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Abstract

 

Classical statistical genetics models of a quantitative trait depending on an autosomal 
gene indicate that father-to-daughter and mother-to-son correlations should be the same. 
If phenotypes are not sex-dependent, father-to-son and mother-to-daughter correlations 
also share this common value. On the other hand, if the gene is sex-linked, then the 
father-to-son correlation is zero.

Such models do not explain genetic variation in pulmonary artery pressure (PAP) of cat-
tle – important because cattle with high PAP are known to develop Brisket Disease, pul-
monary heart disease and congestive heart failure when taken to high altitudes. Data on 
966 calves at a ranch in Colorado showed positive correlation (0.2) between sire PAP 
and male calf PAP, but slightly negative correlation (-0.01) between sire PAP and 
female calf PAP; the dam to male calf and dam to female calf correlations are both 
about 0.1.

The model presented here postulates an autosomal gene with reduced penetrance (i.e. 
the trait may remain at a normal level even when the genotype suggests abnormality), 
and that, in males, the rate of penetrance is related to an abnormality in the 

 

Y

 

 chromo-
some, and is therefore passed on from father to son. Then under plausible selective 
breeding assumptions, the pairwise correlation between fathers and daughters can 
become zero or negative. Explicit formulas are computed for the model covariances, 
and numerical computations indicate that plausible parameter values can be chosen for 
the model.
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1 Pulmonary Artery Pressure in Cattle: Introduction to the Data

 

1.1 A Puzzling Parent-to-Offspring Correlation Structure

 

Holt (1997) describes a procedure for measuring pulmonary artery pressure (PAP) in 

cattle at high altitudes (i.e. 5,000 feet or more). It has been known for some time that 

animals with elevated PAP at one year of age are prone to develop brisket disease (see 

Alexander and Will (1963)), pulmonary heart disease and congestive heart failure when 

taken to high altitudes. 

Schimmel’s (1981) study of 667 high altitude calves in the years 1974 - 1980 demon-

strated the genetic component of PAP, using analysis of variance and regression tech-

niques. Holt, Darling, Bittle, Miller, and Ramirez (1997) consider a data set consisting 

of 481 female and 485 male or castrated calves, living on a ranch in Colorado at an ele-

vation of 7,000 feet. The PAP scores of these calves, and of their parents, were mea-

sured at approximately one year of age. It was found that the genetic component in high 

PAP scores is highly statistically significant (

 

p <

 

0.0001).

Schimmel (1981) did not present a genetic model. Weir et al. (1974) propose an autoso-

mal dominant gene, but our statistical results are inconsistent with that hypothesis. The 

present paper presents a genetic model which seems to be capable of explaining certain 

unusual statistical characteristics of the data set of Holt et al (1997). 

When a quantitative character depends upon an autosomal gene whose genotypes are in 

Hardy-Weinberg equilibrium, standard theory dictates that father-to-daughter and 

mother-to-son correlations take the same value, 

 

ρ

 

 say; indeed if the levels of the trait 

depend only on the genotype, and not on sex, then father-to-son and mother-to-daughter 

correlations are also equal to 

 

ρ

 

; see Ewens (1979), Section 1.3. Moreover Hogben 

(1932) showed that, for a sex-linked gene, the father-to-son correlation is zero, while the 

father-to-daughter and mother-to-son correlations are equal. Even in more elaborate 

sex-linked models such as that of Leach and Mayo (1967), father-to-son correlation is 

still zero.]

However in this case, although sire PAP is positively correlated with male calf PAP, it 

has zero or negative

 

 

 

correlation with female calf PAP, as shown in TABLE 1, in contrast 

 

a. Computed pairwise; see Eliasziw and Donner (1990), and Vogler et al 
(1995) for a discussion of statistical issues.

b. The significance level of the column difference is hard to compute because 
of the dependence between pairs sharing a common parent.

 

TABLE 1

 

PAP Correlations

 

a

 

Male Calf (N = 485) Female Calf (N = 481)

Sire (N = 67)

 

0.199 -0.011

 

b

 

Dam (N = 266)

 

0.106 0.108
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to the traditional models above. [Mayo et al (1990) present a model for a balanced poly-

morphism where such negative correlations are possible, but which has other features 

which appear unnatural here, as discussed further below.] 

It is noteworthy that Schimmel (1981) did not observe a different regression coefficient 

for male calf PAP with respect to sire PAP to the one for female calf PAP with respect to 

sire PAP. We conjecture that the reason for this is that, twenty years ago, high PAP sires 

were still used for breeding, and the selective mating policies mentioned in Sections 2.2 

and 3.2 were not in force; this would lead to correlation and regression coefficients 

which were less sex-dependent than the ones that we observed. 

