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                        Abstract
Recent work has shown that adaptively reweighting the
training set, growing a classifier using the new weights, and
combining the classifiers constructed to date can significantly
decrease generalization error.  Procedures of this type were
called arcing by Breiman[1996].  The first successful arcing
procedure was introduced by Freund and Schapire[1995,1996]
and called Adaboost.   In an effort to explain why Adaboost
works, Schapire et.al. [1997] derived a bound on the
generalization error of a convex combination of classifiers in
terms of the margin.  We introduce a function called the edge,
which differs from the margin only if there are more than two
classes.   A framework for understanding arcing algorithms is
defined.  In this framework, we see that the arcing algorithms
currently in the literature are optimization algorithms which
minimize some function of the edge. A relation is derived
between the optimal reduction in the maximum value of the
edge and the PAC concept of weak learner.  Two algorithms
are described which achieve the optimal reduction. Tests on
both synthetic and real data cast doubt on the Schapire et.al.
explanation.

1,  Introduction

1.1 Background

There is recent empirical evidence that significant reductions in generalization error can be
gotten by growing a number of different classifiers on the same training set and letting these
vote for the best class.    Freund and Schapire ([1995], [1996] ) proposed an algorithm called
AdaBoost which adaptively reweights the training set in a way  based on the past history of
misclassifications, constructs a new classifier using the current weights, and uses the
misclassification rate of this  classifier to determine the size of its vote.

In a number of empirical studies on many data sets using trees (CART or C4.5) as the base
classifier (Drucker and Cortes[1995], Quinlan[1996], Freud and Schapire[1996], Breiman[1996])
AdaBoost produced dramatic decreases in generalization error compared to using a single tree.
Error rates were reduced to the point where tests on some well-known data sets gave the result
that CART plus AdaBoost did significantly better than any other of the commonly used
classification methods (Breiman[1996] ).

Meanwhile, empirical results showed that other methods of adaptive resampling (or
reweighting)  and combining (called "arcing" by Breiman [1996]) also led to  low test set error
rates.   An algorithm called arc-x4 (Breiman[1996]) gave error rates almost identical to
Adaboost.  Ji and Ma[1997] worked with classifiers consisting of randomly selected hyperplanes
and using a different method of adaptive resampling and unweighted voting, also got low error
rates.  Thus, there are a least three arcing algorithms extant, all of which give excellent
classification accuracy.
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1. 2 Examples-Arcing Algorithms.

A non-negative combination of classifiers with classifier hm(x) having vote cm classifies
instances this way:   let

s(j,x) =  cm
m
∑ I(hm (x)= j) (1.1)

where I denotes the indicator function.  Then x is classified into the class with label =
argmaxjs(j,x).  Arcing refers to an algorithm that uses adaptive reweighting of the training set
to select the classifiers hm and determine the votes cm.  Here are three examples:

 In the first two examples, suppose we have a fixed classification method,  i.e. CART (but many
others will do) and a training set {(yn,xn) n=1, ... ,N} where y is a class label taking values in
{1, ... ,J}. Suppose that at the mth iteration, probabilities p(m)(xn) are defined for the instances
xn.  Construct a classifier hm (x) using the weighted training set. Depending on the
characteristics of h1, h2, ... ,hm update the probabilities and assign vote cm to hm.  Start with
p(1)(xn) =1/N.

Example 1.  Adaboost (Freund and Schapire ([1995], [1996] ).

Let d(n)=1 if hm(xn) ≠ yn, else d(n)=0.  Compute

ε m= p
n
∑ (m) (xn )d(n) .

Set βm =(1−εm )/εm , and

p(m+1)( xn )=p(m)( xn ) βm
d(n) /S

where the /S indicates normalization to sum one.  The vote cm assigned to hm is log( β m).

Example 2.  Arc-x4 (Breiman [1997])

Define k(n) as the number of misclassifications of xn  by h1, h2, ... ,hm.  Let

p(m+1)( xn )=(1+k(n)4 )/S

Assign vote cm=1 to hm.

