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Abstract

In a Galton-Watson branching process with o�spring distribution
(p0; p1; : : :) started with k individuals, the distribution of the total
progeny is identical to the distribution of the �rst passage time to
�k for a random walk started at 0 which takes steps of size j with
probability pj+1 for j � �1. The formula for this distribution is
a probabilistic expression of the Lagrange inversion formula for the
coe�cients in the power series expansion of f(z)k in terms of those
of g(z) for f(z) de�ned implicitly by f(z) = zg(f(z)). The Lagrange
inversion formula is the analytic counterpart of various enumerations
of trees and forests which generalize Cayley's formula knn�k�1 for
the number of rooted forests labeled by a set of size n whose set of
roots is a particular subset of size k. These known results are derived
by elementary combinatorial methods without appeal to the Lagrange
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formula, which is then obtained as a byproduct. This approach uni�es
and extends a number of known identities involving the distributions
of various kinds of random trees and random forests.

1 Introduction

Let (Z0; Z1; : : :) be a Galton-Watson branching process with o�spring distri-
bution (pi; i = 0; 1; : : :), where pi � 0;

P
i pi = 1. Interpret pi as the probabil-

ity that an individual has i children, and Zg as the number of individuals in
the gth generation of a population starting from some initial number Z0. For
each g � 0, it is assumed that given the evolution of the population up to the
gth generation, the Zg individuals in the gth generation have independent
random numbers of children distributed according to (pi). These children are
the Zg+1 members of the (g+1)th generation. See [30, 33, 5] for background.
Let

Sn := X1 + � � �+Xn (1)

be the sum of n independent random variables Xj with common distribution
(pi). From the description of (Z0; Z1; : : :), this sequence is a Markov chain
with state space f0; 1; 2; : : :g and time-homogeneous transition probabilities

P (Zg+1 = m jZg = n) = P (Sn = m) (2)

where for each n the sequence (P (Sn = m);m = 0; 1; : : :) is the n-fold con-
volution of the sequence (pi; i = 0; 1; : : :) with itself. Two elementary expres-
sions for P (Sn = m) in terms of (pi) are recalled in formulae (7) and (8)
below. Let

#Fk :=
1X
g=0

Zg 2 f1; 2; : : : ;1g (3)

represent the total progeny in the branching process given Z0 = k individuals
to start with. Here #Fk stands for the number of individuals in the random
family Fk generated by the branching process. In Section 4, Fk will be
de�ned as a random family forest, that is a collection of k random family trees,
one for each of the k initial individuals. The following theorem presents a
remarkable formula for the distribution of #Fk restricted to positive integers.
This formula was discovered by Otter [43] for k = 1 and extended to all k � 1
by Dwass [17]:
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Theorem 1 (Otter-Dwass formula) For all n; k = 1; 2; : : :

P (#Fk = n) =
k

n
P (Sn = n � k): (4)

There is another setting where the same array of probabilities arises:

Theorem 2 (Kemperman's formula [34],[35, (7.15)]) Let T�k be the least
n � 1 such that Sn � n = �k, with the convention that T�k = 1 is there is
no such n. Then for all 1 � k � n

P (T�k = n) =
k

n
P (Sn = n� k): (5)

The consequence of (4) and (5), that #Fk has the same distribution as T�k for
each k = 1; 2; : : :, can be understood in terms of Kendall's [36] interpretation
of the branching process (Zn) and the random walk (Sn � n) in terms of a
queueing process, which is recalled in Section 5.

The �rst approach to these formulae was by the method of probability
generating functions. Let

g(z) :=
1X
i=0

piz
i (6)

be the probability generating function derived from the o�spring distribution
(pi) Two elementary expressions for P (Sn = m) are

P (Sn = m) = coe�cient of zm in g(z)n (7)

=
X
�ni=n

�ini=m

 
n

n0; � � � ; nn

!Y
i�0

pnii (8)

where the sum ranges over the �nite set of all sequences of non-negative
integers (ni; i � 0) with �ni = n and �ini = m. Here 

n

n0; : : : ; nn

!
:=

n!

n0! � � � nn!
(9)

is the multinomial coe�cient which is the number of sequences (ij; 1 � j � n)
of type (ni; i � 0), that is sequences (ij) such that #fj : ij = ig = ni for all
i � 0 and hence

