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Abstract

We introduce a class of models for an additive decomposition of groups of curves
strati�ed by crossed and nested factors, generalizing smoothing splines to such samples
by associating them with a corresponding mixed e�ects model. The models are also
useful for imputation of missing data and exploratory analysis of variance. We prove
that the best linear unbiased predictors (BLUP) from the extended mixed e�ects model
correspond to solutions of a generalized penalized regression where smoothing param-
eters are directly related to variance components, and we show that these solutions
are natural cubic splines. The model parameters are estimated using a highly e�cient
implementation of the EM algorithm for restricted maximum likelihood (REML) es-
timation based on a preliminary eigenvector decomposition. Variability of computed
estimates can be assessed with asymptotic techniques or with a novel hierarchical boot-
strap resampling scheme for nested mixed e�ects models. Our methods are applied to
menstrual cycle data from studies of reproductive function that measure daily urinary
progesterone; the sample of progesterone curves is strati�ed by cycles nested within
subjects nested within conceptive and non-conceptive groups.

KEYWORDS: Mixed e�ects model; Penalized regression; Variance component; Smooth-
ing parameter; Hierarchical Bootstrap; Menstrual data

1. INTRODUCTION

Curve data arise frequently in scienti�c studies and form an active topic of current statistical

research. Familiar examples of such data include growth curves, biomarkers measured over

time, and reaction curves in chemical experiments. Our own work is motivated by studies

of reproductive function where the observational unit is the pro�le of a particular hormone
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measured daily in urine over the course of a menstrual cycle; see, for example, Munro et al.

(1991). One of the interesting features of curve data from menstrual cycles is that cycles

are nested in women, who in turn may be nested in groups. Furthermore, the nesting is

typically unbalanced, with women contributing di�ering numbers of cycles and categorized

by groups of unequal sizes. Imbalance can also occur within the observational units, as it is

not uncommon for cycles to be measured with missing data. In this paper, we extend the

smoothing spline model for individual curves (Silverman 1985; Wahba 1978) to generalized

smoothing spline models for samples of curves strati�ed by nested and crossed factors. In so

doing, we create for the menstrual data a smoothing spline estimation of group means as well

as of subject and cycle departures that handles appropriately the unbalanced nested sample

structure together with the missing data. While our models were motivated by data mea-

sured over menstrual cycles (e.g. hormone pro�les, other biomarkers, and drug reactivity),

other examples of nested and crossed samples of curves come to mind. Consider samples

of growth curves strati�ed by completely crossed block and treatment factors, for instance,

or longitudinally sampled biomarkers from patients strati�ed by partially crossed age and

ethnicity factors nested within sex. We anticipate future application of these methods to

data arising from a broad range of scienti�c inquiry.

For illustration we use a sample of urinary metabolite progesterone curves measured

over 21 conceptive and 70 non-conceptive menstrual cycles as part of continuing studies of

early pregnancy loss conducted by the Institute for Toxicology and Environmental Health

at the University of California, Davis in collaboration with the Reproductive Epidemiology

Section of the California Department of Health Services in Berkeley. Our sample comes from

patients with healthy reproductive function enrolled in an arti�cial insemination clinic where

insemination attempts are well-timed for each menstrual cycle. As is standard practice in

endocrinological research (Yen and Ja�e 1991), progesterone pro�les are aligned by the day

of ovulation, here determined by serum luteinizing hormone, then truncated at each end to

present curves of equal length. Figure 1 presents superpositions of nonconceptive pro�les

strati�ed by subject, and Figure 2 shows conceptive pro�les.

Two original aims of our analysis were to characterize di�erences in conceptive and non-

conceptive cycles prior to implantation (which occurs approximately day 7 or 8 following

ovulation) and to explore the between versus within woman variation in non-conceptive

cycle pro�les. We were thus interested in analysis of variance type questions involving
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both factors, subject and group. To accomodate the missing data and approximate the

underlying physiology, where daily changes in integrated hormone production can be taken

to vary smoothly, we developed a class of models where the factor e�ects and individual

curves are presumed smooth. A particularly useful byproduct of our work turned out to be

the capacity of the models to impute missing data in a given cycle by combining a smoothing

spline interpolation from neighboring days with additional information from related cycles.

The models and computational methods developed in this paper represent a synthesis of

ideas from the literature on mixed e�ects models, smoothing splines, analysis of variance,

and samples of curves. Most contemporary research in the area of samples of curves assumes,

either tacitly or explicity, that the individual curves are pairwise uncorrelated (Anderson and

Jones 1995; Ramsay and Dalzell 1991; Rice and Silverman 1991). An exception can be found

in Barry (1996), where ni individuals indexed by j and assigned to treatment i contribute

curves that are modeled as the sum of a randommean for treatment i plus a random intercept

term for subject j plus white noise. The treatment means are assigned a Gaussian prior

with an integrated Wiener process component motivated by the correspondence to linear

smoothing splines described in Wahba (1978). Much earlier, analysis of variance techniques

involving random polynomial coe�cients were applied to growth curve problems (Pottho�

and Roy 1964; Rao 1965). Our concern is with nonparametric procedures.

In the next section, we outline the nexus between smoothing splines phrased in terms of

penalized regression models and alternatively in terms of mixed e�ects models with certain

assumptions on the design matrices and on the covariance of random e�ects. We then

introduce smoothing spline models for the analysis of samples of curves strati�ed by nested

and crossed factors, and subsequently derive dual representations of the models as both

penalized regressions and mixed e�ects linear models. Section 3 describes the computational

aspects of estimation within the smoothing spline models, focusing on an e�cient approach

based on a preliminary eigenvector decomposition. Asymptotic and bootstrap approaches

to assessing variability of the smooth curve estimates are also discussed. The methodology

is illustrated throughout with the progesterone data.

2. SMOOTHING SPLINES AND MIXED EFFECTS MODELS

A review of smoothing splines will �rst be given, with particular emphasis on the cor-

respondence between smoothing splines and mixed e�ects models, which arises from the
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derivation of a smoothing spline as a Bayes estimate (Kimeldorf and Wahba 1970; Wahba

1978). While the setting of these papers was in continuous time, Silverman (1985) devel-

oped the discrete time analog and Speed (1991) pointed out the connection with BLUP and

REML in a mixed e�ects model. We use the mixed e�ects model as a basis for extending

the smoothing spline procedures from one curve to a sample of curves. In 2.1 we present a

model for nested samples of curves, giving equivalent formulations in both mixed model and

penalized regression terms; in 2.2 we repeat the exercise for a crossed sample of curves with

two factors. While for the illustrative purposes of this paper our models are detailed with

cubic smoothing splines, the methods pertain to smoothing splines of other orders and more

generally to penalized regressions convertible into mixed e�ects models (all that is required

is a quadratic form for the penalty.)

