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Abstract

Let B be a standard one-dimensional Brownian motion started at 0. Let Lt;v(jBj)
be the occupation density of jBj at level v up to time t. The distribution of the process
of local times (Lt;v(jBj); v � 0) conditionally given Bt = 0 and Lt;0(jBj) = ` is shown to
be that of the unique strong solution X of the Itô SDE

dXv =
n
4�X2

v

�
t�
R v

0
Xudu

�
�1

o
dv + 2

p
XvdBv

on the interval [0; Vt(X)), where Vt(X) := inffv :
R

v

0
Xudu = tg, and Xv = 0 for all

v � Vt(X). This conditioned form of the Ray-Knight description of Brownian local
times arises from study of the asymptotic distribution as n!1 and 2k=

p
n! ` of the

height pro�le of a uniform rooted random forest of k trees labeled by a set of n elements,
as obtained by conditioning a uniform random mapping of the set to itself to have k cyclic
points. The SDE is the continuous analog of a simple description of a Galton-Watson
branching process conditioned on its total progeny. A result is obtained regarding the
weak convergence of normalizations of such conditioned Galton-Watson processes and
height pro�les of random forests to a solution of the SDE. For ` = 0, corresponding to
asymptotics of a uniform random tree, the SDE gives a new description of the process
of local times of a Brownian excursion, implying Jeulin's description of these local times
as a time change of twice a Brownian excursion. Another corollary is the Biane-Yor
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description of the local times of a reecting Brownian bridge as a time changed reversal
of twice a Brownian meander of the same length.

1 Introduction

This paper describes the local time process of a Brownian excursion or reecting Brownian
bridge as the solution of a stochastic di�erential equation (SDE). The equation is the con-
tinuous analog of a corresponding description of the height pro�le of a random tree or forest
obtained by conditioning a discrete time Galton-Watson process on its total progeny. This
result is a development of the deep connections between Brownian excursions and branching
processes established over the past 45 years and summarized briey in the next paragraph.

Harris [27] observed that excursions of the simple random walk embedded in a Brownian
path could be recoded to form the random tree associated with a discrete time Galton-Watson
branching process with geometric(1=2) o�spring distribution. As pointed out by Kawazu-
Watanabe [35], this branching structure of random walk excursions is implicit in Knight's
approach by random walk approximation to the Ray-Knight description of Brownian local
time processes [64, 39, 65]. The Ray-Knight theorems are thus linked to Feller's [20] di�usion
approximation for a critical branching process. Le Gall [24, 25] connected these ideas to
Williams' path decompositions of Brownian motion [75]. Neveu-Pitman [49, 48] showed how
the family tree of a continuous time Yule process is embedded in a path governed by Itô's
law of Brownian excursions conditioned to exceed a given height. Aldous [2, 3, 4] developed
analogous results encoding a Brownian excursion of given length as a continuum random tree,
in the context of a more general theory of continuum random trees as weak limits as n!1
of combinatorially de�ned trees with n vertices. See also Le Gall [26]. There is much current
interest in the use of Brownian and other local time processes as models of continuous state
branching processes, and the applications of such processes to Markovian superprocesses. See
for instance [21, 22] and papers cited there.

Let B denote a standard Brownian motion started at 0. Let

Bbr;t := (Bbr;t
s ; 0 � s � t)

d
= (Bs; 0 � s � t jBt = 0)

denote a Brownian bridge of length t. Here and throughout the paper, \:=" means \equal by

de�nition" and \
d
= " denotes equality in distribution of random varibles or processes. For

a �xed time T > 0 let GT := supfs : s � T;Bs = 0g be the last zero of B before time T
and DT := inffs : s � T;Bs = 0g be �rst zero of B after time T . It is known that for each
0 < t � T the law of (Bs; 0 � s � GT ) given GT = t does not depend on T , and is that of
Bbr;t, the Brownian bridge of length t. A process with the law of (jBjGT+s; 0 � s � DT �GT )
given DT � GT = t, which also does not depend on T , is called a Brownian excursion of
length t, denoted here by Bex;t. A process with the law of (jBjGT+s; 0 � s � T � GT ) given
T � GT = t, which again does not depend on T , is called a Brownian meander of length t.
It is well known that these Brownian bridges, excursions and meanders of length t can be
constructed by Brownian scaling from the corresponding standard processes of length 1. If
the length of one of these processes is not mentioned, it is assumed to be 1. See [65, 5] for
background and further references to these processes.
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For a suitable continuous function f with domain containing [0; t], let Lt;v(f) denote the
local time of f up to time t at level v as de�ned by the occupation density formulaZ t

0

g(fu)du =

Z 1

�1
g(v)Lt;v(f)dv (1)

for every non-negative Borel measurable g, and continuity in v. Let Bjbrj;t be a reecting
Brownian bridge (RBB) of length t

Bjbrj;t := (Bjbrj;ts ; 0 � s � t) := (jBbr;t
s j; 0 � s � t)

The abbreviation
L
jbrj
t;v := Lt;v(B

jbrj;t)

will be used throughout the paper for the local time up to time t at level v of a RBB of length
t. Using the Ray-Knight description of Brownian local times, Williams' [75] time reversal
theorem, and an identity of �-�nite measures related to Brownian excursions, Biane-Yor [7]

showed that the process (Ljbrj1;v ; v � 0) of local times of RBB is a time change of the time
reversal of twice a Brownian meander. Corollary 16 below recalls the precise statement of
this result.

Section 3 reviews the appearance of the process (L
jbrj
1;v ; v � 0) as the asymptotic distribution

for large n of the height pro�le of the random forest generated by a uniform random mapping
of an n-element set to itself [1, 17]. The density of a limit law derived by Proskurin [63] from

the height pro�le of this random forest was identi�ed with the density of Ljbrj1;v by Aldous-
Pitman [1]. See also Tak�acs [70, 71] for a derivation of this density by a more straightforward
random walk approximation. Recent work of Drmota-Gittenberger [17] develops the approach
of [1] by use of a generating function analysis of the �nite dimensional distributions of the
height pro�le of a random mapping. After passage to the limit this yields a formula for the

characteristic function of the �nite dimensional distributions of (L
jbrj
1;v ; v � 0) in terms of a

contour integral in the complex plane with a rather complicated integrand. The purpose of

this paper is to record another description of the process (L
jbrj
1;v ; v � 0) in terms of the process

X introduced in the following lemma, which is easily veri�ed by techniques of stochastic
calculus [65].

