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1 Introduction

By a discrete tree we mean a �nite tree in the usual sense of graph theory: n vertices
connected by n � 1 undirected edges. By a tree with edge lengths we mean a discrete
tree in which each edge is assigned a strictly positive real number, which we interpret
as the length of the edge. Such trees are often called weighted trees, but we wish to
emphasize our interpretation of the weights as edge lengths. Study of the properties of
random discrete trees, which for uniform models of randomness amounts to enumerations
of various sets of trees, is a classical topic [5, 11, 13, 14]. Probability models for random
trees with edge lengths arise in two speci�c settings.

(a) Minimum spanning trees and Steiner trees on random points in d-dimensional
space; here the edge-lengths are ordinary Euclidean lengths [9, 10, 22].

(b) Genealogical trees representing ancestry of individuals in a species, or phyloge-
netic trees representing evolutionary relationships between species; here the edge-lengths
represent times between divergence of lineages [12, 23].

Another model for such trees is to start from a model of random discrete trees and
assign i.i.d. edge lengths [8]. The purpose of this paper is to describe a new model of
random trees with edge lengths. This model arises from the study of the asymptotic
sizes and shapes of spanning subtrees in a model for random discrete trees studied in
[16, 17, 20]. The model is parametrized by a vector (ci) of vertex weights. A rough
interpretation of ci is the relative propensity of vertex i to have incident edges. Varying
these parameters will vary the typical shape of realized trees.

The model is de�ned in Theorem 1. Section 3.2 shows how it arises as a limit
of a natural model for random discrete trees. Our emphasis is on obtaining explicit
distributional formulas for quantities associated with the random tree. But we also note
(section 7) an interpretation of our model in terms of the inhomogeneous continuum
random tree (ICRT) introduced in [2] as the key to analysis of a certain continuous-space
Markov process. This interpretation provides additional motivation for studying the
model, but is not essential for understanding the results of this paper.

2 Overview of results

To state our results we �rst need some notation for spaces of trees. For a �nite set F
let TF be the set of discrete trees whose vertex set consists of labeled vertices F , called
hubs and perhaps extra unlabeled vertices of degree exactly 3, called junctions. Given
t 2 TF for some �nite set F , write E(t) for its set of edges. Write Dit for the degree of i
in t. If Dit = 1 call i a leaf of t. Assigning a vector l := (le; e 2 E(t)) of strictly positive
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real lengths to the edges of a tree t in TF gives a tree with edge-lengths, say s, with
shape(s) = t and lengths(s) = l. Write TF for the set of such trees with edge-lengths.
Let [n] := f1; 2; : : : ; ng. Figure 1 shows an element s of T[8] with 8 hubs, 6 leaves and 2
junctions. In such a diagram the location of vertices in the plane is arbitrary subject to
the shape of the tree and its edge lengths.
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Figure 1

The subject of this paper is the distribution on T[I] de�ned in Theorem 1. For I = 2; 3; : : :
let

C := fc := (c1; c2; : : : ; cI) : I � 2; ci � 0 for each 1 � i � Ig:
The distribution is parametrized by c 2 C.

Theorem 1 For each c = (c1; : : : ; cI) 2 C, the following formula de�nes a probability
distribution for a random T[I]-valued tree Sc:

P (shape(Sc) = t; lengths(Sc) 2 [l; l + dl])

=

 
IY
i=1

cDit�1
i

!
(s+ c) exp(�1

2s
2 � sc) dl; t 2 T[I]; l 2 (0;1)E(t) (1)

where l := (le; e 2 E(t)), s :=P
e2E(t) le and c :=

PI
i=1 ci.

If a constant of normalization, say Z(c1; : : : ; cI), were introduced on the right side of
formula (1), then the conclusion of Theorem 1 would be obvious. So the content of
Theorem 1 is that Z(c1; : : : ; cI) � 1. For instance, if I = 2 the tree Sc has a single
edge, whose length has probability density function s ! (s + c) exp(�1

2s
2 � sc) where
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c := c1 + c2. In this case a simple integration veri�es this is a probability density. In
section 3.2 we give a discrete approximation argument which shows how the formula (1)
arises. The proof of Theorem 1 is completed in section 4.4.

Call (1) the basic formula. Note that we allow ci = 0, in which case we interpret
00 = 1. Then (1) implies

if ci = 0 then vertex i is a leaf in Sc: (2)

We choose the symbol S for this type of random tree with edge lengths partly by analogy
with Steiner trees (which also have the feature of extra degree-3 vertices), and partly
because we will later interpret S as a spanning subtree within an ICRT.