Consider the regression problem where we have observations yi at design points ti, i =

1; : : : ; n and the observations are assumed to satisfy

yi = s(ti) + "i; (1)

with s(t) a smooth curve and "i, i = 1; : : : ; n i.i.d. N(0; �2). Let W2
2 [a; b] be the Sobolev

space of functions whose second derivatives are square integrable, where [a; b] is any interval

containing the design points. The s(t) 2 W2
2 [a; b] that minimizes the residual sum of squares

plus a roughness penalty,

nX
i=1

(y(ti)� s(ti))
2 + �

Z
(s00(t))2dt; (2)

is called the cubic smoothing spline �t to the data, since the minimizing function ŝ(t) is a

natural cubic spline. The smoothing parameter � governs the tradeo� between smoothness

and goodness-of-�t.

Let Bi; i = 1; : : : ; n be a basis of functions for the n-dimensional space S(t2; : : : ; tn�1)

of natural cubic splines with knots at the interior design points, t2; : : : ; tn�1, such that B1

and B2 span the linear functions and Bi; i = 3; : : : ; n span those functions orthogonal to B1

and B2. Also de�ne

Q =

�Z
B
00

i (t)B
00

j (t)dt

�
ij

i = 3; : : : ; n; j = 3; : : : ; n (3)

and let the singular value decomposition of Q be represented by UDUT . Letting s denote

s(t) evaluated at t1; : : : ; tn, it can be shown that the �tted smoothing spline evaluated at
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the design points, ŝ = (ŝ(t1); : : : ; ŝ(tn))
T , equals the BLUP solution ŷ = X�̂ + Zû to a

mixed e�ects model

y =X� +Zu+ "; (4)

where � and u are respectively vectors of �xed and random e�ects corresponding to known

design matrices X and Z, while " is the vector of random errors. The mixed e�ects model

is speci�ed by X = (Bj(ti))ij i = 1; : : : ; n; j = 1; 2; B = (Bj(ti))ij i = 1; : : : ; n; j =

3; : : : ; n; Z = BUD�1=2; u � MVN(0; (�2=�)In�2); and " � MVN(0; �2In) indepen-

dent of u.

The BLUP solution is given by the equations

�̂ = (X 0 V �1X)�1X 0 V �1y (5)

û = (�2=�)Z 0 V �1(y �X�̂); (6)

where the parameters of V = var(y) = (�2=�)ZZ 0 + �2In are presumed known, �̂ is the

GLS estimator for �, and û is the regression of u on y, with the mean X� of y replaced

by its obvious linear estimator. Given only the �rst and second moments of u and ", the

BLUP solutions for � and u are the best linear unbiased predictors in the sense de�ned

by Robinson (1991). With the additional assumption that u and " follow the multivariate

normal distribution, �̂ and û are respectively the MLE of � and conditional mean of u

given y. It is easy to show that if XTZ = 0, then X 0V = �2X 0, X 0 V �1 = (1=�2)X 0,

and therefore (5 { 6) reduce to

�̂ = (X 0X)�1X 0y (7)

û = (�2=�)Z 0 V �1y; (8)

the ordinary least squares estimator for � and the regression of u on Zu+ ": in this case,

� is estimated as if Zu were not present, and u is estimated as if X� were not present.

For computational convenience as in Hastie and Tibshirani (1990), we let the Bi above

be a basis for the (n + 2)-dimensional space of cubic splines with knots (t2; : : : ; tn�1) and

calculate Q using B-spline derivatives, readily available in Splus. The solutions to (2) and

(4) are unchanged since the natural cubic splines are a subset of the cubic splines with the

same knots. The resulting columns of Z are presented graphically in Figure 4. Notice that

columns representing smoother functions have larger norms, and recall that the components

of u are identically distributed. An alternative parametrization could use the same columns
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of Z but standardized columns, absorbing the norms into the distribution of u. The basis

for the natural cubic splines given by the orthogonalized columns of X combined with the

standardized columns of Z is known as the Demmler-Reinsch basis (Demmler and Reinsch

1975; Eubank 1988). We see that (4) gives more weight a priori to smooth curves: the

data is modeled as the sum of a �xed line plus a random wiggly curve distributed as a

randomly weighted sum of progressively rougher curves, where a priori the weights for

smoother curves are bigger. We note that the choice of Z and u is not uniquely determined;

alternative parametrizations may be used provided var(Zu) = (�2=�)BQ�1BT . When the

Bi, i = 1; : : : ; n can be chosen so that XTZ = 0, then by (7) and (8), the �tted curve is

the sum of a line �t by OLS plus a regression of the randomly weighted sum of curves on

data y assumed to have mean zero.

The variance components �2=� and �2 derive from the smoothing parameter � and error

variance �2 of (2). In the preceding discussion, � and �2 are presumed known; whereas in

practice, � and �2 must be estimated from the data. Theoretical and practical discussions

concerning selection of the smoothing parameter � within the penalized regression framework

are abundant in the literature. See Eubank (1988) for a good review. In the penalized

regression setting, cross validation and generalized cross validation are the most popular

techniques for choosing �. Note that �2 is not needed by these methods for estimating �, and

also that it cancels out of the expressions (5) and (6) for �̂ and û. In the context of mixed

e�ect models, it is natural to use maximum likelihood or restricted maximum likelihood

(REML) estimation for the variance components �2=� and �2. Using likelihood based

methods for selecting � is hardly a new idea; according to Speed (1991), REML estimation

of � coincides with the generalized maximum likelihood (GML) procedure discussed in

Wahba (1985), which also compares GML to GCV.

We conclude this section with a discussion of the relationships between models (1) and

(4). Model (1) is in�nite dimensional and model (4) can be viewed as a �nite dimensional

approximation to it which speci�es that s(t) belongs to the span of a spline basis and

also that the coe�cients in this basis arise from a particular stochastic model. This �nite

dimensional Bayesian model was proposed by Silverman (1985) as an alternative to the

in�nite dimensional Bayesian model of Wahba (1978), in which the smoothing spline (2) is

the posterior mean. Eubank (1988) contains extensive discussion and literature references

on the spline approximation (2) to s(t) of (1); generally, smoothing splines are e�ective
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nonparametric estimates and are well understood from practical and theoretical points of

view within the context of model (1). The applicability of inferences based on the Bayesian

model to the deterministic model (1) is more murky. For example, the coverage properties of

Wahba's (1983) Bayesian con�dence intervals are not entirely satisfactory; again, we refer to

Eubank (1988, Section 5.5) for extensive discussion. In our context, it seems plausible to us

to view the multiple curves from multiple women as realizations of stochastic processes, and

consequently to use elaborations of model (4) for estimation and inference. This is essentially

the point of view taken by Rice and Silverman (1991), who, however, allow greater 
exibility

in modeling the covariance structure. In any case, we �nd it useful to note and exploit the

algebraic equivalence of the deterministic and stochastic models for computation and we are

hopeful that, as has repeatedly been the case in signal processing, procedures derived from

stochastic models are e�ective in a broader realm.

