, condition 4 holds with
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p4 > 3+3d=2, that the order of the polynomial in (2.6) is k = [p4], and that the \bandwidth"
�n in the de�nition (2.6) of the conditional quantile estimator is such that

(2:9) �n � n�� with
1

2(p4 � 1)
< � <

1

4 + 3d
:

For the \by parts" estimator �̂2, assume that the conditions 1, 2, and 4 hold with p1 = p2 =
p4 = p > 3+2d and condition 3 holds with p3 = 
, and condition 5 holds with k0 = [p]. Let
q be a real number such that 3d=2 < q � p and suppose that the order of the polynomial in
(2.6) is k = [q]. Assume also that

(2:10) �n � n�� with
1

2q
< � <

1

3d
;

and the bandwidth hn of the kernel estimators (2.4), (2.5) is chosen such that

(2:11) hn � n�� with
1

2(p � 1)
� � � 1

4(d + 1)
:

Then for j = 1; 2, as n!1,

(2:12) �̂j � � =

1

n

nX
i=1

w(Xi)r�(Xi) � (� � 1f�i � 0g)rw(Xi) + w(Xi)`(Xi)

fY jXf�(Xi)jXi)g � � + op(n
�1=2);

where �i = Yi � �(Xi), `(X) = rf(X)=f(X), and 1f�g is the indicator function.

REMARK 2.1. Note that the nonparametric estimates of the quantile surface ��(x)
and its derivative r��(x) converge at a rate slower than n�1=2. Their rates of convergence
are quite slow when the number of covariates (i.e. the dimension of X) is large. We obtain
n�1=2 rate of convergence for the estimate of the vector of quantile regression coe�cients
� even in a non-parametric setting. The \weighted averaging" of the derivative estimates
leads to a concise summary of the quantile speci�c relationship between the response Y and
the covariate X and enables us to escape the \curse of dimensionality" that occurs in non-
parametric function estimation at least asymptotically. To achieve this, we need to assume
in Condition 4 that the degree of smoothness p4 of �(x) grows with the dimensionality d,
as required by Lemmas 4.1 and 4.3.

REMARK 2.2. Note that even though both estimators �̂j, j = 1; 2, have the same
asymptotic expansion, the �rst one needs less smoothness of the marginal density f(x) and
the weight function w(x) in conditions 1 and 2, respectively. Also, the second one requires
nonparametric estimation of f(x) and its derivative. We hope to make a comparison of the
�nite sample performance of �̂1 and �̂2 in terms of their mean square error in a separate
paper.
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3. Discussion.

E�ciency considerations. The theorem in Section 2 shows that the estimators �̂j,
j = 1; 2, are, using the terminology of Bickel, et al. (1994), asymptotically linear with the
in
uence function

(3:1) IF�(X; Y ) = w(X)r�(X) � (� � 1f� � 0g)rw(X) + w(X)`(X)

fY jX(�(X)jX)
� �;

and hence are asymptotically normal with covariance matrix V ar(IF�(X; Y )). A straight-
forward computation shows that IF�(x; y) is, in fact, the e�cient in
uence function, i.e. it
coincides with the in
uence function of the functional �, so that Proposition 3.3.1 of Bickel,
et al. (1994) implies that, under additional regularity conditions [such regularity conditions
have been discussed in Newey and Stoker (1993)] guaranteeing pathwise di�erentiability
of the functional �, the estimators �̂j , j = 1; 2, are asymptotically e�cient in the class of
regular estimators.

Note that the asymptotic e�ciency of nonparametric estimators �̂j of the functional
� does not imply their e�ciency as estimates of the coe�cients 
 in the semiparametric
models (1.1)-(1.3), cf. Klaassen (1992), Horowitz (1993), Klein and Spady (1993), Bickel
and Ritov (1994). Example 3.1 below demonstrates that the loss in e�ciency of our non-
parametric estimates, when applied to some parametric models, may not be very large.
Even though the estimators �̂j will not typically be fully e�cient in speci�c parametric
versions of models (1.1)-(1.3), the fact that they are

p
n consistent means that they can

serve as initial estimators for various \one-step" and other \improved" estimators in those
models, see Klaasen (1992), Bickel, et al. (1994).

