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Abstract

Results are obtained regarding the distribution of the ranked lengths

of component intervals in the complement of the random set of times

when a recurrent Markov process returns to its starting point. Various

martingales are described in terms of the L�evy measure of the Poisson

point process of interval lengths on the local time scale. The mar-

tingales derived from the zero set of a one-dimensional di�usion are

related to martingales studied by Az�ema and Rainer. Formulae are

obtained which show how the distribution of interval lengths is a�ected

when the underlying process is subjected to a Girsanov transforma-

tion. In particular, results for the zero set of an Ornstein-Uhlenbeck

process or a Cox-Ingersoll-Ross process are derived from results for a

Brownian motion or recurrent Bessel process, when the zero set is the

range of a stable subordinator.

1 Introduction

Let Z be the random set of times that a recurrent di�usion process X re-
turns to its starting state 0. For a �xed or random time T , let V(T ) =
(V1(T ); V2(T ); � � �) where

V1(T ) � V2(T ) � � � � (1)

are the ranked lengths of component intervals of the random open set (0; T )nZ.
Features of the distribution of the random sequence V(T ) have been studied
by a number of authors [17, 33, 11, 15, 18, 19, 24, 26, 27]. It is well known
that Z is the closure of the range of the subordinator (�s; s � 0) which is the
inverse of the local time process of X at zero. If (�s) is a stable(�) subordina-
tor for some 0 < � < 1, as is the case ifX is a Brownian motion without drift
(� = 1=2) or a Bessel process of dimension 2� 2�, it is obvious that the law
of V(t)=t is the same for all t, and that the law of V(�s)=�s is the same for all
s. It is less obvious, but nonetheless true [24], that the common law of V(t)=t
for t > 0 is identical to the common law of V(�s)=�s for all s > 0. See [26] for
a detailed study of this probability law on decreasing sequences of positive
reals with sum 1, and relations between this distribution and Kingman's [11]
Poisson-Dirichlet distribution on the same set of sequences.

If Z is the zero set of a real valued di�usion, the law of which is lo-
cally equivalent either to Wiener measure, or to the distribution of a Bessel
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process of dimension 2 � 2� started at 0, it follows from the identities in
distribution mentioned above that for each t > 0 and s > 0 the laws of
V(t)=t and V(�s)=�s are equivalent, that is to say mutually absolutely con-
tinuous. Our interest here is in describing explicitly the Radon-Nikodym
densities relating these various laws, and thereby extending various aspects
of our previous studies of zero sets derived from a stable(�) subordinator
to this more general case. We start in Section 2 by treating the example
of Ornstein-Uhlenbeck processes. In particular, we obtain various gener-
alizations of results of Truman-Williams [31, 32] and Hawkes-Truman [5]
regarding the zero set of the simplest Gaussian-Ornstein-Uhlenbeck process
derived from Brownian motion. The results of Section 2 lead to the study in
Section 3 of various martingales associated with the range of a subordinator
which arise from a change in the L�evy measure of the subordinator. Finally,
in Section 4 we compare the results of Sections 2 and 3 to some relations
between the stationary distribution of a recurrent Markov process and the
L�evy measure of the inverse local time process at a point in the state space.
While the basic relations are known to hold in great generality [20], the ap-
plication of these relations to the zero sets of di�usion processes has been
rather neglected in the literature.

2 Lengths of excursions of Ornstein-Uhlenbeck

processes

The Ornstein-Uhlenbeck process (Ut; t � 0) with parameter � > 0 is the
solution of Langevin's equation

dUt = dBt � �Ut dt (2)

where B is a Brownian motion. So far as the zero set of U is concerned, we
may as well consider the process X := U2. More generally, we consider for
0 < � < 1 and � > 0 the squared OU process with dimension � = 2� 2� and
drift parameter �, that is the non-negative solution X of

dXt = 2
q
XtdBt + (� � 2�Xt) dt (3)

where we assume X0 = 0. Denote by Q�;� the law of this process X on
the usual path space C[0;1). See [22, 23, 6] for further background and
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motivation for the study of these processes, known in mathematical �nance
as Cox-Ingersoll-Ross processes. Note that for a positive integer �, if U solves
(2), where we now suppose that the equation concerns R�-valued processes,
then X = jU j2 solves (3). Let Z denote the zero set of X, now taken to
be the coordinate process on C[0;1), and de�ne Vn(T ) in terms of Z as in
(1). Let Q� = Q�;0, so Q� is the law of the square of a �-dimensional Bessel
process [30, 22]. Let (St; t � 0) denote a local time process for X at zero,
and let (�s) be the right continuous inverse of this local time process. Then
(�s) is a stable (�) subordinator, and Q�;0 almost surely the zero set Z of X
is the closure of the range of (�s). Note that while the de�nition of both (St)
and (�s) depends on the value of �, this dependence is hidden in the notation.