P
j ij =

P
i ini. Let

hk(z) :=
X
n

P (#Fk = n)zn
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be the generating function of the distribution of #Fk restricted to �nite
values. Since the branching process started with k individuals can be con-
structed from k independent copies of the branching process started with one
individual, the random variable #Fk is distributed like the sum of k indepen-
dent copies of #F1. Similarly, #F1 given Z1 = k has the same distribution
as 1 + #Fk. It follows that

hk(z) = h(z)k where h(z) = zg(h(z)): (10)

In particular, it is well known [30] that the extinction probability hk(1) =
P (#Fk < 1) equals qk where q is the least non-negative root of q = g(q),
and that q = 1 or q < 1 according as � � 1 or � > 1, where � :=

P
i ipi is

the mean of the o�spring distribution of Xj , and it is assumed that p1 < 1.
This method of determining the distribution of #Fk, which dates back

to a 1944 report of Hawkins and Ulam [31], was used also by Otter [43] and
Good [24]. If ĥk(z) is de�ned in the setting of Kemperman's formula by

ĥk(z) :=
X
n

P (T�k = n)zn

then the same relation (10) can be derived for ĥk(z) instead of hk(z). Accord-
ing to a classical result of Lagrange the equation for h(z) in (10) has a unique
analytic solution in a neighbourhood of 0. It follows that ĥk(z) = hk(z) =
h(z)k for this unique h(z). The Otter-Dwass and Kemperman formulae can
now be read from the power series expansion of h(z)k provided by

Theorem 3 (Lagrange inversion formula [11]) Let g(z) be analytic in a neig-
bourhood of 0 with g(0) 6= 0. Then the equation h(z) = zg(h(z)) has a unique
analytic solution in a neighbourhood of 0 such that

coe�cient of zn in h(z)k =
k

n

�
coe�cient of zn�k in g(z)n

�
: (11)

While stated here in an analytic form, it is well known [59, x5.4] that the
Lagrange inversion formula can be formulated as an identity of formal power
series. From this perspective, it is clear that both sides of (11) are poly-
nomials in the �rst n + 1 coe�cients p0; : : : ; pn say of g(z) :=

P
n pnz

n. As
observed by Wendel [67], to prove (11) it is enough to establish this identity
of polynomials in p0; : : : ; pn for pi � 0 and

Pn
i=1 pi � 1, and that is precisely
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the content of each of the preceding probabilistic theorems. Thus the Otter-
Dwass formula and Kemperman's formula are probabilistic expressions of the
Lagrange inversion formula.

It is known to combinatorialists [53, 40, 10, 59] that the Lagrange in-
version formula is the analytic counterpart to various enumerations of trees
and forests which trace back to Cayley [8], and that these enumerations can
also be interpreted, by a suitable bijection between forests and lattice paths,
as enumerations of lattice paths. This paper o�ers an elementary approach
to this circle of ideas by development of the combinatorial and probabilistic
results without appeal to the Lagrange inversion formula, which is then a
byproduct as just indicated.

The term forest will be used here for a �nite rooted forest, that is a directed
graph with a �nite number of vertices, each of whose connected components
is a tree with edges directed away from its root vertex. A forest with vertex
set V is said to be labeled by V . For vertices v and w of a forest f write

v
f
! w to show that (v;w) is a directed edge of f . The number of children or

out-degree v in the forest f is C(v; f) := #fw : v
f
! wg. In a plane forest f

with k component trees, the set of roots of the tree components is ordered,
as is the set of children of v for each vertex v of f . Regard a plane forest
with k root vertices as a collection of family trees, one for each of k initial
individuals, with each vertex in the forest corresponding to an individual,
and with the order of the roots and the orders of children corresponding to
the order of birth of individuals. A plane forest is often depicted without
labels as on the left side of Figure 1, and called an unlabeled plane forest.
However, there is a natural way to identify each vertex of a plane forest by
a �nite sequence of non-negative integers which indicates the location of the
vertex in the forest. So, following the convention of [30] for labeling family
trees, the set of vertices of a plane forest will be identi�ed as a subset of the
set of all �nite sequences of integers, as illustrated on the right side of Figure
1.
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Figure 1

(1) (2) (3) (4)

(1; 1) (1; 2) (1; 3) (3; 1) (4; 1)

(1; 1; 1) (1; 1; 2) (3; 1; 1)

(3; 1; 1; 1) (3; 1; 1; 2)

An individual in the gth generation of a family forest (= vertex at height
g in the plane forest) is identi�ed by a sequence of g+1 integers, for instance
(3; 7; 4) to indicate a second generation individual who is the 4th child of the
7th child of the 3rd root individual.

