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Abstract

Hurwitz's extension of Abel's binomial theorem de�nes a probability distribu-

tion on the set of integers from 0 to n. This is the distribution of the number of

non-root vertices of a fringe subtree of a suitably de�ned random tree with n + 2

vertices. The asymptotic behaviour of this distribution is described in a limiting

regime where the distribution of the delabeled fringe subtree approaches that of a

Galton-Watson tree with a mixed Poisson o�spring distribution.

1 Introduction and statement of results

Hurwitz [10] discovered the following identity of polynomials in n+ 2 variables x; y and
zs; s 2 [n] := f1; : : : ; ng, which reduces to the binomial expansion of (x + y)n when
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zs � 0: X
A�[n]

x(x+ zA)
jAj�1(y + z �A)

j �Aj = (x+ y + z[n])
n (1)

where the sum is over all 2n subsets A of [n], with the notations zA :=
P

s2A zs, and jAj
for the number of elements of A, and �A := [n]�A. See [11, 8, 19, 21] for combinatorial
explanations of this identity. As observed in [15], this identity amounts to the fact that for
each probability distribution p on the interval of integers [0; n+1] := f0; 1; : : : ; n; n+1g,
the formula

P (V (n) = A) = p0(p0 + pA)
jAj�1(pn+1 + p �A)

j �Aj (A � [n]) (2)

de�nes the probability distribution of a random subset V (n) of [n], which can be con-
structed as follows. As a consequence of Cayley's multinomial expansion [4, 18, 15], a
probability distribution for a random tree T (n) labeled by [0; n+ 1] with root n + 1 is
given by the formula

P (T (n) = t) = p
jtn+1j�1
n+1

nY
i=0

p
jtij
i (3)

for all trees t labeled by [0; n+1] with root n+1, where jtij is the number of children of
vertex i in the tree t. See [14, 15, 16, 17] for various constructions of T (n) and related
results. For a vertex x of a rooted tree t let Vx(t) be the set of non-root vertices of the
fringe subtree of t rooted at x, that is the set of all vertices v of t in such that there is a
path from x to v in t directed away from the root of t. See Aldous [3] for background
and further references to fringe subtrees.

Theorem 1 [15]. For a random tree T (n) with distribution (3) on trees labeled by [0; n+
1] with root n + 1, the random set V (n) := V0(T (n)) of non-root vertices of the fringe
subtree of T (n) rooted at 0 has the Hurwitz distribution (2).

The purpose of this paper is to present the following result regarding the distribution
of the size of such a random set V (n), in a limiting regime as n!1 and the probability
distribution p on [0; n+ 1] is allowed to vary as a function of n.

Theorem 2 Let V (n) be a random subset of [n] with the Hurwitz distribution (2), for
(pi := pi;n; 0 � i � n + 1) a probability distribution on [0; n + 1] which varies with n.
Then there exist limits

qa = lim
n!1

P (jV (n)j = a) for all a = 0; 1; 2; : : : (4)
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if and only if there exists a limit

� = lim
n!1

np0;n 2 [0;1]

and one of the following conditions obtains:
(i) � = 0, in which case (qa) = (1; 0; 0; : : :)
(ii) � =1, in which case (qa) = (0; 0; 0; : : :)
(iii) � 2 (0;1) and the sequence of probability measures Fn on [0;1) de�ned by

Fn[0; t] := n�1
nX

i=1

1(npi;n � t)

has a weak limit F , a probability distribution on [0;1) with mean at most 1; then

qa =
�

a!

Z 1

0
(� + t)a�1e�(�+t)F a�(dt) (a = 0; 1; 2; : : :) (5)

where F a� is the a-fold convolution of F (in particular F 0� is a unit mass at 0 so that
q0 = e��), and

P
a qa = 1.

In the particular case when pi;n = �=n for all i 2 [n] and some 0 � � � 1 the distribution
of jV (n)j is the quasi-binomial distribution studied by Consul [5, 6]. In this case Fn = ��,
a unit mass at �, for every n. The limit distribution (qa) in (5) for F = �� is the generalized
Poisson distribution with parameters � and �:

qa =
�

a!
(� + a�)a�1e�(�+a�) (a = 0; 1; : : :): (6)

So Theorem 2 is a generalization of Consul's description of this generalized Poisson dis-
tribution as a limit of quasi-binomial distributions. Let P� denote the usual Poisson
distribution with parameter �, which is the case � = 0 of (6). In the setting of Theorem
1, as n !1 and np0;n remains bounded, it can be shown using results of [15] that the
delabeled fringe sub-tree of T (n) rooted at 0 is well approximated by a modi�ed Galton-
Watson branching process in which the root individual has o�spring distribution P� for
� = np0;n, and all following individuals have o�spring distribution that is the mixed Pois-
son distribution