EXAMPLE 3.1. Consider the transformation model (1.1), where X and � are indepen-
dent, h is increasing and di�erentiable, and X is multivariate normal N(�;�). In this case
r��(x) = 
fh0(��(x))g�1, `(x) = ���1(x��) and fY jx(��(x)jx) = f�(e�)h0(��(x)), where
e� is the �th quantile of �. We have from (2.12) that the asymptotic variance-covariance
matrix of �̂1 (and �̂2) is

�(1� �)

nf2� (e�)
E

(�w(X)��1(X� �) +rw(X)

h0(��(X))

)(�w(X)��1(X� �) +rw(X)

h0(��(X))

)T

+ 

Tn�1V ar

(
w(X)

h0(��(X))

)
:

If we take w(x) equal to one except in the extreme tails of the density of X, then, to a very
close approximation, this asymptotic variance-covariance matrix is equal to

f�(1��)=nf2� (e�)gE[fh0(��(X))g�2��1(X��)(X��)T��1] + 

Tn�1V ar
� 1

h0(��(X))

�
:

In the case when h(y) = y, we have �� = 
 and this expression reduces to

�(1 � �)

nf2� (e�)
��1;
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which we recognize as the asymptotic variance-covariance matrix of the quantile regression
estimate of the coe�cient vector in the linear model, see Koenker and Basset (1978). This
means that our estimator, which is constructed without knowing h, is nearly as e�cient
in this case as the Koenker-Basset estimator which uses the linearity of h(y). We also
note that for this model and the same weight function w(x), the asymptotic variance-
covariance matrix of the H�ardle-Stoker estimator �̂HS of E fw(X)r�(X)g = 
 [recall
that �(X) = E(Y jX)] is equal to �2

�n
�1��1. Therefore, the asymptotic e�ciency of our

estimator of 
 relative to the H}ardle-Stoker estimator is

�2
� f

2
� (e�)

�(1 � �)
;

which is equal to the relative asymptotic e�ciency of the sample �-quantile estimator vs.
the sample mean, which may be greater or less than one depending on � and the distribution
of �.

The choice of bandwidth. Note that the choices (2.9) and (2.10) of the bandwidth �n
\undersmooth" compared to the optimal nonparametric function estimation bandwidth
�n � n�(2p+d)�1 [cf. Chaudhuri (1991a,b)]. The \undersmoothing" is needed to make the
bias of the estimators of the order o(n�1=2); the variance attains the order 1=n because of
the averaging over di�erent Xi's. As long as the bandwidth �n satis�es conditions (2.9) or
(2.10), the choice of bandwidth only has a second order e�ect on the mean squared error
(MSE) of �̂j, j = 1; 2. In the case of average derivative estimation of 
 in model (1.2),
H�ardle, Hart, Marron and Tsybakov (1992) and H�ardle and Tsybakov (1993) have used
the second order term in the MSE to obtain an expression for the asymptotically optimal
bandwidth. Note that in their approach also, undersmoothing is needed to obtain the
desired asymptotic results. Recently, H�ardle, Hall and Ichimura (1993) have investigated
simultaneous estimation of the optimal bandwidth and the vector 
 in model (1.2).

Estimating the \link" functions in semiparametric models. Assume now that in the
semiparametric models (1.1)-(1.3), for a given 0 < � < 1, the conditional �-quantile of
� given X = x is constant in x, i.e. e�(x) = e�. Set Z = 
TX, and denote by ��(z)
the conditional �th quantile of Y given Z = z. Then we have ��(z) = h�1(z + e�) in
model (1.1), ��(z) = g(z) + e� in model (1.2), and ��(z) = �(z; e�) in model (1.3). So,
after getting an estimate of the direction of 
, one can project the observed X's on that
estimated direction and then use those real valued projections to construct non-parametric
estimates of h, g and � in model (1.1), (1.2) and (1.3) respectively (keeping in mind the
identi�ability constraints in each of these models). This can be viewed as dimensionality
reduction before constructing nonparametric estimates of the functional parameters in the
models (1.1 ), (1.2) and (1.3). Under suitable regularity conditions, it is easy to construct
an estimate �̂�(z) of ��(z) that will converge at the rate Op(n�2=5), which is the usual rate
for nonparametric pointwise estimation of a function of a single real variable. Properties
of some nonparametric estimates of the conditional quantile function ��(z) constructed
following the above strategy will be investigated in detail in a separate paper. Note,
however, that such estimates of ��(z) are not necessarily monotonic and one needs to
establish asymptotic results for isotonic versions of the estimates. Nonparametric estimates
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of an unknown monotone transformation in regression models similar to (1.1) can be found
in Doksum (1987), Cuzick (1988), Horowitz (1993) and Ye and Duan (1994).