We recall the Cameron-Martin-Girsanov relationship between Q�;� and
Q�: for every t > 0

dQ�;�

dQ�

�����Ft

= exp

 
��

2
(Xt � �t)� �2

2

Z t

0
duXu

!
(4)

As a consequence of (4) and the recurrence of X under Q�;� for every � > 0,
we have also for every s > 0 that

dQ�;�

dQ�

�����F�s

= exp

 
���s
2

� �2

2

Z �s

0
duXu

!
(5)

From this absolute continuity relation, it is immediate the zero set Z of X is
represented Q�;� almost surely for all � � 0 as the closed range of the process
(�s), which is a subordinator under Q�;� for each � � 0, a subordinator that
is stable for � = 0 but not for � > 0. The L�evy measure of (�s) under Q�;�

can be computed from (5) as indicated below.

Theorem 1 For a random time T let VT = �(Vn(T ); n = 1; 2; � � �). Then
for each t > 0

dQ�;�

dQ�

�����Vt = exp

 
��t

2

!P
(�; t)

Q
(�; t)2�

�

2 (6)

and for each s > 0

dQ�;�

dQ�

�����V�s
= exp

 
���s
2

!Q
(�; �s)

2� �

2 (7)
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where

P
(�; t) =

X
n

1 � e�2�Vn(t)

2�t
and

Q
(�; t) =

Y
n

�Vn(t)

sinh(�Vn(t))

Proof. Let Gt = sup(Z \ [0; t)). Note �rst that for �xed t,

Vt � Ht � FGt

where Ht = �(Gs; 0 � s � t) and FGt
= �(Xs1(s�Gt); 0 � s � t). Moreover,

for each s > 0, the random time �s is an (Ht) stopping time with �s = G�s

a.s., and
V�s � H�s � F�s

modulo Q� null sets. Consequently, we will be able to prove the formulae
of the theorem by projecting the Q� martingale which appears in (4), �rst
on (FGt

), then on (Ht), and �nally on the ���eld Vt. (Note that Vs is not
contained in Vt for s < t. So unlike the other families considered above, the
family (Vt; t > 0) does not constitute a �ltration.)
Projection on (FGt

). Here we will use the fact that under Q� the squared
meander �

m2
u :=

1

t�Gt
XGt+u(t�Gt); 0 � u � 1

�

is independent of FGt
, and satis�es

(m2
u; 0 � u � 1)

d
= (�2u +R2

u; 0 � u � 1)

where (�u; 0 � u � 1) is a standard Bessel bridge of dimension 2 � �, and
R is an independent 2-dimensional Bessel process. See [34, Corollary 3.9.1,
page 44]. From the above description of (m2

u; 0 � u � 1), as a special case
of the extended L�evy area formulae given in [34, (2.1) and (2.5)], and in [22,
(2.k)], we easily deduce the following formula: for all ; � � 0

Q�

"
exp

 
� m2

1 �
�2

2

Z 1

0
dsm2

s

!#
=
�

�

sinh �

�1� �

2

�
cosh � +

2

�
sinh �

��1
(8)

In particular, for  = �=2,

Q�

"
exp

 
��

2
m2

1 �
�2

2

Z 1

0
dsm2

s

!#
= ��(�) :=

�
�

sinh �

�1� �

2

e�� (9)
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We deduce from (4) and (9) that

dQ�;�

dQ�

�����FGt

= exp

 
��t

2

!
��(�(t�Gt)) exp

 
��2

2

Z Gt

0
duXu

!
(10)

Projection on (Ht). From the previous formula we obtain

dQ�;�

dQ�

�����Ht

= exp

 
��t

2

!
��(�(t�Gt))