The type of a forest f is the sequence of non-negative integers (ni), where
ni is the number of vertices of f with i children. Let 1 � k � n and let (ni)
be a sequence of non-negative integers with

X
i

ni = n and
X
i

ini = n� k: (12)

A forest of type (ni) has n vertices and n� k non-root vertices, hence k root
vertices and k tree components.

Theorem 4 (Enumeration of plane forests by type) [18, 19, 43, 54] For
1 � k � n and (ni) subject to (12) the number Nplane(n0; n1; : : :) of plane
forests of type (ni) with k tree components and n vertices is

Nplane(n0; n1; : : :) =
k

n

 
n

n0; : : : ; nn

!
: (13)
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This enumeration is due to Erd�elyi and Etherington [18, 19] and Otter [43]
for k = 1. An equivalent enumeration in terms of words instead of trees
appears in Raney [53, Thm. 2.2] for k � 1. Stanley [59, Thm. 3.10 of Ch.
5] gives two proofs of (13) based on a bijection between forests and lattice
paths, and an enumeration of lattice paths by consideration of cyclic shifts
as in Section 5 of this paper. The corresponding result for labeled forests is:

Theorem 5 (Enumeration of labeled forests by type) [59, Cor. 3.5] Let
[n] := f1; : : : ; ng: For 1 � k � n and (ni) subject to (12), the number
N [n](n0; n1; : : :) of forests labeled by [n] of type (ni) with k tree components
and n vertices is

N [n](n0; n1; : : :) =
k

n

 
n

k

!
(n� k)!Q
i�0(i!)ni

 
n

n0; : : : ; nn

!
: (14)

The enumeration of plane forests by type is simpler than its companion
for labeled forests. But the result for labeled forests has the following simpler
equivalent:

Theorem 6 (Enumeration of labeled forests by out-degree sequence) [51],[59,
Thm. 3.4] For all sequences of non-negative integers (c1; : : : ; cn) with

P
i ci =

n�k the number N(c1; : : : ; cn) of forests f with vertex set [n] in which vertex
i has ci children for each i 2 [n] (and hence f has k tree components) is

N(c1; : : : ; cn) =
k

n

 
n

k

! 
n� k

c1; : : : ; cn

!
: (15)

In view of the multinomial theorem, the enumeration (15) amounts to the
following identity of polynomials in n commuting variables xi; 1 � i � n:

X
f2Fk;n

nY
i=1

x
C(i;f)
i =

k

n

 
n

k

!
(x1 + � � �+ xn)

n�k (16)

where the sum is over the set Fk;n of all forests with k tree components
labeled by [n], and C(i; f) is the number of children of i in the forest f . Take
the xi to be identically 1 in (16) to recover the well known enumeration

#Fk;n = k

 
n

k

!
nn�k�1 (17)
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which is equivalent to Cayley's [8] formula

#fforests with root set [k] and vertex set [n] g = knn�k�1: (18)

In particular, for k = 1 the number of rooted trees labeled by [n] is nn�1.
Equivalently, the number of unrooted trees labeled by [n] is nn�2. For various
other approaches to these formulae of Cayley, see [42, 51, 52, 57, 59, 63]. The
multinomial expansion over rooted trees obtained from the case k = 1 of (16)
is a variant of the multinomial expansion over unrooted trees indicated by
Cayley [8] for small n and formulated and proved for all n by R�enyi [55]. But
throughout this paper, all trees and forests are assumed to be rooted.

The rest of this paper is organized as follows. Section 2 o�ers a simple
proof of Theorem 6. The equivalence of Theorems 4, 5 and 6 is argued in
Section 3. The equivalence of Theorem 4 and the Otter-Dwass formula is
explained in Section 4. (See also Kolchin [Chapter 2.1, Lemma 3][39] for an-
other proof of the Otter-Dwass formula, by showing that both sides satisfy
a recursion which has a unique solution.) Section 5 reviews the connection
between the Otter-Dwass formula for branching processes and Kemperman's
formula for random walks via the interpretation of both processes in terms of
queues pointed out by Kendall [36]. As shown by Tak�acs [60, 61], Kemper-
man's formula is both generalized and simpli�ed by consideration of random
walks of a �xed length n whose distribution of steps is invariant under cyclic
shifts. The ubiquitous factor of k=n in each of the six theorems above �nds
its most intuitive explanation in this context: the k=n in Kemperman's for-
mula represents the conditional probability of the event (T�k = n) given
(Sn � n = �k) \ A for any event A determined by the �rst n increments
of the walk (Sn � n) such that A is invariant under cyclic shifts of these
increments. Section 6 reviews the well known representation of the uniform
distribution on plane forests with k trees and n vertices as the distribution
of a Galton-Watson forest of k trees with geometric o�spring distribution
conditioned on a total progeny of n. Section 7 presents a similar result which
explains a number of known identities relating the uniform distribution on
the set of forests of k trees labeled by [n] to the distribution of the random
forest generated a Galton-Watson branching process with a Poisson o�spring
distribution.
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2 Enumeration of labeled forests by out-degree

sequence.