Our emphasis is on obtaining explicit distributional formulas for quantities associated
with the random tree Sc. For t 2 T[I] we shall consider the total edge length L(t) :=P

e2E(t) le and the total excess degree D(t) :=
PI

i=1(Dit � 1). We shall give explicit
formulas for the distributions of

� L(Sc) : Corollary 9(i)

� D(Sc): Proposition 10(ii)

� shape(Sc): Proposition 7

and associated joint distributions. The derivations use an enumeration of trees in T[I] by
degree sequence, Proposition 8.

Many natural questions involve the subtree of Sc spanned by some subset V of two
or more elements of [I]. Denote this subtree of Sc by SV

c
. For example, the distance

between i and j in Sc is the length of Sfi;jg
c

: Whether or not k is on the path from i
to j is a question involving the shape of Sfi;j;kg

c
, and so on. Let hubs(SV

c
) be the set of

labeled vertices of SV
c
. So hubs(SV

c
) is a random set with V � hubs(SV

c
) � [I]. Given

that hubs(SV
c
) = H regard SV

c
as a random element of TH .

The distribution of SV
c
is determined by the following theorem.

Theorem 2 For c 2 C let Sc be a T[I]-valued random tree with the distribution de�ned
by the basic formula (1). Let SV

c
be the subtree of Sc spanned by some subset V of two

or more elements of [I]. Then for each H with V � H � [I] and each t 2 TH such that
t is spanned by V

P
�
hubs(SV

c
) = H; shape(SV

c
) = t; lengths(SV

c
) 2 [l; l + dl]

�
=

0@Y
h2H

cDht�1
h

1A (s+ cH) exp(�1
2
s2 � sc) dl; l 2 (0;1)E(t) (3)

where l := (le; e 2 E(t)), s :=P
e2E(t) le, cH :=

P
h2H ch, and c := c[I].
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Call (3) the master formula. Note that for V = H the master formula reduces to
the basic formula. Though the master formula is in principle determined by the basic
formula via appropriate summations and integrations, these sums and integrals are not
easy to evaluate except in special cases. Rather, the master formula is derived in section
3.2 by a discrete approximation argument which parallels the derivation of the basic
formula.

To illustrate a consequence of the master formula, consider for j; k 2 [I] the distance
Ljk(Sc) between vertices j and k in Sc. In section 6 we obtain the following remarkable
formula:

Corollary 3 For distinct j; k 2 [I] and s > 0

P (Ljk(Sc) > s) = e�
1

2
s2�sc Y

i2[I]nfj;kg
(1 + cis): (4)

That is to say, Ljk(Sc) has the same distribution as the minimum of I + 1 independent
random variables Wi; 0 � i � I where W0 has the Rayleigh distribution P (W0 > s) =

e�
1

2
s2, while Wi has the exponential(ci) distribution P (Wi > s) = e�cis for i 2 fj; kg

and the gamma(2; ci) distribution P (Wi > s) = e�cis(1 + cis) for i =2 fj; kg. Only in the
simplest case when cj = ck = 0 are we able to give a direct probabilistic derivation of
this result. This derivation, given in section 7.3, is based on a construction of Sc related
to the interpretation of this random tree as a subtree of an ICRT.

3 Discrete trees and the convergence argument

3.1 Inhomogeneous random discrete trees

We quote two results about discrete trees. For a �nite set A write #A for the number of
elements of A, and write UA for the set of all (#A)#A�2 discrete trees with vertex-set A.

Lemma 4 [17] Associated with each probability distribution p = (pa) on a �nite set A
is a probability distribution on UA:

P (U = u) =
Y
a2A

pDau�1
a (5)

where Dau is the degree of a in u.

Call U a p-tree. As discussed in Pitman [17], the fact that (5) de�nes a probability
distribution without any extra normalization constant amounts to Cayley's multinomial
expansion over trees. See [16, 17, 19, 20] for various applications of p-trees and associated
random forests.
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Lemma 5 [17] Let U be a p-tree labeled by a �nite set A. Let UF denote the subtree of U
spanning a subset F of A with #F � 2. Then for every tree u labeled by a �nite subset
V (u) of A, such that u is spanned by F ,

P (UF = u) =

0@ Y
v2V (u)

pDvu�1
v

1A 0@ X
v2V (u)

pv

1A : (6)

3.2 The convergence argument

We now show how the basic formula and the master formula follow from Lemmas 4 and
5 by discrete approximation.

Fix c = (c1; : : : ; cI) 2 C and recall
P

i ci = c. For su�ciently large n, de�ne a
probability distribution p[n] on [n] by

p
[n]
i = max(ci=n

1=2; 1=n3=4); 1 � i � I

= qn; I + 1 � i � n (7)

where qn = (1�PI
1 p

[n]
i )=(n� I). Let Un be the associated U[n]-valued random p[n]-tree.