 

1.2 First Clue: PAP Scores of Sires are Atypical

 

In order to frame a suitable genetic hypothesis, some statistical characteristics of the 

PAP data need to be mentioned. FIGURE 1 presents the empirical cumulative distribu-

tion functions of PAP scores for dams, sires, and calves (B denotes bull, or male calf; C 

denotes cow, or female calf; S denotes steer, i.e. castrated male), respectively. A com-

parison of the empirical distribution functions of PAP scores for male calves and for 
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FIGURE  1

 

Empirical cumulative distribution functions of PAP scores for dams, sires, and calves (B 
= male; C = female; S = steer)
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female calves showed no significant difference between the two (bottom graph), except 

that very high values seem less common among steers (which hereafter are pooled with 

male calves). Likewise PAP scores for dams and for calves show similar distributions. 

However the PAP distribution for the 67 sires is evidently truncated so as to exclude 

sires with PAPs over 49, or less than 32.

 

1.3 Environmental Factors Which Might Have Affected PAP

 

Holt (1997) has found that PAP scores taken at 11- 13 months of age are very reliable 

and highly repeatable. Animals used in this study are range cattle and treated as such. 

These cattle were not kept or raised in a feedlot or feed test situation. This issue is rele-

vant because Dr. Joe Schimmel has shown that diet and ration type can indeed affect the 

PAP measurement. All cattle in this group, male and female alike, received virtually the 

same treatment.

 

2 First Modeling Attempt - A Selective Mating Hypothesis

 

We shall first attempt to explain the data using a relatively simple model; it turns out to 

be wrong, but the calculations involved are extremely helpful in preparing for the subse-

quent model. 

Let us postulate, following Weir et al. (1974), that PAP scores are related to an autoso-

mal gene, where we denote the normal gene by , and the gene associated with high 

risk of brisket disease (and elevated PAP) by 

 

R

 

. We further suppose that the genotypes 

, , and 

 

RR 

 

are in Hardy-Weinberg equilibrium (or, at least, were in equilib-

rium until the last generation or so), with relative frequencies , , 

and , respectively, for some . We do not assume that 

 

R

 

 is either recessive or 

dominant, but that the mean PAP score is different for each genotype, and possibly for 

each gender; thus mean PAP scores are as shown in the following table, where we 

assume  and :

 

TABLE 2

 

Genotypes and Phenotypes for the First Model

 

Male Phenotypes Female Phenotypes

Genotype Relative Frequency Mean PAP Mean PAP

  

  

R
+

R
+
R

+
R

+
R

1 p–( ) 2
2 p 1 p–( )

p
2

0 p 1< <

µ0 µ1 µ2≤ ≤ φ0 φ1 φ2≤ ≤

R
+
R

+
1 p–( ) 2 µ0 φ0

R
+
R 2 p 1 p–( )

µ1 φ1

RR p
2 µ2 φ2
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In TABLE 3 we introduce some integer-valued random variables to assist in our calcula-

tions. It is assumed that these variables are independent, apart from the dependencies 

noted in the right column. We assume the usual system of inheritance (see Kempthorne 

(1957)), in which a male calf inherits  

 

R

 

 genes from his parents, and a female 

calf inherits  

 

R

 

 genes from her parents.

 

2.1 Additive Genetic and Environmental Factors for the Simplistic Model

 

See Kempthorne (1957) for a general discussion of the modeling of quantitative charac-

ters. We postulate that the PAP score  of the sire can be written as

,

where the “residual”  is a random variable with mean zero, representing environmen-

tal and other factors affecting the PAP score. This can be abbreviated to

,

 

(1)

 

where . Likewise the PAP score  of the dam can be written as

,

 

(2)

 

where . The PAP scores  of a bull calf and  of a female calf are

.

 

(3)

 

.

 

(4)

 

The residuals  are assumed to be independent of each other, and of all 

genetic random variables. Their variances are assumed to be finite, but possibly 

unequal. Note that no further distributional assumptions are made about the residuals; 

hence we are not in a position to maximize a likelihood to estimate parameters.

 

TABLE 3

 

Genetic Random Variable Definitions

 

Variable
Name Meaning

Possible
 Values

Probability 
Distribution

 

, 

 

Number of 

 

R 

 

genes in the sire and 
dam, respectively

0, 1, 2 Binomial(2, 

 

p

 

)

Number of 

 

R 

 

genes transmitted from 
sire to male calf

0, 1 Bernoulli( ), 
conditional on 

Number of 

 

R 

 

genes transmitted from 
dam to male calf

0, 1 Bernoulli( ), 
conditional on 

Number of 

 

R 

 

genes transmitted from 
sire to female calf

0, 1 Bernoulli( ), 
conditional on 

Number of 

 