2.1 Modeling a Nested Sample of Curves

We now consider a generalization of the regression problem in (2) encompassing obser-

vations from a nested sample of curves. The basic idea is to set forth an additive model in

which the observations from one curve are of the form

yil = sg(i)(til) + sw(i)(til) + sc(i)(til) + "il; (9)

l = 1; : : : ; ni, i = 1; : : : ; N where sg(i)(t), sw(i)(t), and sc(i)(t) represent a smooth group

mean, smooth subject departure from group mean, and smooth cycle departure from subject

mean; g; w; c index the three layers of nesting (g standing for group, w for woman or subject,

and c for cycle); g(i), w(i), and c(i) represent the group, subject, and cycle comprising the

ith sample curve observed at ni design points; and "il, l = 1; : : : ; ni; i = 1; : : : ; N are i.i.d.

N(0; �2). Figure 3 presents results of �tting the generalized model to the progesterone data,

depicted for one subject who contributed �ve nonconceptive cycles. Observe the pleasing

graphical summary of the data in terms of a smooth curve analysis of the variance due to

group, subject, and cycle e�ects. Also regard the pro�cient imputation of missing data for

Cycle 2 and for the deleted mid-cycle data of Cycle 5.

Since the appropriate analog of (2) is not a priori clear in this context, we borrow from

the long history of ANOVA with mixed e�ects models to suggest one. We then prove that

the solutions to the resulting optimization problems are natural cubic splines.
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To build a mixed e�ects model from (9), we work initially with one curve and specify

yi = Xi�g(i) +Ziug(i) + Xi�w(i) +Ziuw(i)

curve i = smooth group g(i) mean + smooth woman w(i) deviation

+ Xi�c(i) +Ziuc(i) + "i

+ smooth cycle c(i) deviation + noise:
(10)

The design matrices, which unlike those in (4) are subscripted to indicate the time

points speci�c to curve i, are as follows. Let f�ig
T
i=1 be the ordered set of T unique ob-

servation times from all the curves taken together, and let Bj , j = 1; 2; : : : ; T be a basis

of S(�2; : : : ; �T�1). As before, let B1 and B2 span the linear functions, let the remaining

Bj be orthogonal to them, and let the resulting matrix Q have the singular value decom-

position UDUT . Then take Xi = (Bj(til))jl, j = 1; 2, l = 1; : : : ; ni; Bi = (Bj(til))jl,

j = 3; : : : ; T + 2, l = 1; : : : ; ni; Zi = BiUD
�1=2; ug(i) � MVN(0; (�2=�)IT�2); uw(i) �

MVN(0; (�2=�w)IT�2); uc(i) � MVN(0; (�2=�c)IT�2); "i � MVN(0; �2Ini); and ug(i)

independent of uw(i) independent of uc(i) independent of "i. It is again true that the columns

of Xi represent the linear and constant functions and are orthogonal to the columns of Zi,

and that the columns of Zi corresponding to smoother functions have larger norms.

To complete the speci�cation of the nested smoothing spline model, we stack the curves

and specify independence amongst the collection of random vectors: ug(i) is independent

of ug(j) if g(i) 6= g(j); uw(i) is independent of uw(j) if w(i) 6= w(j); uc(i) is independent of

uc(j) if c(i) 6= c(j); and "i is independent of "j for i 6= j. Additionally, ug(i), uw(j), uc(k),

and "l are mutually independent for all (i; j; k; l). The resulting model is

y =Xg�g +Zgug +Xw�w +Zwuw +Xc�c +Zcuc + "; (11)

where �g, �w, and �c are column vectors comprising stacked �xed e�ects vectors: �g stacks

the unique �g(i), �w the �w(i), and �c the �c(i); similarly, for the random e�ects vectors

the ug(i) are stacked in ug , the uw(i) in uw, and the uc(i) in uc. Correspondingly,Xg , Xw,

and Xc are block diagonal �xed e�ects design matrices composed of blocks of stacked Xi;

similarly, Zg, Zw, and Zc are block diagonal random e�ects design matrices comprising

blocks of stacked Zi.

As is typical in nested ANOVA models, the �xed e�ects are not identi�able for each

factor level at every layer of the nest. The usual solution is to impose constraints that
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the �xed e�ects sum to zero at each layer save the top-most (group layer); accordingly, we

constrain the cycle �xed e�ects to sum to zero within subjects and the subject �xed e�ects

to sum to zero within groups, and rewrite (10) as

yi =X i�i +Zi(ug(i) + uw(i) + uc(i)) + "i (12)

where �i is de�ned to equal �g(i)+�w(i)+�c(i). While identi�ability issues do not arise for

the random e�ects portion of the model, there is nevertheless a linear dependency among

the BLUP estimates for the ug(i), uw(i), and uc(i). Speci�cally, the estimates for the ug(i)

and uw(i) are linear functions of the estimates for the uc(i).

Letting Z = (Zg j Zw j Zc) ; X denote the block diagonal matrix with blocks Xi;

u = (uTg ;u
T
w;u

T
c )

T ; and � = (�T1 ; : : : ;�
T
N )

T ; the model is seen to belong to the class

of mixed e�ects models addressed by Robinson, and furthermore to the class of variance

components models described in detail by Searle, Casella, and McCulloch (1992). The

pictorial representation shown below may prove helpful.
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In the pictorial example, the �rst and second curves y1 and y2 in the sample belong to group

1, woman 1, and cycles 1 and 2; y3 belongs to group 2, woman 2 and cycle 3; and y4 to

group 2, woman 3 and cycle 4.

Notice that implicit in the nested smoothing spline model is the assumption that curves

arising from the same woman or group are correlated, with curves i and j having covariance

cov(yi;yj) =

8>>>>><
>>>>>:

0 g(i) 6= g(j)

(�2=�g)ZiZj
0 g(i) = g(j); w(i) 6= w(j)

(�2=�g + �2=�w)ZiZj
0 w(i) = w(j); c(i) 6= c(j)

(�2=�g + �2=�w + �2=�c)ZiZj
0 c(i) = c(j)

(13)
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Hence, related curves are correlated, and the correlation increases with relatedness. Since

the a�ne components are modeled with �xed e�ects, only the non-a�ne components of the

curves are correlated. This could be remedied, however, by converting the �xed e�ects into

random e�ects with a suitably large variance, possibly to be estimated from the data as an

additional variance component. We choose to maintain the �xed e�ects for two reasons: 1)

estimation is computationally faster and easier with fewer variance components, and 2) our

interest lies in a straightforward generalization of the single curve smoothing spline model,

whose equivalent mixed e�ects model requires �xed e�ects. We should point out that in the

limiting case where the variance of a random e�ect u0 goes to in�nity, the BLUP predictor

for u0 is identical to the BLUP estimator for its �xed e�ect alternative �0.