Q
(�;Gt)

2� �

2 (11)

We derive (11) from (10) using the excursion theory under Q�, in particular,
the fact that under n�, the corresponding Itô law of excursions, given that
the lifetime equals v, the excursion process (�u; u � v) is a Bessel bridge of
dimension 4� �, and we have used the L�evy-type formula [22, 34]

Q4��

 
exp��2

2

Z v

0
dsXs

����� Xv = 0

!
=

 
�v

sinh(�v)

!2� �

2

Since Q
(�;Gt) =

Q
(�; t)

 
sinh(�(t�Gt))

�(t�Gt)

!

and

��(x)

 
sinhx

x

!2� �

2

=

 
1 � e�2x

2x

!

we can write (11) as

dQ�;�

dQ�

�����Ht

= exp

 
��t

2

! 
1� e�2�(t�Gt)

2�(t�Gt)

!Q
(�; t)2�

�

2 (12)

Projection on (Vt). Formula (6) follows from the previous formula (12) and
the result of [24] that

Q�(t�Gt = Vn(t) j Vt) = Vn(t)

t
(13)

2

Let ��;� denote the L�evy measure of (�s) under Q�;�. So by de�nition

Q�;� (exp(���s)) = exp
�
�s

Z 1

0
(1 � e��x)��;�(dx)

�
(14)
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Write simply �� for ��;0. From Theorem 1 and the basic formula

��(dy) = Cdy=y2�
�

2 = Cdy=y1+� (15)

where C is a constant depending on the choice of normalization of local time,
we obtain for � > 0 the formula

��;�(dy) = C

 
�

sinh(�y)

!2  
e2�y � 1

2�

!�=2
dy (16)

To check, we recover (15) from (16) in the limit as � # 0. And for � = 1
we recover the result of Hawkes-Truman [5] for the zero set of the Gaussian-
Ornstein-Uhlenbeck process. See also Section 4 for another con�rmation of
the formula (16) which involves almost no calculation. By combination of
(14) and (12) we obtain for � > 0 the formula

Q�;�(t�Gt = Vn(t) j Vt) = 1� e�2�Vn(t)P
m(1 � e�2�Vm(t))

(17)

which is a particular case of formula (7.d) of [24]. From the proof of Theorem
1, we extract also the following corollary, which is a particular case of more
general results presented in the next section.

Corollary 2 Let Gt = sup(Z \ [0; t)) where Z is the range of a stable (�)
subordinator and let Ht = �(Gs; 0 � s � t). Then for every � > 0

	�(t�Gt) exp(�(1 � �)t)
1Y
n=1

 
�Vn(t)

sinh(�Vn(t))

!1+�
(18)

is an (Ht)-martingale, where 	�(x) := (1 � e�2�x)=(2�x), and

exp(�(1 � �)�s)
1Y
n=1

 
�Vn(�s)

sinh(�Vn(�s))

!1+�
(19)

is an (H�s)-martingale.

Remark 3 The formula (12) and the more general formula (30) presented
in the next section are closely related to the studies by Az�ema [1] and Rainer
[28] of martingales relative to the �ltration (Ht) generated by the zero set of
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a real valued di�usion. In particular, if (Xt; t � 0) is a recurrent di�usion on
natural scale on a subinterval of the line containing 0, and � = �+ + �� is
the decomposition of the L�evy measure � induced by positive and negative
excursions, as discussed further in Section 4, then the process

�t :=
1(Xt > 0)

�+(t�Gt;1)
� 1(Xt < 0)

��(t�Gt;1)
(20)

is an (Ht) local martingale, and our martingales (18) and (30) can be recov-
ered by application of Itô's formula. If (Xt) is Brownian motion, then �t is
a constant multiple of Az�ema's martingale sgn(Xt)

p
t�Gt.

3 Change of measure formulae for subordi-

nators

Let probability distributions P and Q on the same basic measurable space
(
;F) govern a process (�s; s � 0) as a subordinator, with L�evy measures
�P and �Q respectively. We assume that

�Q(dy) = �(y)�P (dy) for a � such that (21)

Z 1

0
j1� �(y)j�P (dy) <1 (22)

and use the notation

��P (x) = �P (x;1); ��Q(x) = �Q(x;1) =
Z
(x;1)

�(y)�P (dy) (23)

Let Z be the range of (�s), Vn(T ) as in (1). Let (St; t � 0) be the
continuous local time inverse of (�s; s � 0).