Example 3.  Random Hyperplanes (Ji and Ma[1997])

This method applies only to two class problems.   The set of classifiers H is defined this way:
To each direction in input space and point xn  in the training set corresponds two classifiers.
Form the hyperplane passing through xn  perpendicular to the given direction.  The first
classifier classifies all the points on one side as class 1 and on the other as class 2.  The second
classifier switches the class assignment.

Set two parameters α >0, η>0  such that .5- η< α <.5.   After hm is selected, let

p(m+1)( xn )=I(k(n)> α m)/S



3

where I(. ) is the indicator function. Select a hyperplane direction and training set instance at
random.  Compute the classification error for each of the two associated classifiers using the
probabilities p(m+1).  If the smaller of the two errors is less than .5- η  then keep the
corresponding classifier and give it vote one.  Otherwise, reject both and select another random
hyperplane

1.3 The Schapire et. al. Theorem and Explanation

As the arcing continues, more classifiers are combined.   The VC-dimension of the combination
increases as more classifiers are added, but what is observed empirically is that the test set
error continually decreases.  Schapire et. al[1997] worked with a function of convex
combinations of classifiers which they called the margin. and defined as follows:  if y(x)=j then
margin(c,x)= s(j,x)-max(s(i,x); i ≠ j).   Thus, for any number of classes, the probability of
erroneous classification is P(margin(c)<0).

The Schapire et.al.  paper proves the important result that for the two class case with y a
deterministic function of x, if the {xn} are independently drawn from a distribution P* on a
larger space and P is equidistributed on the {xn} , then with probability greater then 1- δ , for
all  c and θ >0, the generalization error P*(margin(c)<0) can be bounded by P(margin(c)< θ )
plus a function depending only on θ , δ , d, N.     Here d is the VC-dimension of the set of
classifiers H from which the individual classifiers in the combination are selected.

This result shifted focus from trying to minimize P(margin(c)<0) to minimizing P(margin(c)< θ )
for positive values of θ .   In particular, the  Schapire et.al. paper then explains the success of
Adaboost in lowering test set error  as compared to bagging  (Breiman, [1996b]) and to error-
correcting output coding (Kong and Dietterich [1995])  by Adaboost's ability to produce
generally higher margins.

1.4  Our Study

One question is: what do the three arcing algorithms described in Section 1.2 have in common?
In this paper we give a simple framework that begins by defining a function on the training set
called the edge which is similar to the margin.  We then show that there is a large class of
algorithms, including all of the arcing examples in Section 1.2, that work by minimizing a
function of the edge.  This framework leads to the construction of algorithms leading to optimal
reductions in the size of the maximum value of the edge.  But then, applying  one of these
algorithms to a variety of data sets gives results which are the opposite of what we would
expect given the Schapire et. al. explanation of why arcing works.

2.  Framework and Edge

Assume that there is a space of N input vectors X={xn} such that to each xn, is associated a class
label  yn which has a value in {1, ... ,J}.  We are given an ensemble H of M classifiers {hm(x)}
such that each hm (x) also takes values in {1, ... ,J}.   In addition, there is a probability
distribution P(xn) on X and we assume P(xn)>0 for all n.  Call the set  em={xn; hm(xn) ≠ yn} the
error set of hm, and let i(x,em)=I(x ∈ em) be the indicator function of em.

Definition 1.1.   Let c={cm} be a collection of non-negative numbers (votes) summing to one. The
edge(c ) is the function of x  given by  the  convex combination

  edge(c) = cm
m
∑ i(x,em)
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The combined classifier with votes {cm} predicts argmaxj s(j,x) (see 1.1).  For two classes,
margin(c)=1-2edge(c) and, ignoring ties, the probability of an erroneous classification on X  is
P(edge(c)>1/2). In general margin(c) ≥1-2edge(c), so P(margin(c)< θ ) ≤P(edge(c)>(1- θ )/2).
The implication of the Schapire et.al. work is that values of  c  that give generally low values
of edge(c) on the training set  will also lead to low generalization error.   The intuitive idea is
clear:  if, in the training set, it is rare that over 1/4th, say, of the votes in a combined classifier
are wrong, then the probability that in the parent space, over 1/2 of the weighted votes are
wrong, is small.    In this paper, we study algorithms producing low edge values.

