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Abstract

In a previous paper Camarri and Pitman studied the asymptotics

for repeat times in random sampling by a method of Poisson embed-

ding. Here we extend these results to k-fold repeats and also indicate

the relationships between the repeat processes of various orders.

1 Introduction

The birthday problem in its classical form asks for the minimum sized group
required so that the probability of at least one repeated birthday within the
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group is greater than one half. The assumptions are a year of length 365
days, with each day equally likely as a birthday, and birthdays independent
from person to person. It is well known that the answer is 23.

A number of generalisations of this problem have been studied. (See
Diaconis and Mosteller [6] for a conversational summary of some of these
approaches.) Here we are interested in the sequential birthday problem as
stated by Camarri and Pitman [4]. They consider an iid sequence with a
common discrete distribution p, on a �nite or countable set S, and calculate
the distributions of the times at which repeated values occur. Of interest also
is the repeat process, that is, the point process (with the same indexing as the
original iid sequence) that counts the number of repeats. Asymptotics for
the (joint) distributions of the repeat times are calculated by considering the
limit of the sequence of repeat processes generated by an underlying sequence
of discrete distributions.

In the �rst part of this paper we generalise the results of [4] to k-fold
repeats, that is, we are interested in the times by which values have occurred
k or more times. The proofs have the same design as the corresponding
results in [4] and we provide only a sketch of the changes.

Note that this k-fold birthday problem is a specialised quota problem. In
this more general setting, each value j is assigned a quota vj and we are
interested in the times at which quotas are met (or exceeded.) Holst [7, 8]
studied this problem using the same Poisson embedding and derived expres-
sions for the moments of these general quota ful�lment times. Clearly the
techniques of [4] can also be used to derive asymptotic distributions for the
quota problem. Note further that martingale dynamics techniques such as
those of Brown [2] and Barbour and Brown [1] can be used to �nd rates
of convergence in these limit theorems. This in turn allows us to use the
asymptotic distributions as approximations to the exact repeat process dis-
tributions and supplies total variation bound error estimates. See [3] for
more comments on this.

Finally we investigate the structure between the various k-fold repeat
processes. That is, we show how the form of one particular K-fold repeat
process can determine the forms of the other k-fold repeat processes. We
conclude with some examples that show that all possible limiting regimes
and structures can be realised.
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2 Results

Consider the following extension of the sequential birthday problem;
For each n � 1 let (pni; i � 1) be a ranked discrete distribution, let Yn0; Yn1; : : :
be an iid sequence with this common distribution and let

snk �
�P

i p
k
ni

�1=k
and �

(k)
ni � pni=snk:

Say that the sequence (Ynj ; j � 0) has a k-fold repeat at time t if the value
Yt occurs k or more times in (Yn0; : : : Ynt) and de�ne (R(k)

nm;m � 1) to be the
times of those k-fold repeats (in increasing order.)

We study the asymptotics of the R(k)
nm by embedding in a Poisson pro-

cess (see Construction 7). The set of all possible limiting distributions is
characterised by the following theorem.

Theorem 1 (i) If pn1 ! 0 as n!1 and �(k)i � limn �
(k)
ni exists for each i, then

for each r � 0

lim
n!1

P [snR
(k)
n1 > r] =

1Y
i=1

0
@e��(k)i

r
k�1X
m=0

(�(k)i )m

m!

1
A e

�

�
1�
P
1

i=1
(�
(k)
i

)k
�
rk=k!

(1)

(ii) Conversely, if there are positive constants c(k)n ! 0 and d(k)n such that the

distribution of c(k)n (R(k)
n1 � d(k)n ) has a non-degenerate weak limit as n ! 1,

then pn1 ! 0 and limits �
(k)
i exist as in (i), so the weak limit is just a

rescaling of that described in (i), with c(k)n =s(k)n ! � for some 0 < � < 1,
and c(k)n d(k)n ! 0.

