
The Feynman-Kac formula and

decomposition of Brownian paths �

M. Jeanblancy and J. Pitmanz and M. Yorx

Technical Report No. 471

Department of Statistics
University of California
367 Evans Hall # 3860
Berkeley, CA 94720-3860

September 10, 1996

1 Introduction

The formula of Feynman-Kac [12, 20, 21] is a central result in the modern theory
of Brownian motion and di�usion processes. To state the basic Feynman-Kac
formula for one-dimensional Brownian motion in the form presented in M. Kac
[20] let q : IR ! IR+ be a Borel function, and let f : IR ! IR+ be a locally
bounded Borel function. Then for k > 0 and � > 0

Z 1

0
dt e�

k
2

2
tE
�
q(Bt) exp

�
��

Z t

0
f(Bs)ds

��
=
Z 1

�1
dx q(x)U�f(k; x) (1.1)

where E is the expectation operator with respect to a probability distribution P
governing (Bt; t � 0) as a standard one-dimensional Brownian motion started at
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0, and U(x) = U�f(k; x) is the unique solution of the di�erential equation

1

2
U 00(x) =

 
k2

2
+ �f(x)

!
U(x) (x 6= 0) (1.2)

subject to the requirements that U 0(x) exists for x 6= 0 and is uniformly bounded,
that U vanishes at �1, and that

U 0(0+)� U 0(0�) = �2 (1.3)

In his 1949 article, M. Kac proved the Feynman-Kac formula by approximating
Brownian motion with simple random walks. The exposition of the present paper
is intended for a reader acquainted with the modern theory of Brownian motion
based on martingale calculus and excursion theory, as presented for example in
Revuz-Yor [33] or Rogers-Williams [34, 35]. For a lighter treatment of some of this
background material, see the Caracas lecture notes [48].

Our main purpose here is to present connections between the Feynman-Kac for-
mula, related Sturm-Liouville equations, and various decompositions of Brownian
paths into independent components. Path decompositions are discussed in Section
2 of this paper. In Section 3 we show how some re�nements of the Feynman-Kac
formula may be understood in terms of a decomposition of the Brownian path at
the time of the last visit to zero before time � where � is an exponentially dis-
tributed random time independent of the Brownian motion. We also show how
D.Williams' decomposition at the maximum of the generic excursion under Itô's
measure translates in terms of solutions of a Sturm-Liouville equation. Finally,
Section 4 is devoted to explicit computations of the laws of

Af
t :=

Z t

0
ds f(Bs)

for speci�c functions f , among which f(x) = �jxj�, for some special values of �,
and f(x) = � coth(�x), borrowed from the recent thesis of Alili [2].

While we have chosen here to stay fairly close to Kac's presentation of the
Feynman-Kac formula in terms of a one-dimensional Brownian motion, a substan-
tial literature has developed around extensions of the Feynman-Kac formula to
various other contexts. See for instance Kesten's paper [22] for a survey of such
developments, and [29, 43, 44] for some other recent studies. Simon [38], Chung-
Zhao [11], Nagasawa [26], and Aebi [1] provide connections with the theory of
Schr�odinger semigroups. For further examples involving the techniques of this
paper, and a wealth of other formulae related to Brownian motion and di�usions,
see the forthcoming handbook of Brownian motion by Borodin-Salminen [7].

2 Some decompositions of Brownian paths

For a 2 IR let Pa denote a probability distribution governing (Bt; t � 0) a one-
dimensional Brownian motion (BM) started at a. For a = 0 we write simply
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P instead of P0. For a � 0 and � � 0 let P (�)
a govern a process (Rt; t � 0)

as a BES(�), that is a �-dimensional Bessel process, started at a. We shall be
particularly concerned with the BES(3) process, which is obtained by conditioning
a BM in (0;1) to never reach 0, and the BES(3) bridge obtained by conditioning
a BES(3) process started at 0 at time 0 to return to 0 at time 1. See [33] for
background, and further discussion of this fundamental relationship between BM
and BES(3), and [36, 13, 32] for further discussion of di�usion bridges.

Let E;Ea and E�
a denote the expectation operators derived from P;Pa and P �

a .
While we �nd it convenient to use the di�erent notations (Bt; t � 0) for a BM
and (Rt; t � 0) for a Bessel process, we shall occasionally regard P;Pa and P �

a

as probability distributions on the canonical path space C[0;1), in which case
(Xt; t � 0) may be used to denote the coordinate process on C[0;1) which might
be governed by any of these laws.

2.1 A decomposition of (Bu; 0 � u � dt)

Given a Brownian motion (Bu; u � 0), and an arbitrary �xed time t > 0, let
dt := inffu : u > t;Bu = 0g and gt := supfu : u � t; Bu = 0g.
a. The process

 
bu :=

1p
gt
Bugt; 0 � u � 1

!
is a standard Brownian bridge which

is independent of the �-�eld generated by the variable gt and the process (Bgt+u;u �
0).

b. The standard Brownian excursion,

 
1p

dt � gt
jBgt + u(dt � gt)

j ; 0 � u � 1

!

is a BES(3) bridge which is independent of �fBu; 0 � u � gt; u � dtg.
c. The process  

mu =
1p
t� gt

jBgt + u(t� gt)
j ; 0 � u � 1

!
;

known as a Brownian meander [10], has a law which does not depend on t, and the
meander is independent of �fBu; 0 � u � gtg. Details of this decomposition can
be found in Revuz-Yor [33] and Yor [48]. See also Bertoin-Pitman [4] for a survey
of various transformations relating the bridge, excursion and meander derived as
above from Brownian motion.
d. Finally, as a consequence of the strong Markov property of BM, the process
(Bdt+u; u � 0) is a BM independent of (Bu; 0 � u � dt).

