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Abstract

Hidden Markov models have been used in the study of single-

channel recordings of ion channel currents for restoration of idealized

signals from noisy recordings and for estimation of kinetic parame-

ters. A key to their e�ectiveness from a computational point of view

is that the number of operations to evaluate the likelihood, posterior

probabilities, and the most likely state sequence are proportional to

the product of the square of the dimension of the state space and

the length of the series. However, when the state space is quite large,

computations can become infeasible. This can happen when the record

has been low pass �ltered and when the noise is colored. In this paper

we present an approximate method that can provide very substantial

�Research supported by the National Science Foundation
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reductions in computational cost at the expense of only a very small

error. We describe the method and illustrate through examples the

gains that can be made in evaluating the likelihood.

1 Introduction

Hidden Markov models have recently found application to the analysis of
single-channel recordings, both for the construction of an idealized quantal
signal from a noisy recording (Chung et al., 1990; Fredkin and Rice, 1992a)
and for estimation of kinetic parameters directly from the recording rather
than from an idealized reconstruction (Albertson and Hansen, 1994; Fredkin
and Rice, 1992b; Venkataramanan et al., 1996; Qin et al., 1994). Hidden
Markov models have also been used in a variety of other areas, for example
in speech recognition (Rabiner, 1989) and gene �nding (Krogh et al., 1994).
A key to their computational e�ectiveness is that the number of operations
required to evaluate the likelihood or its gradient or to evaluate posterior
probabilities is proportional to the product of the square of the dimension
(D) of the state space and the length of the record (T ) (Baum et al., 1970).

Filtering and colored noise complicate the application of hidden Markov
methodology to ion channel recordings. In principle, the state space can be
enlarged to include \metastates" (Fredkin and Rice, 1992a; Venkataramanan
et al., 1996) and the standard algorithms can be used. In practice, however,
the dimensionality of the new state space can easily become so large that
computations are intractible. For example, if the underlying state space has
cardinality six and a �lter of length �ve is used, the number of operations
required to evaluate the likelihood is of order 66T rather than 62T|a factor
of more than 1000. The problem of large state space dimension also occurs
in other extensions of hidden Markov models, for example (Ghahramani and
Jordan, 1996).

In this paper we propose and illustrate an approximation strategy that
can radically decrease the number of operations required to evaluate the
likelihood while entailing little loss in accuracy. The basic idea is to ignore
metastates that are either a priori or a posteriori highly unlikely. In an
example to be presented in detail below, the number of operations is reduced
by a factor of about 400.

The remainder of this paper is organized as follows. In section 2 we de-
scribe the hidden Markov model that relates a kinetic model to an observed
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noisy digital recording and show how it can be extended to account for �lter-
ing and colored noise. We then show how the basic recursions of (Baum et al.,
1970) can be accomplished for the extended model and introduce approxi-
mations which produce lower bounds on the likelihood. Finally in section 2.5
we describe the way we have implemented evaluation of the likelihood and
our approximations. A collection of examples motivated by models that have
been proposed for ion channel kinetics are presented in Section 3. Here we
examine in some detail the savings that can be accomplished via our approx-
imations and the size of the errors consequently incurred. Section 4 contains
a summary, conclusions, and discussion of further directions.

2 Theory

2.1 The Model

We assume that an Ns state Markov process underlies the kinetics. We
consider a discrete time process, since in practice the data are samples at
times k�t. The one step transition probabilities Pij for the transition i! j
are related to the generator Qij of a continuous time Markov process by
matrix exponentiation: P = expQ�t.

