DIRICHLET FORMS ON TOTALLY DISCONNECTED SPACES
AND BIPARTITE MARKOV CHAINS

DAVID ALDOUS AND STEVEN N. EVANS

ABSTRACT. We use Dirichlet form methods to construct and analyse a general
class of reversible Markov processes with totally disconnected state spaces. We
study in detail the special case of bipartite Markov chains. The latter processes
have a state space consisting of an “interior” with a countable number of
isolated points and a, typically uncountable, “boundary”. The equilibrium
measure assigns all of its mass to the interior. When the chain is started at
a state in the interior, it holds for an exponentially distributed amount of
time and then jumps to the boundary. It then instantaneously re-enters the
interior. There is a “local time on the boundary”. That is, the set of times
the process is on the boundary is uncountable and coincides with the points
of increase of a continuous additive functional. Certain processes with values
in the space of trees and the space of vertices of a fixed tree provide natural
examples of bipartite chains. Moreover, time—changing a bipartite chain by its
local time on the boundary leads to interesting processes, including particular
Lévy processes on local fields (for example, the p-adic numbers) that have been
considered elsewhere in the literature.

1. INTRODUCTION

In [4] weak convergence methods were used to construct a rooted tree—valued
Markov process called there the wild chain. This process arises naturally as a
limiting case of tree-valued Markov chains considered in [5, 3]. The wild chain
is reversible (that is, symmetric) with equilibrium measure the distribution of the
critical Poisson Galton-Watson branching process (we denote this probability mea-
sure on rooted trees by PGW(1)). When started in a state that is a finite tree, the
wild chain holds for an exponentially distributed amount of time and then jumps
to a state that is an infinite tree. Then, as must be the case given that the PGW(1)
distribution assigns all of its mass to finite trees, the process instantaneously re-
enters the set of finite trees. In other words, the sample—paths of the wild chain
bounce backwards and forwards between the finite and infinite trees. The set of
times when the state of the wild chain is an infinite tree has Lebesgue measure
zero, but it is the uncountable set of points of increase of a continuous additive
functional (so that it looks qualitatively like the zero set of a Brownian motion).

The aim of this paper is to use Dirichlet form methods to construct and study a
general class of symmetric Markov processes on a generic totally disconnected state
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space. Specialising this construction leads to processes that we call bipartite chains
which have features similar to those of the wild chain.

In general, we take the state space of the processes we construct to be a Lusin
space E such that there exists a countable algebra R of simultaneously closed and
open subsets of E that is a base for the topology of . Note that £ is indeed totally
disconnected (see Theorem 33.B of [15]). Conversely, if E is any totally disconnected
compact metric space, then there exists a collection R with the required properties
(see Theorem 2.94 of [11]).

The following are two instances of such spaces. More examples, including an
arbitrary local field and the compactification of an infinite tree, are described in
Section 2.

Example 1.1. Let £ be N := NU {co}, the usual one-point compactification of
the positive integers N := {1,2,...}. Equip E with the usual total order and let R
be the algebra generated by sets of the form {y : 2« <y}, « € N.

Example 1.2. Let £ be the collection T<, of rooted trees with every vertex
having finite out—degree. Write T«,, for the subset of T« consisting of trees with
height at most n. For m > n, there is a natural projection map from Prmn : T<m —
T<, that throws away vertices of height greater than n and the edges leading to
them. We can identify T<., with the projective limit of this projective system and
give it the corresponding projective limit topology (each T<,, is given the discrete
topology), so that T« is Polish. Equip T<oo with the inclusion partial order
(that is, z < y if » is a sub—tree of y). Let R be the algebra generated by sets of
the form {y : « < y}, © € Tewo := U, T<n. Equivalently, if p, : T<eo — T<p
is the projection map that throws away vertices of height greater than n and the
edges leading to them, then R is the collection of sets of the form p;,1(B) for finite
or co-finite B C T<,, as n ranges over N.

Our main existence result is the following, which we prove in Section 3. We refer
the reader to [10] and [12] for background on Dirichlet forms and their associated
Markov processes.

Notation 1.3. Denote by C the subalgebra of Cy(FE) (:= continuous bounded func-
tions on E) generated by the indicator functions of sets in R.