Theorem 4 Under the hypothesis (22) on the function � = d�Q=d�P ,
de�ne a function 	 and a real number  by

	(0) = 1; 	(x) =
��Q(x)
��P (x)

(x > 0 : ��P (x) > 0); (24)

 =
Z 1

0
(�(x)� 1)�P (dx) =

Z 1

0
(�Q � �P )(dx) (25)
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and de�ne processes (
Q
�(t); t � 0) and (M�(t); t � 0) by

Q
�(0) = 1;

Q
�(t) =

Y
n

�(Vn(t)) (t > 0) (26)

M�(t) = 	(t�Gt)
Q
�(Gt) exp(�St) (27)

Then for each (Ht)-stopping time T such that P (T <1) = Q(T <1) = 1,
the law Q is absolutely continuous with respect to P on HT , with density

dQ

dP

�����HT

= M�(T ) (28)

In particular this formula holds for every �xed time T , and for T = �s for
every s > 0, in which case the right side of (28) is

M�(�s) =
Q
�(�s) exp(�s) (s � 0) (29)

Consequently,

(M�(t); t � 0) is an ((Ht); P )-martingale (30)

and
(M�(�s); s � 0) is an ((H�s); P )-martingale (31)

By combination of Theorem 4 with Theorem 7.1 of [24] we obtain the fol-
lowing:

Corollary 5 Suppose further that �P (dy) = �P (y)dy and �Q(dy) = �Q(y)dy
for some densities �P and �Q which are strictly positive on (0;1). For y > 0
and t > 0 let

hP (y) =
��P (y)

�P (y)
; HP (t) =

X
n

hP (Vn(t)); (32)

and de�ne hQ(y) and HQ(t) similarly with Q instead of P . Then

�(x) =
�Q(x)

�P (x)
(x > 0);  =

Z 1

0
(�Q(y)� �P (y)) dy (33)

For �xed t > 0, let Vt = �(Vn(t); n = 1; 2; � � �). Then
dQ

dP

�����Vt =
HQ(t)

HP (t)

Q
�(t) exp(�St) (34)
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Proof of Corollary 5. The formulae (33) are immediate. To deduce (34)
from (28), it su�ces to take T = t and project the density in (28) onto the
�-�eld Vt, using the fact that Q�(t) and St are Vt-measurable, the fact thatQ
�(Gt) =

Q
�(t)=�(t�Gt) and the formula

EP

" 
hQ
hP

!
(t�Gt)

����� Vt
#
=

HQ(t)

HP (t)
(35)

which is obtained by evaluation of the left side of (35) using the sampling
formula

P (t�Gt = Vn(t) j Vt) = hP (Vn(t))

HP (t)
(36)

established in Theorem 7.1 of [24]. This shows that the right side of (35)
equals X

n

hQ(Vn(t))

hP (Vn(t))

hP (Vn(t))

HP (t)
=

HQ(t)

HP (t)
(37)

Proof of Theorem 4.

Step 1. Proof for T = �s for �xed s > 0. In this case we have �s � G�s = 0
a.s. so 	(�s �G�s) = 1, and the task is to show that for every non-negative
H�s-measurable random variable X,

EQ(X) = EP [XM�(�s)] where M�(�s) =
Q
�(�s) exp(�s) (38)

This is a consequence of the following variation of Campbell's formula [12,
(3.35)]: for � satisfying (22),

EP

"Y
n

�(Vn(�s))

#
= exp

�
s
Z 1

0
(�(x)� 1)�P (dx)

�
= exp(s) (39)

Apply (39) with Q instead of P and g instead of �, for non-negative g withR jg�1jd�Q <1. Then write (g�1)� = (g��1)�(��1) and use (39) again
twice under P to see that (38) holds forX =

Q
n g(Vn(�s)). Varying g provides

enoughX's to deduce that (38) holds for all non-negative V�s-measurableX's.
But the �-�eld V�s is contained in H�s = �(�u; 0 � u � s), and the identity
(38) extends to all non-negative H�s-measurable X because P and Q share
a common conditional distribution for (�u; 0 � u � s) given V�s, that is the
unique law of an increasing process parameterized by [0; s] with exchangeable
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increments and jumps of the prescribed sizes Vn(�s), n = 1; 2; � � �. (Assuming
for simplicity that �P is continuous, to avoid ties among the Vn(�s), we can
write