The objective, given the set H of classifiers and the class labels {yn} is to find c values
minimizing  P(edge(c)> φ ) for small values of φ .   Define the bottom edge φ * as the minimum
value of φ  such that inf cP(edge(c)> φ )=0.   In Section 3 φ * is characterized, using the dual of a
linear program,  in a way that gives insight into the PAC concept of weak learning.

There are some fairly obvious algorithms available to minimize  P(edge(c)> φ ) or, more
generally, to minimize  Ef(edge(c)) for f(x) an increasing function,  For instance, a linear
programming method can be used to minimize P(edge(c)> φ ).  But there are side conditions on
this objective.  The algorithms permitted are only those which can be implemented in more
realistic situations.   This class, which we call arcing algorithms,  are defined in Section 4.

The sections 5 and 6 define two classes of arcing algorithms.  One class is called unnormalized
and the other normalized .  A convergence proof is given for each.  We note that Adaboost is a
unnormalized arc algorithm, while arc-x4 and random hyperplanes are normalized arc
algorithms.

In general, the algorithms that converge to a c  such that P(edge(c)> φ )=0 use a prespecified
value of φ .   In section 7 we show that there are universal arcing algorithms, i.e. algorithms
that converges to a value of c such that P(edge(c)> φ )=0 for all φ > φ *.  Section 8 presents some
surprising empirical results and  Section 9 gives concluding remarks.

3.  The Bottom Edge

Definition 2.1  The  bottom edge φ*  is the infinum of those values of φ such that
inf cP(edge(c)> φ )=0.

Theorem 2.2     φ*=max
Q

min
m

Q(em ) where the maximum is over all probabilities Q on X .

proof:  Let ϕ  = max
Q

min
m

Q(em )  and consider minimizing the function  g(c)=E(edge(c)- φ )+ where

x+ is the positive part of x, and E is expectation w.r. to P on X.   If φ > φ* then the minimum is
zero.  Denoting pn=P( xn ), the minimization can also be casted as the linear programming
problem:  minimize  un

n
∑ pn under the constraints

     un ≥0, un ≥ cm
m
∑ i(xn ,em )−φ , cm ≥0, cm =1

m
∑

The dual problem is:  maximize −φ λn
n
∑ +z  under the constraints

                              λn ≥0, λn ≤  pn , z≤ λn
n
∑ i(xn ,em )
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This is equivalent to:  maximize −φ λn

n
∑ +min

m
λn

n
∑ i(xn ,em ) under the constraints  0 ≤ λn ≤ pn .

Suppose there is a set of { λn} that make this expression positive.  Setting Q( xn )= λn / λn
n
∑ ,

then min
m

Q(em )>φ  implying ϕ ≥φ* . On the other hand, take Q so that ϕ =min
m

Q(em ) , and let λn

= rQ( xn ) where r >0 is taken so that λn ≤ pn , all n.  Then the maximum is bounded below by
r(ϕ −φ )  , so ϕ≤φ*  .

 In PAC terminology, H is a weak learner if φ*<1/2.  Put another way, the bottom edge is <1/2
only if H is a weak learner.

4.  Permissible Algorithms are Arcing

Many algorithms can be constructed to minimize the function Ef(edge(c)) under the non-
negativity and sum one constraints on c.   We will restrict attention to the class of arcing
algorithms--e.g. those algorithms that use adaptive reweighting to determine the selection of
the current classifier and its vote.

We assume an iterative algorithm such that at each step:

i)  The algorithm defines a probability Qk(xn) depending on the training set misclassifications
and votes of the first k-1 classifiers  selected.

ii)  The kth classifier selected is hm* where

  m*=argminm Qk (em )

iii) The vote  cm* is determined from the training set misclassifications of hm* and the training
set misclassifications and votes of the first k-1 classifiers  selected.

The restriction ii) is the most useful and interesting.  It says that given Q, we select that hm in
H having minimum Q-error probability.  Given an infinite class H, it is usually not feasible in
practice to select the minimum Q-error classifier in H.  But various construction and fitting
methods are used to try and approximate the minimum.