Proof of Theorem 6. For a forest f with vertex set [n] and i 2 [n] let

Ji(f) := fj 2 [n] : i
f
! jg be the set of children of i in f . So f is determined

by the sequence of disjoint sets J1(f); : : : ; Jn(f), and vice-versa. Given a
sequence of disjoint subsets J1; : : : ; Jn of [n], for each m 2 [n] let fm be the
relation on [m][ ([m

i=1Ji) de�ned by

i
fm! j i� i 2 [m] and j 2 Ji: (19)

There exists a forest f labeled by [n] such that Ji(f) = Ji for all i 2 [n] if
and only if the Ji are such that fm de�ned by (19) is a forest with vertex
set [m] [ ([m

i=1Ji) for every m 2 [n]; then f = fn and fm is the restriction
of f to [m] [ ([m

i=1Ji) for each m 2 [n]. It follows that for each sequence of
non-negative integers (ci) with

P
i ci = n� k, the number

N(c1; : : : ; cn) := #ff 2 Fk;n : #Ji(f) = ci for all i 2 [n]g (20)

is the number of ways to choose a sequence of subsets (J1; : : : ; Jn) of [n] such
that #Jm = cm and the relation fm de�ned by (19) is a forest with vertex set

[m][ ([m
i=1Ji) for every m 2 [n]. Clearly, J1 can be any of the

�
n�1
c1

�
subsets

of [n] � f1g of size c1. For m 2 [n � 1] make the inductive hypothesis that
sets J1; : : : ; Jm of sizes c1; : : : ; cm have been chosen so that fm is a forest.
Which choices of Jm+1 of size cm+1 make fm+1 a forest? There are two cases
to consider. Either
(i) m+1 =2 [m

i=1Ji: then Jm+1 can be any subset of [n]� ([m
i=1Ji)�fm+1g;

or
(ii) m + 1 2 [m

i=1Ji: then Jm+1 can be any subset of [n] � ([m
i=1Ji) � frmg

where rm =2 [m
i=1Ji is the root of the tree component of fm which contains

m+ 1. Either way, and regardless of what sets J1; : : : ; Jm of sizes c1; : : : ; cm
were previously chosen to make fm a forest, the number of possible choices
of Jm+1 which make fm+1 a forest is 

n�
Pm

i=1 ci � 1

cm+1

!
:
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Consequently, by induction

N(c1; : : : ; cn) =

 
n� 1

c1

! 
n� c1 � 1

c2

!
� � �

 
n�

Pn�1
i=1 ci � 1

cn

!

and this expression simpli�es easily to yield (15). 2

3 Enumeration of forests by type

Proof of Theorem 5. Let (ni) subject to (12) be a possible type sequence
for a forest of k trees with n vertices. According Theorem 6, for each particu-
lar sequence (cj) of type (ni) the number of forests in which j has cj children
for all j 2 [n] is

k

n

 
n

k

!
(n� k)!

c1! : : : cn!
=

k

n

 
n

k

!
(n� k)!Q
i�0(i!)ni

: (21)

But the number of sequences of non-negative integers (cj) such that (cj) has
type (ni) is just the multinomial coe�cient (9). The number of forests labeled
by [n] of type (ni) is the product of the number in (21) and this multinomial
coe�cient. Thus Theorem 6 implies Theorem 5, and vice versa. 2

Proof of Theorem 4. The enumeration (13) for plane forests corresponds
to the enumeration (14) for labeled forests via the following map 	, which
transforms a forest f labeled by [n] into a plane forest 	(f) of the same type.
To de�ne 	(f), �rst place the components of f in order of their root labels,
then recursively for each g � 0 place the children of each vertex of f at height
g in order of their labels. Finally, delabel to obtain the plane forest 	(f).
See Figure 2.
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Figure 2

2

3

5

4

8

1

9

6

7

f
2 3 5

4 8 1 9

6 7

	(f)

