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Abstract

If there are many independent, identically distributed observations governed by a
smooth, finite-dimensional statistical model, the maximum likelihood estimates and the
Bayes estimates will be close. Furthermore, the posterior distribution of the parameter vec-
tor around the posterior mean will be close to the distribution of the maximum likelihood
estimate around truth. Thus, Bayesian confidence sets have good frequentist coverage
properties, and conversely. However, even for the simplest infinite-dimensional models,
such results do not hold. The object here is to give some examples.

1. Introduction

With a large sample from a smooth, finite-dimensional statistical model, the maxi-
mum likelihood estimates and the Bayes estimates will be close. Furthermore, the posterior
distribution of the parameter vector around the posterior mean must be close to the distri-
bution of the maximum likelihood estimate around truth: both are asymptotically normal
with mean 0, and both have the same asymptotic covariance matrix. That is the content
of the Bernstein-von Mises theorem. Thus, a Bayesian 95%-confidence set must have fre-
quentist coverage of about 95%, and conversely. Consequently, Bayesians and frequentists
are free to use each others’ confidence sets. (Bayesians may view this as an advantage of
their approach, since Bayesian confidence sets are relatively easy to obtain by simulation.)
However, even for the simplest infinite-dimensional models, the Bernstein-von Mises theo-
rem does not hold (Cox, 1993). The object here is to give some examples, which may help
to clarify Cox’s arguments.

The sad lesson is this. If frequentist coverage probabilities are wanted in an infinite-
dimensional problem, frequentist coverage probabilities must be computed. Bayesians too
need to proceed with caution in the infinite-dimensional case, unless they are convinced of
the fine details of their priors: because the consistency of the estimates and the coverage
probability of the confidence sets depend on the details. It may be suggested that similar
conclusions apply to models with a finite—but large—number of parameters.

* This paper was presented as part of my Wald Lectures in 1998.
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The examples in Cox (1993) involve continuous-time stochastic processes. Basically,
there is an unknown smooth function, observed subject to random error at n points; the
function is estimated using Bayesian techniques with a Gaussian prior. The examples here
involve only sequences of independent normal variables, so that calculations can be done
more or less explicitly. (Section 3 below indicates how Cox’s examples connect with ours.)
The setup is an extension of Lindley-Smith (1973) to infinitely many dimensions, and the
model can be stated as follows.

(1) Yi = βi + εi for i = 1, 2, . . . . The εi are independent, identically distributed normal
random variables, with mean 0 and positive variance σ2

n → 0, while
∑

i β
2
i <∞.

In principle, the variables Yi and εi in (1) need a second subscript, n; this is omitted to
ease the notation. For each n, the data consist of an infinite sequence Y1, Y2, . . . . Results
will hold for any joint distribution in n.

The MLE for β is, of course, Y . We also consider a Bayesian analysis of (1), with the
following prior:

(2) The βi are independent normal variables, with mean 0 and variance τ2
i , where τ2

i > 0
and

∑
i τ

2
i <∞. The β’s are independent of the ε’s.

If (2) holds, then
∑
β2

i < ∞ almost surely. It is of some importance that there are two
variance scales, an “objective” one for the ε’s and a “subjective” one for the β’s. The
leading special case has σ2

n = 1/n and τ2
i = 1/i2, corresponding to the average of n

independent observations on one sequence of βi’s, the prior being specified by the choice of
τi’s. Most of the inferential difficulties already appear when i is restricted to the finite—
but growing—range i = 1, . . . ,

√
n. Iain Johnstone has suggested a variation on this setup

which makes the calculations easier: set τ2
i = 1/n for i = 1, . . . , n; now the prior too

depends on n. Further examples with interesting behavior can be obtained by setting
τ2
i = An/n for i = 1, . . . , n; when An grows with n, Johnstone’s example seems to have

different asymptotics from ours.
Given (1) and (2), the posterior is readily computed, as in Proposition 1. Indeed,

from the Bayesian perspective, Yi has conditional mean βi and conditional variance σ2
n

given β; unconditionally, however, Yi has mean 0 and variance σ2
n + τ2

i . Furthermore,
cov(Yi, βi) = τ2

i .

Proposition 1. For the Bayesian. Assume (1–2). Given the data Y , the β’s are
independent and normal. Moreover,

(a) β̂i = E{βi|Y } = wniYi, with wni = τ2
i /(σ

2
n + τ2

i ).
(b) βi − β̂i = (1 − wni)βi − wniεi ⊥ Y .
(c) var{βi|Y } = vni, where vni = σ2

nτ
2
i /(σ

2
n + τ2

i ) = (1/σ2
n + 1/τ2

i )−1.

In effect, the proposition defines a regular conditional distribution QY (dβ) for the
parameter vector β given the data Y . If we consider only a finite number of β’s, say
β1, . . . , βk, the QY -distribution of {βi − β̂i : i = 1, . . . , k} is asymptotically the same as
the frequentist distribution of {Yi − βi : i = 1, . . . , k}, namely, these are k independent
normal variables with mean 0 and variance σ2

n. For the frequentist and the Bayesian,
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β̂i −Yi = oP (σn). In other words, the difference between the MLE and the Bayes estimate
is small compared to the randomness in either. Consequently, the posterior distribution
of β around β̂ is essentially the same as the frequentist distribution of β̂ around β. That
is (a very special case of) the Bernstein-von Mises theorem. For a brief history of this
theorem, see Lehmann (1991, p. 482); for its technical details, see LeCam and Yang (1990)
or Prakasa Rao (1987).

If we consider the full infinite-dimensional distribution, matters are quite different.
To simplify the calculations, we assume

(3a) σ2
n = 1/n,

(3b) τ2
i ≈ A/iα as i→ ∞, for 0 < A <∞ and 1 < α <∞,

where si ≈ ti if si/ti → 1 and si ∼ ti if si/ti converges to a positive, finite limit. As noted
above, condition (3a) obtains if, for instance, the data are obtained by averaging n IID
observations on β. The joint distribution in n does not matter here. More general τ2

i and
σ2

n are considered later.
Theorem 1 below gives the Bayesian analysis; Theorem 2, the frequentist. Theorems 3

and 4 draw the implications. There is an `2 consistency result in Theorem 5. Section 2 has
some complements and details. Section 3 makes the connection with stochastic processes.
We focus on one infinite-dimensional functional—the square of the `2 norm. To state
Theorem 1, let

(4) Tn(β, Y ) = ‖β − β̂‖2 =
∞∑

i=1

(βi − β̂i)2.