R1
0 P�Fn(d�). Details of this approximation will not be given here, but

for similar approximations of combinatorially de�ned random trees by Galton-Watson
trees, and related constructions, see [9, 2, 3, 1]. The Galton-Watson approximation to
the delabeled fringe sub-tree of T (n) rooted at 0 explains why the limit distribution (qa)
in (5) has the the following interpretation as a Lagrangian distribution [13, 20]:
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Theorem 3 For each probability distribution F on [0;1), and each � � 0, the se-
quence (qa) de�ned by (5) is the distribution of the total progeny

P1
i=0 Zi in a Galton-

Watson branching process (Z0; Z1; : : :) where the initial number of individuals Z0 has
the Poisson(�) distribution P�, and the o�spring distribution is the mixture of Poisson
distributions

R1
0 P�F (d�).

Note that X
a

qa = P (
X
i

Zi <1) (7)

which equals 1 i� F has mean at most 1, by standard theory of branching processes.

2 Proofs

The interpretation of (qa) given in Theorem 3 is needed for the proofs of some parts of
Theorem 2, so Theorem 3 will be proved �rst.

Proof of Theorem 3. According to a formula of Otter [12] and Dwass [7], which
is reviewed in [17], for a Galton-Watson process (Z0; Z1; : : :) with arbitrary o�spring
distribution, for every k = 1; 2; : : : and a = 1; 2; : : :

P (
X
i

Zi = a jZ0 = k) =
k

a
P (Sa = a� k)

where Sa is the sum of a independent copies of the generic o�spring variable. If the
o�spring distribution is

R1
0 P�F (d�), then S1 has the same distribution as N(T1) where

(N(t); t � 0) is a homogeneous Poisson process independent of T1 with distribution F .
Hence Sa has the same distribution as N(Ta) for Ta the sum of a independent copies of
T1, so P (Ta 2 dt) = F a�(dt). So for 1 � k � a

P (Sa = a� k) = P (N(Ta) = a� k) =
Z 1

0
e�t

ta�k

(a� k)!
F a�(dt):

It follows that for Z0 with Poisson(�) distribution and a = 1; 2; : : :

P (
X
i

Zi = a) =
Z 1

0
f(a; �; t)F a�(dt)

where

f(a; �; t) :=
aX

k=1

e��
�k

k!

k

a
e�t

ta�k

(a� k)!
=

�

a!
(�+ t)a�1e�(�+t);

and the conclusion of Theorem 3 follows. 2
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Proof of Theorem 2. Let V (n) be a random subset of [n] with the Hurwitz distribu-
tion (2) induced by (pi = pi;n; 0 � i � n+ 1). So for a 2 [0; n]

P (jV (n)j = a) =
X

A�[n]:jAj=a

p0(p0 + pA)
a�1(pn+1 + p �A)

n�a: (8)

In particular
P (jV (n)j = 0) = (1 � p0;n)

n ! e��

as n!1 i� np0;n ! � for some � 2 [0;1]. Cases (i), (ii) and (iii) now arise according
to the value of �. Consider next

P (jV (n)j = 1) =
nX

i=1

p0;n(1 � p0;n � pi;n)
n�1 = np0;n

Z 1

0

�
1 � p0;n �

x

n

�n�1

Fn(dx):

In case (iii) with np0;n ! � it follows easily from this expression that

P (jV (n)j = 1) � �
Z 1

0

 
1 �

� + x

n

!n�1

Fn(dx)! �
Z 1

0
e���xF (dx)

if Fn converges weakly to F . A similar approximation of multiple sums by multiple
integrals shows that in the same limit regime as n!1

P (jV (n)j = a)!
�

a!

Z 1

0
� � �
Z 1

0

 
� +

aX
i=1

xi

!a�1

exp

 
�� �

aX
i=1

xi

!
F (dx1) � � �F (dxa)

for every a = 1; 2; : : :, which yields (5). Since Fn has mean at most 1 for every n, so does
any weak limit F . It then follows from the sentence after Theorem 3 that

P
a qa = 1.

Conversely, if a limit qa of P (jV (n)j = a) exists for all a, then the limit � of np0;n exists
by consideration of a = 0. In case (iii), the sequence Fn is tight because of the upper
bound 1 on the mean. By passing to subsequences, the limit (qa) must be of the form
(5) for some subsequential weak limit F . To see that this F is in fact the weak limit of
the whole sequence Fn it is enough to show that (qa) determines F uniquely, and this
follows easily from Theorem 3. 2
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