For a �xed plane forest f� with n vertices and k root vertices, and type
(ni), let fv1; : : : ; vng be a listing of the vertices in some arbitrary order. Let
B0 be the set of roots of f�, and Bi the set of children of vi for i = 1; : : : ; n.
The sets Bi; 0 � i � n, some of which must be empty, are disjoint with union
V (f�), the set of vertices of f�. As discussed earlier, V (f�) is regarded as a
subset of the set of �nite sequences of positive integers. Each non-empty Bi

has a linear ordering, and each f 2 	�1(f�) corresponds to a unique bijection
from V (f�) to [n] which is increasing on each non-empty Bi. It follows that
#	�1(f�), the number of forests f labeled by [n] such that 	(f) = f� is the
multinomial coe�cient

#	�1(f�) =

 
n!

k;#B1; : : : ;#Bn

!
=

n!

k!
Y

v2V (f�)

C(v; f�)!
=

n!

k!
Y
i�0

(i!)ni
(22)

where C(v; f�) is the number of children of v in the forest f�, and (ni)
is the type of f� and of every f 2 	�1(f�). It follows that the number
Nplane(n0; n1; : : :) of plane forests of type (ni) and the corresponding number
N [n](n0; n1; : : :) of forests of type (ni) labeled by [n] are related by

N [n](n0; n1; : : :)

Nplane(n0; n1; : : :)
=

n!

k!
Q

i�0(i!)ni
: (23)

Hence the equivalence of Theorems 4 and 5. 2
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4 The Otter-Dwass formula

Proof of the equivalence of Theorems 1 and 4. Following Otter [43] and
subsequent authors [30, 37, 13], regard a Galton-Watson process started with
Z0 = k individuals as generating a collection of k family trees, which combine
to form a random family forest Fk. On the event (#Fk < 1) the random
family forest Fk can be de�ned in an elementary way as a random element
with values in the countable set F of all plane forests. The distribution of Fk

is then the sub-probability distribution on F de�ned by the formula [43]

P (Fk = f) =
Y

v2V (f)

pC(v;f) =
Y
i�0

p
ni(f)
i 8k � 1; f 2 Fplane

k (24)

where V (f) is the set of vertices of f , the number of vertices of f with i
children is denoted ni(f), and F

plane

k is the set of plane forests with k root
vertices. This distribution on Fplane

k has total mass P (#Fk < 1) � 1. For
each k = 1; 2; : : : the probability of the event (#Fk = n) is obtained by
summing the expression (24) over all plane forests f of k trees with a total
of n vertices. The terms in this sum can be classi�ed by the type (ni) of the
forest f . Since the number of vertices in a forest of type (ni) is

P
i ni and the

number of root vertices is n�
P

i ni, the result is

P (#Fk = n) =
X
�ni=n

�ini=n�k

Nplane(n0; n1; : : :)
Y
i�0

pnii (25)

where the sum is over all possible types of a sequence with length n and sum
n� k. Now �x n and k and regard the probability displayed in (25), and the
probability P (Sn = m) displayed in (8) for m = n � k, as functions of the
sequence (p0; : : : ; pn). Since each probability is a polynomial in (p0; : : : ; pn),
the Otter-Dwass formula (4) is an identity of polynomials whose coe�cient
identity is the enumeration (13) of plane forests by type. 2

Lagrangian distributions. Recall that h(z) determined by the o�spring
generating function g(z) via (10) or (11) is the probability generating function
of the total progeny of a Galton-Watson branching process started with one
individual. For Z0 with an arbitrary distribution with probability generating
function f(z) :=

P
n P (Z0 = n)zn it is evident by conditioning on Z0 that

the unconditional distribution of the total progeny is that determined by the
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generating function f(h(z)). This distribution is known as the Lagrangian
distribution derived from the distribution of Z0 and the o�spring distribu-
tion. See [16, 17, 44, 9, 58] regarding Lagrangian distributions and their
applications, and [25, 26, 27, 23] for the multivariate extension of Lagrange's
expansion and its relation to multi-type branching processes.

5 Random walks, queues, and branching pro-

cesses.