Theorem 1.4. Consider two probability measures pp and v on F and a non-negative
Borel function k on E x E. Define a o-finite measure A on E x E by A(de, dy) ==
k(z, y)p(de)v(dy). Suppose that the following hold:

(a) the closed support of the measure p is E;

(6) A([(EF\R) x RJU[R x (F\R)]) < 0o for all R € R;

(¢) [r(x,y)p(dz) = 0o for ve-a.e. y, where vy is the singular component in the
Lebesgue decomposition of v with respect to p;

(d) there exists a sequence (Ry,)S%, of sets in R such that () ._, Rm is compact
for alln, 577 pn(E\R,) < o0, and

> A((E\Rn) x Ra]U[R, x (E\Ry)]) < oo.
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Then there is a recurrent p-symmetric Hunt process X = (X¢,P?) on E whose
Dirichlet form is the closure of the form £ on C defined by

E(f.0) = / / (F(5) & F(@)(9(y) ©a(x)) Ade, dy), f.g € C.

Our standing assumption throughout the paper is that the conditions of Theorem
1.4 hold.

In order to produce processes that are reminiscent of the wild chain, we need to
assume a little more structure on E. Say that E is bipartite if there is a countable,
dense subset F° C F such that each point of E° is isolated. In particular, £°
is open. In Example 1.1 one can take £° = N. In Example 1.2 one can take
FE° = Teoo. We will see more examples in Section 2. Put E* = E\E°. Note that
E™ is the boundary of the open set E°.

Definition 1.5. We will call the process X described in Theorem 1.4 a bipartite
Markov chain if the space F is bipartite and, in the notation of Theorem 1.4:

e s is concentrated on E?,
e v is concentrated on E£*.

Remark 1.6. The measures p and v are mutually singular and v; = v in the notation
of Theorem 1.4. The reference measure p is invariant for X, that is, P*{X, € -} = u
for each ¢ > 0. Thus, for any @ € E° we have P*{X; € E°} = 1 for each ¢ > 0,
and so X is Markov chain on the countable set E° in the same sense that the
Feller-McKean chain is a Markov chain on the rationals.

We establish in Proposition 4.2 that the sample-paths of X bounce backwards
and forwards between E° and EF* in the same manner that the sample paths of the
wild chain bounce backwards and forwards between the finite and infinite trees.
Also, we show in Proposition 4.4 that under suitable conditions p 1s the unique
invariant distribution for X that assigns all of its mass to £°, and, moreover, for
any probability measure ¥ concentrated on E° the law of X; under PY converges in
total variation to p.

In Section 6 we prove that, in the general setting of Theorem 1.4, the measure
v is the Revuz measure of a positive continuous additive functional (PCAF). We
can therefore time—change X using the inverse of this PCAF. When this procedure
is applied to a bipartite chain, it produces a Markov process with state space that
is a subset of E*. In particular, we observe in Example 7.2 that instances of this
time—change construction lead to “spherically symmetric” Lévy processes on local
fields that have previously been considered in [7, 1, 2, 9].

A useful tool for proving the last fact is a result from Section 5. There we
consider a certain type of equivalence relation on £ with associated map # onto the
corresponding quotient space. We give conditions on the Dirichlet form (&€, D(&))
that are sufficient for the process m o X to be a symmetric Hunt process.

Notation 1.7. Write (-, -), for the L?(E, p) inner product and (7});>0 for the semi-
group on L%(E, ) associated with the form (&, D(&)).

2. MORE EXAMPLES OF STATE SPACES

Example 2.1. Let E be the usual path—space of a discrete—time Markov chain
with countable state—space S augmented by a distinguished cemetery state 0 to
form S% = S U{d}. That is, E is the subset of the space of sequences (S57)Ne
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(where Ny := {0,1,2,...}) consisting of sequences (x,)5%, such that if z, = 0
for some n, then z,, = 0 for all m > n. Give F the subspace topology inherited
from the product topology on (S?)Ne (where each factor has the discrete topology),
so that F is Polish. Given z € F, write {(z) := inf{n : z, = 9} € Ny U {o0}
for the death—time of z. Define a partial order on E by declaring that z < y if
((z) <((y) and zp, =y, for 0 < n < ((x). (In particular, if # and y are such that
((2) = ((y) = oo, then <y if and only if x = y.) Let R be the algebra generated
by sets of the form {y : # <y}, ((z) < 0co. When #5 = k < oo, we can think of E
as the regular k-ary rooted tree along with its set of ends. In particular, when &£ = 1
we recover Example 1.1. This example is bipartite with E° = {z : {(z) < o0},

Example 2.2. A local field K is a locally compact, non-discrete, totally discon-
nected, topological field. We refer the reader to [16] or [13] for a full discusion of
these objects and for proofs of the facts outlined below. More extensive summaries
and references to the literature on probability in a local field setting can be found
in [6] and [8].