For the frequentist, β ∈ `2 by assumption and Tn < ∞ a.e. by Proposition 1(b); likewise
for the Bayesian. On the other hand, Y /∈ `2, due to the action of ε.

Theorem 1. For the Bayesian. Assume (1)–(3). In particular, β is random. Then
Tn = Cn +

√
DnZn, where

Cn =
∞∑

i=1

vni ≈ n−1+1/αC with C = A1/α

∫ ∞

0

1
1 + uα

du,

Dn = 2
∞∑

i=1

v2
ni ≈ n−2+1/αD with D = 2A1/α

∫ ∞

0

1
(1 + uα)2

du.

The vni are defined in Proposition 1(c); the random variable Zn has mean 0, variance 1,
and converges in law to N(0,1) as n→ ∞.

Proof. According to Proposition 1, given Y , Tn is distributed as
∑

i vniξ
2
ni, the ξni

being for each n independent N(0,1) variables as i varies. (Randomness in Tn is driven by
randomness in β.) Thus, E{Tn|Y } = Cn, which can be estimated as follows:

∞∑
i=1

vni ≈ A

∞∑
i=1

1
An+ iα

≈ A

∫ ∞

0

1
An+ xα

dx = A1/αn−1+1/α

∫ ∞

0

1
1 + uα

du.
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To get the last equality, set x = (An)1/αu. This argument is heuristic but rigorizable. A
variant on the idea is given by Lemma 2 in Section 2; see Remark (iii) there for details.

Moreover, var ξ2ni = 2, so var{Tn|Y } = Dn. This too can be estimated by Lemma 2.
Asymptotic normality follows from Lemma 3, with vni for cni; the condition that maxi vni =
o(

∑
i v

2
ni)

1/2 follows from Lemma 2: see Remark (ii) there. QED

Remarks.

(i) Proposition 1 shows that Tn is independent of Y . For the Bayesian, the predictive
distribution of Tn coincides with its distribution given the data: the data are needed only
to determine β̂.

(ii)
√
Dn << Cn because n−1+(1/2α) << n−1+1/α. If for instance α = 1/2, then

E{Tn} ∼ 1/n1/2 but the randomness in Tn is of order 1/n3/4. (We write xn << yn if
xn/yn → 0.)

(iii) Fix δ > 0 and β ∈ `2. The posterior mass in a δ-ball around β̂ tends to 1 as
n → ∞, for almost all data sets generated by (1). Indeed, E{Tn} ∼ n−1+1/α → 0 and
varTn ∼ n−2+1/α, so

P{|Tn − E(Tn)| > δn} = O

(
1
δ2n

1
n2−1/α

)
,

which sums if for instance δn ∼ 1/n1/α′
and 2 − 1/α − 2/α′ > 1. Thus, posterior mass

concentrates around β̂ in the weak-star topology generated by the `2 norm, for almost all
data generated by the model. Frequentist consistency for the Bayesian will follow—once
we show that β̂ is consistent, as in Theorem 5.

(iv) A law of the iterated logarithm is available for Tn −E(Tn), as one sees by looking
at

Jn∑
i=In

vni(ξ2ni − 1)

with In, Jn chosen so that τ2
In

≈ δ/n and τ2
Jn

≈ 1/(δn). This would require some appro-
priate joint distribution for the ε’s across n. Compare Cox (1993, pp.913ff).

We pursue now the frequentist analysis of the Bayes estimates. From this perspective,
β is an unknown parameter, not subject to random variation. However, some results can
be proved only for “most” β—and the natural (if slightly confusing) measure to use is that
defined by (2).

Theorem 2. For the frequentist. Assume (1) and (3) but not (2), so β is fixed but
unknown. Then

(5) Tn(β, ε) = Cn +
√
FnUn(β) +

√
Gn(β)Vn(β, ε),
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where Cn is as in Theorem 1, while Vn(β, ·) has mean 0 and variance 1. If β is distributed
according to (2), then Un(β) has mean 0, variance 1, and converges in law to N(0,1) as
n→ ∞. Furthermore,

(6) Fn ≈ n−2+1/αF, with F = 2A1/α

∫ ∞

0

u2α

(1 + uα)4
du,

(7) Gn(β) ≈ n−2+1/αG, with G = 2A1/α

∫ ∞

0

2uα + 1
(1 + uα)4

du,

and

(8) Vn(β, ·) converges in law to N(0,1).

Displays (7) and (8) hold as n→ ∞, for almost all β’s generated by (2).

This theorem is proved like Theorem 1. Tedious details, along with explicit formulae
for Fn, Gn, Un, and Vn, are postponed to Section 2. The theorem describes the asymptotic
behavior of the Bayesian pivot, Tn = ‖β̂ − β‖2, from a frequentist perspective. For this
purpose, the frequentist agrees to use the same joint distribution for β and Y as the
Bayesian. Of course, the Bayesian will compute L(Tn|Y ). The frequentist cannot go that
far, but considers L(Tn|β). Among other things, the frequentist has agreed to ignore bad
behavior for an exceptional null set of β’s—relative to the prior (2). There are results
on minimax rates for Bayes estimates, suggesting that β’s exist for which the rate of
convergence is slower than n−2+1/α, so the Bayesian null set may in some other sense be
quite large. See Zhao (1997) or Brown, Low, and Zhao (1998); also see Section 4 below,
and compare Theorem 3.1 in Cox (1993).

Contrary to experience with the finite-dimensional case, there is a radical difference
between the asymptotic behavior of L(Tn|Y ) and the asymptotic behavior of L(Tn|β)—
even if we ignore the null set of bad β’s. Our next main result is Theorem 3, which shows
that the Bernstein-von Mises theorem does not apply in the infinite-dimensional context.
There will be two reasons.

(i) For the frequentist, the variance of β̂ is driven by ε, that is, by the last term
in (5). And this variance is smaller than the Bayes variance. See Theorem 3.

(ii) The middle term in (5) wobbles on the scale of interest, namely, n−1+1/(2α);
so the frequentist distribution of Tn is offset from the Bayesian distribution by
arbitrarily large amounts. This a consequence of “Bayes bias.”

Corollary 1 demonstrates the wobble, the proof being deferred to Section 2.

Corollary 1. Assume (1) and (3). Then

lim sup
n→∞

Un(β) = ∞ and lim inf
n→∞ Un(β) = −∞

for almost all β drawn from (2).
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Theorem 3. For the frequentist. Assume (1) and (3). The Baysian posterior is
computed from (2), and the frequentist conclusions apply to almost all β drawn from (2).
The asymptotic variances D and G are defined in Theorems 1 and 2.

