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Abstract

Suppose an exchangable sequence with values in a nice measurable

space S admits a prediction rule of the following form: given the �rst n

terms of the sequence, the next term equals the jth distinct value observed

so far with probability pj;n, for j = 1; 2; : : :, and otherwise is a new value

with distribution � for some probability measure � on S with no atoms.

Then the pj;n depend only on the partitition of the �rst n integers induced

by the �rst n values of the sequence. All possible distributions for such

an exchangeable sequence are characterized in terms of constraints on the

pj;n and in terms of their de Finetti representations.

1 Introduction

There are very few models for exchangeable sequences (Xn) with an explicit
prediction rule, that is a formula for the conditional distribution of Xn+1 given
X1; : : : ; Xn for each n = 0; 1; : : :. The Blackwell-MacQueen urn scheme [3]
provides an example: given a probability measure �(�) on a nice measurable
space (S;S) and � > 0, the prediction rule

P(Xn+1 2 � jX1; : : : ; Xn) =
1

(n + �)

nX
i=1

1(Xi 2 �) +
�

(n+ �)
�(�) (1)

determines an exchangeable sequence (Xn) whose directing random measure
F has Dirichlet distribution with parameter ��(�). See [6] for background and
applications of this model to non-parametric statistics. The subject of this paper
is exchangeable sequences admitting a prediction rule of the more general form

P(Xn+1 2 � jX1; : : : ; Xn) =
nX
i=1

ri;n1(Xi 2 �) + qn �(�) (2)

for some ri;n and qn which are non-negative product-measurable functions of
(X1; : : : ; Xn). As a minimal regularity condition on (S;S), we suppose that the
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diagonal f(x; y) : x = yg is a product-measurable subset of S � S. The rule (2)
can then be rewritten as follows, by grouping terms with equal values of Xi:

P(Xn+1 2 � jX1; : : : ; Xn) =
KnX
j=1

pj;n1( ~Xj 2 �) + qn�(�) (3)

where the ~Xj for 1 � j � Kn are the distinct values among X1; : : : ; Xn in the
order that they appear, and the pj;n and qn are some non-negative product-
measurable functions of (X1; : : : ; Xn). This paper provides a description of all
prediction rules of this form which generate exchangeable sequences, assuming
that the probability measure � is di�use, meaning �fxg = 0 for all points x of
S.

Let � denote the random partition of f1; 2; : : : ; g generated byX1; X2; : : :. So
� = fA1;A2; : : :g where Aj is the random set of indices m such that Xm = ~Xj .
Let �n be the restriction of � to f1; : : : ; ng. So �n is a measurable function
of X1; : : : ; Xn with values in the �nite set of all partitions of the set f1; : : : ; ng.
The main new result of this paper is the following theorem, which is proved in
Section 2.

Theorem 1 Suppose that an S-valued exchangeable sequence (Xn) admits a

prediction rule of the form (3) for pj;n and qn some product-measurable functions

of (X1; : : : ; Xn), and � a di�use measure on S. Then for each n and 1 � j � Kn

the pj;n and qn are almost surely equal to some functions of �n, the partition

of f1; : : : ; ng generated by (X1; : : : ; Xn).

While the focus of this paper is exchangeable sequences subject to a pre-
diction rule of the form (3) for a di�use measure �, we note that a weakening
of Theorem 1 holds for � that is a mixture of di�use and atomic measures.
Then the pj;n and qn are almost surely equal to some functions of �n and the
collection of random sets

ffi � n : Xi = ag : a an atom of �g: (4)

This can be established by a slight variation of the proof of Theorem 1 given in
Section 2.

The rest of this introduction shows how Theorem 1 combines with results
obtained previously in [14] to yield a description of all possible functions pj;n
and qn that could be used to generate an exchangeable sequence (Xn) by a
prediction rule of the form (3) for di�use �, and a corresponding description
of the de Finetti representation of (Xn) in terms of sampling from a random
distribution.

The assumption that (Xn) is exchangeable implies that � is an exchangeable

random partition of the set of positive integers, as considered by Kingman [9, 10]
and subsequent authors [1, 12]. That is to say, for each n = 1; 2; : : : and each
partition fA1; : : : ; Akg of f1; : : : ; ng,

P(�n = fA1; : : : ; Akg) = p(#A1; : : : ;#Ak) (5)
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for some non-negative symmetric function p of �nite sequences of positive in-
tegers n := (n1; : : : ; nk). Here #A is the number of elements of A. Following
[12, 14], call p the exchangeable partition probability function (eppf) determined
by �. Write k(n) for the length k of n := (n1; : : : ; nk). For each �nite sequence
n of positive integers and each 1 � j � k(n) + 1, a �nite sequence nj+ of
positive integers is de�ned by incrementing nj by 1. From (5) and the addition
rule of probability, an eppf must satisfy

p(1) = 1 and p(n) =

k(n)+1X
j=1

p(nj+); for all n: (6)