There is a real-valued mapping on K which we denote by « +— ||. This map,
called the valuation takes the values {¢* : k € Z} U {0}, where ¢ = p° for some
prime p and positive integer ¢ and has the properties

|x|:0¢>l‘:0
lzy| = |||yl
|+ y| < x|V ]yl

The mapping (x,y) — |z <y| on K x K is a metric on K which gives the topology
of K.

Put D = {x: |#| < 1}. The set D is a ring (the so-called ring of integers of K).
If we choose p € K so that |p| = ¢~?, then

PD =z o] < qF) = { o] < D)

Every ball is of the form z 4+ p*ID for some 2 € K and k € Z, and, in particular,
all balls are both closed and open. For ¢ < k the additive quotient group p‘I/p*ID
has order ¢*~*. Consequently, D is the union of ¢ disjoint translates of pl). Each
of these components is, in turn, the union of ¢ disjoint translates of p?D), and so
on. We can thus think of the collection of balls contained in ID as being arranged
in an infinite rooted g-ary tree: the root i1s ID itself, the nodes at level k& are the
balls of radius ¢=* (= cosets of p*ID), and the ¢ “children” of such a ball are the
q cosets of pPT'D that it contains. We can uniquely associate each point in D
with the sequence of balls that contain it, and so we can think of the points in D
as the ends this tree. This tree picture alone does not capture all the algebraic
structure of ID; the rings of integers for the p-adic numbers and the p-series field
(that is, the field of formal Laurent series with coefficients drawn from the finite
field with p elements) are both represented by a p-ary tree, even though the p-adic
field has characteristic 0 whereas the p-series field has characteristic p. (As an aside,
a locally compact, non-discrete, topological field that is not totally disconnected
is necessarily either the real or the complex numbers. Every local field is either a
finite algebraic extension of the p-adic number field for some prime p or a finite
algebraic extension of the p-series field.)
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We can take either F =K or £ =D, with R the algebra generated by the balls.
The same comment applies to Banach spaces over local fields defined as in [13], and
we leave the details to the reader.

Example 2.3. In the notation of Example 1.2, let T}  be the subset of T<.
consisting of infinite trees through which there is a unique infinite path starting at
the root, that is, trees with only one end. Put T* = T, U T}, . It is not hard to
see that £ = T* satisfies our hypothesis, with R the trace on T* of the algebra of
subsets of T<,, described in Example 1.2.

Example 2.4. Suppose that the pairs (E1,R1),...,(En,Rn) each satisfy our
hypotheses. Put E := []. Ej, equip E with the product topology, and set R to be
the algebra generated by subsets of E of the form [[; R; with R; € R;. If each of
the factors Ej; is bipartite with corresponding countable dense sets of isolated point
E7, then E is also bipartite with countable dense of isolated points [[, £7. Similar
observations holds for sums rather than products, and we leave the details to the
reader.

3. PROOF or THEOREM 1.4

We first check that &£ 1s well-defined on €. Any f € C can be written f =
Zf\;l a;1p, for suitable R; € R and constants a;, and condition (b) is just the
condition that £(1g,1r) < oo for all R € R. Tt is clear that &£ is a symmetric,
non-negative, bilinear form on C.

We next check that & defined on C is closable (as a form on L*(E, u)). Let
(fn)S%, be a sequence in C such that

and

We need to show that
(3.3) nli»nolo E(fn, fn) =0.

Put A, (dz, dy) = w(z,y) p(dx) vs(dy). For M > 0 put AM(dz, dy) = [x(x,y) A
M] p(dz) v(dy) and AM (dz, dy) = [k(z,y) A M] p(dz) vs(dy). From (3.1) we have
lim // (fm (2) S fn(2))” AM(da, dy) =0, YM > 0,

and from (3.2) we have

(3.4)
lim //({fm(y) ()} S{fmx) S fu(2)})” AM(de, dy) = 0, VM > 0.

m,n—o0

So, by Minkowski’s inequality,
(3.5) lim // (fm(y) < Fn () AM(de, dy) = 0, YM > 0.

m,n—o0

Therefore, by (3.1), (3.5) and (c), there exists a Borel function f and a sequence
(ng)52, such that limy_.oo fr, = 0, p-a.e. (and hence v,-a.e., where v, = v &,
is the absolutely continuous component in the Lebesgue decomposition of v with
respect to p), and limg oo fn, = f, vs-a.e.
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Now, by Fatou, (3.2) and Minkowski’s inequality,

/ / F2(0) A (dar, dy) = / / i (Fo, (5) &, (2)° As(d, dy)

< hmmf// Fan(y) S fn, (2 )) s(dz, dy)

and so, by (¢), f =0, vs-a.e. Finally, by Fatou and (3.2),

m—00

~ lim / / i ({F () € (1)) () S, (2))° Alder )

< Jim_ timinf / (U (0) &S} (o) S Lus (D)) Aldz, dy)
=0,

lim / / Fon () S fn (2))? A(de, dy)

as required.