Current levels Ii are associated with the states, with the values being,
in general, not all distinct. For example, a system with two closed states
and one open state would have I1 = I2 = 0, I3 6= 0. Denote the temporal
sequence of states by s(t). In the absence of �ltering and noise the observed
current would be x(t) = Is(t). In practice, because of �ltering and noise
the observed current is I(t) = (a � x)(t) + W (t), where a � x denotes the
convolution

P
k a(k)x(t� k) and a(0); a(1); : : : ; a(Nf) are �lter coe�cients;

W (t) is additive noise.
In this paper we assume that the noise W (t) is independent of the state

s(t). We will usually assume the noise to be independent identically dis-
tributed (IID) Gaussian random variables with mean zero and variance �2.
However, because we are already prepared to consider the e�ect of a �lter,
we can easily consider noise that is an autoregressive (AR) random process
driven by IID Gaussian noise: b �W = w, where b(0) = 1 and w(t) is IID
Gaussian noise with mean zero and variance �2. The FIR �lter with coef-
�cients b can be considered a prewhitening �lter (Venkataramanan et al.,
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1996). Applying this �lter to the observations I(t), we arrive at

y = b � a � x+ w = f � x+ w; (1)

where y = b � I and f = b � a. The coe�cients b(k) can be determined by
some variant of the Levinson algorithm from the autocorrelation sequence of
the noise (Venkataramanan et al., 1996). If the maximum lag in the sequence
b(k) is Nn, the e�ective �lter f(k) has maximum lag Ne = Nf + Nn. From
now on we will work with (1), referring to w(t) as the noise and y(t) as the
observation at time t. There are T observations at t = 1 : : : T . For most
purposes, we do not need the detailed structure of (1); it is su�cient that,
conditional on the state sequence s = s(�Ne + 1) : : : s(T ), the observations
y(t) are independent and the probability density p(y(t) j s) depends only on
s(t) : : : s(t�Ne): p(y(t) j s) = g(y(t) j s(t) : : : s(t�Ne)).

2.2 Recursive Calculation of the Likelihood

We can include the �lter in (1) by extension of the state space (Fredkin
and Rice, 1992a) and working with a Markov chain whose states are the
NNe+1

s \metastates" (s0 : : : sNe
). However, the transition matrix among the

metastates is sparse and we �nd it slightly simpler to work with the original
state space and extend the usual recursive procedure (Baum et al., 1970).

De�ne

�t(s(t) : : : s(t�Ne)) = P [y(1) : : : y(t)& s(t) : : : s(t�Ne)]; (2)

which can be computed recursively: With equilibrium probabilities �(s) and
transition probabilities p(s0 j s) we have

�0(s(0) : : : s(�Ne)) =
�Ne+1Y
k=0

p(s(k) j s(k � 1))�(s(�Ne);

and, for t = 1 : : : T ,

�t(s(t) : : : s(t�Ne)) =
X

s(t�Ne�1)

P [y1 : : : yt& s(t) : : : s(t�Ne � 1)]

=
X

s(t�Ne�1)

P [y1 : : : yt�1& s(t� 1) : : : s(t�Ne � 1))]

� P [s(t) j y1 : : : yt�1& s(t� 1) : : : s(t�Ne � 1))]
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� P [yt j y1 : : : yt�1& s(t) : : : s(t�Ne � 1))]

=
X

s(t�Ne�1)

�t�1(s(t� 1) : : : s(t�Ne � 1)))

� p(s(t) j s(t� 1))g(yt j s(t) : : : s(t�Ne))

= ~�t�1(s(t� 1) : : : s(t�Ne))p(s(t) j s(t� 1))

� g(yt j s(t) : : : s(t�Ne)); (3)

where, in the last line, we de�ned

~�t(s(t) : : : s(t�Ne + 1)) =
X

s(t�Ne)

�t(s(t) : : : s(t�Ne))

The likelihood is

L = P [y] =
X

s(T ):::s(T�Ne)

�T (s(T ) : : : s(T �Ne)):

In practice, we must renormalize the �t to avoid underow. We de�ne

Nt =
X

s(t):::s(t�Ne)

�t(s(t) : : : s(t�Ne));

�̂t(s(t) : : : s(t�Ne)) = �t(s(t) : : : s(t�Ne))=Nt;

and N̂t = Nt=Nt�1. Note that N0 = 1, using the de�nition of �0, and NT is
the likelihood. We have

N̂t�̂t(s(t) : : : s(t�Ne)) =
X

s(t�Ne�1)

�̂t�1(s(t� 1) : : : s(t�Ne � 1))

� p(s(t) j s(t� 1))g(yt j s(t) : : : s(t�Ne))(4)

and

L =
TY
t=1

N̂t: (5)