Model diagnostics. The nonparametric estimates of the average derivatives of condi-
tional quantiles (or quantile regression coe�cients) �� lead to some useful model diagnos-
tic techniques [cf. related works on heteroscedasticity by Hendricks and Koenker (1992)
and Koenker, et al. (1992)]. Note �rst that if conditions in Section 2 hold for several
conditional quantiles ��1(x); : : : ;��k(x), where 0 < �1 < �2 < : : : < �k < 1, Theorem
2.1 implies that our estimates of ��1

; : : : ;��k
are jointly asymptotically normal. Using the

asymptotic normal distribution of estimators of ��1
; : : : ;��k

, we can construct asymptotic
tests of their equality when d = dim(X) = 1, and thereby test homoscedasticity in such
situations as mentioned in example 2 in Section 1.

In the models (1.1)-(1.3) in the presence of strong homoscedasticity, i.e. when � and X
are independent,r��(x) will be proportional to the parameter vector 
 for all � and x, and
hence the estimated directions of r��(x)'s for di�erent values of � and x should be closely
aligned, and so should be the estimates of quantile regression coe�cients �� for di�erent
�'s. Using again the joint asymptotic normality of the estimates of ��j

for j = 1; : : : ; k,
we can construct asymptotic tests of homoscedasticity for the models (1.1)-(1.3) by testing
the hypothesis of identical directions of ��j 's.

Further diagnostic information can be obtained by using nonparametric estimates of
the d� d matrix functional

(3:2) �� = Ew(X)fr��(X)gfr��(X)gT ;

which can be estimated in a way essentially similar to �� (asymptotic properties of the
estimates of (3.2) will be considered in a separate paper). In particular, the validity of the
single index models (1.3) can be tested by testing that the rank of �� is one. More generally,
�� can be used to identify the linear subspace spanned by the vectors 
j, j = 1; : : : ; k in the
general dimensionality reduction (or multiple index) model Y = G(xT
1; : : : ;x

T
k; �) of Li
(1991). Just note that, provided the function G is monotonic in � and the �th conditional
quantile of � given X is free from X, this subspace coincides with the subspace of those
eigenvectors of �� which have nonzero eigenvalues [cf. Samarov (1993)].

Further work. A number of important issues remains to be addressed: (i) The �nite
sample size performance of the estimators has to be investigated using Monte Carlo meth-
ods. This would include an investigation of bandwidth selection rules for the smoothers
used in �̂1 and �̂2 as well as a comparison of the mean squared errors of �̂1 and �̂2. (ii)
Statistical properties of the estimates of the link function in models (1.1), (1.2), and (1.3)
remain to be more fully investigated. In particular, the estimates of ��(z) mentioned earlier
in this section which converge at the rate Op(n�2=5) are not necessarily monotone. We need
to establish asymptotic results for the isotonic versions of our estimators. (iii) While Ex-
ample 3.1 suggests that the loss in e�ciency of our nonparametric estimators, when applied
to some parametric models, may be not very large, it is of interest to �nd out how close
the asymptotic variance of �̂� is to the asymptotic e�ciency bounds in the semiparametric
models (1.1), (1.2), and (1.3). (iv) In our examples of transformation model, we included
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some important models used in survival analysis. We are currently working on extending
the results of this paper to censored data, see Dabrowska (1992).

4. Proofs. We will �rst prove three lemmas. The �rst lemma is an extension of the
Bahadur type representation for the local polynomial conditional quantile estimators and
their derivatives given in Theorem 3.3 in Chaudhuri (1991a), which is uniform in the
conditioning variables and does not assume the independence between X and the residual
� = Y � �(X).

Denote by cn(x) = (cn;u(x))u2A the s(A)- vector of Taylor coe�cients in (2.7) and let
I(w) = fi : Xi 2 supp(w), i = 1; 2; : : : ; ng.

LEMMA 4.1. Assume that the density of X is positive and continuous on V and the
weight function w has a compact support in V . Then, under the conditions 3 with p3 = 
,

 > 0, and condition 4 with p4 > 0 and k = [p4], we have

(4:1) ĉn(Xi)� cn(Xi) = fNn(Xi)Gn(Xi)g�1

nX
j=1;j 6=i

b(�n;Xj �Xi)(�� 1fYj � ��n(Xj ;Xi)g)1fjXj �Xij � �ng+Rn(Xi);

where the s(A)-vector

(4:2) b(�n;Xj �Xi) = f��[u]
n (Xj �Xi)

u; [u] � kg
has \naturally" ordered components, Gn is the s(A)� s(A) matrix

(4:3) Gn(Xi) = fqu;vn =

R
[�1;1]d t

utvf�jX(0jXi + �nt)f(Xi + �nt)dtR
[�1;1]d f(Xi + �nt)dt

; [u] � k; [v] � kg;

��n(x1;x2) is de�ned in (2.7), and the remainder term Rn(Xi) satis�es

max
i2I(w)

jRn(Xi)j = O
�
n�3(1��d)=4[log n]3=4

�
almost surely as n!1 ;

provided that �n � n�� with 1=(2p4 + d) < � < 1=d.