5.  Unnormalized Arc Algorithms

5.1 Description

Let f(x) →∞  as x →∞ , to 0 as x →−∞ , and have everywhere positive first and second
derivatives. For non-negative weights {bm} denote (b,i( xn ) )=  bmm∑ i(xn ,em)and |b|= bm∑ .
Assuming  that φ >φ*, we want to minimize g(b)=Ef((b,i)- φ |b|) starting from b=0.

Unnormalized Algorithm

At the current value of b let

Q(xn )= f ' ((b,i(xn ))−φ |b|)/ f ' ((b,i(xn ))−φ |b|)
n
∑

and m*=argminm Q(em )  Add  ∆ >0  to bm* and do a line search to minimize g(b+ ∆ um*) over
∆ >0 where  um* is a unit vector in the direction of  bm* .   If the minimizing value of ∆  is ∆*
then update b → b+ ∆* um*.  Repeat until convergence.
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Comments.  Note that

∂g(b)/∂bm =E(i(em )−φ ) f ' ((b,i)−φ |b|)

so the minimum value of the first partial of the target function g(b) is in the direction of bm*.
This value is negative, because it is less than or equal to (φ*−φ )Ef ' ((b,i)−φ |b|) .  Furthermore,
the 2nd derivative of g(b+ ∆ um*) with respect to ∆  is positive, insuring a unique minimum in
the line search over ∆ >0.

5.2 Convergence

Theorem 5.1.  Let  b(k)  be the successive values generated by the unnormalized arc algorithm,

and set c(k) =b(k) /|b| .  Then for c any limit point of the c(k)sequence, P(edge(c)> φ )=0.

proof.   It suffices to show that |b(k) |→∞ , since writing

(b(k),i)−φ |b(k) |=|b(k) |(edge(c(k) )−φ )

shows that unless   P(edge(c(k) )>φ )   goes to zero, g(b(k) )→∞ .  If |b(k) | does not go to infinity,
then there is a finite limit point b*.  But every time that  b(k) is in the vicinity of b*, g(b(k))
decreases in the next step by at least a fixed amount δ >0 .  Since g(b(k)) is monotonic decreasing,
and non-negative, this is not possible.

comments:  i) From this argument, its clear that  cruder algorithms would also give convergence,

since  all that is  is needed is to generate a sequence |b(k) |→∞   such that g(b(k) )  stays bounded.
In particular, the line search can be avoided (see Section 7). ii)  if we take (w.l.o.g) g(0)=1, then

at the kth stage P(edge(c(k) )>φ )≤g(b(k) ) .   ii)  The simplest function f(x) satisfying the
conditions for the unnormalized algorithm is ex.   We denote unnormalized algorithms based on
this function by arc-ex.

5.3.  Adaboost is an arc-ex algorithm with φ =1/2

For  f(x)=ex,

                   f ((b,i)−φ |b|)=e−φ |b| ebmi(em )

m
∏

Denote π(n)= ebmi(em )

m
∏ , set Q(xn )=π(n)/ π(n)∑ , and m*=argminmQ(em).  Set εm =Q(em*) .  We

find the line search step by setting

E(i(em )−φ ) f ' ((b+∆um*,i)−φ |b|−φ∆)=0.

Solving gives ∆*=log(φ /(1−φ ))+log((1−εm )/εm ) . The update for Q is given by

π(n)→π(n)e∆*i(em*) .   For  φ =1/2 this is the Adaboost algorithm described in Section 1.
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6.  Normalized Arc Algorithms

6.1 Description

The normalized arc algorithms work directly with (b,i)/|b|so the coefficients are normalized to
sum one at all steps.  The algorithm minimizes Ef ((b,i)/|b|)  where f'(x) is non-negative and
f''(x) is continuous and non-negative for all x ∈ [0,1].  Let c=b/|b|.

 Normalized Algorithm

At the current value of b , if Ef ' ((c,i))=0 then stop.  Otherwise, let

Q(xn )= f ' ((b,i(xn )/|b|)/ f ' ((b,i(xn )/|b|)
n
∑

and m*=argminm Q(em ) . If  Q(em*)≥EQ (c,i) , then stop.  Otherwise let  bm*=bm*+1 and repeat.