2.2 A decomposition of (Bu; 0 � u � �k) at g�k for an inde-

pendent exponential time �k

Let �k be a random time whose distribution is exponential with rate k2=2, that is

P (�k 2 dt) =
k2

2
exp(�k2t

2
) dt (t > 0);
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and assume that �k and (Bt; t � 0) are independent. Then the left-hand side of
the Feynman-Kac formula (1.1) equals

2

k2
E
h
q(B�k) exp

�
�A�f

�k

�i

Since the well known formula for the resolvent of BM [17] implies that

P (B�k 2 dx) =
k

2
e�kjxjdx (x 2 IR)

it is clear that the function U�f (k; x) appearing on the right-hand side of (1.1) is

U�f(k; x) =
e�kjxj

k
E
h
exp

�
�A�f

�k

����B�k = x
i

(2.1)

Our aim now is to explain Kac's characterization of U�f (k; x) as the solution of a
Sturm-Liouville problem in terms of a decomposition of the path (Bu; 0 � u � �k)
at time g�k , the last zero of B before the independent exponential time �k. By a
last-exit decomposition (see e.g. [46] chap. 3, p. 35 or [48] lecture 5, p. 73) the
processes (Bu; 0 � u � g�k ) and (B�k�u; 0 � u � �k � g�k) are independent. As a
consequence, if (`t; t � 0) denotes the local time of B at 0, (see e.g. [33, Ch. VI])
and if �s = infft : `t > sg is the inverse local time, then `�k is independent of B�k

with
P (`�k 2 d`) = k exp(�k`) d` (` � 0):

Therefore, for every pair of Brownian functionals F and G, taking values in IR+,
we have

E [F (Bu; 0 � u � g�k ) G(B�k�u; 0 � u � �k � g�k ) j`�k = ` ;B�k = x ] = (2.2)

�
ek`E

"
exp

 
�k2�`

2

!
F (Bu; 0 � u � �`)

#��
ekjxjEx

"
exp

 
�k2

2
T0

!
G(Bu; 0 � u � T0)

#�

where T0 = infft : Bt = 0g and consequently

E [F (Bu; 0 � u � g�k )] = k
Z 1

0
d`E

"
exp

 
�k2�`

2

!
F (Bu; 0 � u � �`)

#
(2.3)

E [G(B�k�u; 0 � u � �k � g�k )] =
k

2

Z 1

�1
daEa

"
exp

 
�k2

2
T0

!
G(Bu; 0 � u � T0)

#
:

For example,

E
h
exp

�
�Af

g�k

�i
= k

Z 1

0
d`E

"
exp�

 
k2

2
�` +Af

�`

!#
(2.4)

whereas

E
h
exp�

�
Af
�k
�Af

g�k

�i
=
k

2

Z 1

�1
daEa

"
exp�

 
k2

2
T0 +Af

T0

!#
(2.5)
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and
E
h
exp

�
�Af

�k

�i
= E

h
exp

�
�Af

g�k

�i
E
h
exp�

�
Af
�k
�Af

g�k

�i
: (2.6)

We explain in the next sub-section how the basic formulae (2.2) and (2.3) can
be expressed in terms of excursion theory. Then in Section 3 we show how the
right-hand sides of (2.4) and (2.5) can each be evaluated in terms of solutions of
appropriate Sturm-Liouville equations. These evaluations then combine via (2.6)
to yield Kac's description of the function U�f(k; x) appearing in (1.1) and (2.1).

2.3 Integral representations of Brownian laws

We now �nd it convenient to suppose that the laws Pa governing BM and P (3)
a

governing BES(3) are de�ned on the canonical space C[0;1), with coordinate
process (Xt; t � 0). For m � 0 let P Tm

a and (P (3)
a )Tm denote the previous laws

derived from Pa and P (3)
a by killing the process (Xt; t � 0) at time Tm = infft :

Xt = mg. Formulae (2.2) and (2.3) are presented more concisely by the following
master formula, in which the symbol � stands for the operation of concatenation
of two independent trajectories. (See [48] lecture 5, par. 6, or [33], page 481,
Exercise (4.18)). Z 1

0
dt P t =

�Z 1

0
d`P�`

�
�
�Z 1

�1
da r(P T0

a )
�

(2.7)

where P t is the law of (Xu; 0 � u � t) under P , i.e., the measure de�ned on the
space of continuous functions f!(u); 0 � u � �!g. Thus�Z 1

0
dt P t

�
[F (Xu; u � �)h(�)] =

Z 1

0
dt h(t)E [F (Xu; u � t)]

and �Z 1

0
d`P �`

�
[F (Xu; u � �`)h(�`)] =

Z 1

0
d`E [F (Xu; u � �`)h(�`)] :

On the other hand, r(P T0
a ) is the law P T0

a with reversed time. To be precise,
r(P T0

a ) = (P
(3)
0 )

a

is the law of a BES(3) process starting from 0 and ending at
a = supft � 0 : Rt = ag. The formula (2.7) is taken from Biane-Yor [6], where
it is proved by excursion theory. See also Biane [5] for a systematic study of such
integral representations and their applications, Leuridan [25] for a more elementary
approach, and van der Hofstad et al. [40] for some closely related presentations.

2.4 The agreement between two descriptions of Brownian

excursions

Two important integral representations of n+, the Itô measure of positive Brow-
nian excursions, are as follows:

n+ =
1

2

Z 1

0

dvp
2�v3

�v (2.8)
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and

n+ =
1

2

Z 1

0

dm

m2

�
P
(3)
0

�Tm � �r �P (3)
0

�Tm�
(2.9)

where �v is the law of the BES(3) bridge of length v ( see [6] par. 6.1, [33] chap.
12, [42, 32]). The comparison of (2.8) and (2.9) yields the so-called agreement
formula Z 1

0

dvp
2�v3

�v =
Z 1

0

dm

m2

�
P
(3)
0

�Tm � �r �P (3)
0

�Tm�
(2.10)

which is discussed in some generality in [32]. According to the basic formula of
excursion theory, for any Borel function f : IR! IR+,

E[exp(�Af
�`
)] = exp

�
� `

Z
n(d")

�
1 � exp(�Af

V ("))
��

(2.11)

where n = n++n� is the Itô measure of Brownian excursions (n� is the image of
n+ by "! �") and V is the length of the excursion.