�u =
X
n

Vn(�s)1(�n � u) (0 � u � s) (40)

where �n is the a.s. unique local time u such that �u � �u� = Vn(�s). The
common conditional law of (�u; 0 � u � s) given V�s is then speci�ed by the
fact that under both P and Q the �n are i.i.d random variables with uniform
[0; s] distribution, independent of V�s. See [10] regarding this decomposition
of �u and the corresponding result allowing �P to have a discrete component).

Step 2. Proof for T = t for a �xed t > 0. From the previous result for
T = �s, for all s; t > 0 we can compute

dQ

dP

�����Ht

= EP (M�(�s) jHt^�s ) on (t < �s) (41)

But on (t < �s) we �nd that

M�(�s) = exp(�s)Q�(Gt)�(Dt �Gt)�
� (42)

where �� is the product of �(Vn(�s)) over n corresponding to those com-
ponent intervals of [0; �s]nZ that are contained in [Dt; �s]. Let (St) denote
the continuous local time inverse of (�s). By the strong Markov property of
(�u; u � 0) at the stopping time St, when �St = Dt, and (39),

EP

 
��

����� Ht^�s

!
= exp((s� St)) (43)

Also, by the last exit decomposition at Gt,on the event (�s > t), which is
identical to (St < s),

P (Dt �Gt 2 dy jHt^�s; �s > t; t�Gt = x) = �P (dy)=��P (x) (y > x) (44)

Combining these observations shows that

EP

 
M�(�s)

����� Ht^�s

!
= M�(t) on (t < �s) (45)

That is to say, for every non-negative Ht-measurable random variable Ht

EQ[Ht1(�s>t)] = EP [HtM�(t)1(�s>t)] (46)
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Now for each t > 0 we can let s!1, and use the fact that 1(�s>t)) " 1 both
P and Q a.s. to deduce EQ(Ht) = EP (HtZt), which is the desired result.
Step 3. Proof for a general (Ht)-stopping time T with P (T <1) = Q(T <
1) = 1 This is a reprise of the previous argument, �rst using the optional
sampling theorem for T ^ t, then letting t!1.

Example 6 As an example of the situation described in Theorem 4 where
 6= 0, following Kinkladze [13] we now consider the pair of di�usions B and
X(�), where B is a Brownian motion, and X(�) with law P (�) is the solution
of

dXt = dBt � � sgn(Xt) dt

We have
P (�)

���Ft
= exp

�
��fjXtj � Stg � 1

2�
2t
�
� P
���Ft

(47)

where (St; t � 0) denotes the local time of X at 0. From (47) we deduce

P (�)
���Ht

= f(��
q
t�Gt) exp

�
�St � 1

2
�2t

�
� P
����Ht

(48)

where f(�) := E[exp(�m1)] for m1 the value at time 1 of a Brownian mean-
der, that is

f(�) =
Z 1

0
r exp(�r2=2) exp(�r) dr

It follows that

dP (�)

dP

�����Ht

= 	(t�Gt)
Q
�(Gt) exp(�St)

where

	(x) = f(��px) exp(�1
2�

2x); �(x) = exp(�1
2�

2x);  = ��

4 The L�evy measure of the inverse local time

process

Let 0 be a recurrent point in the state-space E of a nice recurrent strong
Markov process X. Let T0 = infft : t > 0;Xt = 0g. Assuming that 0 is
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regular for itself, that is P0(T0 = 0) = 1, it is well known that there exists
a continuous increasing local time process for X at 0, say (Lt; t � 0), whose
right-continuous inverse, say (�`; ` � 0) is a subordinator under P0. Let �
denote the L�evy measure of this subordinator. Due to di�erent conventions
about the normalization of local time processes in di�erent settings, let us
allow an arbitrary normalization of (Lt) in this generality. So � is unique up
to constant factors: multiplying L by c divides � by c. It is known [4] that
such a Markov process X admits a �-�nite invariant measure m such that
Pm(T0 =1) = 0. As a consequence of a general Palm formula for excursions
of stationary (not necessarily Markovian) processes established in [20], this
m is unique up to constant multiples and there is the identity

Pm(T0 2 da) = mf0g�0(da) + c�(a;1)da (a � 0) (49)

for some c > 0 depending on the choice of m and the choice of normalization
of local time. That is to say, the Pm distribution of T0 has an atom at
0 of magnitude mf0g, and has a density on (0;1) given by c�(a;1) for
0 < a <1.