(a) G < D. In particular, the asymptotic frequentist variance is smaller than the
asymptotic Bayes variance.

(b) There is almost surely a sequence of n’s tending to infinity such that the fre-
quentist distribution of Tn is centered to the right of the Bayes distribution by
arbitrarily large multiples of n−1+1/(2α), and likewise to the left.

Proof. The inequality in (a) is elementary: 2uα +1 < (1+uα)2. Then use Corollary 1
to prove claim (b). QED

The first part of the theorem—G < D—already shows that the conclusions of the
Bernstein-von Mises theorem do not hold. More particularly, F + G = D. A posteriori,
the Bayesian sees β as centered at β̂, so ∆ = β̂ − β is centered at 0, and ‖∆‖2 is the
squared length of a noise vector. For the frequentist, on the other hand, β̂ is biased, ∆ is
not centered at 0, some of ‖∆‖2 comes from bias and some from randomness. In effect,
some Bayesian randomness is reinterpreted as bias. This effect is harder to see in a finite
number of dimensions. For results showing that the Bayes bias term matters when rates
of convergence are slower than 1/

√
n, see Brown and Liu (1993) or Pfanzagl (1998).

The second part of Theorem 3 shows that for certain random times, the posterior
distribution of β around β̂ is nearly orthogonal to the frequentist distribution of β̂ around
β: recall that two probabilities µ and ν are “othogonal” if there is a set A with µ(A) = 1
and ν(A) = 0. This is perhaps a more poignant version of the failure in the conclusions of
the Bernstein-von Mises theorem.

We now sharpen the orthogonality result. Consider the random variables

Wni = (βi − β̂i)/
√
vni : i = 1, 2, . . . .

Let πn stand for the Bayesian distribution of Wn1,Wn2, . . . . This is the posterior distri-
bution, centered and standardized; the randomness is in the parameters, not the data.
(From the Bayesian perspective, the W ’s are independent of the data.) Technically, πn is
a probability on R∞, the space of sequences of real numbers. Let φn,β be the frequentist
distribution for the same random variables, with the signs reversed:

W ′
ni = (β̂i − βi)/

√
vni : i = 1, 2, . . . .

Now, β is fixed and the randomness is in the data. Again, φn,β is a probability on R∞.
There is a third distribution to consider: ψn(β), the law of

W ′′
ni = (Yi − βi)/

√
vni : i = 1, 2, . . . .

For the frequentist, φ is the law of the Bayes estimates, centered at the true parameters;
ψ is the law of the MLE, also centered at truth. For mathematical convenience, all three
laws are standardized using the Bayesian variance; this common standardization cannot
affect the orthogonality.
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Theorem 4. For the neutral observer. Assume (1). The Bayesian posterior is com-
puted from (2). Condition (3) is not needed.

(a) For the Bayesian, πn makes the coordinates independent N(0,1) variables.
(b) For the frequentist, φn,β makes the coordinates independent normal variables.

The ith variable has mean −(1 − wni)βi/
√
vni and variance wni.

(c) For the frequentist, ψn,β makes the coordinates independent normal variables.
The ith variable has mean 0 and variance 1/wni.

(d) For any n and any β, β∗ ∈ `2, the probabilities πn , φn,β and ψn,β∗ are pairwise
orthogonal.

Claims (a), (b) and (c) are immediate from Proposition 1. The proof of (d) is deferred
to Section 2, but the idea is simple: although the three probabilities merge on any fixed
number of coordinates, the scales are radically different at ∞. The curious centering
for φ cannot undo the scaling. In the frequentist vision of things, the MLE and the
Bayes estimate are radically different. Moreover, the Bayesian a posteriori distribution
for the parameters around the Bayes estimate is radically different from the frequentist
distribution of the MLE around truth—or the frequentist distribution of the Bayes estimate
around truth.

The last result in this section establishes the frequentist consistency of the Bayes
estimates: the chance that β̂ is close to β in `2 tends to 1 as n gets large. This theorem
can be proved for any β ∈ `2.

Theorem 5. Assume (1). The Bayes estimate computed from (2) is consistent for all
β in `2, namely, ‖β̂ − β‖2 → 0 in probability. If (3) holds, convergence a.e. will obtain.

Proof. To begin with, by Proposition 1(b),

(9) ‖β̂ − β‖2 ≤ 2
∞∑

i=1

(1 − wni)2β2
i + 2

∑
i

w2
niε

2
i .

But wni → 1 as n → 0 for each i. By dominated convergence, the first sum on the right
in (9) tends to 0. The expection of the second sum is

(10)
∞∑

i=1

σ2
nτ

2
i

(σ2
n + τ2

i )2
τ2
i .

Again, this goes to zero by dominated convergence: τ2
i sums in i, while the coefficients are

bounded above by 1/2 because ab/(a+ b)2 ≤ 1/2. This proves convergence in probability,
and we turn to the a.e. result.

The variance of the second sum on the right in (9) is 8qn, where

(11) qn = σ4
n

∞∑
i=1

τ8
i

(σ2
n + τ2

i )4
.
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If (3) holds, qn ∼ 1/n2−1/α by Lemma 2 in Section 2, and
∑
qn < ∞; convergence

a.e. follows from the Borel-Cantelli lemma. QED

2. Complements and details

Lemma 1. Let 1 < α < ∞, 1 < b < ∞, and 0 ≤ c < ∞. Suppose αb > c + 1. Let
f(u) = uc/(1 + uα)b. Let h > 0. Then

lim
h→0

∞∑
i=1

f(ih)h =
∫ ∞

0

f(u) du.

Proof. Let L be a large, positive real number. Of course,

lim
h→0

L/h∑
i=1

f(ih)h =
∫ L

0

f(u) du

and
lim

L→∞

∫ ∞

L

f(u) du = 0.

Abbreviate γ = αb− c > 1, and let Cγ be a suitable positive constant depending only on
γ. We let h→ 0 first, and then L→ ∞. Since f(u) < u−γ ,

∞∑
i=L/h

f(ih)h < h1−γ
∞∑

i=L/h

1/iγ < Cγh
1−γ(h/L)γ−1 = Cγ/L

γ−1,

which is small for large L. QED

Lemma 2. Let 1 < α < ∞, 1 < b < ∞, and 0 ≤ c < ∞. Suppose αb > c + 1. Let
γn → ∞. Let si ≈ iα and ti ≈ ic. Let gn = γ

b−(1+c)/α
n . Let i1 be a positive integer.