It turns out that the nested mixed e�ects model (11) has an equivalent representation

as a penalized regression, where the �tted nested curves incur penalties of the same variety

as the cubic smoothing spline. This is formalized in Theorem 1.

Theorem 1 The BLUP solutions summarized by ŷ =X�̂+Zû to the nested mixed e�ects

model (11) are equivalent to the �tted curves given by a corresponding penalized regression.

The penalized regression �ts the collection of smooth curves sg(i)(t), sw(i)(t), and sc(i)(t)

in (9) by minimizing the residual sum of squares plus a roughness penalty generalized for

nested samples of curves:

arg min
X
i

X
l

�
yil � (sg(i)(til) + sw(i)(til) + sc(i)(til))

�2

+�g
X
k

Z
(sgk

00(t))2dt+ �w
X
j

Z
(swj

00(t))2dt+ �c
X
i

Z
(sci

00(t))2dt (14)

over the space of smooth curves sgk(t), swj (t), and sci(t) �W
2
2 [a; b], where gk indexes groups

or the unique g(i), wj indexes women, and ci indexes cycles. Moreover, the unique set of

curves minimizing (14) is a subset of the natural cubic splines with knots at the collective

interior design points, (�2; : : : ; �T�1).

For proof see the Appendix.

The parameters �g , �w , and �c in (14) stem from the variance components �2=�g ,

�2=�w, and �2=�c of (10), and can be viewed as hierarchical smoothing parameters. The

smoothing parameters �g , �w, and �c control the amplitude of the non-a�ne components

of the hierachical smooth �ts; the variance components �2=�g , �
2=�w, and �2=�c represent

the relative importance of group, woman, and cycle e�ects in the wiggly portion of the
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overall �t. Estimates of the variance components can be viewed as measures of the relative

contribution to the overall variation of group, woman, and cycle e�ects. For instance, if the

estimates suggest �2=�w � �2=�c, they o�er evidence that cycles from di�erent women are

as similar as cycles from the same woman. If the estimates indicate �2=�g � �2=�c and

�2=�w � �2=�c, we can simplify our model, dropping the group and subject factors without

a�ecting the smooth curve decomposition of the data. This is equivalent to �tting separate

smoothing splines to each curve in the sample, then averaging across cycles within women

and women within groups to calculate smooth woman departures from smooth group means.

2.2 Modeling a Crossed Sample of Curves

Turning next to a crossed sample of curves, we set forth the model

yil = s�(til) + sb(i)(til) + s�(i)(til) + "il; (15)

l = 1; : : : ; ni, i = 1; : : : ; N where s�(t), sb(i)(t), and s�(i)(t) represent a smooth overall

mean, smooth block main e�ect, and smooth treatment main e�ect; �, b, and � index the

overall mean plus two crossed factors that stratify the sample (b standing for block and �

for treatment); b(i) and �(i) represent the block and treatment assigned to the ith sample

curve observed at ni design points; and "il, l = 1; : : : ; ni, i = 1; : : : ; N are i.i.d. N(0; �2).

The model speci�ed by (15) di�ers from (9) in that the factors are crossed rather than

nested: whereas in (9) curves from one woman wj can belong only to one group gk, in (15),

curves assigned to treatment �j will span all the blocks bk. Consequently, the mixed e�ects

model corresponding to (15) will di�er from (11) in the structure of the �xed and random

e�ects design matrices, whereas, at the level of a single curve, the mixed e�ects model will

closely resemble (10). For one curve, the model is speci�ed as

yi = Xi�� +Ziu� + Xi�b(i) +Ziub(i)

curve i = smooth overall mean + smooth main e�ect of block b(i)

+ Xi��(i) +Ziu�(i) + "i

+ smooth main e�ect of treatment � (i) + interactions and noise;
(16)

where the design matrices, the �xed and random e�ects, and the error term are constructed

as in subsection 2.1, except that we label the smoothing parameters as ��, �b, and ��

to coincide with the labeling of the random e�ects vectors. We borrow further from that
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section and specify likewise independence amongst the collection of random vectors. The

resulting model is

y =X��� +Z�u� +Xb�b +Zbub +X��� +Z�u� + "; (17)

where the �xed and random e�ects vectors and associated design matrices are again stacked

versions of those in (16). As crossed ANOVA models come upon identi�ability issues similar

to those of their nested counterparts, care must again be taken in estimating the �xed e�ects.

The usual solution is to set the e�ects belonging to the overall mean and to one level of

either the block or treatment factors equal to zero; see Sche��e(1959). Estimates can then

be adjusted to re
ect constraints such as 1) block main e�ects summing to zero and 2)

treatment main e�ects summing to zero. It is again true that the BLUP predictors for the

random e�ects satisfy linear constraints.

The covariance of curves in the crossed smoothing spline model is given by

cov(yi;yj) =

8>>>>><
>>>>>:

(�2=��)ZiZj
0 b(i) 6= b(j); �(i) 6= � (j)

(�2=�� + �2=�b)ZiZj
0 b(i) = b(j); � (i) 6= �(j)

(�2=�� + �2=�� )ZiZj
0 � (i) = �(j); b(i) 6= b(j)

(�2=�� + �2=�b + �2=�� )ZiZj
0 b(i) = b(j); � (i) = �(j)

Notice that here the covariance has a crossed block matrix structure in contrast to the

nested structure of (13). While the formulation in (16), which models the variance of the

error term "i as white noise, is convenient for pedagogic purposes, for practical purposes

"i should probably be modeled as the sum of interaction splines plus white noise. When

one curve is measured at each combination (bj ; �k) of block and treatment levels, we could

introduce an interaction spline to model the smooth contribution of block bj and treatment

�k beyond that of the sum of two smooth main e�ects. Our terminology should not be

confused with the interaction splines of Wahba (1988). Extension of the ideas and results

predicated on (16) is straightforward.

The crossed mixed e�ects model (17) has its own equivalent representation as a penalized

regression, formalized in Theorem 2.

Theorem 2 Let � = (�T� ;�
T
b ;�

T
� )

T ; u = (uT� ;u
T
b ;u

T
� )

T ; andX and Z be the correspond-

ing design matrices. The BLUP solutions summarized by ŷ = X�̂ + Zû to the crossed

mixed e�ects model in (17) are equivalent to the �tted curves given by a corresponding

penalized regression. The penalized regression �ts the collection of smooth curves s�(t),

12



sb(i)(t), and s�(i)(t) in (15) by minimizing the residual sum of squares plus a roughness

penalty generalized for crossed samples of curves:

arg min
X
i

X
l

�
yil � (s�(til) + sb(i)(til) + s�(i)(til))

�2

+��

Z
(s�

00(t))2dt+ �b
X
j

Z
(sbj

00(t))2dt+ ��
X
k

Z
(s�k

00(t))2dt (18)

over the space of smooth curves s�(t), sbj (t), and s�k(t) � W
2
2 [a; b], where bj indexes blocks

or the unique b(i), and �k indexes treatments. Moreover, the unique set of curves minimizing

(18) is a subset of the natural cubic splines with knots at the collective interior design points,

(�2; : : : ; �T�1).