The N̂t are determined by the requirement that

X
s(t):::s(t�Ne)

�̂t(s(t) : : : s(t�Ne)) = 1: (6)
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2.3 Related Recursive Algorithms

Our focus is on calculation of the likelihood, but we digress briey to give the
form of the EM (Baum et al., 1970) and Viterbi (Viterbi, 1967) algorithms
using the formalism of section 2.2. We do not necessarily advocate use of the
EM algorithm. Some form of quasi-Newton method (Fletcher, 1987) may be
more e�ective. However, the recursions needed for the EM algorithm can
also be regarded as calculations of the posterior probabilities of states given
the data, and, as such, can be useful for reconstruction of the ideal signal
based on a �ctitious hidden Markov model. Similarly, the Viterbi algorithm
consists of recursions needed to �nd the most probable state sequence. All
of these recursions are complicated by the large numbers of metastates and
our approximations can be applied to all of them.

2.3.1 EM Algorithm

De�ne

�t(s(t) : : : s(t�Ne + 1)) = P [y(t+ 1) : : : y(T ) j s(t) : : : s(t�Ne + 1)]; (7)

which, like �, can be computed recursively:

�T (s(T ) : : : s(T �Ne + 1)) = 1;

and, for t < T ,

�t(s(t) : : : s(t�Ne + 1)) =
X

s(t+1)

p(s(t+ 1) j s(t))

�g(y(t+ 1) j s(t+ 1) : : : s(t�Ne + 1))

��t+1(s(t+ 1); s(t) : : : s(t�Ne + 2)):

It is straightforward to show, using a lemma from (Baum et al., 1970), that
the EM algorithm leads to the iteration scheme p0 7! p for the transition
probabilities, where

p(bja) =
Nab

Da

with

Nab =
X
s

TX
t=0

~�0
t (a; s1 : : : sNe�1)p

0(b j a)g(y(t+ 1) j b; a; s1 : : : sNe�1)

��0
t+1(b; a; s1 : : : sNe�2);

6



Da =
X
s

T�1X
t=0

~�0
t (a; s1 : : : sNe�1)�

0
t (a; s1 : : : sNe�1);

and �0 and �0 are computed with p0. (We use the notation s1 : : : sNe to
emphasize that these dummyvariables are not associated with speci�c times.)

2.3.2 Viterbi Algorithm

The Viterbi algorithm (Viterbi, 1967) is a dynamic programming method for
�nding the sequence of states, fŝ(t)g, that is most likely given the observed
data. It has been used by (Qin et al., 1994) for �nding an idealized record
from which the kinetics parameters are estimated by maximizing the likeli-
hood of the resulting sequence of dwell times. It has also been used in the
context of speech recognition by (Juang and Rabiner, 1990); in this alter-
native to standard maximum likelihood estimation, in which the marginal
likelihood of the kinetic parameters is maximized, here the joint likelihood of
the kinetic parameters and the sequence of unobserved states is maximized.
To formulate the Viterbi algorithm in the case of �ltering and colored noise
we follow the notation of (Fredkin and Rice, 1992a). Let

Ht(s(t�Ne); : : : ; s(t)) = fŝ(�Ne); : : : ; ŝ(t�Ne � 1)g (8)

be the most likely state sequence up to and including time t � Ne � 1. It
maximizes

P (s(�Ne); : : : ; s(t)) =

P (s(�Ne); : : : ; s(0))g(y0js(�Ne); : : : ; s(0))

�
t�1Y
k=0

p(s(k + 1)js(k))g(yk+1js(k �Ne + 1); : : : ; s(k + 1))

Let

Lt(s(t�Ne); : : : ; s(t)) =

P (ŝ(�Ne); : : : ; ŝ(t�Ne � 1); s(t�Ne); : : : ; s(t))

Then Lt satis�es the recursion

Lt+1(s(t�Ne + 1); : : : ; s(t+ 1)) =

max
s(t�Ne)

Lt(s(t�Ne); : : : ; s(t))

� p(s(t+ 1)js(t))g(yt+1js(t�Ne + 1); : : : ; s(t+ 1)) (9)

7



Denote the maximizer by ŝ(t � Ne). Ht then also satis�es the recursion
relation

Ht+1(s(t�Ne + 1); : : : ; s(t+ 1)) = Ht(s(t�Ne); : : : ; s(t)) � ŝ(t�Ne)

where � denotes concatenation.