(a) lim
n→∞ gn

∞∑
i= i1

ti
(γn + si)b

= lim
n→∞ gn

∞∑
i= i1

ic

(γn + iα)b
=

∫ ∞

0

uc

(1 + uα)b
du;

(b) maxi
ti

(γn + si)b
∼ γ(c/α)−b

n .

Proof. For the first equality in (a), an upper bound can be obtained if si ≥ (1 − ε)iα

and ti ≤ (1 + ε)ic for i ≥ i1; likewise for lower bounds. Set h = γ
−1/α
n and define f as

in Lemma 1. By tedious algebra, gni
c/(γn + iα)b = hf(ih), and Lemma 1 completes the

proof of part (a). For (b), it is easy to verify that f has a maximum on [0,∞). So the
max in (b) is O(h/gn). But h/gn = γ

(c/α)−b
n . QED
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Remarks.
(i) The γ in the proof of Lemma 1 is unrelated to the γn in the statement of Lemma 2.
(ii) The max in i of ti/(γn + si)b is smaller than the sum of these terms, by a factor

asymptotically of order γ1/α
n .

(iii) To estimate Cn in Theorem 1, take γn = A/σ2
n, c = 0, and b = 1; for Dn, take

b = 2.
(iv) Lemma 1 can of course be generalized, for instance, to functions convex on

(x0,∞). In our applications α, b > 1, but all that seems to be needed here
is α, b > 0.

Lemma 3. Let cni be constants with 0 < c2n =
∑

i c
2
ni < ∞, and maxi |cni| = o(cn)

as n → ∞. Let Xni be random variables which are independent in i for each n and have
common distribution for all n and i. Suppose E{Xni} = 0 and E{X2

ni} = σ2 <∞. Then

1
cn

∞∑
i=1

cniXni → N(0, σ2)

in law as n→ ∞.
Proof. This is immediate from Lindeberg’s theorem. QED

Remark. It is enough that the Xni are uniformly L2, with constant variance.

Lemma 4. Let Ui be independent N(0,1) variables. Let ci be real numbers with
c2 =

∑
i c

2
i <∞. Let δ > 0 with δ|ci|/c2 < 1 for all i, and let V =

∑
i ci(U

2
i − 1). Then

P{V > δ} < exp[−δ2/(12c2)],

where exp(x) = ex. Likewise, P{V < −δ} < exp[−δ2/(12c2)].
Proof. If U is N(0,1) and λ < .2, we claim

(12) E{exp[λ(U2 − 1)]} =
exp(−λ)√

1 − 2λ
≤ exp(3λ2).

The inequality is strict except at λ = 0. To prove the inequality, square both sides and take
logs: we have to prove f ≥ 0, with f(λ) = log(1 − 2λ) + 2λ+ 6λ2. Now f(0) = f ′(0) = 0.
And

f ′′(λ) = 12 − 4
(1 − 2λ)2

> 0

provided λ <
(
1 − √

1/3
)
/2 = .21 . . . . In this range, f ′ is strictly increasing and f is

strictly convex, decreasing for λ < 0 and increasing for λ > 0. So f(λ) > 0 except at
λ = 0, proving the inequality in (12).

Next,

(13) E{exp(θV )} =
∏

E{exp[θci(U2
i − 1)]} < exp(3θ2c2),
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provided θci < .2 for all i. Now

P{V > δ} < exp(3θ2c2 − θδ)

by Chebychev’s inequality. Choose θ = δ/(6c2), which satisfies the condition θci < .2
by assumption. The bound on P{V < −δ} follows, on changing the signs of all the ci.
QED

Proof of Theorem 2. To ease notation, we consider σ2
n = 1/n and τ2

i = 1/iα, so
wni = n/(n+ iα) and vni = 1/(n+ iα) from Proposition 1. Modifications of the proof for
τ2
i = A/iα are obvious, and then τ2

i ≈ A/iα is quite easy. Recall the definition (4) of Tn.
By Proposition 1,

Tn =
∞∑

i=1

(1 − wni)2β2
i − 2

∞∑
i=1

(1 − wni)wniβiεi +
∞∑

i=1

w2
niε

2
i

= Cn +Qn(β) +Rn(β, ε)
where

Cn =
∞∑

i=1

(1 − wni)2τ2
i + σ2

n

∞∑
i=1

w2
ni =

∞∑
i=1

1
(n+ iα)

Qn(β) =
∞∑

i=1

(1 − wni)2(β2
i − τ2

i )

Rn(β, ε) =
∞∑

i=1

−2wni(1 − wni)βiεi + w2
ni(ε

2
i − σ2

n).

Remark. In the finite-dimensional case, wni ≈ 1 for n large; from either the Bayesian
or the frequentist perspective, only the ε2-terms in Rn(β, ε) contribute to the asymptotic
variance of Tn. In the infinite case, Qn matters, and so do the βε terms. That is the
novelty.

By Proposition 1, Cn matches the lead term in Theorem 1. We turn now to Qn(β).
Let π stand for the prior distribution on β, as defined in (2). Clearly,

(14) Qn(·) =
∞∑

i=1

iα

(n+ iα)2
(ζ2

i − 1),

where ζi = ζi(β) =
√
iαβi. The ζi are independent N(0,1) variables relative to π. In

particular, Eπ{Qn(·)} = 0 and

(15) varπQ(·) = 2
∑

i

i2α

(n+ iα)4
,

which is (by definition) the Fn in Theorem 2. Lemma 2 can be used to estimate Fn,
proving (6). The Un(β) in Theorem 2 is defined as Qn(β)/

√
Fn. Of course, Un has mean 0
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and variance 1 relative to π. Asymptotic normality follows from Lemma 3. The condition
that maxi |cni| = o(cn) follows, as before, from Lemma 2.

Next, we need to consider Rn. Here, the computation is more intricate. We begin
with the sum of the βε terms. Fix any β ∈ `2. As before, let ζi(β) =

√
iαβi. Also let

(16) kni(β) = − 2
√
niα

(n+ iα)2
ζi(β).

For motivation, −2wni(1 − wni)βiεi = [−2
√
niα/(n + iα)2]ζi(β)ξni, where ξni =

√
nεi is

N(0,1), so kni is the coefficient of an N(0,1) variable in the expansion of Rn. In any event,

(17) K2
ni = Eπ{kni(·)2} =

4niα

(n+ iα)4
.