Write (€, D(€)) for the closure of the form (£,C). To complete the proof that
(&, D(&)) is a Dirichlet form, it only remains to show that this form is Markov. By
Proposition 1.4.10 of [12], this will be accomplished if we can show for any f € C
that

(3.6) (fvo)alec
and
(3.7) EFVO)AL (VA <ES ).

Considering claim (3.6), first observe that f € C if and only if there exist pairwise
disjoint Rq,..., Ry and constants ai,...,ax such that f =5 a;1g,. Thus,

(FAO)V1I= ((a; VO)A L)Lk, €C.

)

The claim (3.7) is immediate from the definition of £ on C.

We will appeal to Theorem 7.3.1 of [10] to establish that (£, D(£)) is the Dirichlet
form of a y-symmetric Hunt process, X. It is immediate that conditions (C.1)—(C.3)
of that result hold. Namely,

e Cis a countably generated subalgebra of D(E) N Cy(F),

e Cis &-dense in D(E) (that is, given any f € D(E) there exists a sequence
(fn)o, of elements of C such that lim,, ... E(frnef, fnef)+(fnssf, fnef)u =
0),

e (C separates points of F and, for any « € E, there is a f € C such that

f(x) # 0.

We therefore need only check the tightness condition; that is, that there exist
compact sets K1 C Ky C ... such that lim,_. Cap(F\K,) = 0. Take K, =
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R,,. Then

Cap(E\Kp) Z Cap(E\Rm)

< Z (1p\g, 1e\k,) + (Ie\R,., LEAR,. )u)

—Z ([(E\R) X R U [Ryn X (E\Rp)]) + p(E\Ryp)) -

The rightmost sum is ﬁnlte by (d), and so we certainly have limy,_, o, Cap(E\K,) =

0.

Finally, because constants belong to D(E), it follows from Theorem 1.6.3 of [10]
that X is recurrent.

Remark 3.1. (i) Existing results on closability of “jump” forms in the literature

(i)

(iii)

(for example, Example 1.2.4 of [10]) appear to involve an absolute continuity
condition that corresponds in our case to vy = 0.

Suppose that § C R generates R, then it suffices to check condition (b) just
for R € 8, as the following argument shows. We remarked in the proof that
condition (b) was just the statement that £(1r,1r) < oo for all R € R. Note
that 1z for R € R 1s a finite linear combination of functions of the form
/= Hf\;l 1g, for S1,...,Sny € S, and so it suffices to show that £(f, f) < >
for such f. Observe that if aj,...,axy € Rand by,... by € Rsatisfy |a;| <1
and |b;] < 1for 1 <i <N, then

N N N i—1 N

Hai C}H b;| = Z Ha]' ClZ C}b ( H bk) < Z|aZ C}bl|

i=1 i=1 i=1 \j=1 k=i+1 =
Therefore,

(f(y) & f(2)* = |f(y) ()]

N
Z Limsoxs, (,9) + Ls, xm\s) (@, 9)) |

and applying the assumption that (b) holds for all R € S gives the result.
We emphasise that the elements of D(&) are elements of L?(E,u) and are
thus equivalence classes of functions. It is clear from the above proof that if
f,9 € D(E), then there are representatives f and g of the L?(E, p) equivalence
classes of f and ¢ such that

/ / D(3(y) <i(2)) A(de, dy).

Some care must be exercised here: it is clear that if v; # 0, then we cannot
substitute an arbitrary choice of representatives into the right-hand side to
compute E(f, g).

The above proof appealed to Theorem 7.3.1 of [10], which in turn relies on the
regular representation results of Appendix A.4 of [10] to reduce to a locally
compact setting. Therefore, although our state—space E is, in general, not
locally compact, much of the theory developed in [10] for the locally compact
setting still applies and we will use it without further comment.
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We present several examples of set-ups satisfying the conditions of the Theorem
1.4 at the end of Section 4.

4. BIPARTITE CHAINS
Assume for this section that X 1s a bipartite chain.

Notation 4.1. For a Borel set B C E, put og = inf{t > 0: X; € B} and 7 =
inf{t >0: X, ¢ B}.