Lemma 1 Let � be a Brownian motion. For each ` � 0 and t > 0, there exists a unique
strong solution X of the Itô SDE

X0 = `; dXv = �v(X)dv + 2
p
Xvd�v (2)

where
�v(X) := 4�X2

v

�
t � R v0 Xudu

��1
(3)

with the convention that the equation for X is to be solved only on [0; Vt(X)) and that Xv = 0
for v � Vt(X) where

Vt(X) := inffv : R v
0
Xudu = tg: (4)
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De�nition 2 For each t > 0 and ` � 0 let X := (X`;t;v; v � 0) denote a process with same
distribution as the solution X of the above SDE. Also, let X0;0;v := 0 for all v � 0.

The following proposition records some basic properties of this process X which follow
easily from its de�nition by standard techniques of stochastic calculus.

Proposition 3 The process X := (X`;t;v; v � 0) de�ned by Lemma 1 enjoys the following
properties.
(i) For each ` � 0 and t > 0 the random time Vt(X) is strictly positive and �nite a.s., and
the left limit of X at time Vt(X) exists and equals 0 a.s.. Consequently, the process X has
continuous paths almost surely.
(ii) For each ` � 0 and t > 0

X`;t;0 = ` and
R1
0 X`;t;vdv = t a.s. (5)

(iii) For each t > 0 the collection of laws of (X`;t;v; v � 0) for ` � 0 is determined by the
collection of laws of (X`;1;v; v � 0) for ` � 0 via the formula

(X`;t;v; v � 0)
d
= (

p
tX`=

p
t;1;v=

p
t; v � 0) (6)

(iv) Let E := [0;1)� (0;1) [ f(0; 0)g and for w := (`; t) 2 E let Qw denote the law of the
process

W := (W`;t;v; v � 0) := ((X`;t;v; t�
R v
0 X`;t;udu); v � 0) (7)

on the space of continuous E-valued paths. Then (Qw; w 2 E) is the collection of laws of a
strong Markov process W with state space E with (0; 0) as an absorbing state which is reached
in �nite time Qw a.s. for all w 2 E.

The scaling property (iii) implies that in formulating results about X there is no loss of
generality in supposing that t = 1. However, this reduction tends to obscure basic properties
of X such as the Markov property (iv) of W , where it is essential to involve both ` and t.
Figure 1 displays approximations to trajectories of the process (X`;t;v; v � 0) for ` = 0; 1; 2; 3
and t = 1, obtained by computer simulation. The main result of the paper is the following
theorem, which together with L�evy's [45] well known formula

P (L
jbrj
t;0 =2 > x) = e�x

2=2 for x � 0 (8)

determines the distribution of the process (L
jbrj
t;v ; v � 0).

Theorem 4 For each t > 0 the collection of laws of (X`;t;v; v � 0) on the path space C[0;1),
parameterized by ` � 0, is the unique weakly continuous version of the conditional law of

(L
jbrj
t;v ; v � 0) given (L

jbrj
t;0 = `):

(L
jbrj
t;v ; v � 0 jLjbrjt;0 = `)

d
= (X`;t;v; v � 0) (9)
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Figure 1 Simulated trajectories of the local time process of a reecting Brownian bridge of
length 1. Each panel shows an exact computer simulation of the height pro�le of a uniform
random forest of k rooted trees with n = 2500 vertices, generated from binomial random
variables via Lemma 9, and scaled as in (15) to approximate (X`;1;v; v � 0) governing the
local times of a reecting Brownian bridge of length 1 given local time ` at 0. In each panel, v
ranges from 0 to 2 on a horizontal scale, and the vertical scale for local time ranges from 0 to
4. The area under each trajectory di�ers from negligibly from 1. Each row shows 6 repetitions
for a given initial value ` = 2k=

p
n = k=25, with ` = 1=25 in the bottom row approximating

the local time process of a Brownian excursion, and ` = 1; 2; 3 in rows above.
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It is intuitively clear, and made rigorous by Lemma 12, that conditioning a RBB of length
t to have zero local time at 0 should produce a Brownian excursion of length t. Thus the
particular case ` = 0 of Theorem 4 yields a new characterization of the process of local times
of a Brownian excursion:

Corollary 5 The process of local times up to time t of a Brownian excursion of length t is
identical in law to the process de�ned by the solution of the SDE (2) for ` = 0:

(Lt;v(B
ex;t); v � 0)

d
= (X0;t;v; v � 0) (10)

If the path dependent drift �v(X) in the SDE (2) is replaced by a constant drift �, then

(2) becomes the SDE governing a BESQ
(�)
` process (X

(�)
`;v ; v � 0), that is a Bessel squared

process of dimension � started at `. See [68, 60, 65]. This process appears for � = 0; 2 and 4 in
the Ray-Knight description of Brownian local time processes, also for other real �, both �xed
and path dependent, as the distribution of local times of appropriately perturbed Brownian
motions. See Section 7 for references to such results. For �` := infft : Lt;0(jBj) = `g, the
Ray-Knight theorem

(L�` ;v(jBj); v � 0)
d
= (X

(0)
`;v ; v � 0) (11)

combined with the well known and easily rigorized identity in law

(Bjbrj;ts ; 0 � s � t jLjbrjt;0 = `)
d
= (jBsj; 0 � s � �` j �` = t)

for `; t > 0 shows that Theorem 4 implies the following corollary, and vice versa:

Corollary 6 For each ` > 0�
X

(0)
`;v ; v � 0

����
Z 1

0

X
(0)
`;v dv = t

�
d
= (X`;t;v; v � 0) (12)

for all t > 0 where the distribution of the right side provides the unique determination of the
conditional distribution of the left side that is weakly continuous in t.