R 

 

genes transmitted from 
dam to female calf

0, 1 Bernoulli( ), 
conditional on 

NS ND

US

NS 2⁄
NS

UD

ND 2⁄
ND

VS

NS 2⁄
NS

VD

ND 2⁄
ND

US UD+

VS VD+

YS

YS µ01 NS 0={ } µ11 NS 1={ } µ21 NS 2={ }+ εS+ +=

εS

YS µ0 ∆11 NS 1={ } ∆21 NS 2={ }+ εS+ +=

∆i µi µ0– 0≥≡ YD

YD φ0 Λ11 ND 1={ } Λ21 ND 2={ }+ εD+ +=

Λi φi φ0– 0≥≡ YB YC

YB µ0 ∆11 US UD+ 1={ } ∆21 US UD+ 2={ }+ εB+ +=

YC φ0 Λ11 VS VD+ 1={ } Λ21 VS VD+ 2={ }+ εC+ +=

εS εD εB εC, , ,{ }
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2.2 Selective Mating Assumption

As noted in Section 1.2, comparison of the empirical probability distributions of PAP 

scores of sires, dams, male calves, and female calves, at the ranch showed evidence that 

bulls with PAP scores over 49 were not used for breeding in this ranch, although PAP 

scores above this level occur in roughly ten per cent of male (or female) calves. We shall 

model this phenomenon as follows.

Let A denote the event that an adult male (which factors other than PAP would render 

eligible for breeding) is considered acceptable for breeding. Our probability model 

includes the following selective mating assumptions:

; (5)

; (6)

. (7)

Assumption (5) says, neglecting the effect of the “residuals”, that very high PAP adult 

males are not selected for breeding; (6) says that adult males with somewhat elevated 

PAP, and otherwise having desirable characteristics, have probability γ of being 

selected; (7) says that adult males with low PAP, and otherwise having desirable charac-

teristics, have probability 1 of being selected. [For the sake of simplicity we are neglect-

ing the fact that males with PAP below 32 appear not to be selected either, since their 

numbers are rather small.]

2.3 Theorem: Parent to Offspring Covariances – Simplistic Model

Under the assumptions described above, the conditional covariances of PAP scores are:

; ; (8)

; (9)

where  and

, , (10)

, , (11)

. (12)

P A NS 2=( ) 0=

P A NS 1=( ) γ=

P A NS 0=( ) 1=

Cov YS YB, A( )

∆1
2

--------------------------------------- αθγ
q 2 pγ+
-------------------=

Cov YS YC, A( )
∆1Λ1

--------------------------------------- α′θγ
q 2 pγ+
-------------------=

Cov YD YB, A( )
∆1Λ1

---------------------------------------- θα′β=
Cov YD YC, A( )

Λ1
2

---------------------------------------- θα′β′  =

q 1 p–=

α 1 2 p–
∆2

∆1

------ p+≡ α′ 1 2 p–
Λ2

Λ1

------ p+≡

β q
∆2

∆1

------ pγ+≡ β′ q
Λ2

Λ1

------ pγ+≡

θ pq
q 2 pγ+
-------------------≡
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2.3.1 Remarks

Our statistical data indicates that , , and . 

Hence , and (8) would imply that the correlation between sire PAP and male calf 

PAP is about the same as the correlation between sire PAP and female calf PAP, and that 

both are positive, which is inconsistent with the correlation data in TABLE 1. Hence we 

are forced to dismiss this model, based on an autosomal gene and selective mating 

alone, as inadequate.

A possible variation on this model, along the lines of Mayo et al. (1990), would be to 

allow  or , and likewise for the . The selective mating hypothesis 

would no longer make sense as it stands, and would have to be rephrased. This may per-

mit the correlation between sire PAP and female calf PAP to become zero or negative, 

but would still preserve approximate equality between the correlation between sire PAP 

and male calf PAP and the correlation between sire PAP and female calf PAP, which is 

inconsistent with the data.

Proof of Theorem 2.3: These formulas follow from Theorem 3.4 below, on taking 

. However they were in fact computed separately from the computa-

tions for Theorem 3.4, and serve as an independent check on the validity of the formulas 

therein.

3 A Model with Reduced Penetrance, Depending on Y

We now add two new features to the model of Section 2, which produce a model capa-

ble of explaining TABLE 1. 

3.1 New Features in the Model

3.1.1 Reduced penetrance in the female:

This means that a female with genotype  or RR will manifest a medium or high 

PAP score, respectively, with a probability π, and a low PAP score with a probability 1 - 

π, independently of all other variables in the model. The idea that reduced penetrance 

was present is due to geneticist Wilmer J. Miller; for other examples, see Hollander and 

Miller (1978).

3.1.2 Reduced penetrance in the male, depending on abnormality in the Y chromosome:

We postulate that a proportion 1 - t of males have a normal Y chromosome, and a pro-

portion t have an abnormal version denoted . Normal males always have low PAP, 

regardless of whether they are , , or RR. Males with the  chromosome and 

with  or RR have conditional probability η of manifesting medium or high PAP 

score, respectively. In effect the penetrance parameter for males is  (which in practi-

cal calculations we take to be equal to π), but male penetrance becomes a characteristic 

partly inherited from the sire, with no dependence on the dam at all.