2.4 Approximations

Consider the computational cost of using (4{6) to compute the likelihood.
For each time t we compute NNe+1

s values of �, one for each of the meta-
states s0 : : : sNe

, and each such computation requires order Ns operations..
Similarly, computation of N̂t requires Nm � 1 additions. Calculation of the
likelihood thus takes O(NNe+2

s T ) oating point operations. If we compare
this with the computational cost when there is neither a �lter nor autore-
gressive noise coloration, we see that the work is multiplied by a factor NNe

s .
For a simple scheme involving three states (Ns = 3) and maximum lag due
to �ltering and noise coloration Ne = 10, we have a cost ampli�cation of
310 = 59049. If, to be optimistic, we could compute the likelihood for Ne = 0
in 1�s, we now require a full second to compute the likelihood once. And we
will need to compute the likelihood many times to maximize it.

The key to speeding up the calculation of the likelihood is the observation
that the exact scheme, whether in the e�cient form (4{6) or in the raw form

L = P [y] =
X
s

P [y& s]; (10)

where y and s are histories (y1 : : : yT and s�Ne+1 : : : sT ), involves a large
number of improbable and numerically unimportant sequences of states.
For example, in a two state model ( \closed" and \open") the transition
probabilities (P12, P21) are likely to be extremely small. If they were not
we would say that the sampling interval �t was too large. If Ne = 4,
say, we expect to encounter metastates containing multiple transitions (like
C ! O! C ! O ! C) rarely and their contribution to the sum in (10), or
the role of any � for such a metastate, might be negligible.

Our primary approximation is to choose a small tolerance �1 and neglect
any metastate s0 : : : sNe

for which the conditional probability

P [s1 : : : sNe
j s0] < �1: (11)

8



We discuss quantitatively the e�ective reduction in the number of metastates
and in the computation time in section 3 for a variety of realistic examples
and choices of �1.

The selection of metastates to be neglected based on (11) is made once
at the beginning of the calculation of the likelihood. The selection depends,
of course, on the transition probabilties, so the selection must be made re-
peatedly in the course of maximization of the likelihood, once each time the
likelihood is evaluated.

We can make a second approximation of a more dynamical character:
whenever, in evaluating (4), we encounter a valueX

s(t�Ne�1)

�̂t�1(s(t� 1) : : : s(t�Ne � 1)) < �2 (12)

we replace the sum by zero. Note that this sum is the renormalized version
of ~�t�1(s(t� 1) : : : s(t� Ne)). The elimination of terms using (12) depends
on the data, y, while the simpli�cation using (11) depends only on the model
and not at all on the data. The utility of this approximation is also discussed
in section 3.

Similar approximations can be applied to the EM and Viterbi algorithms.
For example in the Viterbi algorithm note that one has to update Lt as
in (9) for each of its NNe+1

s arguments (metastates). An approximation
which discards those metastates which have small a priori probability can
drastically reduce the total number of calculations. Also if g(yt+1js(t�Ne +
1); : : : ; s(t+1)) is small, an approximation can be made in which Lt+1(s(t�
Ne+1); : : : ; s(t+1)) is set equal to zero and then ignored in the step t+1 !
t+ 2.

2.5 Implementation

We use (4{6) to compute the likelihood. In this section we discuss some
design decisions we made when implementing the calculation on a computer.