By Lemma 2,

(18) K2
n =

∞∑
i=1

K2
ni =

∞∑
i=1

4niα

(n+ iα)4
≈ 1
n2−1/α

∫ ∞

0

4uα

(1 + uα)4
du.

We claim that

(19) ∆n(β) =
[ ∞∑

i=1

kni(β)2
]
−K2

n = o
(
1/n2−1/α

)
as n→ ∞,

for almost all β drawn from (2). Indeed,

∆n =
∞∑

i=1

K2
ni(ζ

2
i − 1).

Now use Lemma 4, with K2
ni for ci. Lemma 2 shows that maxiK

2
ni ∼ 1/n2 and

∑
iK

4
ni ∼

1/n4−1/α. Fix δ0 > 0 but small, and use δ0/n2−1/α for the δ of Lemma 4:

P
{|∆n| > δ0/n

2−1/α
}
< 2 exp

( − const. n1/α
)
,

which sums in n, proving (19). The condition of the lemma holds if δ0 is small.
We turn now to the sum of the ε2 terms in Rn. Recall that ξni =

√
nεi. Let `ni =

n/(n+ iα)2. Then

(20) Rn(β, ε) =
∞∑

i=1

[
kni(β)ξni + `ni(ξ2ni − 1)

]
.

Here, kni(β) depends on β while `ni is deterministic. And the two seem to be on different
scales. (With more effort, however, the scales can be seen as comparable, for the i’s that
matter. In any case, the total variances are comparable, as will be seen below.)
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Lemma 3 does not apply, and a direct appeal must be made to Lindeberg’s theorem.
First, however,

(21) L2
n =

∞∑
i=1

`2ni =
∞∑

i=1

n2

(n+ iα)4
≈ 1
n2−1/α

∫ ∞

0

1
(1 + uα)4

du.

The Gn(β) of Theorem 2 is defined as

(22) Gn(β) =
∞∑

i=1

kni(β)2 + 2
∞∑

i=1

`2ni,

the factor of 2 being the variance of ξ2ni − 1. And the Vn(β, ε) of the theorem is

Rn(β, ε)/
√
Gn(β).

Estimates (18), (19) and (21) give a (painful) verification of (7).
Fix δ > 0 small. Except for a set of β’s of measure 0, |ζi(β)| < iδ for all but

finitely many i, and ∆n(β) = o
(
1/n2−1/α

)
by (19). For the remaining β’s, we claim,

Vn(β, ·) converges in law to N(0,1) as n→ ∞. This will be demonstrated by verifying the
Lindeberg condition. The condition involves estimating a series of integrals of the form

∫
|U+V |>2a

(U + V )2,

where a is a small multiple of the asymptotic standard deviation. Now |U + V | > 2a
entails |U | > a or |V | > a, and (U + V )2 ≤ 2(U2 + V 2), so each integral can be estimated
according to the scheme

(23)
1
2

∫
|U+V |>2a

(U + V )2 ≤
∫
|U |>a

U2 +
∫
|U |≤a<|V |

U2 +
∫
|V |>a

V 2 +
∫
|V |≤a<|U |

V 2.

To flesh this out, the variance of Rn(β, ·) is s2n = Gn(β) ∼ 1/n2−1/α. Let ξ̃ni =
kni(β)ξni and ξ̌ni = `ni(ξ2ni − 1) in (20). We need to show that

∞∑
i=1

∫
|ξ̃ni+ξ̌ni|>κsn

(ξ̃ni + ξ̌ni)2 = o(s2n),

with κ a generic small number. In view of (23), we need only show that

Sν,n = o(s2n) for ν = 1, 2, 3, 4,

where

S1,n =
∞∑

i=1

∫
|ξ̃ni|>κsn

ξ̃2ni, S2,n =
∞∑

i=1

∫
|ξ̃ni|≤κsn<|ξ̌ni|

ξ̃2ni,

12



S3,n =
∞∑

i=1

∫
|ξ̌ni|>κsn

ξ̌2ni, S4,n =
∞∑

i=1

∫
|ξ̌ni|≤κsn<|ξ̃ni|

ξ̌2ni.

We begin with S1,n. Recall the definition (16) of kni. For our β’s, ζi(β) < iδ eventually,
so

max i |kni(β)| = O
(
1/n1−δ/α

)
by Lemma 2. Now sn ∼ 1/n1−1/(2α), and |ξ̃ni| = |kni(β)ξni| > κsn entails |ξni| > const. nγ ,
where γ = (1

2 − δ)/α, which is positive when 0 < δ < 1
2 . Consequently, the ith term in

S1,n is bounded by

kni(β)2
∫
|ξni|>const. nγ

ξ2ni,

from which it is immediate that S1,n = o(s2n). Indeed, for our β’s,
∑

i kni(β)2 ∼ 1/n2−1/α ∼
s2n.

The argument for S3,n is similar but easier, because `ni = n/(n+ iα)2 < 1/n. In S2,n,
|ξ̌ni| > κsn entails |ξ2ni − 1| > const. n1/(2α), hence |ξni| > const. n1/(4α). The ith term in
S2,n is therefore bounded by

k2
ni

∫
|ξni|>const. n1/(4α)

ξ2ni,

from which it is immediate that S2,n = o(s2n). The argument for S4,n is similar. We have
verified the Lindeberg condition, proving (8) and so the theorem. QED

Remarks.
(i) As shown by Proposition 1(b), the term

√
FnUn(β) = Qn(β) in (5) is the squared

norm of the Bayes bias, centered at its mean relative to the prior defined by (2). It is this
deviation which wobbles on the scale of interest.

(ii) The proof exploits the fact that ξ2−1 is a function of ξ. However, the two variables
are uncorrelated: asymptotically, the sum of the βε terms in Rn is therefore independent of
the sum of the ε2 terms. This would follow from the bivariate form of Lindeberg’s theorem.
On the other hand, (23) is enough to derive the requisite bivariate form of the theorem
from the univariate.

Proof of Corollary 1. The argument starts from (14), where ζi(β) =
√
τiβi is a

sequence of IID N(0,1) variables that does not depend on n. The Fn in Theorem 2 is the
right hand side of (15), while Un(β) = Qn(β)/

√
Fn. Fix a positive integer j. Now {Un >

j i.o.} is a tail set relative to the ζ’s, by Lemma 2(b). This set has positive probability, by
asymptotic normality; hence, the probability is 1. Likewise for −∞. QED

Proof of Theorem 4(d). The two probabilities in a pair are either equivalent or
singular, and Kakutani’s criterion can be used to decide. See, for instance, Williams
(1991). Fix n, and β ∈ `2. By Proposition 1, wni → 0 as i→ ∞. If we compare π with φ,
the frequentist variance for the ith variable is neglible relative to the Bayes variance; for
equivalence to obtain, the ratio of the variances would need to tend to 1. Likewise for the
other comparisons.