∆i Λi≈ i 1 2,= Var YB A( ) Var YC A( )≈
α α′≈

µ1 µ0< µ1 µ2> φi{ }

t η π 1= = =

R
+
R

Y∗

R
+
R

+
R

+
R Y∗

R
+
R

tη
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In TABLE 4 we add new random variables to those already introduced in TABLE 3:

3.2 Revised Selective Mating Hypothesis

Let , for . Thus  is the event that the 

sire has elevated PAP. Let A denote the event that an adult male (which factors other 

than PAP would render eligible for breeding) is accepted for breeding. We replace (5), 

(6), and (7) by the following selective mating assumptions:

; (13)

; (14)

. (15)

Assumption (13) says that high PAP adult males are not selected for breeding; (14) says 

that adult males with somewhat elevated PAP have probability γ of being selected; (15) 

says that low PAP adult males are always selected.

Let us note that the random variables  are independent of A. 

However  are clearly dependent on A, and hence are so are . The for-

mulas for the conditional probabilities will be derived in Section 5.

The model for males can now be summarized in a tree diagram as in FIGURE 2; the 

model for females is similar, without the Y versus  dichotomy.

TABLE 4 More Genetic Random Variable Definitions

Variable
Name Meaning

Possible
Values

Probability
Distribution

T Number of  genes in the sire 0, 1 Bernoulli(t)

, , 
Indicator of penetration of the R gene in the 

sire and male calf, respectively
0, 1 Bernoulli(η)

, 
Indicator of penetration of the R gene in the 

dam and female calf, respectively
0, 1 Bernoulli(π)

Y∗

HS HB

HD HC

Wi T 1= HS 1= NS i=, ,{ }≡ i 1 2,= W1 W2∪

P A W2( ) 0=

P A W1( ) γ=

P A W1 W2∪( ) c( ) 1=

ND HD UD VD HC HB, , , , ,
T HS NS, , US VS,

Y∗
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FIGURE  2 Tree diagram showing genotypes, phenotypes, and breeding acceptability (A) for males

3.3 Additive Genetic and Environmental Factors for the Full Model

In the notation of TABLE 3 and TABLE 4, the PAP score  of the sire can be written:

,

where the “residual”  is as in (1), and . This can be abbreviated to

. (16)

Likewise the PAP score  of the dam can be written as

, (17)

where . The PAP scores  of a male calf and  of a female calf are

. (18)

. (19)

The residuals  have the properties described in Section 2.1.

3.4 Theorem: Parent to Offspring Covariances – Full Model

Under the assumptions described above, the conditional covariances of PAP scores are:

; (20)

γ

Y∗Y

R
+
R

+
R

+
R RR

low PAP

low PAP

low PAP medium PAP low PAP high PAP

A

A

A

A

A

A
C

Male

A
C

t

η1 η– 1 η–

1 γ–

p
2

2 pq
q

2

1 t–

η

YS

YS µ0 ∆11 NS 1= T 1= HS 1=, ,{ } ∆21 NS 2= T 1= HS 1=, ,{ }+ εS+ +=

εS ∆i µi µ0–≡

YS µ0 T HS ∆11 NS 1={ } ∆21 NS 2={ }+[ ] ε S+ +=

YD

YD φ0 HD Λ11 ND 1={ } Λ21 ND 2={ }+[ ] ε D+ +=

Λi φi φ0–≡ YB YC

YB µ0 T HB ∆11 US UD+ 1={ } ∆21 US UD+ 2={ }+[ ] ε B+ +=

YC φ0 HC Λ11 VS VD+ 1={ } Λ21 VS VD+ 2={ }+[ ] ε C+ +=

εS εD εB εC, , ,{ }

Cov YS YB, A( )

∆1
2

---------------------------------------
tη2

pqγ
P A( ) 2
------------------ tαζ 1 t–( ) 1

∆2

∆1

------ p+ 
 +=
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; (21)

; (22)

, (23)

where  and

, , (24)

, , (25)

. (26)

3.4.1 Remarks

(a) The central point of this paper, mathematically speaking, is that ξ is negative when 

 and  is less than ; this fact allows the sire-to-daughter covari-

ance in (21) to be negative.

(b) Note that, when ,  becomes , and . 

It is straightforward to check that formulas (20) through (23) reduce to formulas (8) and 

(9) of Theorem 2.3.

(c) The proof of Theorem 3.4 will be deferred to Section 5.

Now we derive a dimension-free version of the formulas above, not by considering cor-

relations, which has the unfortunate effect of introducing the unknown variances of the 

residuals, but by taking ratios of the covariances under certain simplifying assumptions.