Comments:  Note that

∂Ef ((b,i)/|b|)/∂bm = 1
|b|

E(i(em )−(c,i(xn ))) f ' ((b,i)/|b|).

The smallest partial derivative is at m=m*.

6.2 Convergence

Theorem 6.1    Let c be any stopping or limit point of the normalized arc algorithm.  Then c is a
global minimum of  Ef(edge(c )).

proof:  Let f'(x)>0 for x> φ  and zero for x ≤ φ .  If φ < φ*or if f'(x)>0 for all x then Ef ' ((c,i))=0  is
not possible.  We treat this case first.  Suppose the algorithm stops after a finite number of steps
because Q(em*)≥EQ (c,i) .   Then

E(i(em*) f ' ((b,i)/|b|)≥ cmE(i(em ) f ' ((b,i)/|b|)
m
∑ |) (6.1)

This implies that for all m, either cm=0 or

Ei(em*) f ' ((b,i)/|b|)=Ei(em ) f ' ((b,i)/|b|) (6.2)

Consider the problem of minimizing Ef((c,i)) under non-negativity and sum one constraints on c.
The Kuhn-Tucker necessary conditions are that there exist numbers λ and µm ≥0  such that if
cm>0, then ∂Ef ((c,i))/∂cm =λ .  If cm=0, then ∂Ef ((c,i))/∂cm =λ +µm .  These conditions follow
from (6.1) and (6.2).

Now suppose that the algorithm does not stop after a finite number of steps.  After the kth step,
let c(k+1) be the updated c(k).  Then

(c(k+1) ,i)−(c(k) ,i)=(i(em*(k) )−(c(k) ,i))/(k+1) (6.3)

Denote the right hand side of (6.3) by δk (xn )/(k+1) .   Using a partial Taylor expansion gives
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Ef ((c(k+1) ,i))−Ef ((c(k) ,i))= 1
(k+1)

Eδk f ' ((c(k) ,i))+ γ
(k+1)2

(6.4)

The first term on the right in (6.4) is negative for all k.  Since Ef ((c,i)) is bounded for all c,

1
(k+1)

Eδk f ' ((c(k) ,i))
k
∑ <∞ (6.5)

So, except possibly on a non-dense subsequence of the {k},

Eδk f ' ((c(k) ,i))→0 (6.6)

Take a subsequence of the k for whic h (6.6) holds such that m*(k)→m*,c(k)→c .  Then the
situation of (6.2) is in force.   Since  f''(x) ≥0 on [0,1], then Ef ((c,i))  is convex in c, and a point c
satisfying the Kuhn-Tucker conditions is a global minimum.   Furthermore, since the first term
on the right of (6.4) is negative (non-stopping), then (6.4) implies that the entire sequence

Ef ((c(k) ,i))  converges.  Thus, all  limits or stopping points of the c(k)are  global minimum
points  of Ef ((c,i)) .

Now  examine the case  φ ≥φ*.  Clearly f(0) ≤  Ef ((c,i))  for any c.   If there is stopping at any
point because Ef ' ((c,i))=0  then Ef ((c,i)) =f(0). Otherwise, note that for any c ,
E(c,i)f'((c,i)) ≥ φ E(c,i)f'((c,i)).  Hence

E(i(em*)−(c,i)) f ' ((c,i)≤(φ*−φ )Ef ' ((c,i)) (6.7)

If φ >φ* the right side of (6.7) is strictly negative and the algorithm never stops.  Then the
argument used in the proof of Theorem 5.1 gives a subseqence satisfying (6.6).  For any limit
point c  and m*,  E(i(em*)−(c,i)) f ' ((c,i))=0 which implies P((c,i)>φ )=0. If φ =φ* and the
algorithm stops, then  E(i(em*)−(c,i)) f ' ((c,i))=0 ,  implying P((c,i)>φ )=0 .  If it does not stop,
the same conclusion is reached.   In either case, we get Ef ((c,i)) =f(0).