We must store values of �̂t(s0 : : : sNe
) and update them as t ranges from 0

to T . There are many indices, each with a modest range, and the number of
indices depends on the model. This suggests that a multidimensional array,
with many nested loops to manipulate the values as t progresses from 0 to T ,
might not be the best scheme. We prefer to keep track of the various values
in a forest of Ns ordered trees. (We use the terminology of (Aho et al., 1974)
throughout this section.) Let us use a simple example for ease of exposition:
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A1

B1 B2

C1 C2 C3 C4

D1 D2 D3 D4 D5 D6 D7 D8

A2

B3

C5

D9

B4

C6 C7 C8

D10 D11 D12 D13 D14 D15 D16

Figure 1: Full forest, before any approximations, for Ns = 2 and Ne = 3. The
labels have no particular signi�cance. See table 1 for information associated
with the various nodes.

The model structure is de�ned by Ns = 2 and Ne = 3, and the transition
matrix is, for illustrative purposes,

P =

 
:99 :01
:005 :995

!
:

The general case does not involve anything new, and the discussion would
become excessively abstract. The general case is documented in our source
code, using the C programming language.

We start by constructing Ns trees (�gure 1). Each node represents a
partial state history, starting at the roots, corresponding to individual states,
and descending to the leaves, which represent metastates, so that the history
corresponding to a node of depth d has length d+ 1 (see the second column
of table 1). We store the probability of the partial state history, conditional
on the initial state, in each node; these values are built up recursively as the
tree is built (see the third column of table 1). In general, all operations that
one might think of performing by means of multiple nested loops are, in fact,
done by recursive tree traversals.

In practice, we need not build the full tree because we invoke the condition
(11) to \prune" the tree as we build it, eliminating any node for which P < �1
and all of its children. For our example, suppose we choose � = 0:001. Then
we actually build the forest in �gure 2. It can happen that (11) eliminates
all the children of a node without eliminating the node itself; in this case
the node is pruned. At the end of the pruning process there are no leaves at
levels greater than zero.

After pruning, we multiply the stored probabilities in the leaves by the
equilibrium probabilities associated with the roots of the trees to obtain
values of �̂0. During the same tree traversal, the means of y(t) conditional
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Table 1: Information stored in the nodes of �gure 1. \Node" is the label in
�gure 1. \History" is the sequence of states represented by the node. \P" is
the conditional probability of the partial history. The last column indicates
whether or not the node is eliminated (\pruned") when �1 = 0:001. Note
that D5 and D6 are automatically pruned because C3 is, and, similarly, D11

and D12 are eliminated when C6 is pruned.
Node History P Prune?
A1 0 1. no
A2 1 1. no
B1 00 0.99 no
B2 01 0.01 no
B3 10 0.005 no
B4 11 0.995 no
C1 000 0.9801 no
C2 001 0.0099 no
C3 010 0.0005 yes
C4 011 0.00995 no
C5 100 0.00495 no
C6 101 0.00005 yes
C7 110 0.004975 no
C8 111 0.990025 no
D1 0000 0.970299 no
D2 0001 0.009801 no
D3 0010 0.0000495 yes
D4 0011 0.0098505 no
D5 0100 0.0000495 yes
D6 0101 0.0000005 yes
D7 0110 0.00004975 yes
D8 0111 0.00990025 no
D9 1000 0.0049005 no
D10 1001 0.0000495 yes
D11 1010 0.00000025 yes
D12 1011 0.00004975 yes
D13 1100 0.00492525 no
D14 1101 0.00004975 yes
D15 1110 0.004950125 no
D16 1111 0.985074875 no
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A1

B1 B2

C1 C2 C4

D1 D2 D4 D8

A2

B3

C5

D9

B4

C7 C8

D13 D15 D16

Figure 2: The forest of �gure 1 after pruning with � = 0:001.

on the metastate are constructed and stored in the leaves.
It remains to discuss the updating process in which, starting from a forest

with �̂t stored in the leaves, we arrive at a new forest, with the same topology,
with �̂t+1 in the leaves. Mathematically, we must sum over the oldest state,
which is at the roots, to obtain the normalized version of ~�t, and then we
use the last form of (3). All of the index manipulation in (3) will be done
automatically by recursive tree traversals. Consider the subtrees rooted at
B1 and B3. The \sum" of these will become the part of the new tree rooted
at A1 of level greater than zero, and ~�t will be stored in its leaves, which are
the nodes of level one in the �nal tree. In general, when \adding" two trees,
we add the �'s stored in the leaves, except when some leaves are missing
because of pruning. Similarly, the part of the new tree rooted at A2 of level
greater than zero is obtained as the sum of the subtrees rooted at B2 and B4.
It is then straightforward to compute and store the values of �t+1 and carry
out the normalization process described by (4{6).