If (sn; n 2 Z
+) and (tn; n 2 Z

+) are two sequences of constants say that
they are strictly di�erent if limn sn=tn 2 f0;1g and similar if limn sn=tn 2
(0;1). We call the sequence (snk; n � 1) the natural scaling for the process
of k-fold repeats and de�ne the natural process of k-fold repeats to be the
counting process W (k)

n � (W (k)
n (t); t � 0) where

W (k)
n (t) �

X
i

1(snkR
(k)
nm � t):

In the special case �(k)1 = 0 the distribution in (1) simpli�es to that of
the �rst point of a Poisson process on [0;1) of rate tk�1=(k � 1)! at time t.
More generally it can be seen that (1) is the distribution of the �rst point of
the limiting process in the following theorem.
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Theorem 2 Under hypothesis (i) of Theorem 1, for all m � 1 as n!1

(snkR
(k)
n1 ; : : : ; snkR

(k)
nm)

d
! (S1; : : : Sm)

where S1 < S2 < : : : are the arrival times of the superposition of independent
processes fM�;M

(�k)
1 ;M

(�k)
2 ; : : :g where M� is a Poisson process on [0;1)

of rate (1 �
P
1

i=1(�ki)
k)tk�1=(k � 1)! at time t, Mi is a Poisson process on

[0;1) of rate �ki and M
(�k)
i denotes the process Mi with its �rst k� 1 points

removed.

If �(k)1 exists and is positive we say that the limit distribution ismixed and

if it is zero we say that it is atomless. We refer to non-zero �
(k)
i as atoms and

say that a limit is purely atomic if all repeats correspond to atoms. (That

is if
P

i(�
(k)
i )k = 1.) Say that a k-fold repeat is genuine if it is not also a

(k+1)-fold repeat and say that the natural asymptotic k-fold repeat process
is genuine if (almost surely) it is composed entirely of genuine repeats. Our
�rst structural result is the following.

Lemma 3 If the natural limiting k-fold repeat process is atomless, then it is
genuine.

Thus we can think of our limit distributions as composed of two parts;
the atoms which produce one genuine repeat each (at a time distributed as
a gamma random variable) and then a string of non-genuine repeats (which
form a homogeneous Poisson process); and an atomless section which pro-
duces only genuine repeats. Interestingly (and perhaps counter-intuitively),
given a sequence of underlying discrete distributions at most one of the lim-
iting k-fold repeat processes can be mixed, and this particular process deter-
mines the distributions of the others.

Theorem 4 If the natural K-fold repeat process W (K)
n has a mixed limit

(that is not purely atomic) then
(i) W (k)

n converges weakly for all k, and has an atomless limit for 2 � k < K
and a purely atomic limit for k > K.
(ii) The natural timescales of the k-fold repeat processes are all strictly dif-
ferent for 2 � k � K and for k > K are all similar to snK .

Corollary 5 If W (K)
n has an atomless limit then

(i) W (k)
n converges weakly for all 2 � k � K and has an atomless limit.

(ii) The natural timescales of these processes are all strictly di�erent.
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Corollary 6 If W (K)
n has a purely atomic limit then

(i) W (k)
n converges weakly for all k � K and has a purely atomic limit.

(ii) The natural timescales of these processes are all similar.

3 Proofs

3.1 Limit Theorems for k-fold repeats

Our framework is the following:
For each n = 1; 2; : : : let (pni; i = 1; 2; : : :) be a ranked discrete distribution,
that is pn1 � pn2 � � � � � 0 and

P
i pni = 1, and suppose that pn1 ! 0 as

n ! 1. (Note: we do not assume that the supports of these distributions
are �nite.)

We embed our iid sequences in a Poisson process as follows

Construction 7 Let N be a homogeneous Poisson process on [0;1)� [0; 1]
with rate 1, with points fS0; S1; : : :g (ordered (a.s.) by their �rst co-ordinate)
and de�ne

N(t) � N([0; t]� [0; 1]) and N(t�) � N([0; t)� [0; 1]):

For n > 0 partition [0; 1] into intervals In1; In2; : : : such that the length of
Ini is pni. Let Nni be N restricted to [0;1) � Ini . (Note that the Nni are
independent Poisson processes with rates pni respectively.) For n > 0, i � 0
de�ne

Yni =
X
j

j1(Si 2 [0;1)� Inj)

Clearly the sequence (Yn0; Yn1; : : :) is iid with distribution (pni; i = 1; 2; : : :).
For k � 2 let (R(k)

nm;m � 1) mark the k-fold repeats in this sequence and let
(T (k)

nm;m � 1) be the corresponding times within N , that is

T (k)
nm � infft : N(t) > R(k)

nmg

or equivalently
N(T (k)�

nm ) = R(k)
nm: (2)

The use of this Poissonisation is justi�ed by the following lemma.
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Lemma 8 If pn1 ! 0 as n!1 then for all m � 1; k � 2

R(k)
nm

T
(k)
nm

p
! 1 as n!1.