Proposition 4.2. (i) Consider x € E°. If [ k(x,z)v(dz) =0, then P"{r{, <
oo} = 0. Otherwise,
k(z, y)v(dy)
Py >, X, dy} = , dz) | —=——""—;
ey > 1, Xr,y €dy} = exp (ﬁ/“(l’ 20 Z)) [ w(w, 2) v(dz)
and, in particular, P*{X; € E*} = 1.
(ii) For qe. x € B*, P?{X,; € E°} = 1 for Lebesgue almost all t > 0. In
particular, P*{ocg. =0} =1 for q.e. x € E*.

Proof. (i) Because each x € E° is isolated, it follows from standard considerations
that P{7{,} >t} = exp(<at), where

p{z}a = C}ltil%l (%(Tt <11, 1x) .

= £(L 1) = ulfe)) [ e v(ds).

Observe for f,g € C that £(f,9) = [[(f(y) ©f(2))(g(y) g(x)) J(dz,dy), where
J(dz,dy) = (1/2)[A(dz, dy) + A(dy,dz)] is the symmetrisation of A. Note that
J 1s a symmetric measure that assigns no mass to the diagonal of £ x E. This
representation of £ is the one familiar from the Buerling—Deny formula. The result
now follows from Lemma 4.5.5 of [10].

(ii) This is immediate from the Markov property, Fubini and the observation

PHX; ¢ B = pu(E*) =0 for all t > 0. O

Definition 4.3. Define a subprobability kernel £ on E by {(z, B) = p@v({(z',y) :
k(z,y) >0, k(z',y) > 0, ' € B}). Note that {(z,-) < p. Say that X is graphically
wrreducible if there exists xg € E° such that for all x € E° there exists n € N for
which £ (g, {z}) > 0.

Recall that a measure # is invariant for X if P"{X; € -} =y for all t > 0.

Proposition 4.4. Suppose that X is graphically irredudicible. Then yu is the unique
invariant probability measure for X such that u(E°) = 1. If v is any other proba-
bility measure such that v(E°) =1, then

tlim sup |[P"{X; € B} <u(B)| = 0.
— 00 B

Proof. By standard coupling arguments, both claims will hold if we can show
(4.1) Pogyy <oof =1, forall z,y € £,

For (4.1) it suffices by Theorem 4.6.6 of [10] to check that the recurrent form &
is irreducible in the sense of Section 1.6 of [10]. Furthermore, applying Theorem
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1.6.1 of [10] (and the fact that 1 € D(&) with £(1,1) = 0) it is certainly enough to
establish that if B is any Borel set with 15 € D(£) an

(4.2) 0:5(13,13)—1-5(1}3\3,1}3\3) (13,13),

then p(B) is either 0 or 1.
Suppose that (4.2) holds. By Remark 3.1(iii), there is a Borel function f with
f =1p, p-a.e., such that

0=¢&(1p,1p)

(13) = [[ (s #5))" A,
// y) &1p( ))2 A(de, dy).

Suppose first that zg € B, where xg is as in Definition 4.3. From (4.3),
) 2
/ (f(y) @1) k(zo,y) v(dy) =0,

and so v({y : f # 1, k(xzg,y) > 0}) = 0. Therefore, again from (4.3), £(xo, {z :
1p(x) # 1}) = 0. That is, if £(xo,{x}) > 0, then # € B. Continuing in this
way, we get that if # € E? is such that £"(zq, {z}) > 0 for some n, then =z € B.
Thus E° C B and p(B) = 1. A similar argument shows that if #¢o ¢ B, then

u(B) = 0. -

Example 4.5. Suppose that we are in the setting of Example 1.1 with £? = N.
Let ¢ be an arbitrary fully supported probability measure on N and put v =
00o. In order that the conditions of Theorem 1.4 hold we only need & to satisfy
Y owen K(®, 00)pu({x}) = co. The conditions of Proposition 4.4 will hold if and only
if K(x,00) > 0 for all x € N.

Example 4.6. We recall the Dirichlet form for the wild chain described in [4].
There E' = T* from Example 2.3, y is the PGW(1) distribution and v is the distri-
bution of a PGW(1) tree “conditioned to be infinite”. A more concrete description
of v is the following. Each y € T%_ has a unique path (ug, u1,us,...) starting at
the root. There is a bijection between T, and Tco X Tcoo X ... that is given
by identifying y € Ty, with the sequence of finite trees (yo,y1,¥2,...), where y;
is the tree rooted at w; in the forest obtained by deleting the edges of the path
(g, U1, uz,...). The probability measure v on T, is the push—forward by this
bijection of the probability measure g x g x ... on Teoo X Teoo X ...