3.5 Corollary: Ratios of the Covariances

Assume that , and  for some . Then , 

and 

; (27)

; (28)

. (29)

Cov YS YC, A( )
∆1Λ1

--------------------------------------- πtηpqγξα′
P A( ) 2

----------------------------=

Cov YD YB, A( )
∆1Λ1

----------------------------------------
πtηpqα′

P A( )
---------------------- ζ

∆2

∆1

------ p 1 η qγ 1–( )+[ ]+{ }=

Cov YD YC, A( )

Λ1
2

----------------------------------------
π2

pqα′
P A( )

------------------ ξ
Λ2

Λ1

------ p 1 tη qγ 1–( )+[ ]+{ }=

q 1 p–=

α 1 2 p–
∆2

∆1

------ p+≡ α′ 1 2 p–
Λ2

Λ1

------ p+≡

ζ 1 2 p– η p
2

+≡ ξ 1 2 p– tη p
2

+≡

P A( ) 1 tηp p 2qγ 2–+( )+=

p 1 2⁄> tη 2 p 1–( ) p
2⁄

t η π 1= = = P A( ) q q 2 pγ+( ) ζ ξ q
2

= =

π tη= Λ2 ∆2 ρ∆1 ρΛ1= = = ρ 1> α α′=

Cov YS YC, A( )
Cov YS YB, A( )
--------------------------------------- tαξ

tαζ 1 t–( ) 1 ρp+( )+
--------------------------------------------------------=

Cov YD YC, A( )
Cov YD YB, A( )
---------------------------------------- ξ ρp 1 π qγ 1–( )+[ ]+

ζ ρp 1 η qγ 1–( )+[ ]+
----------------------------------------------------------=

Cov YD YB, A( )
Cov YS YB, A( )
---------------------------------------- tαP A( ) ζ ρp 1 η qγ 1–( )+[ ]+{ }

γ tαζ 1 t–( ) 1 ρp+( )+[ ]
----------------------------------------------------------------------------------------=
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4 Numerical Results

We performed the following computational experiment in MATLAB . Let  

denote the numerical values, obtained from the dataset described in Section 1, for the 

three covariance ratios represented in equations (27), (28), and (29) respectively. For 

, let  denote the function represented by the right side of 

equations (27), (28), and (29) respectively. Our numerical routine first selected at ran-

dom some initial values for the variables ; the first four were selected uni-

formly on , and subsequently constrained to , and ρ was selected 

uniformly on (1.5, 3.5), and subsequently constrained to . Next a straightfor-

ward steepest descent algorithm was used to minimize the objective function

. (30)

We ran the program dozens of times from different randomly selected initial values, to 

avoid the problem of being trapped in a local minimum. The results indicate that there 

are indeed many local minima of (30), and there is absolutely no guarantee that we have 

located the global minimum. Moreover there is a range of parameter values in which the 

objective function does not appear to vary a great deal. For these reasons we cannot 

attribute any reliability to our computations of the unknown parameters. The word “esti-

mate” is inappropriate, because we derive no confidence intervals. All that can be 

claimed is that the model is capable of producing covariance ratios which match reason-

ably well the ratios seen in the data set – see TABLE 5 – for parameter values which 

seem to be statistically plausible, namely , , , and 

:

Here we are still assuming that , so .

4.1 Phenotype Frequencies Under the Computed Model

The TABLE 6 is based on the figures above, and the hypothesis that , and RR cattle 

will only manifest elevated PAP if the R gene penetrates, which in females has probabil-

ity π, and in males has probability  which is also supposed equal to π. Our figure 

 means that the difference between High PAP and Low PAP is twice the differ-

ence between Medium PAP and Low PAP.

TABLE 5 Fit between observed and modeled covariance ratios

Observed
Computed from 

the Model

R1 R2 R3, ,

i 1 2 3, ,= f i p t η γ ρ, , , ,( )

p t η γ ρ, , , ,
0.5 1,( ) 0 1,( )

1.5 10,( )

f i p t η γ ρ, , , ,( ) Ri–
i 1=

3

∑

p 0.65= t 0.83= η 0.77=

ρ 2.00=

R1 0.0544–= f 1 0.0539–=

R2 0.9258= f 2 1.0824=

R3 0.9811= f 3 0.9811=

π tη= π 0.64=

R
+
R

tη
ρ 2=
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4.2 Comparison with the Data

In the data set, 23% of male calves and 21% of female calves had PAP scores of 44 or 

more, versus medians of 39 and 38 respectively. Our model, by giving only three possi-

ble values to PAP (before adding the residual) does not adequately explain the 5% or so 

of calves with PAP scores over 50, unless these extremely high values are considered to 

have environmental, not genetic causes. Another flaw in the model is that it only 

explains the upper cutoff (approximately 49) for sire PAP, but not the lower cutoff (only 

one sire below 32). These defects could be resolved by introducing a more complicated 

model. However the model is successful in giving a theoretical explanation for the cor-

relation figures shown in TABLE 1.

5 Proof of Theorem 3.4

To keep this article to a reasonable length, only the proof of (20) will be given in full 

detail; the proofs of (21), (22), and (23) will be give in outline only. The proof demands 

a series of related steps.