REMARK 4.1. Under the conditions of Lemma 4.1, we have

(i) max
i2I(w)

��1
n jRn(Xi)j = o(n�1=2) almost surely as n!1 ;

provided that �n � n�� with

(4:4) 1=(2p4 + d) < � < 1=(4 + 3d)

and
(ii) max

i2I(w)
jRn(Xi)j = o(n�1=2) almost surely as n!1 ;

provided that �n � n�� with

(4:5) 1=(2p4 + d) < � < 1=3d:
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The item (i) will be used for the \plug in" estimator �̂1 and (ii) for the \by parts" estimator
�̂2.

Proof of Lemma 4.1 : The proof, which is based on modi�cations and extensions of the
corresponding proofs in Chaudhuri (1991a, b), will be presented in steps. We will provide
only the main ideas and skip technical details, which are fairly routine in view of the proofs
already documented in Chaudhuri (1991a, b).

Step 1 : Let �n � n��, where 0 < � < (1=d), and for a pair of positive constants c1 < c2
de�ne the event En as

En =
n
c1n

1��d � Nn(Xi) � c2n
1��d for all Xi 2 supp(w)

o
Then in view of the conditions assumed on the marginal density of X and the weight
function w, it follows by a straight forward modi�cation of the arguments used in the
proofs of Theorem 3.1 in Chaudhuri (1991a) and Theorem 3.1 in Chaudhuri (1991b) that
it is possible to choose the constants c1 and c2 so that

Pr (liminf En) = 1:

In fact, Pr(limsupEc
n) converges to zero at an exponential rate.

Step 2 : For a constant K1 > 0, let Fn be the event de�ned as

Fn =
n
jĉn(Xi)� cn(Xi)j � K1n

�(1��d)=2(log n)1=2 for all Xi 2 supp(w)
o

and � > 1=(2p4 + d). Once again, in view of the conditions assumed on the conditional
density of the error � given X, simple modi�cations of the arguments used in the proofs of
Theorem 3.2 in Chaudhuri (1991a) and Theorems 3.2 and 3.3 in Chaudhuri (1991b) yield
the following. There exists a choice of K1 such that

Pr ( liminf Fn ) = 1 :

In fact, here also Pr( limsupF c
n ) converges to zero at an exponential rate. Observe that

Fact 6.5 in Chaudhuri (1991a) and Fact 5.2 in Chaudhuri (1991b), which play very crucial
role, were stated in a set up in which the error � and the regressor X are independent.
However, as long as the conditional distribution of � given X satis�es Condition 3 the main
implication of those facts remain unaltered and they can be restated to serve our purpose.

Step 3 : Finally, some routine modi�cations and extensions of the argument used in the
proof of Theorem 3.3 in Chaudhuri (1991a) exploiting Bernstein's inequality and Theorems
3.1 and 3.3 in Koenker and Bassett (1978) [see Facts 6.3 and 6.4 in Chaudhuri (1991a)]
yield the following

max
i2I(w)

jRn(Xi)j = O
�
n�3(1��d)=4[log n]3=4

�
almost surely as n �!1 ;

provided that � > 1=(2p4 + d). This completes the proof of Lemma 4.1.

Before stating Lemma 4.2 and its proof, we need to introduce some notations. Let Q
be the s(A) � s(A) matrix with a typical entry qu;v =

R
[�1;1]d t

utvdt , where u;v 2 A,
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cf. Chaudhuri (1991a,b). Denote by ei, 1 � i � d, the i-th column of the d � d identity
matrix. Denote by Q�

i the s(A)�s(A) matrix with a typical entry q�u;v;i =
R
[�1;1]d t

u+v+eidt,
u;v 2 A.

Note that matrices Q and Q�
i can be written as

(4:6) Q =
Z
[�1;1]d

b(1; t)b(1; t)Tdt:

and

(4:7) Q�
i =

Z
[�1;1]d

tib(1; t)b(1; t)
Tdt;

respectively.
Set pn(X) = �dn

R
[�1;1]d f(X + �nt)dt. Note that under condition 1 with p1 = 1 + 
,


 > 0, we have for X 2 V

(4:8)
pn(X)

(2�n)d
= f(X) +OL2(�

1+

n ):

We will denote by f
(i)
�;X(0;x) the �rst order partial derivative of f�;X(0;x) w.r.t. the ith

co-ordinate of x.