For proof see the Appendix.

It is interesting to �nd that the form of the penalty in the nested case goes through

unchanged to the crossed case; each in the collection of �tted smooth curves is penalized by

the normed second derative squared multiplied by the appropriate smoothing parameter,

and then the penalties are summed together with equal weight. The di�erence between (18)

and (14) is somewhat hidden, residing primarily in the nature of the residual sum of squares

(RSS) but also in the interplay between the RSS and the penalty. In hindsight, the structure

of the two penalized regressions appears sensible: penalties are treated equally at each layer

but di�er between layers by a multiplicative factor; prospectively, however, the basis for this

structure was not apparent. The identi�cation of the mixed e�ects ANOVA model with the

penalized regression provides us with a convincing rationale for both procedures.

3. ESTIMATION

Estimation in the smoothing spline models of the previous section can proceed with stan-

dard techniques for estimation within the mixed model and variance component framework.

The variance parameters such as �g , �w, �c, and �2 are �rst estimated with ML or REML

methodology, then the �xed and random e�ects are estimated with the BLUP equations by

substituting estimates for the variance components. In subsection 3.1 we discuss computa-

tional aspects of the estimating procedure, while subsection 3.2 addresses variability of the

estimates.

3.1 Computation
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The models of Section 2 each have the form of a variance components model:

y =X� +

rX
j=1

W juj + " (19)

with var(uj) = (�2=�j)I ; var(") = �2I; and therefore var(y) = V (�) =
P
(�2=�j)W jW

T
j +

�2I , where � = (�2; �2=�j ; j = 1; : : : ; r) is the vector of variance components. For example,

in the nested model r = 3; the uj are ug ,uw, and uc; theW j are Zg, Zw, and Zc; and the

�j are �g , �w, and �c. We use REML estimation for the variance components, �rst because

it possesses desirable properties as reviewed in Speed (1995), but also because it agrees with

Wahba's generalized maximum likelihood procedure.

The computational methods outlined below for REML estimation can easily be trans-

ferred to methods for ML estimation, since R(X) ? R(Wj) implies that the likelihood p(y)

can be factored, keeping the variance components separate from the �xed e�ects. Restricted

maximum likelihood is so named because it maximizes the likelihood in � of the restricted

data x = P
R(X)?y, viz., the original data projected onto the so-called space of error con-

trasts, R(X)?. For computation of REML estimates, it is helpful to switch to coordinates

based on a full rank basis for the subspace R(X)?, in order to work with a non-singular

normal distribution. This is accomplished by �rst selecting a matrix KT with the highest

rank possible such that KTX = 0 and KT has full row rank, then switching coordinates

from y toKTy. A convenient choice forKT takes as its rows the orthonormal eigenvectors

of XXT corresponding to the zero eigenvalues. With this choice, KTK = In�q where q is

the rank of XXT . For the smoothing spline models, where X is block diagonal with blocks

Xi (i indexing curves), we can constructK
T as block diagonal with blocksKT

i having rows

that are the orthonormal eigenvectors of XiX
T
i .

We use the EM algorithm of Dempster, Laird and Rubin (1977) to maximize the re-

stricted likelihood in the variance components. The complete data is speci�ed as KTy;

uj , j = 1; : : : ; r; and " (using KT" gives the same results); the complete data su�cient

statistics for the variance components are thus t0 = "T" (for �2) and tj = u
T
j uj (for �

2=�j),

j = 1; : : : ; r. Letting VK denote var(KTy), E-step expectations of the tj conditional on

the actual data KTy are computed as

E(t0jK
Ty) = tr(var("jKTy)) +E("jKTy)TE("jKTy)

= tr(�2I � �4KV
�1
K KT ) + �4yTKV

�2
K KTy
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E(tj jK
Ty) = tr((�2=�g)I � (�2=�g)

2
W T

j KV
�1
K KTW j)

+ (�2=�g)
2
yTKV

�1
K KTW jW

T
j KV

�1
K KTy; j = 1; : : : ; r

Letting mj denote the dimension of uj , and recalling that n is the dimension of ", the M-

step maximum likelihood solutions are �̂2 = t0=n and ^(�2=�j) = tj=mj . The EM algorithm

alternates the E- and M-steps in an iterative fashion. We see that the computational re-

quirements of the E-step depend on the orders of 1) the multiplications of V�1
K andKTW j

and 2) the inversions V�1
K . In our models, these matrices are typically very large and do

not possess one of the patterned structures specially accomodated by existing routines such

as SAS Proc Mixed, which therefore spend at each iteration an inordinate amount of time

blindly inverting the covariance matrix. For the sample of 91 progesterone curves, V�1
K

has approximate size 2000 � 2000, requiring approximately 32 megabytes (M) of storage.

The amount of time required for one inversion depends heavily upon the random access

memory (RAM) capacity of the computer relative to the size of the matrix; even the fastest

computers will be overwhelmed by memory swapping if the supply of RAM is inadequate.

For a computer equipped with plenty of RAM, such as our Sparc 2000 Data Center with

one gigabyte RAM, just one inversion of a 2000 � 2000 matrix will still take 15 minutes.

Small increases in the number of progesterone curves result in dramatic increases in stor-

age and time requirements. For instance, a 50% increase in the number of progesterone

curves produces a 3000� 3000 REML covariance matrix requiring 72M of storage and two

hours to invert. The computational burden for each E-step iteration is therefore very heavy,

motivating our search for a more e�cient algorithm. We now describe two simplifying ap-

proaches. Our computer programs were written in Matlab and executed on the Sparc 2000

Data Center.