Rather than describe k(z,y) explicitly, it is more convenient (and equally sat-
isfactory for our purposes) to describe the measures ¢!(z,dy) := x(z,y)v(dy) for
each y and ¢l(y,dz) := r(z,y)u(dr) for each z. Given z € T<, y € TZ,, and
a vertex u of z, let (z/u/y) € T}, denote the tree rooted at the root of z that is
obtained by inserting a new edge from u to the root of y. Then

(4.4) =Y / F((x/u/y)) v(dy)
ueET
for f a non-negative Borel function on T*.
For y € T;, with infinite path from the root (ug, u1, us,...) and i € Ny, removing
the edge (u;, u;41) produces two trees, one finite rooted at up and one infinite rooted
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at w;y1. Let ki(y) € T<oo denote the finite tree. Then (4.4) is equivalent to

(4.5) OEDIFIE)

for f a non-negative Borel function on T*.

Let us now check the conditions of Theorem 1.4. Condition (a) is obvious.
Turning to condition (b), recall that any R € R is of the form {z : p,(z) € B} for
some n € N and finite or co-finite B C T<,,. Note that [(T*\R)x RJU[Rx(T*\R)] C
{(z,y) : pn(x) # pn(y)}. Moreover, if y € TZ is of the form (x/u/y") for some
u € v and ¥ € T, then py(x) # pn(y) if and only if « has height less than n.
Therefore, by (4.4),

A((T\R) % B] U [R x (T*\R)]) /#pnl (de) =

where we recall that the expected size of the k' generation in a critical Galton—
Watson branching process is 1.
It is immediate from (4.5) that

[ sty atdn) = ¢! (1) = 0

for v = v, almost every y, and so condition (¢) holds.

Finally, consider condition (d). Put S, . := {z : #(pn(2)) < c}. We Wlll take
R, = Sy, for some sequence of constants (¢,)n2;. Note that ﬂm n Sm,en, 18
compact for all n, whatever the choice of (¢y)5%,. By choosing ¢, large enough, we
can certainly make p(T*\S, .,) < 27". From the argument for part (b) we know
that [(T*\Sn,c) X S ]U[Sn,e X (T"\Sp c)] = Sn,e x (T"\Sy ) is contained in the set
{(z,y) : pn(z) # pn( )}, which has finite A measure. Of course, lim,_, o, T*\S, . =
0. Therefore, by dominated convergence, lim..oo A([(T*\Sn,z) X Sp.e] U [Sn,e X
(T*\Sn,.)]) = 0, and by choosing ¢, large enough we can make A([(T*\S,,.,) X
Snen) USn,e, X (T*\Sp e, )]) <277,

It is obvious that the extra bipartite chain conditions hold with F° = T..
The condition of Proposition 4.4 also holds. More specifically, we can take x; in
Definition 4.3 to be the trivial tree consisting of only a root. By (4.4) and (4.5),
the measure £"(zy, -) assigns positive mass to every tree # € T« with at most n
children in the first generation (that is, # € T« such that #(p1(x)) < n+1), and
so X is indeed graphically irreducible.

Example 4.7. Suppose that we are in the setting of Example 2.1 with #5 < o
(so that F is compact) and E° the set {& : ((z) < o0}, as above. Note that
E* = SNo. Fix a probability measure P on S with full support, an S x S stochas-
tic matrix ) with positive entries and a probability measure R on Ng. Define a
probability measure p on E° by p({x : (() = n,20 = Sg,... ,&n_1 = Sp_1}) =
R(n)P(s0)Q(s0,51)...Q(Sp—2,5,-1). In other words, u is the law of a Markov
chain with initial distribution P and transition matrix () killed at an independent
time with distribution R. Define v on E* by v({so} x -+ - x {sp} x Sx S x...) =
P(s0)Q(s0,51)...Q(8n-1,5n). Thus v is the law of the unkilled chain with initial
distribution P and transition matrix @. Define x(x,y) for # € E° and y € E* by
k(x,y) = K(¢{(x))1l,<y for some sequence of non-negative constants K (n), n € Ny.

In order that the conditions of Theorem 1.4 hold, we only need K to satisfy
Zx<y {(((2))u({z}) = oo for v-a.e. y € E*. For example, if ¢. = min, » Q(s,s'),
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then it suffices that ) .-  K(n)R(n)¢? = oco. In particular, if v is the law of a
sequence of i.i.d. uniform draws from S (so that P(s) = S(s,s’) = (#£5)~! for all
s,s' € S), then we require > 7 K(n)R(n)(#£5)™" = co.

In general, X will be graphically irreducible with ¢ = (9,0, ...) (and hence the
condition of Proposition 4.4 holds) if K(n) > 0 for all n € Ny.