It will be shown elsewhere that formula (12) can be proved without consideration of
Brownian local times by using the theory of enlargement of �ltrations [33, 34, 77] to deduce

how the conditioning on
R1
0 X

(0)
`;v dv = t introduces a drift term into the SDE solved by

(X
(0)
`;v ; v � 0).
The rest of this paper is organized as follows. Section 2 shows how the process de�ned

by the SDE (2) arises as the weak limit of a suitably normalized Galton-Watson branching
process conditioned on its total progeny. This observation yields a new result regarding
the weak convergence of conditioned Galton-Watson processes and height pro�les of random
forests to a limit process which is identi�ed with the process appearing in Theorem 4. Section
3 explains the connection with random forests and random mappings. Section 4 lays out a
series of corollaries which amplify the meaning of Proposition 1 and Theorem 4 in various
ways. One of these corollaries is the Biane-Yor description of the process of local times
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of Bjbrj;1. Another is Jeulin's corresponding description of the process of local times of a
Brownian excursion. It will be seen that this line of reasoning can also be reversed to recover
Theorem 4 from either of these descriptions. Section 5 deduces from these results some explicit
formulae regarding the distribution of local times of the reecting bridge. Section 6 records
a variation of Theorem 4 for an unreected bridge. Finally, some concluding remarks and
further references to related work are made in Section 7.

2 The Branching Process Approximation

According to a result in the theory of branching processes, �rst indicated by Feller [19] and
further developed by Lamperti [44, 43] and Lindvall [46], if Zk(h) for h = 0; 1; 2; : : :denotes the
number of individuals in generation h of a Galton-Watson process started with k individuals
in which the o�spring distribution has mean 1 and �nite variance �2 > 0, and Zk(h) is de�ned
for all h � 0 by linear interpolation between integers, then as m!1 and k varies with m in
such a way that (2k)=(�m) ! `,�

2

�m
Zk(2mv=�); v � 0

�
d! (X

(0)
`;v ; v � 0) (13)

where (X(0)
`;v ; v � 0) is the BESQ(0)

` process de�ned by the SDE X0 = `, dXv = 2
p
Xvd�v,

and
d! is the usual notion of convergence of distributions on C[0;1). To check the non-

standard normalizations in (13), observe that if the process on the left side has value x at v
such that 2mv=� equals an integer h, then Zk(h) = x�m=2. The number Zk(h + 1) in the
next generation of the branching process therefore has variance (x�m=2)�2. The increment of
the process on the left side over the next v-increment of �=(2m) has this variance multiplied
by (2=�m)2. So along the grid of multiples of �=(2m), the variance of increments of the
normalized process on the left side per unit v-increment, from one grid point to the next,
given the normalized process has value x at the �rst grid point, is

�x�m
2

�
�2
�

2

�m

�2 � �

2m

��1
= 4x = (2

p
x)2

in accordance with the BESQ(0) SDE. Kawazu-Watanabe[35] showed that if the branching

process is modi�ed by allowing an immigration term, then the weak limit is a BESQ
(�)
`

process with � representing an asymptotic rate of immigration per unit time. They showed
also that this result for � = 0 and � = 2 yields the basic Ray-Knight theorems when applied to
the branching processes with geometric o�spring distribution derived from upcrossings of the
Brownian path. See Le Gall [24] for another exposition of this idea, which is applied here to
deduce Theorem 4 from a corresponding conditioned limit theorem for branching processes.

Consider now the distribution of the process (Zk;n(h); h � 0) de�ned by conditioning
(Zk(h); h � 0) on the event that its total progeny

P1
h=0 Zk(h) equals n, so

(Zk;n(h); h � 0)
d
= (Zk(h); h � 0 jP1

h=0 Zk(h) = n) (14)
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where it assumed now that the o�spring distribution is aperiodic, so the conditioning event
has strictly positive probability for all su�ciently large n.

Theorem 7 As n!1 and (2k)=(�
p
n)! ` for some ` � 0�

2

�
p
n
Zk;n(2

p
nv=�); v � 0

�
d! (X`;1;v; v � 0) (15)

where (X`;1;v; v � 0) is the process constructed by Lemma 1 for t = 1.

Before discussing the proof of this result, the following remarks clarify its relation to the
results in the introduction and to some earlier results in the literature. In view of (13) for
m =

p
n, in the asymptotic regime with (2k)=(�

p
n)! `,

1

n

1X
h=0

Zk(h) �
Z 1

0

2

�
p
n
Zk(2

p
nv=�)dv (16)

in the sense that the di�erence converges in probability to 0 as n!1. So it is to be expected
that if the limit process in (15) exists, then it must be the limit process in (13) conditioned to
have integral equal to 1. That is precisely the claim of Corollary 6 for t = 1, provided ` > 0.
If ` = 0 this line of reasoning fails because the limit process in (13) is identically equal to
0, but see Section 7 for further discussion. In view of the scaling properties of the processes
involved, it is clear that Corollary 6 can be deduced from the combination of (13) and (15) for
any particular choice of o�spring distribution for the Galton-Watson process. Then Theorem
4 can be deduced from Corollary 6 via the Ray-Knight theorem (11), as indicated in the
introduction.

In the particular case of Theorem 7 when k = 1 does not vary with n, so ` = 0, convergence
of one-dimensional distributions in (15), with a di�erent characterization of the limit law, was
obtained by Kennedy [36, Th 3]. See also Kolchin [40, Th. 2.5.6], who refers to Stepanov
[69] for an earlier form of this convergence of one-dimensional distributions in a combinatorial
setting which is equivalent to the conditioned branching process with a Poisson o�spring
distribution, as discussed in Section 3. The result of Theorem 7 for k = 1 and ` = 0 was
anticipated by Aldous [3, Conjecture 4], and proved by Drmota-Gittenberger [16], with the
limiting process (X0;1;v; v � 0) de�ned by the process of local times of a Brownian excursion
rather than by an SDE. Corollary 5 follows by comparison of this case of Theorem 7 with the
result of Drmota-Gittenberger [16], or with the weaker integrated form of this result found by
Aldous [3, Cor. 3], which is enough to characterize the limit process, assuming it exists, as
the process of local times of a Brownian excursion. The sentence following (27) below gives
an alternative proof of Corollary 5.

The key to the proof of Theorem 7 is provided by following lemma. Note that if Zk;n(h)
is interpreted as the number of vertices at level h in a forest with n vertices de�ned by a
collection of k family trees, one for each initial individual in the Galton-Watson process, then
for h = 0; 1; : : : the random variable

Ak;n(h) := n�
hX
i=0

Zk;n(h) (17)
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represents the number of vertices in the forest strictly above level h.