13



Faster decay rates

Theorem 2 depends on the assumed tail behavior of the prior variances τ2
i . In partic-

ular, if α is large, the wobbly middle term in (5) is relatively small. As it turns out, with
faster decay rates, this middle term is negligible. So the conclusions of the Bernstein-von
Mises theorem apply to our quadratic functional even with infinitely many parameters. To
simplify the notation, we consider only σ2

n = 1/n and τ2
i = e−αi.

Lemma 5. (a) If α, b > 0 then

∞∑
i=1

1
(n+ eαi)b

≈ log n
αnb

.

(b) If α, b, c > 0 and αb > c then

∞∑
i=1

eci

(n+ eαi)b
∼ n−b+c/α.

Proof. Claim (a). The sum to be estimated is n−bSn, where

Sn =
∞∑

i=1

1[
1 + eα[i−log(n1/α)]

]b
.

Fix L0, a large positive integer. Let Ln be the integer part of log(n1/α) − L0. Each
term in Sn is bounded above by 1, and each of the first Ln terms is bounded below by
1/[1 + exp(−αL0)]b, which is rather close to 1. The sum of the first Ln terms in Sn is
therefore essentially Ln ≈ log(n1/α). The sum of the remaining terms is bounded above
by

∞∑
i=−L0−1

1
(1 + eαi)b

= O(1) = o(log n).

Let n→ ∞ and then L0 → ∞.
Claim (b). Let Ln be the integer part of log(n1/α). The sum to be estimated is

n−b+c/αSn, where

Sn =
∞∑

i=1

ec[i−log(n1/α)]

[
1 + eα[i−log(n1/α)]

]b
.

An upper bound on Sn is

∞∑
i=1

ec[i−Ln]

[1 + eα(i−Ln−1)]b
→

∞∑
j=−∞

ecj

[1 + eα(j−1)]b
.
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Similarly, an asymptotic lower bound is

∞∑
j=−∞

ec(j−1)

(1 + eαj)b
.

QED

Theorem 6. Assume (1). Instead of (3), suppose σ2
n = 1/n and vi = e−αi where

0 < α < ∞. The posterior is computed from (2), and frequentist probability statements
about β are also made relative to (2). In probability, as n→ ∞, the frequentist distribution
of ‖β − β̂‖2 merges with the Bayesian distribution.

Proof. Theorem 1 and its proof go through, with Cn ≈ (log n)/(αn) and Dn ≈
(2 log n)/(αn2). Theorem 2 also goes through; now, however, Fn = O(1/n2) is too small
to matter: in the notation of this section, Qn(β) can be ignored. We turn now to Rn(β, ε).
The sum of the ε2 terms has asymptotic variance (2 log n)/(αn2), like the Bayesian variance.
It remains only to show that the total frequentist variance of the βε terms in Rn is O(1/n2),
in probability, for β chosen from (2). Let Vn(β) be the variance of these βε terms. Then

Vn(β) =
∞∑

i=1

4neαi

(n+ eαi)4
ζi(β)2,

where, as before, ζi(β) =
√
eαiβi are independent N(0,1) variables. We compute the

expected value and variance of Vn(·), relative to the probability π on β defined by (2):
Eπ{Vn(·)} = O(1/n2) and

varπ{Vn(·)} =
∞∑

i=1

16n2e2αi

(n+ eαi)8
= O(1/n4),

by Lemma 5. QED

Remarks.

(i) The statement of Theorem 6 can be clarified as follows. For β ∈ `2, let φn,β be the
frequentist distribution of [Tn(β, Y ) − Cn]/

√
Dn: the randomness is in Y . Likewise, let

πn be the Bayesian distribution of [Tn(β, Y ) − Cn]/
√
Dn. Here, the randomness is in β,

because Tn is—for the Bayesian—independent of Y . Let ρ metrize the weak-star topology
on probabilities in R1 and let ν be the standard normal distribution. Then ρ(φn,β , ν) → 0
in probability as n→ 0, where “in probability” is relative to the probability on β’s defined
by (2). Furthermore, ρ(πn, ν) → 0. Stronger metrics could be used, but that is perhaps
not the critical issue here.

(ii) Preliminary calculations suggest that Theorem 6 does not hold a.e.—that is,
ρ(φn,β , ν) does not converge to 0 for almost all β drawn from (2)—because there are
arbitrarily large random n with Vn ∼ log n/n2. In other words, the Bayes bias term shows
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a limited degree of wobble, almost surely. Indeed, n2Vn =
∑

i cniζ
2
i where cni = O(1),

with a maximum at i = Ln or Ln + 1, where Ln is the integer part

Ln = int
[ 1
α

log
n

3

]
.

As i moves away from Ln, the cni decay exponentially. If K is a convenient large positive
integer, the i with |i − Ln| > K can be ignored, by Lemma 4. As n increases, there are
infinitely many disjoint segments In = {i : |i − Ln| ≤ K}. The ζ’s in these segments are
independent, and

P
{ ∑

i∈In

cniζ
2
i > C log n

}

is governed by the behavior for i = Ln or Ln + 1. Finally, there will almost surely be
arbitrarily large i with ζ2

i ∼ log i.
(iii) There is another way to salvage Bernstein-von Mises. Suppose (1)–(2)–(3), with

σ2
n = 1/n and τ2

i = 1/i2. Instead of the `2-norm ‖β − β̂‖2, consider
∑

i ‖βi − β̂i‖2/iγ . If
γ < 1/2, previous results apply, but Bayesians and frequentists merge when γ ≥ 1/2. Of
course, Theorem 4 remains in force: the merging is only for a particular functional.

(iv) The a.e. consistency results—Theorem 5 and Remark (iii) to Theorem 1—depend
on the behavior of σ2

n. For slow rates of convergence to 0, a.e. consistency will depend on
the joint distribution of the errors across n. A simple example may illustrate the point:
suppose Un is N(0, σ2

n). If σ2
n = 1/n, then Un → 0 a.e.—for any joint distribution. On

the other hand, suppose σ2
1 = 2 and σ2

n = 1/ log n for n > 1. If the Un are independent,
convergence a.e. fails. If Un = V1 + · · · + Vn, the Vi being independent N(0, τ2

i ) variables
with τ2

1 + · · · + τ2
n = σ2

n, convergence a.e. will hold.