3 Sturm-Liouville equations

In order to obtain explicit formulae for (2.4) and (2.5), we �rst present probabilistic
interpretations of the fundamental solutions of the Sturm-Liouville equation

1

2
F 00(x) = m(x)F (x) (3.1)

for an unknown function F : IR+ ! IR, where m : IR+ ! IR+ is a known non-
negative and locally integrable Borel function. The function m determines two
fundamental solutions of (3.1). These are

i) F (x) = �(x) say, the non-increasing solution of (3.1) such that F (0) = 1;

ii) F (x) = 	(x) say, the solution of (3.1) such that F (0) = 0, F 0(0+) = 1.
The following probabilistic interpretations of � and 	 have been known for

some time as applications of stochastic calculus. See for instance [18],[48, p. 76].
First of all,

�(a) = Ea

"
exp

 
�
Z T0

0
m(Bs) ds

!#
(0 � a) (3.2)

which by application of the strong Markov property of B implies

�(a)

�(b)
= Ea

"
exp

 
�
Z Tb

0
m(Bs) ds

!#
(0 � b � a): (3.3)

Next,
b	(a)

a	(b)
= E(3)

a

"
exp

 
�
Z Tb

0
m(Rs) ds

!#
(0 < a < b): (3.4)
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Equivalently, by the Doob h-transform relation between Brownian motion and
BES(3) for h(x) = x (see e.g. [33] p. 431)

	(a)

	(b)
= Ea

"
1fTb<T0g exp

 
�
Z Tb

0
m(Bs) ds

!#
(0 < a < b) (3.5)

For completeness, we record also the following companion to (3.5), which follows
easily from (3.3) and (3.5) by application of the strong Markov property of B at
time Tb:

�(a)� 	(a)

	(b)
�(b) = Ea

"
1fT0<Tbg exp

 
�
Z T0

0
m(Bs) ds

!#
(0 < a � b) (3.6)

In the next two subsections we show how the above formulae may be applied
with m(x) = k2

2 + �f+(x) and m(x) = k2

2 + �f�(x) where f+ is the restriction of
f to IR+ and f�(x) = f(�x); x � 0 for a generic f : IR! IR+. For simplicity, we
take � = 1. Replace f by �f to introduce the parameter �.

3.1 The Brownian path from g�k to �k

The following Theorem provides an evaluation of the right-hand side of (2.5).

Theorem 3.1 Let f+ : IR+ ! IR+ be a locally bounded function, and let

�f+(k; a) := Ea

"
exp�

 
k2

2
T0 +

Z T0

0
ds f+(Bs)

!#
(a � 0): (3.7)

The function u(a) = �f+(k; a) is the unique bounded solution of the Sturm-
Liouville equation

1

2
u00 =

�
k2

2
+ f+

�
u ; u(0) = 1 : (3.8)

Moreover

�f+(k; a) =
Z 1

0

dtp
2�t3

exp(�k2t

2
)Hf+(t; a) ; (3.9)

where

Hf+(t; a) = a exp(�a2

2t
)E(3)

0 [exp(�
Z t

0
du f+(Ru))jRt = a] : (3.10)

Proof: The �rst part of the theorem follows from (3.2). The right-hand-side of
(3.7) may be written asZ 1

0
dt

ap
2�t3

exp
�
�a2

2t

�
exp

�
�k2t

2

�
Ea

"
exp�

Z T0

0
ds f+(Bs)

�����T0 = t

#
:

Using D. Williams' time reversal result, and conditioning with respect to a =
supft : Rt = ag, we obtain

Ea

�
exp�

Z T0

0
ds f+(Bs)

����T0 = t
�
= E

(3)
0

�
exp�

Z t

0
ds f+(Rs)

����Rt = a
�
:

and hence the representation (3.10) of Hf+ . See [48, p. 52]. 2
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Corollary 3.2 With the previous notation, we obtain the following expression
for f : IR! IR+ a locally bounded function:

E
h
exp�

�
Af
�k
�Af

g�k

�i
=

k

2

Z 1

0
da
�
�f+(k; a) + �f�(k; a)

�

=
k

2

Z 1

0

dtp
2�t3

exp

 
�k2t

2

! Z 1

0
da
�
Hf+(t; a) +Hf�(t; a)

�

3.2 The Brownian path before g�k

The next theorem provides an evaluation of the right-hand side of (2.4). We keep
the notation of Theorem 3.1.

Theorem 3.3 The limit Kf+(t) := lima!0+
Hf+(t; a)

a
exists and satis�es the

equality

Kf+(t) = E
(3)
0

�
exp�

Z t

0
du f+(Ru) jRt = 0

�

Furthermore, this function Kf+ is characterized via the following transform:

� (�f+)0(k; 0+) =
Z 1

0

dtp
2�t3

�
1 � exp(�k2t

2
)Kf+(t)

�
(3.11)

where

(�f+)0(k; 0+) =
@

@a

�����
a=0+

�f+(k; a)

Remark: As a check, recall that �f+(k; a) is a decreasing function of a, hence,
both sides of (3.11) take values in IR+.
Proof: We divide by a the two sides of the equality

�f+(k; a)� 1 = (e�ka � 1) + (�f+(k; a)� e�ka) :

Then, using
1

a
e�ka =

Z 1

0

dtp
2�t3

exp

"
�1

2

 
k2t+

a2

t

!#
;

we obtain from (3.9) and (3.10) that �(�f+)0(k; 0+) equals

k +
Z 1

0

dtp
2�t3

exp(�k2t

2
)
�
1 � E

(3)
0

�
exp(�

Z t

0
ds f+(Rs))

����Rt = 0
��

:

We also note that k =
Z 1

0

dtp
2�t3

�
1�exp(�k2t

2
)
�
, which leads to the form (3.11)

of the right derivative of the function �f+(k; a) at a = 0. 2
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Corollary 3.4 With the previous notation, we obtain

E

"
exp�

 
k2

2
�` +Af

�`

!#
= exp

 
`

2
[(�f+)0(k; 0+) + (�f�)0(k; 0+)]

!