5.1 Preliminary Calculations

5.1.1 Probability of Acceptance

Let , for . If ,

; (31)

;

.

Hence

TABLE 6 Phenotype Frequencies

Genotype Phenotypes Theoretical Relative Frequency Computed Value

Low PAP

Medium PAP

High PAP
 

R
+
R

+ q
2

1 q
2

–( ) 1 π–( )+ 0.46

R
+
R 2 pqπ 0.29

RR p
2π 0.27

Wi T 1= HS 1= NS i=, ,{ }≡ i 1 2,= q 1 p–≡

P W1( ) P T 1=( ) P HS 1=( ) P NS 1=( ) 2 pqtη= =

P W2( ) p
2
tη=

P A( ) P A W1 W2∪( ) c( ) P W1 W2∪( ) c( ) P A W1( ) P W1( )+=

P W1 W2∪( ) c( ) γP W1( )+=

1 2 pqtη p
2
tη+( )– 2 pqtηγ+=
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. (32)

5.1.2 Transmission of R Genes from the Sire

;

;

;

;

.

Hence

Hence

; (33)

. (34)

5.1.3 Transmission of R Genes from the Dam

. (35)

5.2 Conditional Expectations of Random Variables Involved in PAP Scores

5.2.1 Conditional Expectations for the Sire

; (36)

. (37)

5.2.2 Conditional Expectations for the Dam

; (38)

P A( ) 1 tηp p 2qγ 2–+( )+=

P A T 1= HS 1= NS 2=, , ,( ) 0=

P A T 1= HS 1= NS 1=, , ,( ) P A W1( ) P W1( ) 2 pqtηγ= =

P A T i= HS j= NS 0=, , ,( ) P T i=( ) P HS j=( ) q
2

=

P A T i= HS 0= NS k=, , ,( ) P T i=( ) 1 η–( ) P NS k=( )=

P A T 0= HS j= NS k=, , ,( ) 1 t–( ) P HS j=( ) P NS k=( )=

P VS 1= A,( ) P A VS 1= T i= HS j= NS k=, , , ,( )
k
∑

j
∑

i
∑=

1
2
--- P A T i= HS j= NS 1=, , ,( )

j
∑

i
∑ P A T i= HS j= NS 2=, , ,( )

j
∑

i
∑+=

1
2
--- P A T 1= HS j= NS 1=, , ,( )

j
∑ P A T 0= HS j= NS 1=, , ,( )

j
∑+{ }=

 P A T 1= HS j= NS 2=, , ,( )
j

∑ P A T 0= HS j= NS 2=, , ,( )
j

∑+ +

2 pqtηγ 2 pqt 1 η–( ) 2 pq 1 t–( )+ +{ }
2

----------------------------------------------------------------------------------------------------- p
2
t 1 η–( ) p

2
1 t–( )+ +=

P VS 1= A,( ) p 1 tη γq 1–( )+[ ] P US 1= A,( )= =

E US A[ ] E VS A[ ] p 1 tη 1 γq–( )–[ ]
P A( )

-----------------------------------------------= =

E UD A[ ] E D 2⁄[ ] p E VD A[ ]= = =

E T HS1 NS 1={ } A[ ]
P A W1∩( )

P A( )
------------------------------

P A W1( ) P W1( )
P A( )

------------------------------------------- 2 pqtηγ
P A( )

-------------------= = =

E T HS1 NS 2={ } A[ ]
P A W2∩( )

P A( )
------------------------------ 0= =

E HD1 ND 1={ } A[ ] E HD1 ND 1={ }[ ] 2 pqπ= =
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. (39)

5.2.3 Conditional Expectations for the Male Calf

. (40)

Now 

;

.

Also 

;

.

Thus (40) becomes

;

. (41)

Finally

;

. (42)

E HD1 ND 2={ } A[ ] E HD1 ND 2={ }[ ] p
2π= =

E T HB1 US UD+ 1={ } A[ ]
P A T 1= HB 1= US UD+ 1=, , ,( )

P A( )
---------------------------------------------------------------------------------------=

η
P A( )
-------------- P A T 1= US 1= UD 0=, , ,( ) P A T 1= US 0= UD 1=, , ,( )+{ }=

η
P A( )
-------------- qP A T 1= US 1=, ,( ) pP A T 1= US 0=, ,( )+{ }=

P A T 1= US 1=, ,( ) P A US 1= T 1= HS j= NS k=, , , ,( )
k
∑

j
∑=

P US 1= T 1= HS 0= NS k=, , ,( )
k 1=

2

∑ γP US 1= T 1= HS 1= NS 1=, , ,( )+=

P A T 1= US 1=, ,( ) t 1 η–( ) p γtηpq+=

P A T 1= US 0=, ,( ) P A US 0= T 1= HS j= NS k=, , , ,( )
k
∑

j
∑=

P US 0= T 1= HS 0= NS k=, , ,( )
k 0=

1

∑ γP US 0= T 1= HS 1= NS 1=, , ,( )+=

 P US 0= T 1= HS 1= NS 0=, , ,( )+

P A T 1= US 0=, ,( ) t 1 η–( ) q γtηpq tηq
2

+ +=

tη
P A( )
-------------- q 1 η–( ) p γηpq+[ ] p 1 η–( ) q γηpq ηq

2
+ +[ ]+{ }

E T HB1 US UD+ 1={ } A[ ] tηpq
P A( )
-------------- 2 η 2 γ– q–( )–{ }=

E T HB1 US UD+ 2={ } A[ ]
pηP A T 1= US 1=, ,( )