3 Examples

We illustrate the computational savings of our method by simulations from
three models that have appeared in the ion channel literature. Model I was
proposed in (Colquhoun and Hawkes, 1995) for an acetylcholine receptor.
When sampled at 10 kHz, the transition matrix of the �ve state scheme is

PI =

0
BBBBBB@

:7373 :0044 :0004 :2325 :0253
:0001 :9723 :0219 :0053 :0004
:0002 :6579 :1614 :1588 :0217
:0012 :0020 :0020 :8142 :1807
:0000 :0000 :0000 :0009 :9991

1
CCCCCCA

(13)
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The channel is open in the �rst two states (I = 1) and closed in the last
three (I = 0). We note the �fth is a long lived closed state.

Model II was proposed in (Correa et al., 1992) for a batrachotoxin-
modi�ed sodium channel. It too is a �ve state scheme, which when sampled
at 10 kHz yields the transition matrix,

PII =

0
BBBBBB@

:9903 :0096 :0000 :0000 :0000
:0577 :9330 :0092 :0001 :0000
:0017 :0554 :9141 :0274 :0014
:0001 :0025 :0822 :9152 :0001
:0000 :0003 :0086 :0001 :9910

1
CCCCCCA

(14)

The channel is closed in the �rst three states and open in the last two. The
�rst closed state and the last open state are particularly long lived, with
mean durations of about 100 sampling units.

Model III was used in (Fredkin and Rice, 1992b) and is derived from
another model for a batrachotoxin-modi�ed sodium channel (Huang et al.,
1984). This model has three states, the �rst two of which are closed, and
when sampled at 10 kHz produces a transition matrix

PIII =

0
B@ :9996 :0004 :0000

:0090 :9860 :0049
:0000 :0093 :9907

1
CA (15)

These models share a feature which makes our approximation schemes
e�ective: many of the entries of the transition matrices are quite small, and
the diagonal entries are relatively large, implying that a substantial fraction
of metastates have very small probability. Particularly improbable are those
with many transitions between di�erent states.

In our simulations we used a digital approximation to an eight pole Bessel
�lter with a cuto� at 2 kHz, a moving average with coe�cients [.0348, .4515,
.4556, .0621, -.0064]. Our two noise models were white noise and an autore-
gressive scheme from (Venkataramanan et al., 1996) with coe�cients [1.0,
.7152, .4900, .3056, .1427]. The convolution of these two sequences, trun-
cated after eight terms and normalized to sum to one, gave a net composite
�lter with coe�cients [ .0131, .1799, .3004, .2341, .1526, .0867, .0305, .0026].
Three di�erent signal to noise ratios were used, the innovation standard de-
viations being .05, .25, and .75. For each of the three kinetic models, for
each of the two noise models, and for each of the three signal to noise level
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we simulated 100,000 points, or 10 seconds of data. The computations we
report were performed on a Sun UltraSparc 2. Our programs were written
in C and linked to Matlab1.

We �rst discuss the results for the autoregressive noise model with innova-
tion variance � = :05. For a composite �lter of length eight, the total number
of metastates are 58 = 390625 for models I and II and 38 = 6561 for model
III. As discussed in the last section, the computational prices to be paid
over a model with no �ltering and white noise are factors of 57 = 78125 and
37 = 2187. For example, if the likelihood took one second to evaluate with
no �ltering and white noise (this �gure is roughly accurate), it would take
approximately 22 hours to evaluate in models I and II allowing for colored
noise and �ltering.