As a consequence, we have

E
h
exp

�
�Af

g�k

�i
=

2k

�(�f+)0(k; 0+)� (�f�)0(k; 0+)

Proof: This follows from Tanaka's formula and optional sampling theorem. See
e.g. [18], or the proof of the second Ray-Knight theorem in [33], Chap. XI, theorem

2.3. Another proof is obtained from (2.11) and the observation that n = lima#0
Pa
a

in a suitable sense. See Pitman-Yor [30] where this result is presented for a general

di�usion, with
Pa
s(a)

instead of
Pa
a

for s the scale function of the di�usion. 2

Corollary 3.5

E
h
exp

�
�Af

�k

�i
=

k2
Z 1

0
da (�f+(k; a) + �f�(k; a))

�(�f+)0(k; 0+) � (�f�)0(k; 0+)
(3.12)

Remark: Replace f by �f for � > 0 to see that this formula determines the
Laplace transform of Af

�k
, hence the distribution of Af

�k
, in terms of the functions

��f+ and ��f� for � > 0. The formula of the corollary extends to

E
h
q(B�k) exp

�
�Af

�k

�i
=

k2
Z 1

0
da (q(a)�f+(k; a) + q(�a)�f�(k; a))

�(�f+)0(k; 0+) � (�f�)0(k; 0+)
(3.13)

and
E
h
q(B�k) p(`�k ) exp

�
�Af

�k

�i
=

k2

2

Z 1

0
d` p(`) exp

 
`

2
((�f+)0(k; 0+) + (�f�)0(k; 0+))

!

�
Z 1

0
da (q(a)�f+(k; a) + q(�a)�f�(k; a))

where q and p are positive functions.
From (3.13) and the discussion below (2.6) it is clear that the function U�f (k; x)

in (1.1) and (2.1) is expressed in present notation as

U�f (k; x) =
2
�
��f+(k; x)1(x > 0) + ��f�(k;�x)1(x < 0)

�
�(��f+)0(k; 0+)� (��f�)0(k; 0+)

(3.14)

It follows also that U(x) := U�f(k; x) satis�es the Sturm-Liouville equation (1.2)
with the boundary conditions described around (1.3), in particular U 0(0+) �
U 0(0�) = �2. That the U so obtained is unique requires a further analytic
argument. Note how the presentation of Kac's basic function in (3.14) as a ratio
reects the path decomposition at time g�k .
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3.3 Relations with the agreement formula

We now examine how the agreement formula (2.10) translates in terms of solutions
of certain Sturm-Liouville equations.

Theorem 3.6 Let f+ : IR+ ! IR+ be a locally bounded Borel function. Keep

the notation �f+(k; x) = Ex

"
exp�

 
k2

2
T0 +A

f+
T0

!#
and de�ne another function

	f+(k; x) by
x

	f+(k; x)
:= E

(3)
0

"
exp�

 
k2

2
Tx +A

f+
Tx

!#

Then
i) 	 = 	f+(k; x) is the unique solution of

1

2
	00(x) =

�
k2

2
+ f+(x)

�
	(x) ; 	(0) = 0; 	0(0+) = 1 ; x � 	(x)

ii) The function 	f+(k; x) is an increasing function of x, and the following relation
holds:

� (�f+)0(k; 0+) =
Z 1

0
dx

 
1

x2
� 1

(	f+(k; x))2

!
(3.15)

Proof: Part i) follows from (3.4). Turning to ii), the left and right hand sides of
(3.15) are the left and right hand sides of the agreement formula (2.10) applied to
the functional

1� exp

 
�k2

2
�(!)�

Z �(!)

0
ds f+(!(s))

!

where �(!) is the lifetime of the generic excursion (!(s); 0 � s � �(!)). 2

As an alternative approach, here is an elementary proof of (3.15). As observed
in [31]

1

	2(m)
= � d

dm

�Z m

0

dy

�2(y)

��1
(3.16)

Hence, the right hand side of (3.15) is equal to the limit, when � tends to 0 of

I� :=
Z 1

�
dm

�
1

m2
+

d

dm

�Z m

0

dy

�2(y)

��1�
=

1

�
�
 Z �

0

dy

�2(y)

!�1
=

Z �

0
dy

 
1

�2(y)
� 1

!

�
Z �

0

dy

�2(y)

Since �(0) = 1, it follows that as � # 0

I� '
�
1

�2

�Z �

0
dy(1� �2(y)) ' 2

�2

Z �

0
dy(1� �(y)) ' ��0(0+) 2
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We now comment on some variations of the identity (3.16). Since both � and
	 are non-negative, the identity (3.16) is equivalent to

	(m) = �(m)
Z m

0

dy

�2(y)
(3.17)

which in turn is a variation of the Wronskian identity

	0�� �0	 = 1: (3.18)

As a complement to (3.16) and the discussion of � and 	 given at the beginning
of this section, we deduce that for a C1 function � : IR+ ! IR+, with compact
support,

Z 1

0
dx �(x)

 
1

x2
� 1

	2(x)

!
= ��(0)	0(0) +

Z 1

0
dx �0(x)

0
@1

x
�
 Z x

0

dy

�2(y)

!�11A
(3.19)

Writing �(x)��(0) = R x
0 dy �

0(y), and dividing both sides of (3.19) by 2, we deduce
from (2.9) and (2.10) that

1

2

0
@1

x
�
 Z x

0

dy

�2(y)

!�11A = n+(M � x)�
Z
fM�xg

n+(d") exp

 
�
Z V

0
ds f("s)

!

where M = sups�0 "(s), and V = inffs > 0 : "(s) = 0g. Equivalently,
 
2
Z x

0

dy

�2(y)

!�1
=
Z
fM�xg

n+(d") exp

 
�
Z V

0
ds f("s)

!
(3.20)

4 Examples

Example 0: f�(x) =
�2�
2

We start with the constant function f�(x) =
�2

2
. Then, we have �f�(k; a) =

exp(��a), where � = (k2 + �2)1=2. We now check formula (3.12) in this case:
easily, on the left-hand side, we �nd

E[exp(��2

2
�k)] =

k2

�2
(4.1)

On the other hand, �(�f+)0(k; 0+) � (�f�)0(k; 0+) = 2�, whereas the integralZ 1

0
da(�f+(k; a) + �f�(k; a)) is equal to (2=�). Finally, both sides of (3.12) are

equal to (k2=�2).
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A more interesting case, which following Kac [20] has been presented many

times in the literature [11, 23, 17, 33, 41], arises when f+(x) =
�2+
2
; f�(x) =

�2�
2
,

with �+ 6= ��. The previous (trivial) formula (4.1) is then modi�ed as follows:

E

"
exp�

 
�2+
2

Z �k

0
ds 1fBs>0g +

�2�
2

Z �k

0
ds 1fBs<0g

!#
=

k2

�+��
(4.2)

where �� = (k2 + �2�)
1=2. Consequently, the random times

Z �k

0
ds 1fBs>0g andZ �k

0
ds 1fBs<0g are independent with a common gamma distribution with shape

parameter 1=2. L�evy's arc sine law for the distribution of
Z 1

0
ds 1fBs>0g is a well

known consequence.