Requiring that the smoothing parameters for di�erent factors are all equal leads to

substantial computational savings. For the nested model in (11), the requirement implies

that the a priori variance of the smooth curves corresponding to group mean, subject de-

parture from group mean, and cycle departure from subject mean are all equal. For the

crossed model in (17), it implies that the variances associated with the overall mean, block

main e�ects, and treatment main e�ects are all equal. A preliminary check of these as-

sumptions can be made based on subsets of the data small enough for estimation within

the unsimpli�ed models and on asymptotic or bootstrap estimates of variability; refer to

Section 4 for an example. Our �rst computational method requires equal smoothing pa-
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rameters: �j = � for all j. When this assumption holds, VK = (�2=�)KTZZTK + �2I ,

where Z = (W 1j : : : jW r). Therefore, the eigenvectors �k of V K are the same as those of

KTZZTK, and the eigenvalues of V K are (�2=�)dk + �2, where dk is the eigenvalue of

KTZZTK corresponding to �k. Furthermore, since there are only two variance compo-

nents (�2 and �2=�), only two complete data su�cient statistics are necessary, t0 = "T"

and t1 = u
Tu, where uT =

�
uT1 ; : : : ;u

T
r

�
. The E-step becomes

E(t0jK
Ty) = �2n� �2�

X
k

1=(dk + �) + �2
X
k

(yTK�)2=(dk + �)2

E(t1jK
Ty) = (�2=�)(

X
mj)� (�2=�)

X
k

dk=(dk + �) +
X
k

(yTK�k)
2dk=(dk + �)2:

In words, after a one time eigenvector decomposition of VK and multiplication of yTK�,

successive iterations of the EM algorithm require nothing but a series of quick dot products

and scalar multiplications. The time to compute each iteration with a REML covariance

matrix of approximate size 2000�2000 is reduced to a split second even for computers with

small capacity RAM; the price is a preliminary eigenvector decomposition taking about 2

hours. Recalling the size of the equations for the full-blown approach and the time required

for just one inversion, it is clear that the computational savings are immense in both the

space and time dimensions. It is generally true that for REML estimation, models with only

two variance components yield to this kind of reduction. However, it is not usually true for

ML estimation.

The results of our progesterone data analysis, partially displayed in Figure 3, were com-

puted using equal smoothing parameters and the above algorithm. The total computational

time required is about 1:5 hours. Since the covariance matrix of the progesterone data is

block diagonal comprising two blocks of size 1500� 1500 and 500� 500 corresponding re-

spectively to the nonconceptive and conceptive groups, we save much time by performing

separate eigenvector decompositions for each block and combining the results; this takes

approximately one hour. The EM algorithm then computes REML estimates in about 30

seconds using hundreds of iterations, more than are adequate for convergence. Finally,

BLUP estimates of the �tted curves are computed with a sparse backsolve algorithm in

approximately 20 minutes.

The �tted curves in Figure 3 were computed using the REML estimate for �. For

comparison, we also computed �tted curves for other �. The e�ects on the �tted curves

associated with Subject 11 Cycle 2 are shown in Figure 5. Observe in particular the e�ects
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on the �t for the missing data after day 3. For smaller �, there is less pressure on the cycle

�t to track the �tted woman and group means, and thus the optimal �t has more 
exibility

to minimize the penalty on its second derivative by tending towards a straight line after day

3 with slope equal to that at day 3. At the same time, reducing � results in cycle �ts that

more closely track non-missing cycle data. Increasing � causes group, woman, and cycle �ts

to more closely resemble ordinary least squares straight line �ts.

If the requirement of equal smoothing parameters is not reasonable, but the design points

are the same for all curves, then computation at the E-step can still be reduced to some

extent. In this case, the Zi and X i from Section 2 are the same for all curves i, and thus so

are the Ki de�ned in this section. De�ning Z0 = Zi, X0 = Xi, and K0 = Ki, it follows

that the W j in (19) are block matrices comprising equal size blocks of repeated Z0 and

zero matrices; hence VK can be written

VK =
X
j

(�2=�j)Aj
D; (20)

where 
 is the Kronecker product, Aj is a matrix of ones and zeros representing indicators

of factor levels (Aj is a direct sum of matrices of ones), and D =KT
0 Z0Z

T
0K0. Therefore,

the eigenvectors of VK are given by �ik = �i(�
2; �1; : : : ; �r)

k, with �i(�

2; �1; : : : ; �r)

representing the eigenvectors of
P

j(�
2=�j)Aj , and 
k those of D. TheKTW j can also be

written in a Kronecker product form compatible for multiplication with (20). Consequently,

only the �i(�
2; �1; : : : ; �r) and the eigenvalues of VK need updating at each iteration of the

E-step, and the order of the multiplications and inversions is reduced. For instance, for a

sample of 100 curves each measured at the same 25 design points, the matrix
P

j(�
2=�j)Aj

would be 100�100 (one eigenvector decomposition taking two seconds), andD 25�25. For

designs that are balanced at the level of curves (in addition to that of design points), the

computational savings can be stretched even further due to the associated simple structure

of
P

j(�
2=�j)Aj .

When the design points are not the same for all curves, as for instance when there is

missing data, VK does not take a simpli�ed Kronecker product form. A possibility for

reducing the burden at each E-step it to place the simpli�ed EM algorithm for no data

missing within an \outer loop" EM algorithm that updates estimates for the missing data

at each iteration. The resultant nested algorithm would give only approximate REML

estimates; see Tanner (1991) for a helpful discussion of such approximate EM algorithms.
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As a last resort, the variance components might be estimated from a subset of the data;

Searle et al. (1992) mention a possibility for combining estimates from di�erent subsets of

the data.

3.2 Variability

Asymptotic variances of the REML estimates for the variance components of (19) can

be obtained analytically with the equations derived in Searle (1970), where var(�̂REML) =

2M�1, � = (�0; �1; : : : ; �r) = (�2; �2=�1; : : : ; �
2=�r), M is an r� r matrix having elements

mjk = tr(PW jW
T
j PW kW

T
k ), P = KVK

�1KT , and W 0 = In. The relevance of these

asymptotic formulae is perhaps questionable and can be determined by the adherence to

certain assumptions as mentioned in Miller (1977). We use them nonetheless to provide

quick but crude measures of the reliability of �ndings suggested by variance component es-

timates from the nested model with unconstrained smoothing parameters. These estimates

were obtained from two small subsets of the progesterone data and are presented along

with their asymptotic standard deviations in Table 1. The table suggests that constraining

the smoothing parameters to be equal is a reasonable simpli�cation, as the three estimates

are close relative to their estimated standard deviations. It also o�ers evidence that cycles

vary more between women than they do within, as the estimate of �2=�w is further than

two standard deviations from zero. Similarly, regarding the estimate of �2=�g as a univari-

ate summary measure of the degree to which nonconceptive and conceptive cycles can be

distinguished from each other, we �nd evidence that the two groups di�er. However, this

measure incorporates post-implantation observations of progesterone that are well-known

to be higher for conceptive cycles. A more interesting assessment is based on the bias and

variability of the �tted curves themselves. Were the variance components known, we could

obtain analytically the mean squared errors for the BLUP estimates, conditional on realized

values of the random e�ects. In practice, the variance components are unknown. One might

approximate the variance for known variance components by substituting the variance com-

ponent estimates. It is well established that this tends to downwardly bias the resultant

estimates for the variance of the �t. Freedman and Peters (1984) give details in the context

of approximate generalized least squares.