P A( )
-----------------------------------------------------------=

pη t 1 η–( ) p γtηpq+[ ]
P A( )

-------------------------------------------------------------=

E T HB1 US UD+ 2={ } A[ ] η t p
2

P A( )
-------------- 1 η– ηγq+[ ]=
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5.2.4 Conditional Expectations for the Female Calf
Omitting the calculations,

; (43)

. (44)

5.3 Covariance Calculations

5.3.1 Sire to Male Calf
First note that

. (45)

Also

. (46)

With reference to (16) and (18),

. (47)

Using (45), (36), and (41), the first covariance is 

E HC1 VS VD+ 1={ } A[ ] πpq
P A( )
-------------- 2 tη 1 p γ–+( )–[ ]=

E HC1 VS VD+ 2={ } A[ ] pπE VS A[ ] p
2π 1 tη 1 γq–( )–[ ]

P A( )
-----------------------------------------------------= =

E T HS1 NS 1={ } HB1 US UD+ 1={ } A[ ]
ηP A T 1= NS 1= US UD+ 1= HS 1=, , , ,( )

P A( )
--------------------------------------------------------------------------------------------------------------=

ηγ
P A( )
--------------P T 1= NS 1= US UD+ 1= HS 1=, , ,( )=

tη2γ
P A( )
--------------P US UD+ 1= NS 1=( ) 2 pq=

2 pqtη2γ
P A( )

--------------------- qP US 1= NS 1=( ) pP US 0= NS 1=( )+{ }=

pqtη2γ
P A( )

------------------=

E T HS1 NS 1={ } HB1 US UD+ 2={ } A[ ]
ηpP A T 1= NS 1= US 1= HS 1=, , , ,( )

P A( )
---------------------------------------------------------------------------------------------------=

ηpγ
P A( )
--------------P T 1= NS 1= US 1= HS 1=, , ,( )=

tη2
pγ

P A( )
---------------P NS 1= US 1=,( )=

p
2
qtη2γ

P A( )
--------------------=

Cov YS YB, A( ) ∆1
2
Cov T HS1 NS 1={ } T HB1 US UD+ 1={ }, A( )  +=

∆1∆2Cov T HS1 NS 1={ } T HB1 US UD+ 2={ }, A( )

E T HS1 NS 1={ } HB1 US UD+ 1={ } A[ ] E T HS1 NS 1={ } A[ ] E T HB1 US UD+ 1={ } A[ ]–



5   Proof of Theorem 3.4 16

, (48)

after simplification. Using (46), (36), and (42), the second covariance is

. (49)

Combining (47), (48), and (49),  is given by

. (50)

5.3.2 Sire to Female Calf
From here on, only an outline of the calculations will be given.

;

;

;

. (51)

The first covariance in (51) is

.

The second covariance is

.

In conclusion

.

pqtη2γ
P A( )

------------------
2 pqtηγ
P A( )

------------------- 
  η tpq

P A( )
-------------- 2 η 2 γ– q–( )–[ ]–=

tη2
pqγ 1 t– t 1 2 p–( ) 1 2 p– η p

2
+( )+[ ]

P A( ) 2
----------------------------------------------------------------------------------------------------------=

E T HS1 NS 1={ } HB1 US UD+ 2={ } A[ ] E T HS1 NS 1={ } A[ ] E T HB1 US UD+ 2={ } A[ ]–

p
2
qtη2γ

P A( )
--------------------

2 pqtηγ
P A( )

------------------- 
  η t p

2

P A( )
-------------- 1 η– ηγq+[ ]–=

tη2
p

2
qγ

P A( ) 2
-------------------- 1 t– t 1 2 p– η p

2
+( )+[ ]=

Cov YS YB, A( )

Cov YS YB, A( )  =

∆1
2
tη

2
pqγ

P A( ) 2
------------------------ t 1 2 p– η p

2
+( ) 1 2 p–

∆2

∆1

------ p+ 
  1 t–( ) 1

∆2

∆1

------ p+ 
 +

E T HS1 NS 1={ } HC1 VS VD+ 1={ } A[ ] pqtηπγ
P A( )