Lemma 8 Let X1; X2; : : : be a sequence of independent random variables with some distribu-
tion p on f0; 1; 2; : : :g, and set Sj = X1 + � � �+Xj . Fix 1 � k < n with P (Sn = n� k) > 0.
Let (Zk;n(h); h = 0; 1; 2; : : :) be a Galton-Watson branching process with o�spring distribution
p started with k individuals and conditioned to have total progeny n. Let Z(h); h = 0; 1; : : : be
a sequence of non-negative integer random variables, and set

A(h) := n�
hX
i=0

Z(h) and W (h) := (Z(h); A(h)):

Then
(Z(h); h = 0; 1; 2; : : :)

d
= (Zk;n(h); h = 0; 1; 2; : : :) (18)

if and only if the sequence (W (h); h = 0; 1; 2; : : :) is a Markov chain with state space

E0 := (f1; 2; : : :; g � f0; 1; 2; : : : ; g)[ f(0; 0)g
initial state (k; n � k), and the following stationary transition probabilities: for all h =
0; 1; 2; : : : and all (z; a) 2 E0 with a > 0 and (z1; a1) 2 E0 with z1 + a1 = a � 1

P (W (h+ 1) = (z1; a1) jW (h) = (z; a)) =
z1(z + a)

za
P (Sz = z1 jSz+a = a) (19)

whereas P (W (h + 1) = (0; 0) jW (h) = (z; 0)) = 1, and all other transition probabilities are
zero.

Proof. This is easily veri�ed by a computation using the Markov property of the branching
process, Bayes rule and the well known formula of Dwass [18] for the distribution of the total
progeny in the branching process starting with k individuals:

P

 1X
h=0

Zk(h) = n

!
=

k

n
P (Sn = n� k) (20)

2

See [59] for a recent review of this fundamental formula (20) and its various probabilistic
and combinatorial equivalents. As a check on formula (19), note that the sum of probabilities
in (19) over all 0 � z1 � a is 1 due to the well known formula

E(Sz jSz+a = a) =
za

(z + a)

which follows from exchangeability of the Xi. According to (19), given Wk;n(h) = (z; a) the
distribution of Zk;n(h+1) is obtained by size-biasing of the distribution of Sz given Sz+a = a,
while Ak;n(h + 1) = a � Zk;n(h + 1). In particular, for a Poisson o�spring distribution, the
lemma yields:
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Lemma 9 Fix 1 � k < n. A sequence (Z(h); h = 0; 1 : : :) has the same distribution as a
Galton-Watson process with a Poisson o�spring distribution started with k individuals and
conditioned on total progeny equal to n, if and only if the sequence evolves by the following
mechanism: Z(0) = k and for each h = 0; 1 : : :

(Z(h+ 1) jZ(i); 0 � i < h; Z(h) = z; A(h) = a)
d
= 1 + binomial(a� 1; z=(a+ z)); (21)

where A(h) := n �Ph
i=0 Z(i) and binomial(m; p) is a binomial(m; p) random variable, with

the conventions binomial(�1; p) = �1 and binomial(0; p) = 0.

Proof. For a Poisson o�spring distribution the law of Sz given Sz+a = a is binomial(a; z=(z+
a)). It is elementary that a size-biased binomial(n; p) variable is 1 plus a binomial(n� 1; p)
variable, and the conclusion follows by the previous lemma. 2

Proof of Theorem 7 in the Poisson case. Consider the rescaled process on the left side
of (15) in the Poisson case, so � = 1, in an asymptotic regime with n !1 and 2k=

p
n ! `

for some ` � 0. From (21), in the limit as n; z and a tend to 1 with 2z=
p
n ! x and

a=n ! p, for integer h the increment �k;n(h) := Zk;n(h + 1) � Zk;n(h) is such that the
corresponding normalized increment ��

k;n(h) := 2�k;n(h)=
p
n has the following conditional

mean and variance given a history (Zk;n(i); 0 � i � h) with Wk;n(h) = (z; a):

E(��
k;n(h) jWk;n(h) = (z; a)) =

2p
n

�
1 +

(a� 1)z

a + z
� z

�
�
�
4� x2

p

�
1

2
p
n

V ar(��
k;n(h) jWk;n(h) = (z; a)) =

4

n

(a� 1)za

(a+ z)2
� 4x

1

2
p
n

where the relative errors of approximation are negligible as n!1, uniformly in h, provided
x < 1=� and p > � which can be arranged by a localization argument, stopping the normalized
process when either its value exceeds x or its integral exceeds 1 � p. Since ��

k;n(h) is the

increment of the normalized process over a time interval of length 1=(2
p
n), and the value of

p � Ak;n(h)=n can be recovered from the path of the normalized process with a negligible
error via

p � Ak;n(h)

n
= 1� 1

n

hX
i=0

Zk;n(h) � 1�
Z h=(2

p
n)

0

2p
n
Zk;n(2

p
nv) (22)

these calculations show that the normalized process is governed asymptotically by the SDE
(2)-(3). Since it is easily veri�ed that the SDE has a unique strong solution, the conclusion
follows by application of known results regarding the approximation of a Markov chains by
the solution of an SDE [42, 41]. 2

The above argument in the Poisson case is all that is needed for the proof of Theorem
4 indicated earlier. As that result is the main focus of this paper, details of the following
argument are left to the reader. In the case k = 1 and ` = 0 this argument simpli�es the
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previous approach of Drmota-Gittenberger [16], because the work of proving both conver-
gence of �nite-dimensional distributions and tightness is all done in the general setting of
approximating solutions to an SDE rather than in the speci�c setting of the conditioned
branching process, where explicit computations involving the �nite dimensional distributions
are di�cult.
Proof of Theorem 7 in the general case. For a general aperiodic o�spring distribution
with mean 1 and �nite variance the same asymptotic conditional means and variances are
obtained by a local normal approximation to the distribution of the random variables Sz and
Sz+a appearing in formula (19). 2

3 Applications to Forests and Mappings.

It is known [40, 1] that each of the two processes (Zk;n(h); h � 0) de�ned in (i) and (ii) below
has the distribution of a Galton-Watson branching process with Poisson o�spring distribution
started with k individuals and conditioned to have total progeny n. See [59] for a quick proof
of this fact in case (i). This case can also be deduced by using classical enumerations of trees
and forests reviewed in [58] to show the conditions of Lemma 9 are satis�ed.

