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Abstract

Hurwitz’s extension of Abel’s binomial theorem defines a probability distribu-
tion on the set of integers from 0 to n. This is the distribution of the number of
non-root vertices of a fringe subtree of a suitably defined random tree with n + 2
vertices. The asymptotic behaviour of this distribution is described in a limiting
regime where the distribution of the delabeled fringe subtree approaches that of a
Galton-Watson tree with a mixed Poisson offspring distribution.

1 Introduction and statement of results

Hurwitz [10] discovered the following identity of polynomials in n 4 2 variables z,y and
zs,8 € [n] := {1,...,n}, which reduces to the binomial expansion of (z + y)" when
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where the sum is over all 2" subsets A of [n], with the notations z4 := Y ,c4 25, and |A|
for the number of elements of A, and A := [n] — A. See [11, 8, 19, 21] for combinatorial
explanations of this identity. Asobserved in [15], this identity amounts to the fact that for
each probability distribution p on the interval of integers [0,n 4 1] := {0,1,...,n,n+1},
the formula

P(V(n) = A) = po(po + pa)*™ (puya + pa)™ (A< [n]) (2)

defines the probability distribution of a random subset V(n) of [r], which can be con-
structed as follows. As a consequence of Cayley’s multinomial expansion [4, 18, 15], a
probability distribution for a random tree 7 (n) labeled by [0,n 4 1] with root n + 1 is
given by the formula

P(T(n) = t) = plyt ™ T o (3)
=0

for all trees t labeled by [0,n + 1] with root n + 1, where [t;| is the number of children of
vertex ¢ in the tree t. See [14, 15, 16, 17] for various constructions of 7 (n) and related
results. For a vertex = of a rooted tree t let V,(t) be the set of non-root vertices of the
fringe subtree of t rooted at x, that is the set of all vertices v of t in such that there is a
path from x to v in t directed away from the root of t. See Aldous [3] for background
and further references to fringe subtrees.

Theorem 1 [15]. For a random tree T (n) with distribution (3) on trees labeled by [0, n+
1] with root n + 1, the random set V(n) := Vo(T (n)) of non-root vertices of the fringe
subtree of T(n) rooted at 0 has the Hurwitz distribution (2).

The purpose of this paper is to present the following result regarding the distribution
of the size of such a random set V(n), in a limiting regime as n — oo and the probability
distribution p on [0,n + 1] is allowed to vary as a function of n.

Theorem 2 Let V(n) be a random subset of [n] with the Hurwitz distribution (2), for
(pi := pin,0 <0 < n+1) a probability distribution on [0,n 4 1] which varies with n.
Then there exist limits

¢ = lim P(|V(n)| = a) for all a =0,1,2,... (4)
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if and only if there exists a limit
A= lim npg,, € [0,00]

and one of the following conditions obtains:

(i) A =0, in which case (¢,) = (1,0,0,...)

(ii) A = oo, in which case (¢,) = (0,0,0,...)

(iii) A € (0,00) and the sequence of probability measures F,, on [0,00) defined by

n

F,[0,1] := n! Z L(np;, <t)

=1
has a weak limit F', a probability distribution on [0,00) with mean at most 1; then

=" [ OO (a=0,1,2,..) (5)
a. Jo

where F'** is the a-fold convolution of F (in particular F°* is a unit mass at 0 so that
Go=c"), and ¥, q. = 1.

In the particular case when p;,, = 8/n for all ¢ € [n] and some 0 < 6 < 1 the distribution
of |V(n)] is the quasi-binomial distribution studied by Consul [5, 6]. In this case F,, = &,
a unit mass at 0, for every n. The limit distribution (¢,) in (5) for F' = 6y is the generalized
Poisson distribution with parameters A and 6:

A
Gy = —’()\ + a(g)a—le—(/\-l—aé’) (a =0,1,.. ) (6)
a.