In the case f�(x) =
�2

2
, it is well known that

1

	(m)
=

�

sinh(m�)
. Hence, the

equality (3.15) then reduces to

� =
Z 1

0
dm

0
@ 1

m2
�
 

�

sinh(m�)

!2
1
A : (4.3)

With the change of variables : m = x=�, the right-hand-side of (4.3) is equal toZ 1

0
dx

 
�

x2
� �

(sinhx)2

!
, so that (4.3) reduces to

Z 1

0
dx

 
1

x2
� 1

(sinh x)2

!
= 1 (4.4)

In fact, the following expression of the Fourier transform of

 
1

x2
� 1

(sinhx)2
; x 2 IR

!

is well known to be

Z 1

�1
dx exp(i�x)

 
1

x2
� 1

(sinhx)2

!
= �

 
� coth

��

2
� j�j

!
(4.5)

which easily yields (4.4), by letting � ! 0.

Example 1: f(x) = �jxj; � > 0

One of the �rst applications, if not the �rst, of the Feynman-Kac formula, has

been to compute the law of
Z t

0
du jBuj (see Cameron-Martin [9] and Kac [19]). A

number of variants of this computation, where B is replaced by a 1-dimensional
or 3-dimensional Bessel bridge have been made [37, 39], and continue to be of
interest. See e.g. Perman-Wellner [28], which contains a general discussion similar
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to our Sections 2 and 3.
In order to exploit the previous results, we introduce the Airy function Ai which
is the unique bounded solution of

u00 = xu; u(0) = 1

and is de�ned as

(Ai)(x) :=
1

�

�
x

3

�1=2
K1=3

�
2

3
x3=2

�
where K� is the usual modi�ed Bessel function with index �. The solution of

u00 = (k2 + �x)u ; u(0) = 1

can be written as
(Ai)[(x�+ k2)=�2=3]

(Ai)[k2=�2=3]
:

Some easy computations lead to

E(exp��
Z g�k
0

dujBuj) =
K1=3

K2=3
(�) (4.6)

E(exp��
Z �k

g�k
dujBuj) =

1

K1=3(�)

Z 1

�
dv K1=3(v) (4.7)

E(exp��
Z �k

0
dujBuj) =

1

K2=3(�)

Z 1

�
dv K1=3(v) (4.8)

with � =
k3

3�
.

The quantity E(exp��
Z t

0
du jBuj) is computed in Kac [19], the density and the

moments of
Z 1

0
du jBuj appear in Tak�acs [39] and are related with the Airy function

and its zeros. Getoor and Sharpe [14] provide the computation of E(exp��
Z d�

k

g�
k

dujBuj)
which can be obtained also from the previous results, together with the Markov
property, which yields:

E(exp[��
Z dt

t
dujBuj � �jBtj]) = E

 
exp(��jBtj)EjBtj(exp�

Z T0

0
dujBuj)

!
:

Using the equality g�k
law
= �k�g�k law

= (N=k)2 where N is a standard N(0; 1) variable
and the scaling property of Brownian motion, we obtain

E(exp� �

k3
jN j3

Z 1

0
dujbuj) =

K1=3

K2=3
(�)

E(exp� �

k3
jN j3

Z 1

0
dumu) =

1

K1=3(�)

Z 1

�
dv K1=3(v)

where b is a Brownian bridge and m a Brownian meander. These formulae can be
found in Biane-Yor [6], Groeneboom [15], Shepp [37], Perman-Wellner [28].
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Example 2: f(x) = i�x

to We now exploit the Gaussian character of (Bt; t � 0). Let � := �1 be an
exponential time with parameter 1=2. The equality

E[exp i(�
Z �

0
duBu + �B�)] =

E[exp i(�
Z g�

0
duBu)]E[exp i(�

Z �

g�

duBu + �(B� �Bg�))]

can be transformed in

E(exp i(��3=2
Z 1

0
duBu + ��1=2B1)) =

E[exp(i�jN j3
Z 1

0
du bu)]E(exp i(� ~N3

Z 1

0
dumu + ~N�m1))

(4.9)

where N
law
= ~N

law
= �(g�)1=2

law
= �(� � g�)1=2, with N and ~N standard N(0; 1)

variables, � a symmetric Bernoulli variable independent of the pair (�; g�), (bu;u �
1) a standard Brownian bridge, independent of N , and (mu;u � 1) a Brownian
meander, independent of ~N . Two among the three expectations found in (4.9) can
be evaluated thanks to the following elementary

Lemma 4.1 For every (�; �) 2 IR, one has

E

"�
�
Z 1

0
duBu + �B1

�2#
= �2 + ��+

�2

3

Moreover,

E

"�Z 1

0
ds bs

�2#
=

1

12

Proof: The last equality in this lemma follows from the obvious remarkZ 1

0
duBu =

Z 1

0
du (Bu � uB1) +

Z 1

0
duuB1

law
=
Z 1

0
du bu +

1

2
B1

where (bu := Bu � uB1; 0 � u � 1) is independent of B1. 2

Plugging the results of the lemma into (4.9), one obtains

E
�
exp i

�
��3=2

Z 1

0
duBu + ��1=2B1

��
= E

"
exp�1

2

 
�2� + ���2 +

�2�3

3

!#

whereas

E
�
exp

�
i�jN j3

Z 1

0
du bu

��
= E

"
exp

 
��2N6

24

!#

and, in an obvious way

E
�
exp i

�
�
Z t

0
duBu + �Bt

��
= exp�1

2

 
�2t+ ��t2 +

�2t3

3

!
:
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Hence, we deduce from (4.9) the formula

E
�
exp i

�
� ~N3

Z 1

0
dumu + � ~Nm1

��
=

E

"
exp�1

2

 
�2� + ���2 +

�2�3

3

!#

E

"
exp

 
��2N6

24

!#

(4.10)

Example 3: f(x) =
�2

2
x2;

This is an extremely important example, closely related to Ornstein-Uhlenbeck
processes and P. L�evy's area formula [27], which may be tackled by using several
di�erent techniques. We refer to Ikeda et al. [16] for a number of extensions and
references to recent developments of L�evy's area formula.