(i) In a random forest with uniform distribution on the set of all rooted forests of k trees
labeled the set [n] := f1; : : : ; ng, let Zk;n(h) equal the number of vertices at height h above
the roots. Call this process (Zk;n(h); h � 0) the height pro�le of the forest.

(ii) For M a mapping from [n] to [n], with iterates Mm for m = 0; 1; 2; : : :, call v 2 [n]
a cyclic point of M if Mm(v) = v for some m > 0. Let cyclic(M ) be the set of cylic points
of M . For v 2 [n] let h(v;M ) be the least m � 0 such that Mm(v) 2 cyclic(M ). So
h(v;M ) is the height of v in the usual forest derived from M whose set of roots is cyclic(M ).
For h = 0; 1; 2; : : : let Z�;n(h) be the number of v 2 [n] such that h(v;Mn) = h, for Mn a
random mapping from [n] to [n], with uniform distribution on the set of nn such mappings, as
studied in [40, 1]. Call this process (Z�;n(h); h � 0) the height pro�le of the mapping forest.
Let (Zk;n(h); h � 0) be the height pro�le of the mapping forest conditioned on the event
(Z�;n(0) = k) that Mn has exactly k cyclic points.

That (Zk;n(h); h � 0) has the same distribution in (ii) as in (i) is evident because given
that Mn has k cyclic points, the forest generated by Mn is a uniform random forest of k
rooted trees labeled by [n], exactly as supposed in (i).

Corollary 10 If (Zk;n(h); h � 0) is either
(i) the height pro�le of a uniform random forest of k rooted trees labeled by [n], or
(ii) the height pro�le of the forest derived from a random mapping from [n] to [n] conditioned
to have k cyclic points,
then the distribution of the sequence (Zk;n(h); h � 0) is that described by Lemma 9, and in
the limit regime as n!1 and 2k=

p
n! ` � 0�

2p
n
Zk;n(2

p
nv); v � 0

�
d! (X`;1;v; v � 0) (23)

11



Aldous-Pitman [1] showed how a uniform random mapping Mn can be recoded as a non-
uniformly distributed random walk of 2n steps starting and ending at 0, with each tree
component of the forest generated by Mn corresponding to an excursion of the walk away
from 0, in such a way that as n!1 the normalized walk converges in distribution to Bjbrj;1,
a reecting Brownian bridge of length 1. The following further corollary is now obtained by
mixing the result of the previous corollary with respect to the distribution of the number
Z�;n(0) of cyclic points of Mn. It is well known [1] that for all x > 0

lim
n!1P (Z�;n=

p
n > x) = e�x

2=2 (24)

So Theorem 4 and Corollary 10 combine with (24) and (8) to yield:

Corollary 11 Drmota-Gittenberger [17] The normalized height pro�le of the forest derived
from a uniform random mapping Mn converges weakly to the process of local times of a
reecting Brownian bridge of length 1:�

2p
n
Z�;n(2

p
nv); v � 0

�
d! (Ljbrj1;v ; v � 0) (25)

A second proof of Theorem 4 can be given by comparison of Corollary 10 with the known result
(25), or with the weaker integrated form of (25) given in [1]. A third proof of Theorem 4 could
be given by �rst checking Theorem 7 for geometric instead of Poisson o�spring distribution,
then working with the branching process with geometric o�spring distribution embedded in
the excursions of a lattice walk, and appealing to the well known fact that a rescaled uniform
reecting lattice bridge of length 2n converges weakly to RBB when suitably scaled. See also
Borodin [10, 11] for more about approximation of Brownian local times by random walks.

4 Related Results

This section presents a series of results related to Theorem 4. Those deduced from the theorem
are labeled as corollaries, while those proved independently of the theorem are labeled lemmas.

In particular, the Biane-Yor description of (L
jbrj
t;v ; v � 0) is obtained as a corollary. This

description combined with the lemmas yields a fourth proof of Theorem 4.
Observe �rst that in terms of the local time representation ofX provided by Theorem 4, the

Markov property of the process W described in Proposition 3, which is the continuous analog
of the Markov property of W in Lemma 8, amounts to the following equality of distributions
on C[0;1), where dist(XjY ) stands for the conditional distribution of X given Y : for all
t > r > 0; ` � 0; v � 0

dist(L
jbrj
t;v+z; z � 0 jLjbrjt;u ; 0 � u � v with L

jbrj
t;v = `; t� R v0 Ljbrjt;u du = r)

= dist(Ljbrjr;z ; z � 0 jLjbrjr;0 = `) (26)

Lemma 12 prepares for a re�nement of this identity in law which is stated in Lemma 13.

12



Lemma 12 For each t > 0 there exists on the path space C[0; t] a unique family of conditional

distributions for (Bjbrj;ts ; 0 � s � t) given L
jbrj
t;0 = `, say (P `;t; ` � 0), that is weakly continuous

in `. In particular, the law P 0;t is the law of a Brownian excursion of length t.

Proof. The existence of such a continuous family (P `;t; ` � 0) follows from the construction
of the RBB by �rst constructing its zero set, then piecing together independent Brownian
excursions over the maximal open intervals in the complement of the zero set. See [62] for
an explicit description of the law of the ranked lengths of the complementary intervals given

L
jbrj
t;0 = `. Given the lengths. each interval is assigned an independent local time value with

uniform distribution on [0; `], and then the lengths are laid down in the order of the local
time variables. It follows from this description that for each � > 0 there exists � such that for
` < �, with P `;t probability at least 1� �, there is a complementary interval of length at least
t� �, which implies easily that P 0;t is the law of a Brownian excursion of length t. 2

This construction of a Brownian excursion of length t by conditioning Bjbrj;t on L
jbrj
t;0 = 0

parallels similar constructions by conditioning a Brownian bridge Bbr;t of length t on Zt = 0
for suitable Zt, due to Blumenthal [9] for Zt := inf0�s�tBbr;t

s and Chaumont [14] for Zt :=R t
0 1(B

br;t
s � 0)ds.