As explained in the previous section, we can decrease the e�ective num-
ber of metastates, and proportionally the time to evaluate the likelihood, by
increasing the parameter �1. Figure 3a shows the resulting error in approxi-
mating the likelihood as a function of the fraction of the number of metastates
remaining after pruning. (The actual log likelihoods were of order 105 for
each of the three models.) For example, if the number of metastates of model
I is reduced by a factor of 362, the resulting error in the log likelihood is 3.15
out of 1:57 � 105. For model III reduction of the number of metastates by
a factor of 65 resulted in an error of 3.37 out of 1:57 � 105. Although these
reductions are large, even with them computational times are quite substan-
tial. For example, after the number of metastates of model I is reduced by
factor of 362, 1077 e�ective metastates still remain. In fact, evaluation of the
likelihood allowing for �ltering and colored noise, pruning the number of ef-
fective metastates to 1077, took 1687 seconds, as compared to 1.3 seconds for
evaluation of the likelihood of a model with no �ltering and white noise. For
model III, the computation of the likelihood took 158 seconds after reduction
of the number of metastates by a factor of 65.

Without speci�cation of the use of the approximate log likelihood, it
is di�cult to determine an acceptable level of error, but we suggest the
following heuristic as a guide. Suppose that �̂ is the maximum likelihood
estimate of an m dimensional vector of rate constants. A standard large
sample theory result (Cox and Hinkley, 1974) is that an approximate 100(1�
�) % con�dence region for � is f�j2(`(�̂)� `(�)) � �2

m(�)g where `(�) is the
log likelihood and �2

m(�) is the upper � percentage point of the chi-square

1The MathWorks, Inc. Natick, Massachusetts.
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Figure 3: (a) The error in the approximation to the log likelihood as a func-
tion of the fraction of meta-states retained. (b) The error in the approxima-
tion to the log likelihood as a function of the total equilibrium probability
of the metastates pruned from the tree (the probability de�cit). (c) The
probability de�cit as a function of the tolerance, �2. (d) The error in the
approximation to the log likelihood as a function of the tolerance, �2.
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distribution with m degrees of freedom. For example, the underlying kinetic
model for model II has six free rate constants which determine the rate matrix
Q from which PII = exp(Q�t) was found. The upper 5% point of the chi-
square distribution with six degrees of freedom is 12.59. Thus the e�ect of an
approximation error of order one in the log likelihood is comparable to the
variation in the likelihood due to parameter uncertainty. The e�ect of the
approximation error on optimization is discussed in the concluding section.

As described in the previous section, we prune the number of e�ective
metastates by setting the tolerance parameter �1. Let the sum of the equi-
librium probabilities of the metastates which have been discarded be termed
the \probability de�cit." Figure 3b shows that the error in the log likelihood
is proportional to the probability de�cit with a constant of proportionality
of order 104. The probability de�cit induced by pruning of the degree dis-
cussed in the examples above is roughly of order 10�5, which we believe is
negligble when viewed from a broad perspective in which the model itself is
a crude approximation to physical reality. Figure 3c shows how the proba-
bility de�cit is determined by the tolerance. To complete the picture, �gure
3d shows how the error in the log likelihood is determined by the tolerance,
�1. From these �gures we see that the tolerance, the probability de�cit, and
the fraction of metastates remaining are all equivalent ways of specifying the
amount of pruning. We have found it algorithmically most natural to control
the amount of pruning by setting �1, since the pruning can be accomplished
as the forest of metastates is traversed.

Very similar results were found at the lower signal to noise ratios in that
the errors induced in estimating the log likelihood by using a small fraction
of the total number of metastates were comparable in order of magnitude to
those described above for the three models. For example for model I, with
� = :75, the total log likelihood was �1:13 � 105 and the error when 1077
metastates were used was 1.00.

We next briey contrast the results discussed above to those obtained
when a low pass �lter is used, but noise is white rather than colored. The
length of the �lter is thus �ve rather than eight, and the relative gains are
smaller. On an absolute scale, the computations are less forbidding. For
models I and II and a �lter of length �ve, there are 55 = 3125 metastates
as compared to 58 = 390625 for a �lter of length 8, and gains by factors of
about 10 are possible while incurring an error of order one.