a. Feynman-Kac formula

The bounded solution of

u00 = (k2 + �2x2)u ; u(0) = 1

is

u(x) =
1

2�=2�(1=2)
�
�
1� �

2

�
D�(x

p
2�)

where D� is a parabolic cylinder function (See Lebedev [24] 10.2.1, 10.2.18) and

� = �1

2
(
k2

�
+ 1) . We obtain, using various results on functions D� found in

Lebedev

E

"
exp��2

2

Z �k

0
duB2

u

#
=

k2

2

Z 1

0
dt exp

 
�k2

2
t

!
1

(cosh t�)1=2

which, from the uniqueness of the Laplace transform gives

E
�
exp��2

2

Z t

0
duB2

u

�
=

1

(cosh t�)1=2
; (4.11)

a formula which traces back to Cameron-Martin [9]. See also Kac [20], Breiman
[8].

b. Direct computation

It is well known that the previous result can be obtained as a consequence of
Girsanov's transformation (see e.g. [46], chap. 2), working up to a �xed time t.
More generally, we obtain

E
�
exp�

�
�B2

t +
�2

2

Z t

0
duB2

u

��
=
�
cosh(t�) +

2�

�
sinh(t�)

��1=2
(4.12)
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which leads in particular to (4.11) and, if the Brownian motion starts from a, to

Ea

�
exp�

�
�B2

t +
�2

2

Z t

0
duB2

u

��
=

exp

 
�a2�

2

1 + 2�
�
coth�t

coth(�t) + 2�
�

!
�
cosh(t�) +

2�

�
sinh(t�)

�1=2 :

If (Rt; t � 0) denotes a �-dimensional Bessel process starting from a, whose law
we denote by P (�)

a , one obtains, using formula (4.12) and the additivity of squared
Bessel processes

E(�)
a

"
exp��2

2

Z t

0
dsR2

s

�����Rt = 0

#
= E

(�)
0

"
exp��2

2

Z t

0
dsR2

s

�����Rt = a

#

=
�

t�

sinh(t�)

��=2
exp

 
�a2

2t
(t� coth(t�)� 1)

!
(4.13)

This formula is closely related to L�evy's area formula (See [46], p. 18, and [30])
In particular, we obtain

E
�
exp��2

2

Z 1

0
du b2u

�
=
�

�

sinh�

�1=2

Using the identity (m2
u;u � 1)

law
= (b2u +R2

u;u � 1) where R is a BES(2) indepen-
dent of b (see [46], p. 44) we obtain

E
�
exp��2

2

Z 1

0
dum2

u

�
=

1

(cosh �)

�
�

sinh�

�1=2
:

Moreover, from the equalityZ 1

0
duB2

u = g21

Z 1

0
du b2u + (1� g1)

2
Z 1

0
dum2

u ;

it follows that

1

(cosh �)1=2
=

1

�

Z 1

0

dtq
t(1� t)

'0(�t)'1(�(1 � t))

where '0(�) =
�

�

sinh �

�1=2
; '1(�) =

1

(cosh �)

�
�

sinh �

�1=2
.

It follows that there is the convolution identity

1

(cosh �)1=2
=

1

�

Z �

0

dx

(sinhx)1=2 (sinh(� � x))1=2 cosh(� � x)
:

This convolution identity can also be derived from the product formula

E

"
exp(��

Z �

0
duB2

u)

#
= E

�
exp(��

Z g�

0
duB2

u)
�
E

"
exp(��

Z �

g�

duB2
u)

#

where � is an exponential variable with parameter 1/2. This last formula is a
consequence of the independence property discussed in subsection 2.2.
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Example 4: f+(x) = �2=2x

Here we have to work around the fact that f+ is unbounded at 0+. We are
interested in the law of the principal value

Ht := p:v:
Z t

0

ds

Bs
:= lim

�!0

Z t

0

ds

Bs
1fjBsj��g

and the law of

H+
t := lim

�!0

 Z t

0

ds

Bs
1fBs��g + (ln �)`0t

!
:

See Biane-Yor [6] for the existence of such principal values, and Yamada [45] for
a more general discussion. A decreasing solution of

�00(x) =

 
�2

x
+ k2

!
�(x)

(called hereafter the Whittaker function- see Lebedev [24] p. 274 and 279) is
obtained as follows:

�(z) = e�kz 2kz �(1 + a)U (1 + a; 2; 2kz) (4.14)

where

�(1 + a)U(1 + a; 2; z) =
Z 1

0
dt e�zt

�
t

1 + t

�a
and a =

�2

2k
:

Since �(0) = 1 we obtain, for x > 0

�f+(k; x) := Ex

�
exp�

�
k2

2
T0 +

�2

2

Z T0

0

ds

Bs

��

= 2kx exp(�kx)
Z 1

0
dt exp(�2kxt)

�
t

1 + t

��2=2k
:

As a �rst step, we compute the law of the pair (H+
�t ; �

+
t ) where �

+
t :=

Z 1

0
da `a�t and

(�t) is the inverse of (`0t ; t � 0). Here, as in the previous section, (`at ; t � 0; a 2 IR)
is the process of Brownian local times. From the de�nition of H+

t ,

E

"
exp

 
��2

2
H+

�t �
k2

2
�+t

!#
= lim

�!0

"
I� exp

 
�t�2

2
ln �

!#

where

I� := E

"
exp

 
��2

2

Z 1

�

da

a
`a�t �

k2

2

Z 1

�
da `a�t

!#

From corollary (3.4), it follows that I� = exp
�
t

2
u0(�)(k; 0+)

�
where u(�)(k; x) is the

decreasing solution of8><
>: u00(x) = (

�2

x
+ k2)u(x) on [�;1[

u(x) = �x+ 1 on [0; �]
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for some � determined by the continuity properties of u and u0 at x = �. Hence

u0(�)(0+) = � =
�0(�)

�(�)� ��0(�)
, where � is the Whittaker function de�ned in (4.14).