3. Stochastic processes

The lead example in Cox (1993) is once-integrated Brownian motion on the unit
interval, which is used as a prior on functions β in the model yi = β(i/n) + εi, the ε being
IID N(0,σ2) variables. Eigenvalue expansions of the Karhunen-Loève type transform such
problems into discrete problems. We could not find the eigenvalues of integrated Brownian
motion in the literature, and give an informal account here—with many thanks to David
Brillinger, who showed us all the interesting tricks. On the equivalence between white-
noise problems and non-parametric regression or density estimation, see Brown and Low
(1996) or Nussbaum (1996).

Let Bs be standard Brownian motion, so E{Bs} = 0 and cov(Bs, Bt) = min(s, t).
Once-integrated Brownian motion is Xt =

∫ t

0
Bs ds. Plainly, E{Xt} = 0. Furthermore,

varXt = 2
∫ t

0

∫ u

0

E{BuBv} dv du = 2
∫ t

0

∫ u

0

v dv du =
1
3
t3.

Then for 0 ≤ s ≤ t,

cov(Xs, Xt) =
1
3
s3 +

1
2
s2(t− s).
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In short, if K(s, t) = cov(Xs, Xt),

K(s, t) =
1
2
s2t− 1

6
s3 for 0 ≤ s ≤ t

=
1
2
st2 − 1

6
t3 for 0 ≤ t ≤ s.

Let λi be the ith eigenvalue of once-integrated Brownian motion on [0,1], and φi(t)
the corresponding eigenfunction. These eigenfunctions are orthonormal in L2[0, 1],

(24)
∫ 1

0

K(s, t)φi(s) ds = λiφi(t)

and

Xt =
∞∑

i=1

√
λiZiφi(t),

the Zi being IID N(0,1) variables. Analytically,

K(s, t) =
∞∑

i=1

λiφi(s)φi(t).

For the existence of eigenfunctions and eigenvalues, and the expansion, see Riesz and Nagy
(1955, Section 97).

Our objective is to solve equation (24). Dropping subscripts and rewriting, we get

(25)
∫ t

0

(
1
2
s2t− 1

6
s3)φ(s) ds+

∫ 1

t

(
1
2
st2 − 1

6
t3)φ(s) ds = λφ(t).

Successive differentiations with respect to t give

(26)
∫ t

0

1
2
s2φ(s) ds+

∫ 1

t

(st− 1
2
t2)φ(s) ds = λφ′(t)

(27)
∫ 1

t

(s− t)φ(s) ds = λφ′′(t)

(28) −
∫ 1

t

φ(s) ds = λφ(3)(t)

(29) φ(t) = λφ(4)(t).
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The boundary conditions—from (25)–(28)—are

(30) φ(0) = 0, φ′(0) = 0, φ′′(1) = 0, φ(3)(1) = 0.

The solution to (29) is

(31) φ(t) = A cos(t/λ1/4) +B sin(t/λ1/4) + C cosh(t/λ1/4) +D sinh(t/λ1/4),

where the constants A,B,C,D are chosen to satisfy the boundary conditions (30). Since
φ(0) = 0, we have C = −A; and φ′(0) = 0 entails D = −B. The remaining two boundary
conditions lead to the following two equations, with θ = 1/λ1/4:

A(cos θ + cosh θ) +B(sin θ + sinh θ) = 0
A(− sin θ + sinh θ) +B(cos θ + cosh θ) = 0.

Solve each equation for A/B in terms of θ and equate the results, to see that

(sinh θ)2 − (sin θ)2 = (cos θ + cosh θ)2,

that is,

(32) cos θ cosh θ = −1.

Plainly, the roots θi of (32) tend to ∞. If θi is the ith root, then θi
.= (2i − 1)π/2 for

i = 1, 2, . . . .

Theorem 7. The ith eigenvalue of once-integrated Brownian motion is λi = 1/θ4i ,
where θi ≈ πi is the ith root of the transcendental equation (32). The corresponding
eigenfunction is given by (31), with

A = B, C = −D, A/B = −(sin θ + sinh θ)/(cos θ + cosh θ),

while B is chosen so the function has norm 1.

Remark. In short, τ2
i ∼ 1/i4 in Theorems 1–3 corresponds to integrated Brownian

motion. By a more direct calculation, τ2
i ∼ 1/i2 corresponds to Brownian motion itself.

In this case, of course, everything can be written down explicitly: the ith eigenvalue is
λi = 1/[(2i− 1)π/2]2, and the corresponding eigenfunction is φi(t) = A sin(t/

√
λi).

4. The exceptional null set

We consider the structure of the exceptional null set in Theorem 2. To simplify
matters, take

(33) σ2
i = 1/n and τ2

i = 1/i2.
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Recall that β̂n is the Bayes estimate computed from the prior defined by (2). According
to Theorem 2, for almost all β drawn from (2), ‖β̂n − β‖2 is of order 1/n1/2. There
is a wobbly “Bayes bias” term

√
FnUn(β), with Fn ∼ n−3/2. Being standard normal,

Un(β) = O
(√

log n
)

a.s. In short, the Bayes bias term is O
(√

log n/n3/4
)

a.s.; finer
results, of course, can be proved. There is also randomness of order 1/n3/4, due to the
ε’s. The next theorem shows that for a dense set of exceptional β’s, ‖β̂n − β‖2 is of much
larger order 1/nρ, with randomness of order 1/

√
n1+ρ, where ρ is a small positive number

at our disposition.

Theorem 8. Assume (1) and (33). Let ρ < 1/2 be any small positive number, and

C0 =
∫ ∞

0

u3−2ρ

(1 + u2)2
du and C1 = 4

∫ ∞

0

u3−2ρ

(1 + u2)4
du.

Let A be any large positive number and let r be any small positive number. For any
β∗ ∈ `2, there is a parameter vector β ∈ `2 with ‖β − β∗‖ < r and

(a) Eβ{‖β̂n − β‖2} ≈ C0A/n
ρ,

(b) varβ{‖β̂n − β‖2} ≈ C1A/n
1+ρ.