If Bjbrj;`;t denotes a process with law P `;t, then Lemma 12 allows Theorem 4 to be recast
as

(Lt;v(B
jbrj;`;t); v � 0)

d
= (X`;t;v; v � 0): (27)

For ` = 0, Corollary 5 is then recovered from Lemma 12. The law P `;t could also be con-
structed as in [1] as a weak limit from a uniform mapping Mn conditioned to have around
k = `

p
n=2 cyclic points, or from a random rooted forest of k trees with n vertices, or by

similar conditioning of a uniform lattice walk path of length 2n on its number of returns to 0.

Lemma 13 Fix t > 0. For v � 0 let Y v;� denote the process with lifetime

�v;� :=

Z t

0

1(Bjbrj;ts � v)ds =

Z v

0

L
jbrj
t;u du

de�ned by deleting the excursions of Bjbrj;t above v and closing up the gaps, and let Y v;+

denote the process with lifetime

�v;+ :=

Z t

0

1(Bjbrj;ts > v)ds = t�
Z v

0

L
jbrj
t;u du

de�ned by deleting all portions of the path of Bjbrj;t below v, closing up the gaps, and �nally
subtracting v so the path starts and ends at 0. Then

(i) the process (L
jbrj
t;u ; 0 � u � v) is the restriction to [0; v] of the process of local times of Y v;�

up to time �v;�.
(ii) the process (Ljbrjt;v+z; z � 0) is the process of local times at levels z of the process Y v;+ up
to time �v;+.
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(iii) for `0 � 0; r > 0

dist(Y v;+ jY v;� with L
jbrj
t;v = `0; �v;+ = r) = P r;`0 :

(iv) these results hold also for each ` � 0 with the reecting bridge Bjbrj;t replaced by a bridge
Bjbrj;`;t with the law P `;t described in Lemma 12, and in particular for ` = 0 with Bjbrj;t

replaced by Bex;t, an excursion of length t.

Proof. See Itô-McKean[31, x2.11] for details of the construction involved in the de�nition of
the processes Y v;� and Y v;+. Properties (i) and (ii) follow immediately from the construction.
Property (iii) can be deduced from the structure of Brownian excursions and excursion �ltra-
tions exposed in [73, 30, 47, 66, 67]. Property (iv) then follows from (iii) and the de�nition
of the conditioned bridge laws P `;t. 2

Consider now the family of laws BES
(3)
x ; x � 0 of a three-dimensional Bessel process which

may be constructed as the solution of the SDE

R0 = x; dRt = R�1t dt + d�t

for a Brownian motion �. For t > 0 let Rx;y;t denote a BES(3) bridge from x to y of length

t, that is a BES
(3)
x process R conditioned on Rt = y, regarded as process parameterized by

[0; t]. It is easily seen that such a process Rx;y;t may be constructed for 0 � s � t by the
formula

Rx;y;t
s :=

q
(x+ (y � x)s=t+ Bbr;t

1;s )
2 + (Bbr;t

2;s )
2 + (Bbr;t

3;s )
2

where the (Bbr;t
i;s ; 0 � s � t) for i = 1; 2; 3 are three independent copies of a one-dimensional

Brownian bridge of length t. As a consequence of this description and Itô's formula, Rx;y;t

can also constructed as the solution over [0; t] of the SDE

R0 = x; dRs =

�
1

Rs
+

(y � Rs)

(t � s)

�
ds + ds (28)

for a Brownian motion . See also [75, 56, 28, 65] for background. The following lemma was
suggested by the results of Jeulin [34] and Biane-Yor [7] presented in Corollary 16.

Lemma 14 For ` � 0; t > 0 let R`;0;t be the process derived from (X`;t;v; v � 0) via the
formula

2R`;0;t
s := X`;t;v for the least v :

Z v

0

X`;t;udu = s; where 0 � s � t (29)

Then R`;0;t is a BES(3) bridge from ` to 0 of length t, and (X`;t;v; v � 0) can be recovered
from R`;0;t via the formula

X`;t;v = 2R`;0;t
s for the least s :

Z s

0

dr

2R`;0;t
r

= v (30)

Consequently, starting from any BES(3) bridge R`;0;t from ` to 0 of length t, the process X
de�ned by (30) has the same distribution as X de�ned by the SDE (2).
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Proof. The recipe (30) for inverting the time change (29) is easily checked, so it su�ces to
show that if R := (R`;0;t

s ; 0 � s � t) solves the SDE (28), for (x; y) = (`; 0), that is

dRs =

�
1

Rs
� Rs

(t� s)

�
ds + ds

for some Brownian motion , then X := (X`;t;v; v � 0) de�ned by (30) solves the SDE (2) for
some Brownian motion �. But from (29) and (30)

dXv = 2 dRs where s =

Z v

0

Xudu

A level increment dv for X corresponds to a time increment ds = Xvdv for R, and Rs = Xv=2,
so

dXv = 2

 
1

Xv=2
� Xv=2

(t� R v0 Xudu)

!
Xvdv + 2

p
Xvd�v (31)

for some other Brownian motion �, where the factor
p
Xv appears in the di�usion term due to

Brownian scaling, and the equation (31) simpli�es to (2). As a technical point, the de�nition

of � above the level
R t
0 dr=2R

`;0;t
r when X hits 0 may require enlargement of the probability

space. See [65, Ch. V] for a rigorous discussion of such issues. 2

Lemma 15 The laws of a Brownian excursion Bex;t and a Brownian meander Bme;t, each
of length t, can be expressed as follows in terms of the laws of BES(3) bridges Rx;y;t:
(i) D. Williams [74]

Bex;t d
= R0;0;t (32)

(ii) Imhof [28] The �nal value Bme;t
t of the meander has the distribution of

p
tR for R with

the standard Rayleigh distribution P (R > r) = exp(�r2=2); r > 0, and

(Bme;t jBme;t
t = y)

d
= R0;y;t (33)

The above results now combine easily to yield:

Corollary 16 For a process Y := (Ys; 0 � s � t) admitting a local time process (Lt;v(Y ); v �
0), de�ne a process L̂(Y ) := L̂r(Y ); 0 � r � t by L̂r(Y ) := Lt;v(r)(Y ) where v(r) := supfy �
0 :
R1
y

Lt;xdx > rg. So L̂r(Y ) is the local time of Y at a level v(r) above which Y spends
time r.
(i) Jeulin [34, p. 264] If Y is a Brownian excursion of length t, then so is L̂(Y )=2.
(ii) Biane-Yor [7, Th. (5.3)] If Y is a reecting Brownian bridge of length t, then L̂(Y )=2 is
a Brownian meander of length t.