Therefore, the problem reduces to the computation of

lim
�!0

 
�0(�)

�(�)� ��0(�)
� �2 ln �

!

and this last quantity is equal to

lim
�!0

�
�0(�)� �2(ln �)(�(�)� ��0(�))

�

since limx!0 x�0(x) = 0 and �(0) = 1. The derivative of � is given by

�0(�) = 2k

"
�1

2
�(�)� �2

2k
ek�
Z 1

0
du

exp(�u)
u+ 2k�

�
u

u+ 2k�

��2=2k#

Using the asymptotic behavior, when z ! 0

Z 1

0
du

exp(�u)
u+ z

�
u

u+ z

�a
= �(ln z + �0

�
(a+ 1)) +O(zj ln zj) ;

it follows that the needed limit is

�k + �2(ln(2k) +
�0

�
(
�2

2k
+ 1))

We now symmetrize the formula, paying attention to the positive part and the
negative part of the excursions, and working in the complex �eld, and we obtain

E

"
exp

 
i�H�t �

k2

2
�t

!#
= exp

(
�t
 
k + 2�Im

�0

�

 
1 +

i�

k

!!)

and from the series development of
�0

�
, we �nd that

k + 2�Im
�0

�
(1 +

i�

k
) = �� coth(�

�

k
) :

This formula was obtained in Biane-Yor[6] by a di�erent argument involving ex-
cursion theory and time changes.

Example 5: generic powers f+(x) = ��x�

The previous examples share the common property that f is a multiple of a power
of x. Here, we try to obtain results for general powers. Let f be de�ned as
f(x) = jxj� and ~f(x) = (sgn x)jxj�. If � > �1, the processes Af and A

~f are well
de�ned because

R t
0 ds jBsj� <1 almost surely. Moreover, it is well known [6] that

E(exp��Af (�t)) = exp
�
�tc��1=(�+2)

�
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where

c� :=
�2�

� sin(��)

 
��

�(�)

!2

; ; � :=
1

�+ 2

When �1 � � > �3
2
, it is possible (see Biane-Yor [6], Yamada [45] and Yor [48])

to extend the de�nition of A
~f as follows

A
~f(t) = lim

�!0

Z t

0
dujBuj� sgn (Bu)1fjBuj��g

The process A
~f has paths of unbounded variation with zero quadratic variation.

It is known that the process (A
~f(�t); t � 0) is a symmetric stable L�evy process [6].

We now point out some consequences of the scaling property of Brownian
motion, which are reected in the corresponding Sturm-Liouville computations

when f(x) = ��jxj� for a general �. Here, we take � = 1 +
�

2
, for convenience in

the subsequent computations. We �rst note that, thanks to the scaling property,
the function of three variables

u(�) : (�; k; b)! u�(�)(k; b) := Eb

"
exp�

 
k2

2
T0 + ��

Z T0

0
dsB�

s

!#
;

where �; k; b > 0, may be expressed in terms of a function of two variables only.

Lemma 4.2 The above function u(�) satis�es

u�(�)(k; b) = w�=k2(kb)

where, for � > 0, w� is the only positive, decreasing, solution of the Sturm-
Liouville equation

w00(x) = (1 + 2��x�)w(x) ; w(0) = 1

Except for � = 2 and � = �1, we do not know of any reference to the function
w� in the literature of Sturm-Liouville equations. Nevertheless, from the previous
general probabilistic discussion (i.e., relations between Sturm-Liouville equations
and Feynman-Kac solutions) it turns out that certain quantities associated with w�

may be written in terms of the following Laplace transforms '(�); '
0
(�); '

1
(�); '

3
(�),

where

'(�)(�) = E
�
exp

�
���

Z 1

0
dt jBtj�

��
'0
(�)(�) = E

�
exp

�
���

Z 1

0
dt jbtj�

��

'1
(�)(�) = E

�
exp

�
���

Z 1

0
dtm�

t

��
'3
(�)(�) = E

�
exp

�
���

Z 1

0
dt r�t

��

Here, (Bt; 0 � t � 1) denotes a 1-dimensional Brownian motion starting from 0,
(bt; 0 � t � 1) a 1-dimensional Brownian bridge (tied to 0 from both t = 0 and
t = 1), (mt; 0 � t � 1) a Brownian meander, and (rt; 0 � t � 1) a 3-dimensional
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Bessel bridge. The mnemonic for the su�xes 0,1,3 is that 0 indicates a (0; 0)
Brownian bridge, 1 indicates the meander obtained by Brownian scaling on [g1; 1],
and 3 indicates the 3-dimensional Bessel bridge. We also use the notation m(s)

(resp. b(s)) for the meander of length s (resp. the bridge of length s). Here are
some relations between the functions '0; '1; '3 and w� where we have suppressed
the subscript (�):

Proposition 4.3 The following identities hold

1)
Z 1

0
dbw�(b) =

1p
�

Z 1

0

dtp
2�t

exp(� t

2�
)'1(t)

2) �w0
�(0+) =

p
�

"Z 1

0

dtp
2�t

exp(� t

2�
)'0(t)

#�1

3) �w0
�(0+) =

p
�
Z 1

0

dtp
2�t3

 
1 � exp(� t

2�
)'3(t)

!

Proof: Using the equality (for a symmetric function f)

E
h
exp�

�
Af
�k
�Af

g�k

�i
= k

Z 1

0
daEa

"
exp�

 
k2

2
T0 +Af

T0

!#

= k
Z 1

0

dsp
2�s

exp

 
�k2s

2

!
E
�
exp�

Z s

0
dt f(m(s)

t )
�

we obtain, in the case f(x) = ��jxj�

k
Z 1

0
daw�=k2(ka) =

kp
�

Z 1

0

dtp
2�t

exp

 
�k2t

2�

!
'1(t)

which proves the �rst part of the proposition.
From the formula

Pg�k � k
Z 1

0
d`
�
exp

�
�k2

2
�`

�
� P �`

�
= k

Z 1

0

dsp
2�s

exp

 
�k2s

2

!
�Qs

where Qs denotes the law of the Brownian bridge (b(s)t ; t � s), we deduce

�1
u0(�)(k; 0+)

=
Z 1

0

dsp
2�s

exp

 
�k2s

2

!
E
�
exp

�
���

Z s

0
dt jb(s)t j�

��

=
Z 1

0

dsp
2�s

exp

 
�k2s

2

!
E
�
exp

�
�(�s)�

Z 1

0
dt jbtj�

��

=
Z 1

0

dsp
2��s

exp

 
�k2s

2�

!
E
�
exp

�
�s�

Z 1

0
dt jbtj�

��

Setting � = �=k2, and using the relation between the functions w� and u, it follows
that