Sketch of proof. Let i0 be a large positive integer. Let βi = β∗
i for i < i0 while

β2
i = A/i1+2ρ for i ≥ i0. By taking i0 large, we get ‖β − β∗‖ to be small. Next we use

Proposition 1, with wni = n/(n+ i2). Let β̂ni be the ith coordinate of the Bayes estimate
β̂n, so that

(34) (β̂ni − βi)2 = (1 − wni)2β2
i − 2(1 − wni)wniβiεi + w2

niε
2
i

and

(35) Eβ{‖β̂n − β‖2} =
∑

i

(1 − wni)2β2
i +

∑
i

w2
niE{ε2i }.

Now Eβ{‖β̂n − β‖2} = T0 + T1 + T2, where

(36) T0 =
i0−1∑
i=1

(1 − wni)2β2
i =

i0−1∑
i=1

i4

(n+ i2)2
β∗

i
2 = O

( 1
n2

)
,

(37) T1 =
∞∑

i=i0

(1 − wni)2β2
i =

∞∑
i=i0

Ai3−2ρ

(n+ i2)2
≈ C0A

nρ
,

(38) T2 =
1
n

∞∑
i=1

w2
ni =

1
n

∞∑
i=1

n2

(n+ i2)2
= O

( 1√
n

)
.
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This proves claim (a). For (b), there are two random terms in (34), with covariance 0. So

varβ{‖β̂n − β‖2} =
∞∑

i=1

4(1 − wni)2w2
niβ

2
i var εi +

∞∑
i=1

w4
ni var ε2i

=
1
n

∞∑
i=1

4(1 − wni)2w2
niβ

2
i +

2
n2

∞∑
i=1

w4
ni.

As before,

1
n

i0−1∑
i=1

4(1 − wni)2w2
niβ

2
i = O

( 1
n3

)

is negligible, while

1
n

∞∑
i=i0

4(1 − wni)2w2
niβ

2
i = 4An

∞∑
i=i0

i3−2ρ

(n+ i2)4
≈ C1A

n1+ρ

and
2
n2

∞∑
i=1

w4
ni = 2n2

∞∑
i=1

1
(n+ i2)4

= O
( 1
n3/2

)

is negligible. We have not checked details, but asymptotic normality must follow. QED

The situation is more manageable if we ignore the variances and consider only

(39) φn(β) = Eβ{‖β̂n − β‖2}.

As shown in Theorem 5, φn(β) → 0 as n → ∞ for any β ∈ `2. However, the rate of
convergence can be arbitrarily slow for most β’s—if “most” is defined in a topological
sense. That is the content of the next theorem. The setting is `2, which is a complete
separable metric space. A Gδ is a countable intersection of open sets. If each of these
open sets is dense, so is the intersection: that is the “Baire property.” Dense Gδ’s are
the topological analogs of sets of measure 1, and are large “in the sense of category”; see
Oxtoby (1980) for discussion.

Theorem 9. Assume (1) and (33). Let 0 < an ↑ ∞ be a sequence of real numbers that
is strictly increasing to ∞, no matter how slowly. Then {β : lim supn anφn(β) = ∞} is a
dense Gδ.

Proof. By (35), φn is continuous. So

F (N,M) =
∞⋂

n=N

{ anφn ≤M }
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is a closed set of β’s. We will show each F to be nowhere dense. If so,

{β : lim sup
n→∞

anφn(β) <∞} =
∞⋃

M=1

∞⋃
N=1

F (N,M)

is a countable union of closed nowhere dense sets, and the argument is done.
To show F (N,M) is nowhere dense, fix β∗ ∈ F (M,N). We will approximate β∗ by

β’s with limn anφn(β) > M . Let

(40) c0 =
∫ 1

0

4u3

(1 + u2)3
du

and A = M/c0. Take βi = β∗
i for i = 1, . . . , i0 − 1 while β2

i = A/ai −A/ai+1 for all i ≥ i0.
Abbreviate cn,i = (1 − wni)2. By (35),

φn(β) >
∞∑

i=i0

(1 − wni)2β2
i =

∞∑
i=i0

cn,iβ
2
i = A

cn,i0

ai0

+A
∞∑

i=i0

cn,i+1 − cn,i

ai+1
.

Let f(x) = x4/(n + x2)2, so cn,i = f(i). The dependence of f on n is suppressed in the
notation. Now

f ′(x) = 4nx3/(n+ x2)3 and f ′′(x) = 12nx2(n− x2)/(n+ x2)4.

Thus, f ′ is increasing on [0,
√
n] and f(x + 1) − f(x) > f ′(x) for 0 ≤ x ≤ √

n − 1. As a
result,

φn(β) > A

s(n)∑
i=i0

f ′(i)
ai+1

>
A

an

s(n)∑
i=i0

f ′(i),

where s(n) is the greatest integer that does not exceed
√
n− 1. Whatever i0 may be,

s(n)∑
i=i0

f ′(i) → c0

and lim supn anφn(β) > c0A = M , as required. QED

The next result characterizes the lim inf. For most β’s in the sense of category, the
mean squared error of the Bayes estimate—along a suitable subsequence of n’s—is c1n−1/2,
where

(41) c1 =
∫ ∞

0

1
(1 + x2)2

dx.

Theorem 10. Assume (1) and (33). Define φn by (39) and c1 by (41).
(a) lim infn n

1/2φn = c1 on a dense Gδ.
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(b) lim infn n
1/2φn(β) ≥ c1 for any β ∈ `2.

Proof. Claim (a). The argument is essentially the same as for Theorem 9. Let

F (N,M) =
∞⋂

n=N

{n1/2φn ≥ c1 +
1
M

}.

These are closed sets, and

{β : lim inf
n→∞ n1/2φn(β) > c1 } =

∞⋃
M=1

∞⋃
N=1

F (N,M).

To show that F (N,M) is nowhere dense, we approximate β∗ ∈ F (M,N) by β’s with

lim
n→∞n1/2φn(β) = c1.

Let βi = β∗
i for i = 1, . . . , i0 − 1 and βi = 0 for i ≥ i0. We estimate φn(β) using equations

(35–38). As before, T0 = O(1/n2). But now, T1 = 0 so the dominant term is T2 ≈ n−1/2c1.
For claim (b), equations (35) and (38) give the lower bound, with all βi = 0. QED

To summarize, for most β’s in the sense of measure, the mean squared error of the
Bayes estimate is Cn−1/2 with C =

∫ ∞
0

1/(1 + u2) du. For most β’s in the sense of
category, the rate (along certain subsequences of n’s) is c1n−1/2, where c1 < C. Along other
subsequences, the rate is much slower than n−1/2 —as much slower as you please. There
are general results on minimax rates of convergence and consistency of Bayes estimates in
Zhao (1997) or Brown, Low, and Zhao (1998).
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