For this reason, we employ bootstrap techniques | see Efron and Tibshirani (1993) for

a broad review | to study the reliability of our estimated smooth group means. Many
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versions of the bootstrap are possible for use with the smoothing spline models; these vary

by 1) degree of belief in the model (see Laird and Louis (1987) for an interesting discussion),

and 2) estimand under study. However, bootstrap algorithms using hierarchical resampling

schemes such as the two we describe have not been addressed in the literature and remain

an interesting topic for further study.

First we outline a nonparametric version to study variability of �tted group means in

the nested model. To make one bootstrap sample, construct a new sample of cycle curves

strati�ed by subjects and groups in the following manner.

1. Draw a sample of size Gk with replacement from the Gk women in group k.

2. For the jth woman selected into the above sample, draw a sample of size Wj with

replacement from the Wj cycle curves she contributed to the original sample.

Since this method of resampling creates samples with di�ering patterns of missing data,

computation of REML and BLUP estimates requires multiple eigenvector decompositions.

We therefore implemented a partially parametric version of the bootstrap to maintain the

pattern of missing data present in the original sample. The computational time required to

construct 35 bootstrap samples and estimate �tted group means using our e�cient algorithm

with a shared eigenvector decomposition and sparse backsolve is about 45 minutes. From

the original �t we have the following objects:

1. The �tted group means ŝgk for all groups in the original sample, indexed by k.

2. The �tted woman departures ŝwj for all women in the original sample, indexed by j.

3. The �tted cycle departures ŝci for all cycles in the original sample, indexed by i.

4. A collection of residuals "̂il indexed by the lth design point for cycle i.

For each group, we build a sample in the following way. Consider a woman in that group.

Construct for her a bootstrap mean by adding to the �tted group mean a random selection

from (2). For each cycle she contributed to the original sample, build a bootstrap analogue

by adding to her bootstrap mean a random selection from (3) and a random set of residuals

drawn from (4). We evaluate the result at the same observation times as occurred in the

original cycle, in order to maintain the same pattern of missing data. For each bootstrap

sample so obtained we repeat the REML and BLUP procedures.
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We remark that there are many unresolved issues concerning the relationship of our

bootstrap probability mechanism to the real world mechanism that generated the original

data. First, the procedure is partially parametric in that the �tted group means are taken

as \truth". Second, the objects in (2) and (3) are posterior means and as such are smoother

than samples from the prior distribution of the model. Third, the residuals in (4) contain

bias, unlike the random errors of the model. Related to the third issue but somewhat

counterintuitive to the second is a phenomenon we noticed in which estimates of � from the

bootstrap samples are higher than the REML estimate from the original sample. Despite

possible problems intrinsic to our procedure, we found that bootstrap estimates of �tted

group means appear similar to the original estimates.

Fitted group means computed from the progesterone data are presented in Figure 6 and

overlaid by a rough comparison based on daily means. It is reassuring that the qualitative

di�erences revealed by the smoothing spline model agree with those summarized in the

rough comparison. Particularly interesting for our colleagues in biomedical research is the

comparison over the time between ovulation day and day 8. Two previous studies presented

�ndings showing progesterone production to be higher in conceptive than in non-conceptive

cycles during this time. The discrepancy created by our results may possibly be explained by

our use of urinary rather than serum samples in the analysis (Stewart, Nakajima, Overstreet

and Lasley (1993) used serum), and also by the nature of our sample | we do not have

adequate data to make a paired comparison using paired nonconceptive and conceptive cycles

from the same women (Baird et al. (1996) used paired data). However, the previous studies

did not address the potential problem of multiple comparisons; several daily comparisons

were made at the :05 signi�cance level.

We used the bootstrap simulations to investigate the reliability of our �nding that on

average, progesterone production between ovulation and implantation is lower in conceptive

than in non-conceptive cycles. See Figure 7 for an example of our results. Tabulation

of results from 35 bootstrap samples found only 16 graphs (46%) with the nonconceptive

(solid line) estimate lying above the conceptive estimate during days +2 to +8 as in Figure 6,

strongly suggesting (presuming that the bootstrap procedure gives reasonable results) that

this feature is not signi�cant.

4. SUMMARY

We have used the correspondence between penalized regression and mixed e�ects mod-
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els to extend the smoothing spline model for individual curves to encompass samples of

curves strati�ed by nested and crossed factors. We presented equivalent formulations of the

generalized procedure in terms of both penalized regression and mixed e�ects models, and

highlighted the relationship between the associated generalized smoothing parameters and

variance components. Particular attention was given to the correlation structure inherent

in the generalized models and its impact on smooth curve estimates, especially with respect

to data imputation. An e�cient method for computation of parameter estimates using a

preliminary eigenvector decomposition was described along with asymptotic and bootstrap

approaches to determining variability of the estimates and resultant �tted smooth curves.

The exposition was illustrated with analyses of the urinary progesterone data, a sample of

curves implicitly strati�ed by subjects nested within conceptive and nonconceptive groups.

Our research has generated interesting statistical questions that remain unanswered.

Primary among these is our conjecture that the bootstrap procedure employing a hierarchical

resampling scheme leads to an assessment of variability that is representative of the actual

variability. We are also curious about how our REML estimates of the smoothing parameters

correspond to those that a cross-validated determination would give. The development of

computer programs for implementing our approximate nested EM is a task left open. There

is also the possibility to extend our models in various directions. One such direction takes

the smoothing parameters to be di�erent for each estimated curve. In another direction

one might incorporate in the style of linear regression an explicit modeling of categorical

and continuous covariates in place of our analysis of variance framework for categorical

covariates. A model with three continuous covariates x1, x2, and x3 observed for each curve

i might be written as

yil = x1(i)s1(til) + x2(i)s2(til) + x3(i)s3(til) + "il;

with s1(t), s2(t), and s3(t) representing three underlying smooth curves analogous to the

parameters of a linear regression. Categorical covariates could be included using dummy

variables to produce a broad class of models encompassing those of this article.

APPENDIX: PROOFS

Proof of Theorem 1

We need the following lemmas.

Lemma 1
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Suppose n � 2 and that t1 < : : : < tn. Given any values y1; : : : ; yn, there is a unique natural

cubic spline �s with knots at the points ti satisfying

�s(ti) = yi for i = 1; : : : ; n:

For proof see Theorems 2.1 and 2.2 in Green and Silverman (1994) chapter 2.

Lemma 2

Suppose n � 2 and that a < t1; : : : ; tn < b. There is a unique function �s in W2
2 [a; b] that

minimizes
R
(s00(t))2dt subject to s(ti) = yi; i = 1; : : : ; n; moreover, �s is a natural cubic

spline with knots at the points ti.

For proof see Theorem 2.3 in Green and Silverman (1994) chapter 2.