Proof. By the Strong Law of Large Numbers, N(t�)=t
p
! 1 as t!1. It is

enough to show that T (k)
nm converges in probability to in�nity. However this

follows from T (k)
nm � T

(2)
n1 and the corresponding result in [4]. 2

One main advantage of switching to this Poissonised timescale is that
the arrival processes for each value are now independent of each other. In
particular the distribution of T

(k)
n1 can be easily written down.

P [snkT
(k)
n1 > r] =

Y
i

0
@1� e��

(k)
ni

r
1X

m=k

(�
(k)
ni r)

m

m!

1
A (3)

Simple Taylor series estimates show

log P [snkT
(k)
n1 > r] = rk=k! +O(�(k)n1 )

and hence we have established

Lemma 9 If �
(k)
n1 ! 0 as n!1 then

lim
n!1

P [snkR
(k)
n1 > r] = e�r

k=k! for r � 0. (4)

Note: this also follows from Lemma 10 below.
As a sketch of the proof of Theorem 1, (i) follows from Lemma 9 exactly

as the corresponding result followed in [4] and (ii) again follows from a con-
vergence of types argument and by noting that the righthand side of (3) (con-

sidered as a function of r) uniquely determines the constants (�(k)n1 ; �
(k)
n2 ; : : :).

For Theorem 2 we �rst prove Lemma 10 below and note that it is then
straightforward to modify the arguments in [4] to complete the proof.

Lemma 10 Let Mk be an inhomogeneous Poisson process on [0;1) of rate

tk�1=(k � 1)! at time t and let S1 < S2 < : : : be its arrival times. If �
(k)
n1 ! 0

as n!1 then for all m as n!1

(snkR
(k)
n1 ; : : : ; snkR

(k)
nm)

d
! (S1; : : : Sm):
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Proof. Consider counting processes X(k)
n � (X(k)

n (t); t � 0) where X(k)
n (t)

tallies the number of repeats up to time t=snk , precisely

X(k)
n (t) =

1X
m=1

1(T (k)
nm � t=snk):

From the general theory of point processes (see for example Daley and Vere-
Jones [5]) it is enough to show that the processes X(k)

n converge weakly to
Mk. Further it is su�cient to show that the compensators of X(k)

n con-
verge pointwise in probability to the compensator of Mk, namely the process
(tk=k!; t � 0).

Let N (�k)
ni denote the process Nni with its �rst k � 1 points removed and

let N (�k)
ni (t) � N

(�k)
ni ([0; t]). Clearly

X(k)
n (t) =

X
i

N
(�k)
ni (t=snk):

If we de�ne our �ltrations to be those generated by the natural �ltrations of
the processes (Nni(t=snk); t � 0) then C(k)

n � (C(k)
n (t); t � 0), the compen-

sator of X(k)
n , is given by

C(k)
n (t) =

X
i

�
(k)
ni (t� snkT

(k)
ni1)

+ (5)

where T (k)
ni1 is the time of the kth point of Nni and thus snkT

(k)
ni1 has a Gamma

distribution with parameters (k�1; �(k)ni ). We complete the proof by showing

���EC(k)
n (t)� tk=k!

��� � �
(k)
n1 t

k+1=(k � 1)! (6)

VarC(k)
n (t) �

2�(k)n1 t
k+1

(k + 1)!
[1 + k2�

(k)
n1 t]: (7)

Let Q�(k) be the right tail of a Poisson(�) random variable, that is

Q�(k) =
1X

m=k

e���m

m!
:

We make use of the following bound

(1 � �)�k=k! � Q�(k) � �k=k! (8)
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The sum is bounded below by its �rst term so e�� � 1� � supplies the lower
bound. Straightforward estimates of Taylor series remainders give

e� � (1 + � + : : :+ �k�1=(k � 1)!) � e��k=k!

and multiplication by e�� establishes the upper bound.
Let T have a Gamma(k � 1; �) distribution. Note that

P [T � t] = Q�t(k � 1):

Now

E
h
�(t� T )+

i
= �

Z t

0

(t� r)e��r�k�1rk�2

(k � 2)!
dr

= �tQ�t(k � 1) � (k � 1)Q�t(k)

and similarly

E
�
�2
�
(t� T )+

�2�
= �2t2Q�t(k� 1)� 2�t(k� 1)Q�t(k) + k(k� 1)Q�t(k+1):

The bounds in (8) and simple algebra yield

(�t)k

k!
�

(�t)k+1

(k � 1)!
� E

h
�(t� T )+

i
�

(�t)k

k!
+

(k � 1)(�t)k+1

k!