One version of the normalized algorithm starts with a function g(x) defined on [-1,1] such that
g'(x) is zero for x ≤0, positive for x>0, and g" continuous, bounded and non-negative.  For  φ >φ*
define f(x)=g(x- φ ).  Applying the algorithm to this f(x) gives the following result:

Corollary 6.2  For c any limit or stopping point of the normalized algorithm, P(edge(c,)> φ )=0.

proof: P(edge(c)> φ )=0 is necessary and sufficient for a global minimum of g((c,i)).

comments: i)  A line search for the minimum in the direction of  increasing bm* could also be done
in the normalized algorithms and would speed convergence.  Whether it is worth it
computationally is unclear. ii)  Taking (w.o.l.g) g(0)=1 gives the upper bound

6.3 Arc-x4 is a normalized arc algorithm

In normalized arcing, each new classifier get a unit vote.  Hence, the proportion of
misclassifications of xn  is (c,i(xn )) .  At each stage in arc-x4, the current probability  Q( xn ) is

proportional to  (c,i(xn ))4 .  Hence, the arc-x4 algorithm is minimizing E(edge(c))5.
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6.4.  Random Hyperplanes is (almost) a normalized arc algorithm

Take φ >φ*and consider trying to minimize E((c,i))−φ )+using the normalized algorithm.  At
each stage, the current probability  Q( xn ) is proportional to I((c,i(xn ))−φ >0)where I  ( •) is the
indicator function, and this is the Ji-Ma reweighting.   In the standard form of the normalized
algorithm,  em* minimizes Q(em )  and the corresponding b value is increased by one.  Because x+

does not have a bounded 2nd derivative and because the Ji-Ma algorithm does only a restricted
search for the minimizing em, the normalized arc algorithm has to be modified a bit to make
the convergence proof work.

Take ε >0 small, and g(x) on [-1,1]  such that g'(x)=0 for x ≤0, g'(x)=1 for x> ε , and g'(x) in [0, ε ]
rising smoothly from 0 to 1 so that g"(x) is continuous, bounded and non-negative on [-1,1].  Now
let φ >φ* and consider minimizing  Eg((c,i)−φ ).  Take δ >0 and at each stage, search randomly
to find a classifier hm such that  Q(em )≤φ*+δ .    Then as long as φ*+δ −φ <0 , the result of
Theorem 4.2 holds.

The original Ji-Ma algorithm sets the values of two parameters α >0, η>0.   In our notation
φ =α ,φ*+δ =.5−η .  Ji and Ma set the values of α ,β  by an experimental search.  This is  not
surprising since the key value φ*  is unknown.

7.  Universal  Arcing Algorithms

The algorithms in Sections 4 and 5 for finding a c such that P(edge(c)> φ )=0 depend on setting
the value of the parameter φ .  They assume knowledge of φ* , select a fixed φ >φ*and find a c
such that P(edge(c)> φ )=0.  Assuming we do not know  φ*  is there an arcing algorithm that will
converge to a c such that P(edge(c)> φ )=0 for all φ >φ*?   We describe two such algorithms
which we call arc-u1 and arc-u2.    Both are of unnormalized type using the function ex, but do
not use line searches to set the step size.

arc-u1 algorithm

Define a sequence of step sizes ∆ k  so that ∆k →0,  ∆kk∑ =∞ . After the kth step, denote

π(n)= ebmi(em )
m∏ , set Q(xn )=π(n)/ π(n)∑ , and m*=argminmQ(em).   Increase bm* by ∆ k.   The

update for Q is given by  π(n)→π(n)e∆ki(em*) .

Theorem 7.1  Any limit point c of the arccu1 algorithm satisfies P(edge(c)> φ )=0 for all  φ >φ*.

proof:  Note that

P((b,i)>φ |b|)≤e−φ |b|E ebmi(em )

m
∏

After k steps, denote the right hand side by fk and εk =Q(em*) .   Then

f k+1=e−φ |b|e−φ∆k Ee
∆ki(em*)

ebmi(em )

m
∏

so
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        f k+1=e−φ∆k (1+(e∆k −1)εk ) f k . (7.1)

Then

       f K+1= e−φ∆k (1+(e∆k −1)εk )
k=1

K
∏

and

log( f K+1)=− (∆k
k=1

K
∑ (φ −εk )−O(∆k

2 ))    (7.2)

Since εk ≤φ*, (7.2) implies that  f K+1→0  for all φ >φ*.