LEMMA 4.2.
a) max1�i�njNn(Xi)� npn(Xi)j = O((n log n)1=2) almost surely as n �!1.
b) If Conditions 1 and 3 hold with p1 = p3 = 1+
, 
 > 0, we have for X 2 V the following
expansion

�dnfpn(X)Gn(X)g�1 = ff�;X(0;X)g�1Q�1�

(4:9) �nff�;X(0;X)g�2
dX

i=1

Q�1Q�
iQ

�1f
(i)
�;X(0;X) + rn(X);

where rn(X) = OL2(�
1+

n ), with OL2(�) interpreted here componentwise.

Proof : Part a) follows immediately from Bernstein's inequality, since npn(Xi) =
E(Nn(Xi)jXi).

To prove part b), note that the numerator of a typical entry of Gn(X) (see (4.3)) has
an expansion of the form

Z
[�1;1]d

tutvf�;X(0;X+ �nt)dt = f�;X(0;X)qu;v + �n
dX

i=1

q�u;v;if
(i)
�;X(0;X) + OL2(�

1+

n );

and use von Neumann expansion for the inverse matrix, see, e.g., Stuart and Sun (1990).

The next lemma will be used only for the \by parts" estimator �̂2.
LEMMA 4.3. a) Assume that the density f(x) of X is positive and continuous on V

and the weight function w has a compact support in V . Then, under condition 3 with
p3 = 1 + 
, 
 > 0, condition 4 with p4 > d=2, and

(4:10) �n � n��; with 1=(2p4 + d) < � < 1=(2d);
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we have
maxi2I(w)j�̂n(Xi)� �(Xi)j = op(n

�1=4):

b) Under condition 1 with p1 > d and condition (5) with k = [p1], and

(4:11) hn � n�� ;
1

4p1
< � <

1

4d
;

we have for the density estimator (2.4)

maxi2I(w)jf̂(Xi)� f(Xi)j = op(n
�1=4):

c) Under condition 1 with p1 > d+ 2 and condition 5 with k = [p1], and

(4:12) hn � n�� ;
1

4(p1 � 1)
< � <

1

4(d+ 1)
;

we have for the estimator (2.5)

maxi2I(w)jrf̂(Xi)�rf(Xi)j = op(n
�1=4):

Proof : Claim a) follows from Step 2 in the proof of Lemma 4.1.
Next, it follows from theorem 3.1.12, claim (i), in Prakasa Rao (1983) that

sup
x2V

jf̂(x)� Ef̂(x)j = O(
(log log n)1=2

hdnn
1=2

); almost surely as n!1:

Combining this result with supx2V jEf̂(x) � f(x)j = O(hp1n ); which is obtained, under
conditions 1 and 5, by applying the standard Taylor expansion argument [see, e.g., Lemma
1 in Samarov (1993)], and choosing hn as in (4.11), we get the claim (b).

Applying the proof of claim (i) of theorem 3.1.12 from Prakasa Rao (1983) to the
components of the vector rf̂(x), we get

(4:13) sup
x2V

jrf̂(x)�Erf̂(x)j = O(
(log log n)1=2

h
(d+1)
n n1=2

); almost surely as n!1:

Applying the argument of claim (b) to the components of rf̂(x), we get supx2V jErf̂(x)�
rf(x)j = O(hp1�1

n ); which, together with (4.13) and (4.12), proves claim (c).

Proof of the Theorem for �̂1. Setting wi = w(Xi), we have

(4:14) �̂1 � � =
1

n

nX
i=1

wi(r�̂(Xi)�r�(Xi)) +
1

n

nX
i=1

wir�(Xi)� �;

and to prove the asymptotic expansion (2.12) it is su�cient to obtain the corresponding
scalar expansion for 1

n

Pn
i=1wia

T (r�̂(Xi)�r�(Xi)) with an arbitrary d-vector a. For two
positive constants c3 < c4 de�ne the eventDn(Xi) = fc3n�dn � Nn(Xi) � c4n�

d
ng. Note that
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there exist appropriate choices for c3 and c4 such that Prfmax1�i�n; Xi2supp(w) 1fDc
n(Xi)g >

0g converges to zero at an exponential rate in view of Bernstein's inequality, and we,
therefore, have

(4:15)
1

n

nX
i=1

wia
T (r�̂n(Xi)�r �(Xi))

=
1

n

nX
i=1

wia
T (r�̂n(Xi)�r �(Xi))1fDn(Xi)g+ op(n

�1=2):