The following interpretation of the random walk (Sn � n) and the branching
process (Zn) in terms of queuing theory is due to Kendall [36]. See also
[25, 60, 62, 64, 22]. Suppose customers arrive and wait for service in a queue
with a single server. The time the server is working consists of alternating
busy and idle periods, each busy period consisting of one or more service
periods, one per customer. Let Xj denote the number of customers arriving
during the jth service period, so Sn represents the number of customers
arriving by the end of the nth service period. Suppose at time zero there are
k � 1 customers already present in the queue. For 0 � n � T�k the number
of customers in the queue just after the end of the end of the nth service
period is k + Sn � n. So T�k represents the number of customers served
during the �rst busy period, and P (T�k = n) is the probability that the
server has to deal with n customers before taking a break, given k customers
in the queue to start with. The queuing process de�nes a random family
Fk, starting with k individuals, such that #Fk = T�k. Each individual j in
Fk represents a di�erent customer, with j 0 the child of j if j 0 arrives during
the service period of j. Assuming that the numbers Xj are independent
with common distribution (pi), the random family derived from the queue
de�nes a Galton-Watson branching process (Zn) with o�spring distribution
(pi). This argument explains why the total progeny of the branching process
(Zn) started with k individuals has the same distribution as the �rst passage
time T�k of the random walk (Sn � n). The argument can be made more
precise by setting up an appropriate bijection between the following two sets:
the set of walk paths starting at (0; 0) and �rst reaching �k at time n by a
sequence of integer increments with no increment less than �1, and the set
of plane forests of k trees and n vertices. See [59, 22] for details and further
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developments.
In the setting of Theorem 2, by de�nition

(T�k = n) := (8n�1m=1Sm �m 6= �k; Sn � n = �k) � (Sn � n = �k) (26)

where Sn � n = Y1 + � � �+ Yn for Yj = Xj � 1, derived from independent Xj

with common distribution (pi). So Kemperman's formula (5) can be restated
as follows:

P (T�k = n jSn � n = �k) =
k

n
: (27)

That is to say, given that the random walk (Sm �m) is at �k at timem = n,
the chance that the walk �rst reached �k at time n is k=n. The work of
Tak�acs [60, 61] shows that this form of Kemperman's result can be generalized
as follows. See [60, Thm 1 of x4 and Thm 5 of x28] for two other essentially
equivalent formulations related to the classical ballot theorem. The basic
idea of considering cyclic shifts traces back to Dvoretsky and Motzkin [14].
See also [21, 20, 15, 12] for closely related results and further references.

For a sequence of integers y := (y1; : : : ; yn) and i 2 [n] let y(i) denote the
ith cyclic shift of y, that is the sequence whose jth term is yi+j with addition
modulo n. Call a set of sequences A cyclically invariant i� y 2 A implies
y(1) 2 A, in which case y(i) 2 A for all i 2 [n]. Call a sequence of random
variables Yn := (Y1; : : : ; Yn) cyclically exchangeable if (Y2; : : : ; Yn; Y1) has the
same distribution as (Y1; : : : ; Yn). For integer valued Yi this is equivalent to

P (Yn = y) = P (Yn = y(i)) (28)

for each sequence of integers y and all i 2 [n].

Theorem 7 (Tak�acs [60, 61] ) Suppose that Yn := (Y1; : : : ; Yn) is a cyclically
exchangeable sequence of random variables, let S�m = Y1 + � � � + Ym, and let
(T�k = n) be the event that the walk (S�m) �rst reaches �k at time n. Let
N� := f�1; 0; 1; 2; : : :g. Then for every cyclically invariant subset A of Nn

�,

P (T�k = n jS�n = �k;Yn 2 A) =
k

n
: (29)

Proof. Every cyclically invariant A decomposes as the union of some col-
lection of cyclic orbits, where for a sequence y the cyclic orbit of y is the
set Ay := fz : z = y(i) for some i 2 [n]g. So it su�ces to prove (29) in the
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case A = Ay for an arbitrary y 2 Nn
�. This special case is a consequence of

following elementary lemma. 2

For a sequence y, let tm = y1 + � � �+ ym and call the sequence of partial
sums (t1; : : : ; tn) the walk with steps y. Say the walk �rst reaches b at time
n if ti 6= b for i < n and tn = b.

Lemma 8 (Wendel [67, x3]) Let y 2 N
n
� be such that y1 + � � � + yn = �k

for some 1 � k � n, and let y(i) be the ith cyclic shift of y. Then there are
exactly k distinct i 2 [n] such that the walk with steps y(i) �rst reaches �k
at time n.

For di�erent formulations of the lemma, which show how it generalizes the
classical ballot theorem, see [60, Thm. 3 and Thm. 4 of x2]. While Theorem 7
was stated in a probabilistic way, the lemma reveals its combinatorial essence.
Thus Theorem 7 can be formulated in purely combinatorial terms as follows:

Corollary 9 Let A be a cyclically invariant subset of Nn
� such that y1+ � � �+

yn = �k for every y 2 A. Let A� be the set of all y 2 A such that the walk
with steps y �rst reaches �k at time n. Then the fraction of elements of A
that are elements of A� equals k=n.