Generally, as the length of a �lter in increased, the fraction of metastates
needed to maintain a given probability de�cit decreases rapidly. Figure 4a
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shows this phenomena for model I and various �lter lengths. However, the
total number of remaining metastates, and hence the time to evaluate the
likelihood, continues to increase, as shown in �gure 4b. It thus appears that
additional computational strategies, such as distributing the computations
over a network of workstations, are still needed for very long �lters.
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Figure 4: (a) The probability de�cit for model I as a function of the fraction
of metastates retained for various �lter lengths. (b) The probability de�cit
as a function of the number of metastates retained for �lter lengths as in (a).

Finally, we discuss the savings that can be accomplished by imposing
the second tolerance, �2 > 0. In our simulations, we found that with �1 > 0,
decreases in computation time of factors of two to three, with little additional
inaccuracy in the approximated log likelihood, could be accomplished by
setting �2 to small values, such as 10�9, when the signal to noise ratio was
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high. Further increasing �2 did not result in substantial consequent savings as
most metastates that were a posteriori unlikely had already been eliminated.
At lower signal to noise ratios the e�ectiveness of �2 decreased and became
insubstantial at � = :75. This is to be expected, since using the second
tolerance eliminates at each time point metastates which are a posteriori

unlikely given the observed data, and with a high noise level the data are
relatively uninformative.

As an example, for model II with � = :05, setting �1 = 10�6 reduced
the number of metastates by a factor of 200|from 390625 to 1946. With
�2 = 0 the error in the log likelihood of 3.63; setting �2 = 10�10 reduced the
computation time by a further factor of 2.1, giving a net reduction by a factor
of about 400, while the additional error in the log likelihood was less than
10�4. With this setting of �2, the average number of metastates discarded per
time point was 765 (out of 1946). Examination of the results revealed that
when the channel was closed about 750 metastates were typically discarded
and when it was open (which was less frequent) about 1150 were discarded.

4 Discussion

We have explained and demonstrated methods which provide dramatic com-
putational gains in the evaluation of the likelihood of a hidden Markov model
for single-channel recordings contaminated by �ltering and colored noise.
These gains are achieved by discarding the contributions to the likelihood
from metastates that are either a priori or a posteriori unlikely. We have
found it convenient and e�ective to organize the computations in a tree
structure, but other approaches are possible. With our implementation the
greatest gains are made by discarding metastates which are a priori unlikely
since the pruned branches of the tree are subsequently never traversed during
the iterated passes through it. Our methods can be applied to approximate
not only the likelihood but also its gradient and posterior probabilities.

In this paper we have concentrated on e�cient approximate evaluation of
the likelihood but not directly on its maximization. Many additional issues
come into play in this latter endeavor, but in any case evaluation of the
likelihood function is a key component. Other important components include
the choice of starting values and the search strategy. For choice of starting
values it may be e�ective to maximize the likelihood or an approximation
to it on a relatively small segment of data. When working with the full
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data set, one could initially use these maximizers as starting values and
relatively large tolerances to �nd a new maximum. The tolerances could then
be decreased and the process continued until there was little change in the
maximizers. Since our approximations work by discarding metastates, they
produce lower bounds to the likelihood; the success achieved in maximizing
such lower bounds rather than the likelihood itself depends in part upon
how uniform the bounds are over the relevant parameter space. We have
not yet investigated this question, but the observed proportionality of the
error in the log likelihood to the probability de�cit provides some reason
for optimism that maintaining a fairly constant probability de�cit as the
parameters change would produce nearly uniform lower bounds. Given the
time that it takes to evaluate the likelihood function, it is clearly important to
use a search strategy that entails a minimumnumber of function evaluations.

Although we have developed and illustrated the methods in the context of
single-channel recordings, we believe that they may have relevance to other
phenomena modeled by hidden Markov in which the dimensionality of the
state space makes exact computation of the likelihood prohibitive or impracti-
cal. Within the context of the statistical analysis of patch clamp recordings,
we believe that our methods will be especially e�ective in evaluating the
likelihood of superpositions of independent channels. Such superpositions
produce a very high dimensional state space which has hindered the suc-
cessful application of otherwise promising hidden Markov model techniques
(Albertson and Hansen, 1994).

Our code is written in C to be driven by Matlab, and we will be pleased
to share it with anyone who is interested.
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