We note that arc-u1, with its small bm* increases, may be slow to converge compared to the
unnormalized algorithms utilizing line searches.   Using a small  constant increase ∆ will

produce a c such that P(edge(c) > φ )=0 for all φ >[φ*/(1−∆)]+O(∆2 ) .

algorithm arc-u2

This algorithm is the same as arc-u1 except for the step size.  Fix some upper bound b<1 for  φ* ,
say, for instance, b=.9.  At the current step, let ε =Q(em*), and let s=min(maxn (c,i(xn )) , b).
Define the step size  as

∆=log(s /(1−s))+log((1−ε )/ε )

Update Q  as in arc-u1.

Theorem 7.2  Any limit point c of the arc -u2 algorithm satisfies P(edge(c)> φ )=0 for all φ >φ*

proof:   At the kth step, let sk=min(maxn (ck ,i(xn )), b) and εk =Q(em*).  Then,
from (7.1)

f k+1/ f k =(
1−εk
1−sk

)1−φ (
εk
sk

)φ

Taking logs and using the fact that εk ≤ φ*   gives

log( f k+1/ f k )≤(1−φ ) log(1−φ*)+φ log(φ*)−(1−φ ) log(1−sk )−φ log(sk )

Take  φ >φ*.   The function

θ (s)=(1−φ ) log(1−φ*)+φ log φ*−(1−φ ) log(1−s )−φ log s

is negative for  φ*<s<h(φ ) where h(φ )>φ .  Let s =lim sup(sk ).  Since s ≤ b, f k →0  for

φ ≤h−1(b)<b , hence s ≤ h−1(b) .   Repeating this argument leads to the conclusion that s =φ*.
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Comments:  Schapire et.al.[1997] note that the Adaboost algorithm produces a c such that
P(edge(c) > φ )=0 for all

 φ >(log 2+log(1−φ*))/(− log(φ*)+log(1−φ*))             (7.3)

(my version of their remark).  If , for instance, φ*=.25, the lower limit in (7.3) is .37.

8.  Empirical Results

In realistic settings, the number of classifiers is infinite.    For instance, we will work with the
set  H of all CART classification trees with a minimum node size L.   Given a probabilty Q on
the training set, it is not computationally feasible to find the classification tree in H that
minimizes Q(em).   Instead, procedures such as CART use a stepwise method to find an
approximate minimizer.   The trees constructed in the experiments described below were based
directly on the weighted training set and not on a training set formed by random resampling..

One can use the framework of the preceding sections to study what happens on a number of
synthetic and real data sets.   In particular, the Schapire et. al. explanation implies that the
for an algorithm procducing a convex combination c of classifiers,   the lower the value of
top(c)= maxn (c,i(xn )) , the lower the test set error.   This implication can be checked
empirically by comparing the results of running Adaboost and arc-u2.

Arc-u2 converges most rapidly if the bound b is not too much larger than φ* .  In all of our runs,
we took b=.5.  A  minor modification was made to arc-u2.   Since an exact minimum of Q(em) is
not guaranteed,  then for the classifier hm* selected, Q(em*) may be larger than the current
value of top(c).  If so, the step size is negative.  To prevent this, we take δ >0  small such that if
the computed step size is smaller than δ , it is set equal to δ .

In the runs we made, L was set equal to 10.  The first set of runs involved four sets of synthetic
data, of dimension 21,20,20,20 with 300 instances in the training sets and using a 3000 member
test set.   The fist data set had three classes, the others two.  For definitions, see Breiman[1996].
The runs were repeated 10 times with newly generated data and 100 steps of each algorithm
were taken in each run.   Both algorithms were given the same training and test sets.   At the
end of a run, top(c) and the test set errors were computed.  These were averaged over the 10
repetitions and the results given in Table 1.