(iii) If Y has the law P t;` of Bjbrj;t given L
jbrj
t;0 = `, then L̂(Y )=2 is a BES(3) bridge from 0

to ` of length t.
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Indeed, by combining Lemmas 14 and 15, for Y as in (iii) the process L̂(Y )=2 is seen to
be a time-reversed copy of R`;0;t, that is a copy of R0;`;t, by a well known property of one-
dimensional di�usion bridges. Now (i) is seen to be the special case ` = 0 of (iii) by Corollary

5, while (ii) is an integrated form of (iii) by (33) and the fact that L
jbrj
t;0 =2 and Bme;t

t have
the same distribution. In view of Lemma 12, the Biane-Yor result (ii) can be disintegrated
by conditioning on the local time of Y at 0 to recover (iii). Theorem 4 can then be deduced
from (iii) by retracing the above argument via Lemmas 15 and 14. Theorem 4 can even be
deduced from the special case (i) of (iii). For (i) implies the special case (` = 0; t = 1) of
Theorem 4 by the argument just indicated, hence the case (` = 0; t > 0) by Brownian scaling.
By application of Lemma 13 it is clear that the bivariate process W � derived from the local
time representation of a non-negative process Y of length t, say

W � := ((Lt;v(Y ); t�
R v
0 Lt;w(Y )dw); v � 0)

is Markovian with the same transition probabilities whenever Y has the distribution P `;t for
any ` � 0; t > 0. Denote this process W � by (W �

`;t;v; v � 0): For Y an excursion of length t,
corresponding to ` = 0, for each v > 0 the distribution of W �

0;t;v has a strictly positive density
over (0;1)�(0; t) as well as an atom at the absorbing state (0; 0). Due to the Markov property
of W �, the transition mechanism of this process starting at any state (`; s) with ` > 0 and
s < t is therefore determined by the evolution of W � starting in state (0; t) corresponding to
an excursion Y . But by inspection of the SDE in the excursion case, the same SDE must be
solved starting in an arbitrary state (`; s) with ` > 0 and s < t. Since t was arbitrary, the
conclusion of Theorem 4 follows.

5 Some explicit formulae

Previous results combined with existing results in the literature yield a number of explicit

formulae regarding the distribution of the process of local times (L
jbrj
1;v ; v � 0) of a reecting

Brownian bridge of length 1. As a consequence of the Biane-Yor result of Corollary 16(ii),

sup
v�0

L
jbrj
1;v

d
= 2 sup

0�u�1
Bme
u

d
= 4 sup

0�u�1
Bjbrj;1u (34)

where Bme is a Brownian meander of length 1, the second equality is due to Kennedy [37], and

the distribution of sup0�u�1B
jbrj;1
u is given by the well known Kolmogorov-Smirnov formula.

Also by Corollary 16(ii),

(L
jbrj
1;0 ; sup

v�0
L
jbrj
1;v )

d
= 2(Bme

1 ; sup
0�u�1

Bme
u ) (35)

The joint density of this distribution can be read from known results for the Brownian meander

[29]. By conditioning (35) on L
jbrj
1;0 , or by Lemma 14

(sup
v�0

L
jbrj
1;v jLjbrj1;0 = `)

d
= sup

v�0
X`;1;v

d
= 2 sup

0�u�1
R0;`;1
u (36)
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where R0;`;1 is a three-dimensional Bessel bridge from 0 to ` of length 1. The density of this
conditional distribution can be read either from the joint density in (35), or from the general
formula of Kiefer [38] for the distribution of the maximum of a d-dimensional Bessel bridge.

For �xed v the distribution of

(L
jbrj
1;v jLjbrj1;0 = `)

d
= X`;1;v (37)

can be evaluated by Theorem 7 as the limit distribution of 2Zk;n(2v
p
n)=

p
n as n!1 with

2k=
p
n! ` for Zk;n(h) as in Lemma 9 the number of vertices at level h in a uniform random

forest of k rooted trees labeled by [n]. A formula for the density of this limit distribution
was found by Pavlov [51, Th. 6], in terms of an integral with respect to a two-dimensional
probability distribution with an explicit Fourier transform. For ` = 0 more explicit formulae
are known from the representation (10) of X0;1;v as the distribution of local time of an
excursion at level v. See [16] for a review of various representations of this distribution,
and transform expressions for the higher dimensional distributions. Drmota-Gittenberger [17]

give similar transforms for the �nite dimensional distributions of (Ljbrj1;v ; v � 0). Presumably
similar transforms can be given for the the �nite-dimensional distributions of (X`;1;v; v � 0).
Pavlov [52, Th.2] found a transform for the asymptotic distribution of the maximum height
in a random forest of plane rooted trees, which with appropriate scaling can be interpreted
via Theorem 7 for geometric o�spring distribution as the distribution of

( sup
0�u�1

Bjbrj;1u jLjbrj1;0 = `)
d
= inffv > 0 : X`;1;v = 0g d

=
1

2

Z 1

0

du

R0;`;1
u

(38)

This distribution does not seem to have been studied in the Brownian literature, except in
the case ` = 0 when it reduces to the distribution of the maximum of Brownian excursion
[15, 37, 7, 3].

6 The local time process of an unreected Brownian

bridge.