5. QUOTIENT PROCESSES

Return to the general set-up of Theorem 1.4. Suppose that R’ is a subalgebra
of R and write ' for the subalgebra of C generated by the indicator functions of
sets in R’. We can define an equivalence relation on E by declaring that z and
y are equivalent if f(x) = f(y) for all f € C'. Let E denote the corresponding
quotient space equipped with the quotient topology and denote by 7 : £ — [ the
quotient map. It is not hard to check that £ is a Lusin space and that the algebra
R = {7R: R € R'} consists of simultaneously closed and open sets and is a base
for the topology of E. Write C for the algebra generated by the indicator functions
of sets in R. Note that ¢’ = {fow: f€C}.

Proposition 5.1. Suppose that the following hold:

(@) p=v; o

(b) there exists a Borel function & : E x E— R such that k(x,y) = &(wx, 7y) for
T # TY;

(¢) E is compact;

(d) pr/(f] = plfle(R)] = plflo(x)] has a version in C' for all f € C.

Then the hypotheses of Theorem 1.4 hold with E, R, C, u, v, x replaced by E, Zé,
C, i, U, K, where i = U is the push—forward of p = v by n. Moreover, if (€, D(£))
denotes the resulting Dirichlet form, then moX is a p-symmetric Hunt process with

Dirichlet form (£, D(E)).

Proof. 1t 1s clear that the hypotheses of Theorem 1.4 hold with E\R,C, u,v, &
replaced by E,R,C, i, 7, .

Let (T})¢>0 denote the semigroup on L?*(E, i) corresponding to £. The proof
70X is a fi-symmetric Hunt process with Dirichlet form (&, D(E)) will be fairly
straightforward once we establish that T;(f o ) = (T,f) o w for all ¢ > 0 and
f € L*(E,j) (see Theorem 13.5 of [14] for a proof that this suffices for 7o X to
be a Hunt process — the proof that = o X is p-symmetric and the identification
of the associated Dirichlet form are then easy). Equivalently, writing (Gg)aso
and (GQ)CDO for the resolvents corresponding to (7})¢>0 and (Tt)tzo, we need to
establish that Go(fom) = (Gof)or for all &« > 0 and f € L?(E, ji). This is further
equivalent to establishing that (G, f) o € D(E) and E(Guof)om, g) + a((Gaf) o
7,g)u = (fom g), for all g € C (see Equation (1.3.7) of [10]).

Fix f € L*(F, i) and g € C. By assumption, pg:[g] = go 7 for some g € C.
Also, it is fairly immediate from the definition of £ that h € D(f:') if and only if
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how e D(E), and that E(h, k) = E(hom, how). Hence, by Remark 3.1(iii),
Ehom, g) = // ho7r ) <hon(x ))(()@g(r))A(dw,dy)

-/ (hon(y) <h o (@) (9(s) <(x)) Aldr, dy)
{(z,y)re£ry}
= [ (honty o x@)) ) esate) wtmr. 7o) pldn) )

= [[ thomtw) ho (@) (erelolts) spm L)) s, m) i) )
// y) ©hon(x)) (7o n(y) &g on(x))k(ra, my) pu(de) p(dy)
= [ (hw) #1w) (9(0) 3(0)) 0,0 o) ()
=&(h,9).
Of course,

Therefore,

as required. O

We will see an application of Proposition 5.1 at the end of Section 7.

6. ADDITIVE FUNCTIONALS
We are still in the general setting of Theorem 1.4.

Proposition 6.1. The probability measure v assigns no mass to sels of zero ca-
pacity, and there is a positive continuous additive functional (A;);>o with Revuz
measure v.

Proof. The reference measure p assigns no mass to sets of zero capacity, so it
suffices to show that v; assigns no mass to sets of zero capacity. For M > 0 put
Gu = {y: [[k(z,y) A M] p(dx) > 1} and define a subprobability measure v by
vM = v, (- N Gur). By (c) of Theorem 1.4, v (E\ Uy Gm) = 0, and so it suffices
to show for each M that vM assigns no mass to sets of zero capacity.

Observe for f € C that

([ <dy>)2s [rwvan s [[ 2o A" @
<2 (// )2 AM (dae, dy) + / fz(x)AM(dx,dy))

<200V MY(EFH +(F Pu) -

The development leading to Lemma 2.2.3 of [10] can now be followed to show that
for all Borel sets B we have vM(B) < CyCap(B )1/2 for a suitable constant Cyy
(the argument in [10] is in a locally compact setting, but it carries over without
difficulty to our context).
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The existence and uniqueness of (A¢);>g follows from Theorem 5.1.4 of [10]. O

Remark 6.2. In the bipartite chain case, the distribution under P# of X., where
¢ = Trx,}, is mutually absolutely continuous with respect to v, and Proposition
6.1 is obvious.