-------------------=

E T HS1 NS 1={ } HC1 VS VD+ 2={ } A[ ] p
2
qtηπγ

P A( )
----------------------=

Cov YS YC, A( ) ∆1Λ1Cov T HS1 NS 1={ } HC1 VS VD+ 1={ }, A( )  +=

∆1Λ2Cov T HS1 NS 1={ } HCVSVD, A( )

pqtηπγ
P A( ) 2
------------------- 1 2 p–( ) 1 2 p– tη p

2
+( )

p
2
qtηπγ

P A( ) 2
---------------------- 1 2 p– tη p

2
+{ }

Cov YS YC, A( )
∆1Λ1 pqtηπγ

P A( ) 2
-------------------------------- 1 2 p– tη p

2
+( ) 1 2 p–

Λ2

Λ1

------ p+ 
 =
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5.3.3 Dam to Male Calf

,

where

. (52)

To compute these quantities, we use:

;

;

;

.

From these and the formulas in 5.2.2 and 5.2.3,

;

;

;

.

Thus  is given by:

. (53)

5.3.4 Dam to Female Calf

,

where

.

To compute these quantities, we use:

Cov YD YB, A( ) Λi∆ jSij
j 1=

2

∑
i 1=

2

∑  =

Sij Cov HD1
ND i={ } T HB1

US UD+ j={ }, A( )≡

E HDT HB1
ND 1={ } 1 US UD+ 1={ } A[ ] πtηpq

1 η– 2γηpq ηq
2

+ +
P A( )

--------------------------------------------------- 
 

=

E HDT HB1
ND 1={ } 1 US UD+ 2={ } A[ ] πtη p

2
q 1 η– γηq+( )

P A( )
------------------------------------------------------=

E HDT HB1
ND 2={ } 1 US UD+ 1={ } A[ ] πtη p

2
q

1 η– γηp ηq+ +
P A( )

------------------------------------------ 
 =

E HDT HB1
ND 2={ } 1 US UD+ 2={ } A[ ] πtη p

3 1 η– γηq+
P A( )

---------------------------- 
 =

S11
πtηpq 1 2 p–( )

P A( )
--------------------------------------- 1 2 p– η p

2
+{ }=

S12
πtη p

2
q 1 2 p–( )

P A( )
----------------------------------------- 1 η qγ 1–[ ]+{ }=

S21
πtη p

2
q

P A( )
------------------ 1 2 p– η p

2
+{ }=

S22
πtη p

3
q

P A( )
------------------ 1 η qγ 1–[ ]+{ }=

Cov YD YB, A( )  

πtηpq
P A( )
---------------- Λ1 1 2 p–( ) Λ2 p+{ } ∆ 1 1 2 p– η p

2
+[ ] ∆ 2 p 1 η qγ 1–( )+[ ]+{ }

Cov YD YC, A( ) ΛiΛ jSij ′
j 1=

2

∑
i 1=

2

∑  =

Sij ′ Cov 1 ND i={ } 1 VS VD+ j={ }, A( )≡
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;

;

;

.

Hence

;

;

;

.

Thus  is given by:

. 

6 Conclusions

The model presented here, in which reduced penetrance of an autosomal gene is par-

tially dependent on abnormality in the Y chromosome, seems to be successful as a first 

attempt to explain the covariances between pulmonary artery pressures of cattle and 

those of their parents. Examination of further datasets, and deeper genealogical studies, 

will help to support or invalidate this model. If our model is correct, and if the purported 

abnormal Y chromosome could be identified, then it would possible to develop a breed 

of cattle in which males would no longer be susceptible to Brisket Disease, although 

about half of females would still be susceptible.
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E HD1
ND 1={ } HC1

VS VD+ 1={ } A[ ] π2
pq=

E HD1
ND 1={ } HC1

VS VD+ 2={ } A[ ] π2
p

2
q 1 tη γq 1–( )+[ ]

P A( )
-----------------------------------------------------------=

E HD1
ND 2={ } HC1

VS VD+ 1={ } A[ ] π2
p

2
q 1 tηp γ 1–( )+{ }

P A( )
-------------------------------------------------------------=

E HD1
ND 2={ } HC1

VS VD+ 2={ } A[ ] π2
p

3
1 tη γq 1–( )+[ ]

P A( )
--------------------------------------------------------=

S11 ′ π2
pq 1 2 p–( )

P A( )
----------------------------------- 1 2 p– tη p

2
+{ }=

S12 ′ π2
p

2
q 1 2 p–( )
P A( )

-------------------------------------- 1 tη γq 1–( )+{ }=

S21 ′ π2
p

2
q

P A( )
--------------- 1 2 p– tη p

2
+{ }=

S22 ′ π2
p

3
q

P A( )
--------------- 1 tη γq 1–( )+{ }=

Cov YD YC, A( )  

π2
pq

P A( )
-------------- Λ1 1 2 p–( ) Λ2 p+( ) Λ1 1 2 p– tη p

2
+{ } Λ 2 p 1 tη γq 1–( )+{ }+ 

 
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