                              Table 1 Synthetic Data-- Top(c) (x100) and Test Set Error(%)

     Adaboost           Arc-u2
data set        Test Set Error              Top(c)                 Test Set Error          Top(c)

waveform 18.4 24.2 18.6 10.9
twonorm   5.9 23.5   8.8   5.2
threenorm 18.6 24.1 18.3 11.1
ringnorm   7.7 20.5 10.4    6.0

In the next experiment, real data sets were used and Adaboost and arc-u2 compared.  The data
sets are mostly the same ones used in Breiman [1996] and [1996b] and, except for the heart data,
are in the UCI repository.   They consist of six moderate sized and three larger data sets.  A
summary is given in Table 2.



12
Table 2  Data Set Summary

Data Set #Training             #Test                 #Variables          #Classes

heart 1395   140 16 2
breast cancer      699 70 9 2
ionosphere 351 35 34 2
diabetes 768 77 8 2
glass 214 21 9 6
soybean 683 68 35 19
------------------------------------------------------------------------------------------
letters 15,000 5000 16 26
satellite 4,435 2000 36 6
DNA  2,000 1,186 60 3

With the moderate-sized data sets,  ten runs were made with 100 steps of each algorithm per
run.  In each run, 10% of the data was selected at random and held out as a test set.   The results
in Table 3 are the averages over the 10 runs.

                Table 3 Moderate Size Data--Top(c) (x100) and Test Set Error(%)

              Adaboost          Arc-u2
data set        Test Set Error              Top(c)           Test Set Error              Top(c)

heart    .14 14.9 1.9   2.4
breast cancer 2.9 13.9 3.7 11.3
ionosphere 4.6 13.1 8.3   2.5
diabetes                 25.2 26.6                 26.0 21.6
glass                 26.2 32.6                 28.6 30.6
soybean 6.9 45.4 6.9 45.3

The larger data sets were already split into designated training and test sets.  The results
shown in Table 4 are based on single runs of 100 steps for each algorithm

              Table 4 Larger Size Data-- Top(c) (x100) and Test Set Error(%)

           Adaboost                  Arc-u2
data set                             Test Set Error        Top(c)                        Test Set Error     Top(c)

letters 2.5 28.5 2.9 25.6
satellite 8.6 29.5 9.2 21.4
DNA 4.1 29.7 4.5 29.2

9  Remarks

The Schapire et. al. [1997] explanation for the success of Adaboost in producing lower
generalization error was that it acted on the training data in a way that increased the margin,
i.e. decreased the edge.  In particular, since Adaboost is a unnormalized algorithm, it's aimed
at producing lower values of top(c).   On the other hand, as seen in the empirical results of
Section 8, arc-u2 produces consistently lower values of top(c) than Adaboost, yet has generally
higher test set error.
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We believe that the reason for this is that the push toward lower values of top(c) produces
overfitting  of the training data.    For the moderate sized data sets, Tables 5  compares the test
set values  and top(c) for 50 steps  of arc-u2  to the values for 100 steps.

           Table 5 Moderate Size Data--Top(c) (x100) and Test Set Error(%) for Arc-u2

              50 steps                               100 steps
data set        Test Set Error              Top(c)           Test Set Error              Top(c)

heart 1.4   4.2 1.9   2.4
breast cancer 3.4 13.0 3.7 11.3
ionosphere 6.9   4.6 8.3   2.5
diabetes                 26.4 23.5                 26.0 21.6
glass                 27.6 32.0                 28.6 30.0
soybean 6.9 45.5 6.9 45.3

For most of the data sets, although top(c) decreases as we go from 50 to 100 steps of arc-u2, the
error rate increases.    The Schapire et. al. bound is loose and does not track the the effects of
overfitting.    The implication that the authors draw from their bound is that the lower the
value of top(c)  the lower the resulting generalization error.  But the empirical results do not
support this.

The framework given in Section 2 and 3  provides a simple setting for understanding arcing
algorithms.   But the empirical results suggest complex behavior for the generalization error.
We will have to go deeper into the  mystery to understand more fully why arcing works.
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