Applying now Lemma 4.1 to the RHS of (4.15), we have

(4:16)
1

n

nX
i=1

wia
T (r�̂n(Xi)�r �(Xi))1fDn(Xi)g =

1

n�n

nX
i=1

wi

Nn(Xi)
ATG�1

n (Xi)
nX

j=1;j 6=i

b(�n;Xj �Xi)(� � 1fYj � ��n(Xj;Xi)g)�

1fjXj �Xij � �ng1fDn(Xi)g+ 1

n�n

nX
i=1

wiA
TRn(Xi)1fDn(Xi)g+ op(n

�1=2);

where the s(A) vector AT = (0;aT ; 0; : : : ; 0) selects in the expansion (4.1) the terms corre-
sponding to the �rst order partial derivatives of �.

It follows from Remark 4.1 that, when �n is chosen as in (4.4),

(4:17)
1

n�n

nX
i=1

wiA
TRn(Xi)1fDn(Xi)g = op(n

�1=2):

We will next replace ��n(Xj ;Xi) in the leading term in the RHS of (4.16) with �(Xj),
and will denote the resulting expression U�

n. The error which results from this replacement
is of the order op(n�1=2) in view of the fact that the smallest eigenvalue of Gn(x) is bounded
away from zero uniformly over x 2 supp(w) as n!1, (2.8), and of the left inequality in
(2.9).

Writing now U�
n as

U�
n = Un + Jn;

where Un is obtained from U�
n by replacing Nn(Xi) with its conditional expectation npn(Xi)

and then dropping 1fDn(Xi)g, we show that Jn = op(n�1=2). Note �rst that, using part a)
of Lemma 4.2 and (4.8), we have

max1�i�nwi

(
1

Nn(Xi)
� 1

npn(Xi)

)
1fDn(Xi)g = O(n�3=2��2d

n

q
log n);

almost surely as n �!1. Next, by Bernstein's inequality

max1�i�n
nX

j=1;j 6=i

b(�n;Xj �Xi)(�� 1fYj � �(Xj)g)1fjXj �Xij � �ng1fDn(Xi)g
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= O
�q

n�dn log n
�
;

almost surely as n �!1. Since jG�1
n (x)j remains uniformly bounded for x 2 supp(w) and

Prfmax1�i�n; Xi2supp(w) 1fDc
n(Xi)g > 0g goes to zero at an exponential rate, we obtain,

using also (2.9), Jn = op(n�1=2).
Observe now that Un is a U -statistic with the kernel dependent on n:

Un =
X

1�i<j�n

�n(Zi;Zj); with Zi = (Xi; Yi); �n(Zi;Zj) = �n(Zi;Zj) + �n(Zj;Zi);

�n(z1; z2) =
1

n�n
w(x1)A

Tfnpn(x1)Gn(x1)g�1�

b(�n;x2 � x1)(�� 1fy2 � �(x2)g)1fjx2 � x1j � �ng;
where zk = (xk; yk); k = 1; 2.

To analyze Un, we note �rst that the standard conditioning argument givesE�n(Zi;Zj) =
E�n(Zi;Zj) = 0. The usual Hoe�ding decomposition of Un, [see, e.g., Ser
ing (1980)], now
gives

(4:18) E(Un � Pn)
2 =

n(n � 1)

2

�
E�2n(Z1;Z2)� 2Eg2n(Z)

�
� n(n� 1)

2
E�2n(Z1;Z2);

where Pn is the projection of Un:

(4:19) Pn = (n � 1)
nX
i=1

gn(Zi);

and

(4:20) gn(z) = E�n(z;Z) = E�n(Z; z):

We evaluate �rst E�2n(Z1;Z2) in (4.18). Conditioning on (X1;X2), we have:

(4:21) E�2n(Z1;Z2) � 4E�2n(Z1;Z2) =
4

n2�2n
Ew2(X1)(� � 1fY2 � �(X2)g)2�

(ATfnpn(X1)Gn(X1)g�1b(�n;X2 �X1))
21fjX2 �X1j � �ng =

4�(1 � �)

n2�2n
Ew2(X1)(A

Tfnpn(X1)Gn(X1)g�1b(�n;X2 �X1))
21fjX2 �X1j � �ng:

Applying (4.8), the fact that the smallest eigenvalue Gn(x) is bounded away from zero, as
n!1, uniformly over x 2 supp(w), and that each component of b(�n;X2 �X1)1fjX2 �
X1j � �ng is bounded by 1, we get E�2n(Z1;Z2) = O( 1

n4�d+2n
); which together with (4.18)

implies

E(Un � Pn)
2 = O(

1

n2�d+2
n

);
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and, hence, under (2.9),

(4:22) Un = Pn + op(
1

n1=2
):