To illustrate the corollary, let I := fa; a + 1; : : : ; bg be a �nite set of
consecutive integers with a � �1. Given a sequence (ni; i 2 I) of non-
negative integers with

P
i ni = n and

P
i ini = �k, consider the set A of all

sequences y 2 In of type (ni), so

#A =

 
n

na; : : : ; nb

!
: (30)

For a � �2 there is no simple formula for #A�, the number of sequences y
of type (ni) such that the walk with steps y �rst reaches �k at time n. But
in the special case a = �1 Corollary 9 implies

#A� =
k

n

 
n

n�1; : : : ; nb

!
: (31)

Implicit in the previous description of the branching process derived from
a queuing process is a bijection between the set of walks with step sequence
in A�, as enumerated by (31), and the set of plane forests of k trees in which
ni+1 vertices have i children, as enumerated by Theorem 4.
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6 Uniform random plane forests

For 1 � k � n let Fplane
k;n denote the set of all plane forests of k trees with a

total of n vertices, and let Fplane
k;n be a uniformly distributed random element

of Fplane
k;n . For k = 1; 2; : : : and 0 < p < 1 let Gk;p be a Galton-Watson forest

of k trees with the geometric(p) o�spring distribution pi := p(1 � p)i. The
general product formula (24) gives

P (Gk;p = f) =
Y

v2V (f)

p(1 � p)C(v;f) = pn(1 � p)n�k 8 f 2 Fplane
k;n : (32)

Since this probability is the same for all f 2 F
plane
k;n , the distribution of Gk;p

given (#Gk;p = n) is uniform on F
plane
k;n , as observed in [29, 48]. Symbolically

Fplane
k;n

d
= (Gk;p j#Gk;p = n) (33)

where
d
= denotes equality of distributions. The Otter-Dwass formula implies

P (#Gk;p = n) =
k

n
P (Sn;p = n� k) =

k

n

 
2n � k � 1

n� k

!
pn(1� p)n�k (34)

where Sn;p is the sum of n independent geometric random variables, and the
second equality in (34) is read from the negative binomial formula [21, VI.8]
for the distribution of Sn;p. Compare (32) and (34) to obtain

#Fplane

k;n =
k

n

 
2n � k � 1

n� k

!
: (35)

This argument simpli�es and corrects a similar derivation of Pavlov [48]. In
particular the number of plane trees with n vertices is

#Fplane
1;n =

1

n

 
2n � 2

n� 1

!

which is the (n � 1)th Catalan number [7, 32]. This is also the number of
lattice excursions of length 2n, that is sequences (sj ; 0 � j � 2n) where
s0 = s2n = 0, and sj > 0 and sj+1� sj 2 f�1;+1g for all 0 � j � 2n� 1. As

observed by Harris [29], there is a natural bijection between Fplane
1;n and the

set of lattice excursions of length 2n. See Figure 3.
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Figure 3

(0; 0) (12; 0)

This bijection extends to a bijection between F
plane
k;n and the set of non-

negative lattice walk paths from (0; 0) to (0; 2n) with increments of �1 and
exactly k returns to 0. By another bijection, the number of plane forests
with n vertices equals the number of plane trees with n+ 1 vertices:

#
n[

k=1

F
plane

k;n = #Fplane
1;n+1:

In view of (35) this yields the identity

nX
k=1

k

n

 
2n � k � 1

n� k

!
=

1

n+ 1

 
2n

n

!
: (36)

The sum is the nth Catalan number, which is the the number of non-negative
lattice walk paths from (0; 0) to (0; 2n) with increments of �1. The kth term
of the sum is the number of such paths with k returns to zero.

Similarly, the number of ways to pick a plane forest with n vertices and
assign each tree component a sign �1 equals the number of lattice paths from
(0; 0) to (0; 2n) with increments of �1, that is

nX
k=1

k

n

 
2n � k � 1

n� k

!
2k =

 
2n

n

!
: (37)
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In agreement with the result of Feller [21, Thm. 2 of xIII.7], the kth term
in the sum (37) divided by 22n is the probability that a simple symmetric
random walk, started at 0 and moving with increments of �1, returns to 0
for the kth time after 2n steps.