Let

Nj;n :=
nX

m=1

1[Xm = ~Xj ] (7)

which is the number of times that the jth distinct value ~Xj appears among
X1; : : : ; Xn. So Nj;n is the number of elements in the jth class of �n when
classes are ordered by their least elements. If (Xn) is exchangeable and subject
to a prediction rule of the form (3), with pj;n and qn functions of �n, it is easily
seen that almost surely for all j � Kn

pj;n = pj(N1;n; : : : ; NKn;n); qn = q(N1;n; : : : ; NKn;n) (8)

for some non-negative functions pj and q of �nite sequences of positive integers.
These functions pj and q can be characterized as follows:

Theorem 2 [14, Prop. 13 and Thm. 14] Suppose (Xn) is exchangeable and

subject to a prediction rule of the form (3), with pj;n and qn as in (8). Then the

functions pj and q can be expressed as follows in terms of the eppf associated

with the random partition � generated by (Xn): provided p(n) > 0,

pj(n) =
p(nj+)

p(n)
for 1 � j � k(n); q(n) =

p(n`+)

p(n)
for ` = k(n) + 1: (9)

Conversely, given a di�use measure � on (S;S) and a non-negative symmetric

function of �nite sequences of positive integers subject to (6), the prediction rule

(3) determined via (8) and (9) de�nes an exchangeable sequence (Xn). Such a

sequence (Xn) may be constructed by �rst generating an exchangeable random

partition � = fA1;A2; : : :g whose EPPF is p, then setting Xn = ~Xj for n 2 Aj

where the ~Xj are i.i.d. with distribution �, independent of �.

Following [14], call such an exchangeable sequence (Xn) a species sampling

sequence. This terminology is used to suggest the interpretation of (Xn) as the
sequence of species of individuals in a process of sequential random sampling
from some hypothetical in�nite population of individuals of various species. The
species of the �rst individual to be observed is assigned a random tag X1 = ~X1

distributed according to �. Given the tags X1; : : : ; Xn of the �rst n individuals
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observed, it is supposed that the next individual is one of the jth species ob-
served so far with probability pj;n, and one of a new species with probability qn.
Each distinct species is assigned an independent random tag with distribution �
as it appears in the sampling process. In this interpretation the random parti-
tion � generated by the species sampling process is of primary importance: the
allocation of i.i.d. random tags to distinct species is just a device to encode �
in a sequence of exchangeable random variables (Xn). As shown by Aldous [1],
this device allows Kingman's representation of exchangeable random partitions
to be immediately deduced from de Finetti's representation of exchangeable se-
quences. For this purpose, the choice of the space S of species tags and the
di�use measure � on S is of no importance: one may as well take S = [0; 1] with
Borel sets and � the uniform distribution on [0; 1].

The de Finetti representation of a species sampling sequence (Xn) can be
described as follows:

Theorem 3 [14]Write ~Pj for the limiting frequency of the jth species to appear

in a species sampling sequence (Xn):

~Pj := lim
n!1

Nj;n

n
(10)

which exists almost surely. Let Fn denote the conditional distribution of Xn+1

given X1; : : : ; Xn, as displayed in (3). Then Fn converges in total variation

norm almost surely as n!1 to the random measure

F (�) :=
X
j

~Pj1( ~Xj 2 �) + (1�
X
j

~Pj)�(�): (11)

Conditionally given F the Xn are independent and identically distributed ac-

cording to F .

The joint law of the ~Pj is determined by the eppf of the partition � gener-
ated by (Xn) via formulae described in [14]. See [12, 14] regarding the condi-
tional distribution of � given the sequence ( ~Pj), which is the same for all species
sampling sequences. See [14] regarding the conditional distribution of F given
(X1; : : : ; Xn). Theorem 3 yields also:

Corollary 4 [14] A sequence (Xn) is a species sampling sequence with marginal

distributions equal to � if and only if (Xn) is conditionally i.i.d. (F ) given some

random probability distribution F on S of the form

F :=
X
j

Pj1(X̂j 2 �) + (1�
X
j

Pj)�(�): (12)

for some sequence of random variables Pj � 0 with
P

j Pj � 1, and given (Pj)

the X̂j corresponding to j with Pj > 0 are i.i.d. (�).
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Example. The Two-Parameter Model [12]. Consider the prediction rule (3)
de�ned by some di�use measure � and

pj;n =
Nj;n � �

n+ �
for 1 � j � Kn; qn =

� +Kn �

n+ �
(13)

where � and � are two real parameters and as before the Nj;n; 1 � j � Kn are

the numbers of representatives of the various distinct species ~Xj; 1 � j � Kn

among X1; : : : ; Xn. To ensure that all relevant probabilities are non-negative
and that the rule is not degenerate, it must be supposed that either

� = �� < 0 and � = m� for some � > 0 and m = 2; 3 : : : (14)

or
0 � � < 1 and � > ��: (15)

This prediction rule (13) is that determined by (9) for the function p = p(�;�)
de�ned by the formula

p(�;�)(n1; : : : ; nk) =

�Qk�1
`=1 (� + `�)