To complete the proof, we need to extract from the projection Pn in (4.19) the part
which is free from n, i.e. to show that

(4:23) Vn = V ar
�
(n� 1)

nX
i=1

gn(Zi)� (n� 1)

n2

nX
i=1

(�� 1fYi � �(Xi)g)aTM(Xi)
�
= o(n�1);

where

(4:24) M(x) = �r(w(x)f(x)
f�;X(0;x)

)�rf�;X(0;x)w(x)f(x)
f2�;X(0;x)

= �r(w(x)f(x))
f�;X(0;x)

:

We have

(4:25) Vn =
n(n� 1)2

n4
V ar

�
(� � 1f�1 � 0g)�

[
1

�n

Z
w(x)ATfpn(x)Gn(x)g�1b(�n;X1 � x)1fjX1 � xj � �ngf(x)dx� aTM(X1)]

�

=
(n� 1)2�(1� �)

n3
�

E(
1

�n

Z
w(x)ATfpn(x)Gn(x)g�1b(�n;X1 � x)1fjX1 � xj � �ngf(x)dx� aTM(X1))

2:

Using now Lemma 4.2 and making a change of variables x = X1 � t�n in the integral
in (4.25), we get

1

�n

Z
w(x)ATfpn(x)Gn(x)g�1b(�n;X1 � x)1fjX1 � xj � �ngf(x)dx

(4:26) =
1

�n

Z
[�1;1]d

w(X1 � t�n)K(t)
f(X1 � t�n)

f�;X(0;X1 � t�n)
dt

�
Z
[�1;1]d

f(x1 � t�n)w(X1 � t�n)

f2�;X(0;X1 � t�n)

dX
i=1

Li(t)f
(i)
�;X(0;X1 � t�n)dt+OL2(�



n);

where K(t) = ATQ�1b(1; t) and Li(t) = ATQ�1Q�
iQ

�1b(1; t). Note that (4.6) implies
that

(4:27)
Z
[�1;1]d

K(t)bT (1; t)dt = AT ;

i.e. K(t) is a multivariate kernel of the order k for the �rst derivative. Similarly, (4.6) and
(4.7) imply that

(4:28)
Z
[�1;1]d

Li(t)b
T (1; t)dt = ATQ�1Q�

i = (ai; 0; : : : ; 0; ck); i = 1; : : : ; d;
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where ai is the i-th component of the d-vector a and ck is a vector �lling in the components
corresponding to the components of bT (1; t) with the powers tu with [u] = k. (4.28) means
that the functions Li(t); i = 1; : : : ; d; are multivariate kernels of the order k � 1.

We next expand the multiplier ofK(t) in (4.26) into the �rst order Taylor expansion and
the multipliers of Li(t) into their zero order Taylor expansions, note that the remainders,
in both cases, are of the order OL2(�



n), and apply (4.27) and (4.28): (4.23) then follows

from (4.25) and (4.26).
Combining now all of the above results, we obtain the needed expansion for

1
n

Pn
i=1 wia

T (r�̂(Xi)�r�(Xi)) with an arbitrary d-vector a:

1

n

nX
i=1

wia
T (r�̂(Xi)�r�(Xi)) =

1

n

nX
i=1

(�� 1f�i � 0g)aTM(Xi)) + op(n
�1=2);

which completes the proof of the Theorem for �̂1.

Proof of the Theorem for �̂2 is similar to that for �̂1, and we will only indicate the
di�erences. We have

(4:29) �̂2�� = �1

n

nX
i=1

(�̂(Xi)� �(Xi))(rwi+wil(Xi))� 1

n

nX
i=1

�̂(Xi)wi(l̂(Xi)� l(Xi))�

1

n

nX
i=1

�(Xi)(rwi + wil(Xi)) + E�(X)
r(w(X)f(X))

f(X)
;

and we need to obtain expansions for the �rst two sums in (4.29), which we will denote by
I1 and I2, respectively. To obtain the expansion for I1 we repeat the arguments given in
the proof of Theorem 1 with the following modi�cations:

(i) wi is replaced with the vector rwi + wil(Xi),
(ii) In (4.16) the factor 1=�n is dropped and the vector AT is replaced with the s(A)-

vector AT = (1; 0; : : : ; 0) and the d-vector aT becomes (1; 0; : : : ; 0).
(iii) Lemma 4.1 is applied with k = [q] instead of k = [p4] and, accordingly, q replaces

p4 in (4.5).
(iv) The kernel K(t) becomes here a k-order kernel for the function itself and not for

its derivative, and only the �rst term of the expansion in part (b) of Lemma 4.2 is used in
(4.26), so that the kernels Li do not appear at all.