Var
h
�(t� T )+

i
�

2(�t)k+1

(k + 1)!
[1 + (k2 � 1)�t]:

Applying these to (5) and using independence gives (6) and (7). 2

3.2 Structural results

Before proving the structural result that relate the k-fold repeat processes of
di�erent orders we show that atomless repeats are genuine.
Proof (of Lemma 3.) To show that atomless processes are genuine
it is enough to show that the �rst non-genuine repeat is not among the
�rst m repeats almost surely, that is Pn[T (k)

nm � T
(k+1)
n1 ] ! 1 as n ! 1.
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Since snk=sn;k+1 ! 1 we can �nd a sequence tn such that snktn ! 1 and
sn;k+1tn ! 0. Then

Pn[T
k
nm � T

(k+1)
n1 ] � Pn[T

(k)
nm � tn � T

(k+1)
n1 ]

� Pn[T
(k)
nm � tn] + Pn[T

(k+1)
n1 � tn]� 1

= Pn[snkT
(k)
nm � snktn]� Pn[sn;k+1T

(k+1)
n1 � sn;k+1tn]

! 1

2

Proof (of Theorem 4.) Assume that (X
(n)
K ; n � 1) has a mixed limit.

As shown above, the atomless part of this limiting distribution produces
(almost surely) no (K + 1)-fold repeats whilst the atoms each produce an
in�nite string of (K + 1)-fold repeats. Hence there exists a purely atomic
(K+1)-fold repeat process that uses the scaling (snK; n � 1). Theorem 1 (ii)
implies that the natural scaling is similar to this. By induction we can extend
to all k � K.

If �(K�1)n1 does not tend to zero then (by the usual arguments) we can �nd
a subsequence (mn; n � 1) such that

lim
n!1

�
(K�1)
nmi exists for all i

and so along this subsequence the natural (K � 1)-fold repeat process has a
mixed limit. However, by the above argument this implies that the K-fold
repeat process has a purely atomic limit contradicting the assumptions of
the theorem. Thus the natural (K�1)-fold processes have an atomless limit.
We can extend this backwards to all k < K by noting that

(�(k+1)n1 )k+1 � (�(k)n1 )
k:

That the natural timescales are strictly di�erent follows from

(sn;k+1=snk)
k � 1=�(k�1)n1 :

2

3.3 Examples

We �nish with some examples that show that all possible limits and struc-
tures can be obtained. Note that in these examples the distributions do not
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necessarily sum to 1, but this can be recti�ed by perturbing pn1 appropri-
ately.
(i) W (k)

n atomless for all k
Take (pni; i � 1) to be uniform on [n] for all n.
(ii)W (k)

n has a (non-purely atomic) mixed limit with a �nite number of atoms

To obtain atoms �
(k)
1 ; : : : �

(k)
j de�ne

ai �
�
(k)
j�

1�
P

i(�
(k)
i )k

�1=k

and let

pni =
ai

n(k�1)=k
for 1 � i � j and pni =

1

n
for j + 1 � i � #n

where

#n = bn(1�
jX

i=1

ain
�(k�1)=k)c:

(iii) W (k)
n has a mixed limit with summable atoms

If
P

i ai <1 then let

pni =
ai

n(k�1)=k
for 1 � i � n and pni =

1

n
for n+ 1 � i � #n

where

#n = bn(1�
nX
i=1

ain
�(k�1)=k)c:

(iv) W (k)
n has a mixed limit with non-summable atoms

If
P

i ai =1 then let (rn; r � 1) be such that rn " 1 and

rnX
i=1

ai=n! 0 as n!1:

Then take

pni =
ai
n

for 1 � i � rn and pni =
1

nk=(k�1)
for rn + 1 � i � #n

where
#n = bnk=(k�1)(1�

X
i

ain
�1)c:
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