�1
w0
�(0+)

=
1p
�

Z 1

0

dsp
2�s

e
�
s

2� E
�
exp

�
�s�

Z 1

0
dt jbtj�

��
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which is part 2 of the proposition. Part 3 follows from (3.11). 2

We also note the following relations between ';'0; '1; '3

Proposition 4.4 The following identities hold

1) '(�) =
Z 1

0

ds

�
q
s(1� s)

'0(�s)'1(�(1 � s))

2)
�Z 1

0

dtp
2�t

exp

 
� t

2�

!
'0(t)

��Z 1

0

dsp
2�s3

�
1 � exp

 
� s

2�

!
'3(s)

��
= 1

Proof: Thanks to the scaling property, we obtainZ 1

0
dsjBsj� law

= g�1

�Z 1

0
ds jbsj�

�
+ (1 � g1)

�
�Z 1

0
dsm�

s

�

therefore

'(�)(�) =
Z 1

0

ds

�
q
s(1 � s)

'0
(�)(�s)'

1
(�)(�(1 � s))

The second equality follows from the identities 2) and 3) in proposition 4.3. 2

Example 6: Exponential functions f�(x) =
�2

2
e�x

This case has been studied in [46, 47] where other results are stated. We give here
the formulae in the case � = 2, the general case follows easily, using the scaling
property. Let us de�ne

A�
t :=

Z t

0
ds exp(2Bs) 1fBs2IR�g ; �

�
` :=

Z �`

0
du1fBu2IR�g

The associated Sturm-Liouville equation is easily solved, and one has, for a �
0; k � 0; � > 0:

Ea

�
exp�(k

2

2
T0 +

�2

2
AT0)

�
=

Kk(�ea)

Kk(�)
(4.15)

E�a

�
exp�(k

2

2
T0 + �2AT0)

�
=

Ik(�e�a)

Ik(�)
;

where Ik and Kk are modi�ed Bessel functions and

E0

�
exp�(k

2

2
�+` +

�2

2
A+
�`
)
�

= exp� `

2

�
�Kk+1(�)

Kk(�)
� k

�

E0

�
exp�(k

2

2
��` +

�2

2
A�
�`
)
�

= exp� `

2

�
�Ik�1(�)

Ik(�)
� k

�

This leads to analogous formulae for 3-dimensional Bessel bridge:

Z 1

0

dtp
2�t3

�
1 � exp(�k2t

2
) E

(3)
0

�
exp

�
��2

2

Z t

0
ds exp(�2Rs)

�����Rt = 0
��
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is equal to
�Ik�1(�)

Ik(�)
� k =

�Ik+1(�)

Ik(�)
+ k ;

and

Z 1

0

dtp
2�t3

�
1 � exp(�k2t

2
) E

(3)
0

�
exp

�
��2

2

Z t

0
ds exp(2Rs)

�����Rt = 0
��

is equal to
�Kk+1(�)

Kk(�)
� k =

�Kk�1(�)

Kk( �)
+ k :

It follows, using properties of Bessel functions (see e.g. [47, formule 17]), that

E[exp(��2

2
Ag�k )] = 2kIk(�)Kk(�).

We also obtain similar results for symmetric functionals, for example

E
�
exp(��2

2

Z g�k

0
du exp(2jBuj) )

�
=

k

(�Kk�1(�)=Kk(�)) + k

Throughout this example, the modi�ed Bessel functions play an essential role.
This can be explained in terms of Lamperti's representation of a geometric Brow-
nian motion as a time-changed Bessel process, that is

exp(Bt + �t) = R
�Z t

0
ds exp 2(Bs + �s)

�
(t � 0)

where (R(u); u � 0) is a Bessel process of dimension d = 2(1 + �). In particular,
this shows that formula (4.15) yields, for b = ea > 1

E
(2)
b

"
exp�1

2

 
k2
Z T1

0

du

R2
u

+ �2T1

!#
=

Kk(�b)

Kk(�)

where E
(2)
b denotes expectation with respect to a probability governing (Ru; u � 0)

as a Bessel process of dimension 2 started at b. For 0 < b < 1 there is a similar
formula with Ik instead of Kk.

Example 7: f(x) =
�2

2
coth�x

Following Alili's recent thesis [2], let us denote

H
(�)
t := p:v:

Z t

0
ds coth(�Bs) := lim

�!0

Z t

0
ds coth(�Bs)1fjBsj>�g

and also

H
+(�)
t := lim

�!0

(Z t

0
ds coth(�Bs)1fBs>�g +

ln �

�
`0t

)
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Using the same notation as in example 4

E
�
exp

1

2

�
�2H+(�)

�t + k2�+t
��

(4.16)

= lim
�!0

E
�
exp

�
�1

2

Z 1

�
da (�2 coth(�a) + k2) `a�t

��
exp(��2t

2�
ln �)

As in the previous section, it su�ces to solve the associated Sturm-Liouville equa-
tion, which turns out to be

(
u00(x) = (�2 coth(�x) + k2)u(x) on [�;1[
u(x) = �x+ 1 on [0; �]

and to compute the value of �. This is done in Alili's thesis, using the hyper-
geometric functions of the �rst kind 2F1 (see Lebedev [24] chap. 9). Hence, the
quantity in (4.16) equals

exp
t

2

�
�
p
k2 + �2 +

�2

�

�
2 +

�0

�
(�� � + 1) +

�0

�
(�+ � + 1) + ln(2�)

��

where � =
1

2�

p
k2 + �2; � =

1

2�

p
k2 � �2 and  is Euler's constant.

It can then be established that

E(exp(i�H(�)
�t � k�t)) = exp

 
��tj�j

�
coth

�
�

�

q
(k2 + �2)1=2 � k

�!

Using excursion theory, it follows that for � 6= 0 the law of

�2 f(
Z 1

0
ds coth(�rs))

2 � 1g

does not depend on �, where (rs; s � 1) is a standard Brownian excursion. This
surprising fact is discussed in Alili[3]. Working at an independent exponential
time, there is the equality

E(exp(i�H(�)
�k
)) =

kp
k2 + �2

1

cosh
�
�
�

q
(k2 + �2)1=2 � k

�

See [3] and other papers in the same monograph for further developments in this
vein.
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