So Theorem 2 is a generalization of Consul’s description of this generalized Poisson dis-
tribution as a limit of quasi-binomial distributions. Let P\ denote the usual Poisson
distribution with parameter A, which is the case § = 0 of (6). In the setting of Theorem
1, as n — oo and npg, remains bounded, it can be shown using results of [15] that the
delabeled fringe sub-tree of 7(n) rooted at 0 is well approximated by a modified Galton-
Watson branching process in which the root individual has offspring distribution Py for
A = npo,, and all following individuals have offspring distribution that is the mixed Pois-
son distribution [i° Py F,,(dA). Details of this approximation will not be given here, but
for similar approximations of combinatorially defined random trees by Galton-Watson
trees, and related constructions, see [9, 2, 3, 1]. The Galton-Watson approximation to
the delabeled fringe sub-tree of 7 (n) rooted at 0 explains why the limit distribution (¢, )
in (5) has the the following interpretation as a Lagrangian distribution [13, 20]:
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Theorem 3 For each probability distribution F' on [0,00), and each A > 0, the se-
quence (q,) defined by (5) is the distribution of the total progeny >.7%0 Z; in a Galton-
Watson branching process (Zo, Z1,...) where the initial number of individuals Zy has

the Poisson(\) distribution Py, and the offspring distribution is the mixture of Poisson
distributions [3° P\F(dA).

Note that

2 =P} Z <) (7)

which equals 1 iff F' has mean at most 1, by standard theory of branching processes.

2 Proofs

The interpretation of (¢,) given in Theorem 3 is needed for the proofs of some parts of
Theorem 2, so Theorem 3 will be proved first.

Proof of Theorem 3. According to a formula of Otter [12] and Dwass [7], which
is reviewed in [17], for a Galton-Watson process (Zo, Z1,...) with arbitrary offspring
distribution, for every £k =1,2,... and a = 1,2, ...

k
P(ZZZ:G|Z0:]C):5P(S@:G—]€)

where S, is the sum of @ independent copies of the generic offspring variable. If the
offspring distribution is [;° P\F/(d)), then S; has the same distribution as N(7}) where
(N(t),t > 0) is a homogeneous Poisson process independent of 77 with distribution F.
Hence S, has the same distribution as N(T,) for T, the sum of a independent copies of
Ti,s0o P(T, € dt) = F**(dt). Sofor 1 <k <a

o ja—k

P(Sa=a—k)=P(N(T.)=a—Fk) :/0 e_t(a_ k)l

It follows that for Zy with Poisson()\) distribution and a =1,2,. ..

P(Y. 7 =a) = /0°° Fla, M ) Fo(d)

F(dt).

where g . \
a ta—
(a, A1) Z e_A——e t(a myaY = a()\ + t)a_le_(A"'t),
and the conclusion of Theorem 3 follows. O



Proof of Theorem 2. Let V(n) be a random subset of [n] with the Hurwitz distribu-
tion (2) induced by (pi = pin,0 <i <n+1). So for a € [0,n]

P(V(n)l=a)= > polpo+pa) " (prsr +pa)" " (8)

AC[n]:|A|=a

In particular

P([V(n)] =0) = (1 = po,)" — ¢
as n — oo iff npg, — A for some A € [0, 00]. Cases (i), (ii) and (iii) now arise according
to the value of A. Consider next

X

00 n—1
(|V ZpOn 1 — Pon — pi,n)n_l = npO,n‘/O (1 — Pon — g) Fn(dl')

In case (iii) with npo, — A it follows easily from this expression that

P(V(n)] = 1) ~ )\/OOO (1 _A ‘”)M Fo(da) — )\/OOO e F(dz)

n

if F, converges weakly to F. A similar approximation of multiple sums by multiple
integrals shows that in the same limit regime as n — oo

P([V(n) / / ()\—I—sz) _lexp( A sz) (dar)--- F(d,)

for every a = 1,2, ..., which yields (5). Since F,, has mean at most 1 for every n, so does
any weak limit F'. It then follows from the sentence after Theorem 3 that >, ¢, = 1.
Conversely, if a limit ¢, of P(|V(n)| = a) exists for all a, then the limit A of npg,, exists
by consideration of @ = 0. In case (iii), the sequence F), is tight because of the upper
bound 1 on the mean. By passing to subsequences, the limit (¢,) must be of the form
(5) for some subsequential weak limit F. To see that this F'is in fact the weak limit of
the whole sequence F, it is enough to show that (¢,) determines F' uniquely, and this
follows easily from Theorem 3. O
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