Lemma 3

Adding to the notation of Section 2.1, let X(t) = (B1(t); B2(t)), B(t) = (B3(t); : : : ; BT (t)),

B00(t) = (B3
00(t); : : : ; BT

00(t)), Z(t) = B(t)UD�1=2, and Z 00(t) = B00(t)UD�1=2. Fur-

thermore, let (�1;�2) be de�ned through the one-to-one correspondence given by s(t) =

X(t)�1 +Z(t)�2 between functions s(t) in S(�2; : : : ; �T�1) and pairs of coe�cient vectors

in <2 �<T�2. Then Z
(s00(t))2dt = �T

2 �2:

Proof:

s00(t) = Z 00(t)�2 since B1
00(t) = B2

00(t) = 0. Therefore
R
(s00(t))2dt =

R
(Z 00(t)�2)

2dt =R
(�T

2Z
00(t)TZ 00(t)�2)dt = �T

2 (
R
D�1=2UTB00(t)TB00(t)UD�1=2dt)�2 =

�T
2 (D

�1=2UTQUD�1=2dt)�2 = �T
2 (D

�1=2UTUDUTUD�1=2dt)�2 = �T
2 �2: 2

Denote the functions minimizing (14) by ~sgk(t); k = 1; : : : ; NG; ~swj (t); j = 1; : : : ; NW ;

and ~sci ; i = 1; : : : ; N , where NG, NW , and N are respectively the number of di�erent

groups, women, and cycles in the sample. By Lemma 1, there exist a unique collection of

natural cubic splines �sgk (t); k = 1; : : : ; NG; �swj (t); j = 1; : : : ; NW ; and �sci(t); i = 1; : : : ; N

with knots at (�2; : : : ; �T�1) such that �sgk(�l) = ~sgk(�l); �swj (�l) = ~swj (�l); and �sci(�l) =

~sci(�l) for l = 2; : : : ; T � 1. By Lemma 2, �g
R
(�sgk

00(t))2dt � �g
R
(~sgk

00(t))2dt for each k,

�w
R
(�swj

00(t))2dt � �w
R
(~swj

00(t))2dt for each j, and �c
R
(�sci

00(t))2dt � �c
R
(~sci

00(t))2dt for

each i, with equality in any case only if �s = ~s. Therefore, the solutions to (14) are unique and

belong to the class of natural cubic spline functions having knots at the collective interior

design points, (�2; : : : ; �T�1).

In fact, the solutions to (14) belong to a smaller class of natural cubic splines. Let �
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index the strata corresponding to the set of factor levels fgk; k = 1; : : : ; NG; wj ; j =

1; : : : ; NW ; and ci; i = 1; : : : ; Ng, �(�) denote the corresponding smoothing parameter,

and (�2; : : : ; �T (�)�1) denote the interior design points for stratum �. By Lemma 1, for

each � there exists a unique natural cubic spline �s�(t) with knots at (�2; : : : ; �T (�)�1) such

that �s�(t) = ~s�(t) for t 2 f�ig
T (�)�1
i=2 . By Lemma 2, �(�)

R
(�s�

00(t))2dt � �(�)
R
(~s�

00(t))2dt,

with equality only if �s� = ~s�. Therefore, the solutions to (14), indexed by �, belong to the

class of natural cubic spline functions having knots at the relevant interior design points,

(�2; : : : ; �T (�)�1).

We now show that the solutions to (14) sampled at the appropriate design points are

the BLUP solutions summarized by ŷ = X�̂ + Zû. By Lemma 3, functions s(t) 2

S(�2; : : : ; �T�1) can be written as X(t)�1 + Z(t)�2 with
R
(s00(t))2dt = �T

2 �2. There-

fore,

1.
P

i

P
l

�
yil � (sg(i)(til) + sw(i)(til) + sc(i)(til))

�2
can be written as

P
i jjyi � (Xi(�g(i) +

�w(i) + �c(i)) + Zi(ug(i) + uw(i) + uc(i)))jj
2, letting Xi and Zi represent X(t) and Z(t)

sampled at the design points speci�c to curve i as in Section 2.1, while

2. �g
R
(sgk

00(t))2dt, �w
R
(swj

00(t))2dt, and �c
R
(sci

00(t))2dt can be written respectively as

�g
P

k u
T
gk
ugk , �w

P
j u

T
wjuwj , and �c

P
i u

T
ciuci .

Collecting terms into X, Z, �, ug , uw, uc, and u as in Section 2.1, we have shown so far

that the solutions to (14) can be summarized by X�� + Zu� where �� and u� are the

solutions to

arg minjjy � (X� +Zu)jj2 + �gu
T
g ug + �wu

T
wuw + �cu

T
c uc: (21)

De�ning p(yju) as a MVN density with mean X� + Zu and variance �2I, and p(u) as

a MVN density with mean 0 and variance �2=�gING
� �2=�wINW

� �2=�cIN (where �

is the direct sum operation for matrices), the solutions to (21) are those to arg min �

2 log p(yju)p(u) and hence BLUP (Lindley and Smith 1972; Robinson 1991) for the model

in (11). Therefore the BLUP �tted curves for (11) summarized by ŷ = X�̂ + Zû are

equivalent to the �tted curves given by the penalized regression in (14). 2

Proof of Theorem 2

The proof of Theorem 2 is very similar to the proof of Theorem 1 and thus is omitted.
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Figure 1: Observed records of progesterone metabolite concentrations (measured as ng
PDG/mg Cr) from nonconceptive menstrual cycles, shown strati�ed by subject and graphed
versus day in cycle relative to ovulation. Log concentrations were used in all analyses, and
observations outside [day -8, day +15] excluded.
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Figure 2: Progesterone data from nine conceptive cycles.
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Figure 3: Results of applying our methods to the progesterone data, illustrating the smooth
analysis of variance and pro�cient data imputation. Data was deleted from Cycle 5 in a
subsequent analysis for comparison.
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norm =  54.87 19.91 10.12 6.08 4.04 2.86

2.13 1.63 1.29 1.04 0.85 0.71

0.6 0.51 0.44 0.38 0.33 0.29

0.26 0.23 0.2 0.18 0.16 0.15
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Figure 4: Columns of Z and their norms.
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Figure 5: Comparison of �tted curves for Subject 11 Cycle 2 for varying values of the
smoothing parameter �.
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Smaller subset Larger subset

Estimate SD Estimate SD
�2 .080 .0065 .1655 .0088

(�2=�g) .0107 .0048 .010 .0040
(�2=�w) .0059 .0027 .0063 .0021
(�2=�c) .0041 .0014 .0052 .0014

Table 1: Estimates of the variance components and their asymptotic standard deviations
using two subsets of the data with the nested model and unconstrained smoothing param-
eters.
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Figure 7: Example of 35 bootstrap simulations to compare �tted group means. Solid lines
represent nonconceptive and dotted lines conceptive progesterone means, plotted versus day
in cycle. The original �t is displayed in the �rst panel for comparison.
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