��Qk

i=1[1� �]ni�1
�

[1 + �]n�1
(16)

where n =
P

i ni and [x]m =
Qm

j=1(x + j � 1). It is easily checked that p(�;�)
is an eppf. So a sequence (X1; X2; : : :) de�ned by the prediction rule (13) is
exchangeable, hence a species sampling sequence. The case with � = 0 is the
Blackwell-McQueen scheme. Then (16) is a variation of the Ewens sampling
formula [4, 2, 5]. In the case (14), the distribution of the exchangeable sequence
(Xn) is identical to that generated by sampling from F :=

Pm

i=1 Pi1(X̂i 2 �),
where (P1; : : : ; Pm) has a symmetric Dirichlet distribution with m parameters
equal to �, and the X̂i are i.i.d. with distribution �. This is Fisher's model for
species sampling [7] with m species identi�ed by i.i.d.(�) tags. See [13, 16, 15,
17, 8, 18, 11] for further characterizations and applications of the two-parameter
model.

2 Proof of Theorem 1

Suppose throughout this section that (Xn) is an S-valued exchangeable sequence
subject to a prediction rule of the form (3) for pj;n and qn some arbitrary
measurable functions of (X1; : : : ; Xn), and � a di�use measure on S. Let �n be
the partition of f1; : : : ; ng generated by X1; : : : ; Xn. In view of the last sentence
of Theorem 2, to establish the conclusion of Theorem 1 that modulo null sets
the pj;n and qn depend only on �n, it su�ces to show that conditionally given
�, the partition of all positive integers generated by (Xn), the random variables
~Xj for j = 1; 2; : : : are independent and identically distributed according to �.
The following lemma provides a convenient reformulation of this condition:

5



Lemma 5 For all 1 � k � n, all partitions � of f1; : : : ; ng with k classes, and

for all choices of measurable Bj � S; 1 � j � k

P(�n = �; ~Xj 2 Bj ; 1 � j � k) =

0
@

kY
j=1

�(Bj)

1
AP(�n = �) (17)

Proof. This is the result of repeated application of the following formula, which
is claimed to hold for all choices of 1 � k � n; � and Bj ; 1 � j � k; as above,
and all choices of i with 1 � i � n:

P(�n = �; ~Xj 2 Bj all j � k) = �(Bi)P(�n = �; ~Xj 2 Bj all j � k; j 6= i)
(18)

If � is a partition of f1; : : : ; ng into k classes, write A�
1 ; : : : ; A

�
k for the k classes,

ordered such that 1 = minA�
1 < minA�

2 < � � � < minA�
k . Let n; �; k; B1; : : : ; Bk

be as in (18). It follows immediately from the prediction rule (3) and the
assumption that � is di�use that (18) holds if i = k and #A�

k = 1. The assumed
exchangeablility of (Xn) then yields (18) for any 1 � i � k with #A�

i = 1.
Now consider the inductive hypothesis, call it Hm, that (18) holds for all

choices of 1 � k � n; �;Bj; 1 � j � k and 1 � i � k with #A�
i = m. We have

just shown that H1 holds. We now assume Hm for some m = 1; 2; : : :, and will
complete the proof of the lemma by deducing Hm+1. As in the argument for
m = 1, we �rst obtain a special case ofHm+1; but by exchangeability, the special
case implies the general case ofHm+1. So consider partitions �0 of f1; : : : ; n+1g
for which #A�0

1 = m+ 1 and n+ 1 2 A�0

1 . We prove Hm+1 for these �0 and for
i = 1.

Fix such a �0 partitioning f1; : : : ; n + 1g, and measurable B1; : : : ; Bk � S,
and to avoid trivialities assume B1; : : : ; Bk all have positive �-measure. Write
� = fA�

1 ; : : : ; A
�
kg for the restriction of �0 to f1; : : : ; ng. For ` = 1; : : : ; k, write

�` for the partition fA�
1 ; : : : ; A

�
` [fn+ 1g; : : : ; A�

kg of f1; : : : ; n+1g. Note that
�0 = �1. Write �k+1 for the partition fA�

1 ; : : : ; A
�
k ; fn+ 1gg of f1; : : : ; n+ 1g.

By Hm, for each ` = 2; : : : ; k + 1,

P(�n+1 = �`; ~Xj 2 Bj all j � k) = �(B1)P(�n+1 = �`; ~Xj 2 Bj all 2 � j � k)

since in each of the partitions �2; : : : ; �k+1 the �rst class has size m. Similarly,

P(�n = �; ~Xj 2 Bj all j � k) = �(B1)P(�n = �; ~Xj 2 Bj all 2 � j � k):

The identity

P(�n = �; ~Xj 2 Bj all j � k) =
k+1X
`=1

P(�n+1 = �`; ~Xj 2 Bj all j � k)

now implies that

P(�n+1 = �1; ~Xj 2 Bj all j � k) = �(B1)P(�n+1 = �1; ~Xj 2 Bj all 2 � j � k);

which is the identity required to establish Hm+1.2
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