The connection between the invariant measurem on the state-space of X
and the L�evy measure � on (0;1) is made via Itô's law n for excursions "
of X away from 0. Assume that an excursion " = ("t; t � 0) is absorbed at
0 at time T0 = T0(") = infft : t > 0; "t = 0g. And assume for simplicity that
mf0g = 0, which is to say that the Lebesgue measure of the zero set of X is
0 a.s. P x for all x 2 E. By de�nition of n [7, 29]), the L�evy measure � of
the inverse local time process at 0 is the n distribution of T0:

�(a;1) = n(T0 > a) (a > 0) (50)

Also, the formula

mf =
Z
n(d")

Z T0

0
f("t)dt (f � 0) (51)

for non-negative measurable functions f on E de�nes an invariant measure
m for X [4, 20], and if we take this m in (49) the constant c is forced equal
to 1. That is to say, for m de�ned by (51)

Pm(T0 2 da) = �(a;1)da (a � 0) (52)
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As shown in [20], this identity is a consequence of the following more general
identity. Let n� denote Maisonneuve's exit law for state 0, that is the distri-
bution on path-space under which (Xt; 0 � t � T0) and (XT0+u; 0 � u � 1)
are independent with laws n and P0 respectively. Then for an arbitrary
non-negative measurable Y de�ned on path-space

Pm(Y ) = n�
 Z T0

0
Y (�t)dt

!
(53)

where �t is the usual shift operator on path space, so

Y (�t) = Y (Xt+u; 0 � u <1)

Taking Y = f(X0) yields (51), while taking Y = h(T0) for a non-negative
measurable h on (0;1) and using (50) yields (49).

Suppose now that X is a recurrent di�usion process on a subinterval
of the line containing 0. Let m+ and m� denote the restrictions of m to
(0;1) and (�1; 0) respectively, so m = m+ + m�. By path continuity of
X, each excursion is either positive or negative, and there are corresponding
decompositions n = n+ + n� and � = �+ + �� which imply via (53) that
(49) holds just as well with m replaced by m� and � replaced by ��, where
� is either + or �.

The decomposition � = �+ + �� and reection through 0 reduces com-
putation of � to computation of �+.

Put another way, there no loss of generality in assuming, as we shall from
now on, that the statespace E of the di�usion is either [0;1) or [0; b] for
some b > 0. To be de�nite, assume E = [0;1).

Example 7 It is known [22] and easily checked that if X has distribution
Q�;0, then the process X�;� de�ned by

X�;�(t) = e�2�tX(e2�t=2�) (�1 < t <1) (54)

is a two sided stationary process governed by the stochastic di�erential equa-
tion (3) for t > 0. Let � = ��;� denote the Q�;0 distribution of

X�;�(0) = X(1=2�)
d
= (2�)�1X(1)

d
= ��1Z�=2 (55)
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where Za denotes a gamma(a) variable. Then the P � distribution of T0
considered in (49) is immediately identi�ed in this example with the Q�;0

distribution of

infft > 0 : X�;�(t) = 0g = infft > 0 : X(e2�t=2�) = 0g (56)

=
1

2�
log(2�D1=2�)

d
=

1

2�
log(D1) (57)

where Dt = inffu > t : X(u) = 0g. Since the distribution of Dt for a
stable(�) zero set is given by

Dt
d
= tD1

d
=

t

G1

d
=

t

Z�;1��
(58)

where Za;b denotes a beta(a; b) variable [3, 17], a simple change of variables
yields the following formula for the density of (2�)�1 log(D1) in (57), hence
for �(a;1) in (52):

��;�(a;1) =
P [(2�)�1(logD1) 2 da]

da
=

2�

�(�)�(1 � �)

e�2��a

(1� e�2�a)�
(59)

where � = 1 � �=2. It is easily veri�ed that this formula is consistent with
the previous formula (16).