Let
Lbrt;v := Lt;v(B

br;t)

denote the local time up to time t at level v of an unreected Brownian bridge of length t.
In principle, the law of the process (Lbrt;v; v 2 R) is determined by Ray's [64] description for
each � > 0 of the process of local times (LT�;v(B); v 2 R) for T� an exponential variable with
rate �2=2 independent of B. According to that description, which is reviewed from a modern
perspective in Biane-Yor [8], conditionally given BT� = 0 and LT�;0(B) = ` the processes
(LT�;v(B); v � 0) and (LT�;�v(B); v � 0) are independent copies of the time-homogeneous
di�usion process Y = (Y`;�;v; v � 0) de�ned as the solution of

Y0 = `; dYv = �2�Yvdv + 2
p
Yvd�v
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for a Brownian motion �. E�ectively, this describes the distribution of local times of a
Brownian bridge of random length with distribution that of T� given BT� = 0, which is easily
seen to be the gamma(1=2; �2=2) distribution. By application of Brownian scaling, it is clear
that the law of (Lbr1;v; v 2 R), hence that of (Lbrt;v; v 2 R) for each t > 0, is determined by this
description of the law of (LT�;v(B); v 2 RjBT� = 0) even for � = 1. However, it is not easy to
use this description to deduce more explicit descriptions of the �nite dimensional distributions
of (Lbr1;v; v 2 R). For instance, it would be painful to recover from Ray's result the formula

P (Lbr1;v > x) = e�(2jvj+x)
2=2 for x � 0; v 2 R (39)

given by L�evy [45] for v = 0 and x = 0, and Borodin [12] for general x and v. That the higher-
dimensional distributions of the process (Lbr1;v; v 2 R) are not so simple is clear already from

the complexity of Proskurin's formula [63, 1, 70, 71] for the density of Ljbrj1;v = Lbr1;v + Lbr1;�v
for v > 0.

Let �I denote the infemum of the standard bridge Bbr;1, so

�I := inf
0�u�1

Bbr;1
u = inffr : Lbr1;r > 0g a.s.

As observed by Biane [6],

(Lbr1;v�I ; v � 0) = (L1;v(B
ex;1); v � 0) (40)

where Bex;1 is the standard Brownian excursion derived from Bbr;1 by Vervaat's [72] trans-
formation. Combined with Corollary 5 this yields the following description of the process of
bridge local times:

Corollary 17

(Lbr1;r ; r 2 R;�I) d
= (X0;1;(J+r)_0; r 2 R; J) (41)

where on the right side P (J 2 dujX0;1;v; v � 0) = X0;1;udu; u > 0:

Proof. In view of (40) it su�ces to show that P (�I 2 dujBex;1) = L1;u(Bex;1)(du), and this
follows easily from Biane's observation that the time of the minimum of Bbr;1 is independent
of Bex;1 with uniform distribution on [0; 1]. 2

See Chaumont [14] for related results. As shown by L�evy the random variable

Abr
1 :=

Z 1

0

1(Bbr;1
u � 0)du =

Z 1

0

Lbr1;vdv

has a uniform distribution on [0; 1]. The joint distribution of (Lbr1;0; A
br
1 ), while not as simple

as its marginals, is in principle determined by transforms which can be read from Ray's
description up to time T�, or from the Feynman-Kac formula [32]. By consideration of the kind
of transformation between reecting and unreecting bridges described in Bertoin-Pitman [5,
Lemma 5.2], Theorem 4 yields also the following corollary:

Corollary 18 Conditionally given (Lbr1;0; A
br
1 ) = (`; a), the processes (Lbr1;v; v � 0) and (Lbr1;�v; v �

0) are independent copies of (X`;a;v; v � 0) and (X`;1�a;v; v � 0) respectively.
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7 Concluding Remarks

Perkins [53] showed that for each �xed t > 0 the process of local times of B at levels v
up to time t is a semi-martingale as v ranges over all real values, and he gave the semi-
martingale decomposition of this process. Jeulin [34] gave a version of Perkins results that
allows conditioning on Bt. Presumably, a similar description of the process (Lt;v(jBj); v � 0)
could be obtained, and then Theorem 4 should appear after conditioning on Bt = 0.

As remarked in the discussion below Theorem 15, the left side of formula (12) has no
meaning for ` = 0 and t > 0, even though the process (X0;t;v; v � 0) is a well de�ned process
identical in law to the process of local times of Bex;t, a Brownian excursion of length t.
However, for ` > 0 formula (12) amounts to the following identity of probability measures on
C[0;1):

Q
(0)
` =

Z 1

0

Q`;t q
(0)
` (dt) (42)

where Q
(0)
` is the law of the BESQ

(0)
` process starting at ` > 0, where Q`;t is the law of

(X`;t;v; v � 0) for ` � 0 and t > 0, and q
(0)
` denotes the distribution of

R1
0 Xvdv for X with

distribution Q
(0)
` , that is, for t > 0

q
(0)
` (dt) = P (�` 2 dt) =

`p
2�

t�3=2e�`
2=(2t)dt (43)

where the �rst equality is read from the Ray-Knight theorem (11), and the second is L�evy's
formula for the density of the stable(1=2) variable �`. If this form (42) of formula (12) is divided
by `, and the limit taken as ` # 0, the result is the following Corollary, where according to
(5), the law Q0;t of (X0;t;v; v � 0) may be interpreted as the law of local times up to time t
of a Brownian excursion of length t, as in [60, 61]:

Corollary 19 Pitman-Yor [60, 61] The formula

M :=

Z 1

0

Q0;t
t�3=2dtp

2�
(44)

de�nes a �-�nite measure on C[0;1) under which the co-ordinate process is Markovian with
the BESQ(0) semigroup, with almost every path starting at 0.

As shown in [60, (4.2)], this �-�nite law M is the distribution of the ultimate local time
process (L1;v("); v � 0) for " an element of C[0;1) subject to Itô's �-�nite law of Brownian
excursions. See [23, 57, 60, 61] for various developments and applications of this result to the
L�evy-Itô representation of squared Bessel and related processes.

Le Gall-Yor [23] deduced from the L�evy-Itô representation of squared Bessel processes

[60] that BESQ
(�)
0 for � � 0, can be constructed as the process of ultimate local times

(L1;v(Y (�)); v � 0) of Y (�) constructed from a reecting Brownian motion jBj as Y (�)
t =

jBjt+Lt;0(jBj)=� for t � 0. Carmona-Petit-Yor [13] found a similar construction of BESQ(�)
0

for � < 0. See also [54, 55]. Norris-Rogers-Williams [50, Th. 2]showed that the distribution
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of a local time process derived from another kind of perturbed Brownian motion, with a drift
depending on its local time process, can be characterized by a variation of the Bessel square
SDE like (2), but with a di�erent form of path dependent drift coe�cient �v(X). See also
[76] and papers cited there for various other Ray-Knight type descriptions of Brownian local
time processes, and further references on this topic.
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