The bijection between trees and lattice excursions implies that the large
n asymptotic distribution of many functionals of a random tree Tn with
uniform distribution on F

plane
1;n can be read from the asymptotic distribution

of a functional of a uniformly distributed random lattice excursion of length
2n, which is typically the distribution of a corresponding functional of a
Brownian excursion [2, 13]. As shown by Aldous [2, 3], the same holds for
any random plane tree Tn with Tn distributed like T given #T = n where T
is a Galton-Watson tree whose o�spring distribution has mean 1 and �nite
variance. In particular, due to the result of the next section, this conclusion
applies to Tn derived from a random tree with uniform distribution on the set
Tn of all nn�1 rooted trees labeled by [n]. The general class of distributions
for a planar tree of size n obtained by conditioning a Galton-Watson tree to
be of size n is the class of distributions of \simply generated trees" studied
by Meir and Moon [41]. See [2, 3, 1, 13, 28] for further developments.

7 The plane forest derived from a uniform

labeled forest

Recall from around (22) the map 	 : Fk;n ! F
plane

k;n , where Fk;n is the set

of forests with k tree components labeled by [n], and F
plane
k;n is the set of

plane forests with k tree components and n vertices. For a lighter notation,
write f� instead of 	(f), and call f� the plane forest derived from f . So
f� is just f regarded as a plane forest by giving the set of roots of f and
the sets of children of various vertices of f the order these sets acquire from
the usual ordering of [n]. The following theorem strengthens connections
discovered Kolchin [38] and Pavlov[46, 47] between the uniform distribution
on Fk;n and the distribution of a Galton-Watson forest with the Poisson(�)
o�spring distribution pi := e���i=i!. Kolchin and Pavlov [38, 39, 46, 45, 47,
50, 48, 49] exploited these connections to derive the asymptotic distributions
of functionals of a uniform random forest of k trees labeled by [n], such as
the numbers of trees of various sizes and the maximum tree size, as n!1
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for various ranges of k. The case k = 1 of the theorem is implicit in the
discussion of Aldous [2, 3].

Theorem 10 For � 2 (0;1) let Pk;� be a Galton-Watson forest with the
Poisson(�) o�spring distribution, for 1 � k � n let Fk;n have uniform dis-
tribution on the set of forests of k trees labeled by [n], and let F�

k;n be Fk;n

regarded as a plane forest. Then F�
k;n has the same distribution as Pk;� given

(#Pk;� = n):

F�
k;n

d
= (Pk;� j#Pk;� = n): (38)

Proof. To be more explicit, there is the following formula. For all plane
forests f of k trees with n vertices

P (F�
k;n = f) = P (Pk;� = f j#Pk;� = n) =

n(n � k)!

knn�k

Y
v2V (f)

1

C(v; f)!
: (39)

The �rst probability in (39) is the number displayed in (22) divided by #Fk;n

in (17), which reduces to the last expression in (39) by cancellation. The sec-
ond probability reduces similarly, by application of (24) and the consequence
of the Otter-Dwass formula (4) that the total progeny in a Poisson-Galton-
Watson family forest of k trees has the distribution

P (#Pk;� = n) =
k

n

(�n)n�k

(n� k)!
e��n (n = k; k + 1; : : :) (40)

known as the Borel-Tanner distribution [6, 43, 65, 66]. 2

Call a function � of forests f an invariant if �(f) = �(f 0) whenever f 0 is a

relabeling of f , meaning v
f 0
! w i� `(v)

f
! `(w) for some bijection ` from the

vertices of f to the vertices of f 0. For example, the number Zhf of vertices of f
at height h is an invariant. So is the matrix M(f) := (Mh;c(f); h � 0; c � 0)
where Mh;c(f) is the number of individuals in generation h of f that have
c children. Since the plane forest F�

k;n is by de�nition a relabeling of the
uniform labeled forest Fk;n, the identity (38) implies Fk;n

�(Fk;n)
d
= (�(Pk;�) j#Pk;� = n) 8 invariant �: (41)

For � = M this result is due to Kolchin [38] and Pavlov [47]. The identity
(41) is expressed more intuitively by the following construction, suggested
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by Aldous [2] for k = 1. Fix � > 0 and generate a Poisson-Galton-Watson
family forest Pk;� starting from k root individuals. Given that Pk;� has vertex
set V with #V = n, let P�

k;� 2 Fk;n be Pk;� relabeled by a uniform random
permutation � : V ! [n]. Then

Fk;n
d
= (P�

k;� j#Pk;� = n): (42)

That is, given that Pk;� has n vertices, a random relabeling of Pk;� has
uniform distribution over the set of all forests of k trees labeled by [n]. For
some recent applications of this relation between uniform random trees and
Poisson-Galton-Watson trees see [51, 56, 4].
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