Some general formulae for di�usions. In the case of one-dimensional
di�usion processes, there is an alternative local formula for � which has been
known for much longer than the global formula (52). Assuming for simplicity
that the statespace is [0;1), the local formula for � is

�(a;1) = c lim
x#0

P x(T0 > a)

s(x)� s(0)
(60)

where s is the scale function of the di�usion and c is a constant depending on
normalization conventions for the scale function and the local time process.
This formula appears in Section 6.2 of Itô-McKean[8], along with various
Laplace transformed expressions of this formula now discussed. There are
also corresponding local formulae for Itô's excursion law n and for Maison-
neuve's exit law n� in this setting, for instance n�(Y ) = c limx#0

Px(Y )
s(x)�s(0) for
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appropriately regular Y . See e.g. Section 3 of [22] for further discussion and
other descriptions of n.

So far as the zero set of X is concerned, there is no loss of generality
in replacing X by s(X) where s is a scale function for X chosen so that
s(0) = 0, such a choice being possible due to the assumed recurrence of the
boundary state 0. So let us assume that X is already on natural scale, i.e.
that s(x) = x, so the generator G of X, acting on smooth functions vanishing
in a neighbourhood of 0 is

G =
1

2

d

dm

d

dx
(61)

where m is the speed measure of X on [0;1) and we assume for simplicity
that mf0g = 0. Now in (60) we obtain

�(a;1) =
1

2

d

dx
P x(T0 > a)

�����
x=0+

(62)

provided the local time process (Lt) at 0 is de�ned as Lt = L0
t where

(Lx
t ; t � 0; x � 0)

is a jointly continuous version of the local times normalized as occupation
densities relative to the speed measure m of X. See e.g. [8].

In terms of the Laplace exponent

�(�) :=
Z 1

0
(1� e��x)�(dx) = �

Z 1

0
e��a�(a;1) da (63)

taking a Laplace transform converts (62) into

�(�) = �1

2

d

dx
��(x)

�����
x=0+

(64)

where
��(x) = P x(e��T0) (65)

is well known to be the unique solution � of the Sturm-Liouville equation

G� = �� on (0;1) with �(0) = 1; 0 � � � 1; (66)

which can be written alternatively as

1
2�

00 = �m � � on (0;1) with �(0) = 1; 0 � � � 1: (67)
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Another well known formula in this setting is

�(�)�1 =
Z 1

0
e��tp(t; 0; 0)dt (68)

where p(t; x; y) is a smooth transition density for X relative to m, that is
P x(Xt 2 dy) = p(t; x; y)m(dy). See our papers [22, 23, 25, 21] regarding the
relation between the above formulae, the Ray-Knight theorems for Brownian
local times, and the distribution of quadratic functionals of Bessel processes,
and see the work of Knight [14] and Kotani-Watanabe [16] regarding the
relation of these formulae to Krein's spectral theory for vibrating strings
[9, 2]. Since the speed measure m is an invariant measure for X, in this
setting the global formula (52) gives

�(a;1) = Pm(T0 2 da)=da (69)

which when Laplace transformed amounts via (63) to

�(�) = �Pm(e��T0) = �
Z 1

0
��(x)m(dx) (70)

Note that this formula holds just as well in the general Markov setting dis-
cussed earlier. Comparison of (64) and (70) shows that the agreement of the
local and global formulae for � amounts to the following about the unique
solution �� of the Sturm-Liouville equation (67):

� 1

2

d

dx
��(x)

�����
x=0+

= �
Z 1

0
��(x)m(dx) (71)

This is easily checked from (67), since from that equation the right side of
(71) is

1

2

Z 1

0
dx�00�(x) =

1

2
(�0�(1)� �0�(0+)) (72)

and since �0� is an increasing function of x the constraint that �� is bounded
forces �0�(1) = 0. The formula (71) is a generalization of an identity of
Truman-Williams [31, (77) and (92)].

Example 8 Reecting BM. Let X be RBM on [0;1). We takem(dx) = dx,
local time at zero is occupation density at 0+ relative to dx. The Laplace
exponent is �(�) =

p
2�=2, and we �nd ��(x) =

p
2�x, �0�(0+) =

p
2� and

�
R1
0 ��(x)dx = �=

p
2�.
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