7. BIPARTITE CHAINS ON THE BOUNDARY

Return to the bipartite chain setting. Following the construction in Section 6.2 of
[10], let Y denote the process X time—changed according to the positive continuous
additive functional A. That is, ¥; = X% where v, = inf{s > 0 : A, > t}. Write £
for the support of A. We have E C E :=supprv C E* and I/(E\E) =0.

Let R = {RDE R € R} and put ¢ = {flE : f € C}. Note that C is also the

algebra generated by R.

Theorem 7.1. The process Y is a recurrent v-symmetric Hunt process with state—
space E and Dirichlet form given by the closure of the form £ on C defined by

= / / (F(5) & 1)) (0(y) 9(2)) F(y, 2) v(dy) v(dz), f,9 € C,

where

Ry, z) = /“(%y)m p(dx)
(with the convention 0/0 =10).
Proof. By Theorem A.2.6 and Theorem 4.1.3 of [10],
P op =0} =1forqe ye E.
Hence, for q.e. y € I we have limjoinf{t > e: X} € E} =0, P¥-a.s. Movreo~ver, it
follows from parts (i) and (ii) of Proposition 4.2 and the observation v(F\E) =0

that for q.e. y € E we have inf{t > ¢: X, € E} = inf{t > ¢: X, € E} for all ¢ > 0,
[PY-a.s. Combining this with Proposition 6.1 gives

P¥{c; =0} =1 for qe. and v-a.e. y € E.

Define Hg f(x) := P*[f(X,,)] for f a bounded Borel function on £. It follows
from part (i) of Proposition 4.2 and what we have just observed that

[ ) v(dy)
Hpf(x) = M )

, for p-ae. x

and

Hif(z) = f(z), for v-a.e. x.
The result now follows by applying Theorem 6.2.1 of [10]. O

Example 7.2. Suppose that we are in the setting of Example 4.7. For Y,z €
E* = SNo y £ 2, define §(y,z) = inf{n : y, # z,}. Note that [ x( Yv(dw) =
K{(e))v({w: 2 <w}) = K({(2))p({z})/R({(x)) for x € E° and so

(7.1) Rly,2)= > K(n)R(n).

n<6(y,2)
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We will now apply the results of Section 5 with £ X, u, & replaced by E =
Er = SND,Y,V,E. Fix N € Ny and let R’ be the algebra of subsets of SMo of
the form By X --- x By x S x S x .... We can identify the quotient space E
with SV+! and the quotient map 7 with the map (yo,v1,...) — (vo,...yn). Then
we can identify g (which we emphasise is now the push—forward v by ) with the
measure that assigns mass P(s0)Q(so, 1) ... Q(sn-1,5N) to (sg,...sn). Note that
7y # w2 for y, 2 € SNe is equivalent to é(y, z) < N, and it is immediate from (7.1)
that Proposition 5.1 applies and 7 oY is a g-symmetric Markov chain on the finite
state-space SVt In terms of jump rates, 7 o Y jumps from ¢ to z # ¥ at rate
(ané(g,z) K(n)R(n))i({z}), where 6(y, Z) is defined in the obvious way.

As a particular example of this construction, consider the case when #S5 = p°
for some prime p and integer ¢ > 1. We can identify SNo (as a set) with the ring
of integers ID of a local field K as in Example 2.2. If we take P(s) = Q(s,s') =p~°¢
for all 5,5’ € S, then we can identify v with the normalised Haar measure
on ID. It i1s clear that Y is a Lévy process on D with “spherically symmet-
ric” Lévy measure ¢(|y|) v(dy), where ¢(p=") = >°,_, K({)R(£). The condition
Yoo K(n)R(n)p™" = oo of Example 4.7 is equivalent to [ é(|y|) v(dy) = oo.
Conversely, any Lévy process on D with Lévy measure of the form ¥(|y|) v(dy)
with + non-increasing and [ 4 (|y|) v(dy) = co can be produced by this construc-
tion (Lévy processes on ID are completely characterised by their Lévy measures —
there is no analogue of the drift or Gaussian components of the Euclidean case, see
[7]). The latter condition is equivalent to the paths of the process almost surely not
being step—functions, that is, to the times at which jumps occur being almost surely
dense. When (|y|) = aly|~(@*+D for some @ > 0 and 0 < o < oo, the resultant
process is analogous to a symmetric stable process. Lévy processes on local fields
and totally disconnected Abelian groups in general are considered in [7] and the
special case of the p-adic numbers has been considered by a number of authors,

including [1], [2], [9].
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