(v) The function M(x) in (4.24) here becomes M(x) = (rw(x) + w(x)l(x))=f�jX(0jx):
With these modi�cations, we obtain, using (2.10),

(4:30) I1 = �1

n

nX
i=1

(� � 1f�i � 0g)rw(Xi) + w(Xi)l(Xi)

f�jX(0jXi)
+ op(n

�1=2):

For I2 we have, using lemma 4.3 and the assumption (2.11),

I2 = �1

n

nX
i=1

�(Xi)wi(rf̂(Xi)�l(Xi)f̂(Xi))=f(Xi)�1

n

nX
i=1

(�̂n(Xi)��(Xi))wi(l̂(Xi)�l(Xi))�
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(4:31)
1

n

nX
i=1

�(Xi)wi(rf̂(Xi)� l(Xi)f̂(Xi))(f(Xi)� f̂(Xi))=(f̂(Xi)f(Xi)) =

�1

n

nX
i=1

�(Xi)wi(rf̂(Xi)� l(Xi)f̂(Xi))=f(Xi) + op(n
�1=2):

Plugging into (4.31) the expressions (2.4) and (2.5) for f̂(Xi) and rf̂(Xi), we see that
the leading term in the RHS of (4.31) is a U -statistic with the kernel ~Un dependent on n:

~Un =
X

1�i<j�n

~�n(Xi;Xj) + ~�n(Xj;Xi);

where

~�n(Xi;Xj) = � �(Xi)wi

n(n� 1)hdnf(Xi)
(
1

hn
W (1)(

Xj �Xi

hn
)� l(Xi)W (

Xj �Xi

hn
)):

The mean of the kernel �n = E~�n(X1;X2) = E~�n(X2;X1) is

(4:32) �n = EE(~�n(X1;X2)jX1) =

E
�(X1)w(X1)

n(n� 1)hdnf(X1)
E((

1

hn
W (1)(

X2 �X1

hn
)� l(X1)W (

X2 �X1

hn
))jX1) =

E
�(X1)w(X1)

n(n � 1)f(X1)

Z
[�1;1]d

(
1

hn
W (1)(t)� l(X1)W (t))f(X1 + thn)dt:

Using now the usual Taylor expansion argument [see, e.g., Lemma 1 in Samarov (1993)]
and conditions (1) and (5), we obtain

(4:33) �n = O(
hp�1
n

n(n � 1)
):

The projection of ~Un is

(4:34) ~Pn = (n� 1)
nX
i=1

(~gn(Xi)� 2�n);

with ~gn(x) = E~�n(x;X) + E~�n(X;x). Repeating the argument given in (4.32), (4.33), we
get for the �rst term E~�n(x;X) = O(hp�1

n =(n(n � 1))) uniformly over x 2 supp(w), while
its second term is

E~�n(X;x) = � 1

n(n� 1)hdn
E
��(X)w(X)

f(X)
(
1

hn
W (1)(

x�X

hn
)� l(X)W (

x�X

hn
))
�
:

Relying here again on the same Taylor expansion and higher order kernel argument as in
(4.32), (4.33), and using conditions (1), (2), (4), and (5), we obtain from (4.34), using again
(4.33),
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(4:35) ~Pn =
1

n

nX
i=1

�
r(w(Xi)�(Xi)) + w(Xi)�(Xi)l(Xi)

�
+Op(h

p�1
n ):

As in case of (4.18)-(4.21), we have

E( ~Un � ~Pn)
2 � 2n(n � 1)E~�2n(X1;X2) + (

 
n

2

!
�n)

2 =

E(
�(X1)w(X1)

f(X1)
)2

1

n(n � 1)h2dn

Z
(
1

hn
W (1)(

x�X1

hn
)�l(X1)W (

x�X1

hn
))2f(x)dx+O(h2(p�1)

n ) �

1

n(n � 1)hdn
E(

�(X1)w(X1)

f(X1)
)2
Z
[�1;1]d

(
1

hn
W (1)(t)� l(X1)W (t))2f(X1 + thn)dt+O(h2(p�1)

n )

(4:36) = O(
1

n2hd+2
n

) +O(h2(p�1)
n ):

Choosing now hn as in (2.11), we obtain, combining (4.31) through (4.36),

I2 =
1

n

nX
i=1

r(w(Xi)�(Xi)) + w(Xi)�(Xi)l(Xi) + op(n
�1=2);

which together with (4.29) and (4.30) completes the proof of Theorem for �̂2.
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