Write s(Un) for the subtree of Un spanned by [I]. We regard s(Un) as taking values in
�T[I], where �T[I] is de�ned like T[I ] but with the condition that unlabeled vertices have
degree 3 replaced by the condition that unlabeled vertices have degree 3 or more. Thus
for each u 2 U[n] the tree s(u) 2 �T[I] is de�ned as follows. First, let s0(u) be the subtree
of u spanned by [I], regarded as an element of UF where F with [I] � F � [n] is the
set of all vertices of u which lie on the path in u joining i and j for some i; j 2 [I]. Let
J be the set of all j 2 [n] n [I] such that j is a vertex of degree 3 or more in s0(u). Let
s00(u) be the tree in �T[I][J , with all labeled vertices, with an edge joining i to j of length
m i� there is a path of m edges of u from i to j via m� 1 vertices of degree 2 in s0(u).
Finally, let s(u) 2 �T[I] be s00(u) with all vertices in J delabeled.

Proposition 6 Fix t 2 T[I] and l
� = (l�e; e 2 E(t)). Let s :=

P
e2E(t) le. As n!1 and

l ranges over vectors of positive integers with n�1=2l ! l
�,

P (shape(s(Un)) = t; lengths(s(Un)) = l) (8)

=

  
IY
i=1

cDit�1
i

!
(s+ c)e�

1

2
s2�sc + o(1)

!
n�#E(t)=2: (9)

Proof. For a given t 2 T[I] and lengths l = (le; e 2 E(t)) each unrooted tree u labeled
by [n] such that shape(s(u)) = t and lengths(s(u)) = l has the same number of vertices

6



in [n] n [I], say v which is given by v =
P

e le + 1 � I, and the same number of junction
vertices in [n]� [I], say j. Since the number of such trees u is

(n � I)v := (n � I)(n� I � 1) � � � (n� I � v + 1)

by application of Lemma 5, the probability in (8) equals

(n� I)v

"
IY
i=1

�
p
[n]
i

�Dit�1
#
qv+jn

 
IX
i=1

p
[n]
i + vqn

!
: (10)

Let dI :=
PI

i=1(Dit� 1). Note that

(p
[n]
i )Dit�1 = (cDit�1

i + o(1))n�(Dit�1)=2:

In the limit regime with v � s
p
n the expression (10) is asymptotically "

IY
i=1

cDit�1
i

#
(n� I)v
(n� I)v

(1 � c=
p
n)v+j(c+ v=

p
n) + o(1)

!
n�(dI+2j+1)=2:

By (16,17) we have dI + 2j + 1 = #E(t). Since v + j � s
p
n this expression is asymp-

totically equivalent to that displayed in (9). 2

Proof of Theorems 1 and 2. The coe�cient of n�#E(t)=2 on the right side of (9) is
the density (1). Since the left side of (9) is a probability measure, it easily follows that
(1) is the density of a measure with total mass � � 1, and that the property � = 1 is
equivalent to

(i) P (s(Un) 2 �T[I ] nT[I])! 0 and
(ii) (n�1=2l�(s(Un)); n!1) is stochastically bounded above, and (n�1=2l�(s(Un)); n!

1) is stochastically bounded below, where l�(s) and l�(s) denote the longest and shortest
edge-lengths of s.

It would be possible to verify (i) by modifying a similar argument in [6], and to verify
(ii) by estimating tails in (10) { but the details are messy. Instead, we give an analytic
veri�cation that � = 1 in section 4.4. This establishes Theorem 1 along with properties
(i) and (ii). To prove Theorem 2, for V � [I] let sV (Un) be the subtree of Un spanned
by V . The argument above represents Sc as a weak limit of s(Un) with rescaled edge-
lengths, which implies that the spanning subtree SV

c
appears as the weak limit of sV (Un)

with rescaled edge-lengths. Repeating the proof of Proposition 6 for sV (Un) in place of
s(Un) yields the following.
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For each H with V � H � [I] and each t 2 TH such that t is spanned by V ; for each
l
� = (l�e ; e 2 E(t)) with s =

P
e l
�
e, and each n�1=2l ! l

�;

P (hubs(sV (Un)) = H; shape(sV (Un)) = t; lengths(sV (Un)) = l)

=

0@Y
h2H

cDht�1
h (s+ cH) exp(�1

2
s2 � sc) + o(1)

1A n�#E(t)=2:

So to deduce the equality in (3) it su�ces to show that no mass is lost in the limit, i.e. to
establish the analogs of (i) and (ii) for (sV (Un)). But these are immediate consequences
of (i) and (ii) for (s(Un)). 2

4 Distributions associated with Sc

4.1 Distribution of the shape

For m = 1; 2; : : : and x > 0 de�ne

	m(x) :=
Z 1

0
sm�1e�

1
2 s

2�sxds (11)

and note the recursion

	m+1(x) + x	m(x) = (m� 1)	m�1(x) (m > 1) (12)

obtained via integration by parts. The function 	m(x) is a variation of the repeated
integral of the error function, with well known expressions in terms of parabolic cylinder
functions or the con
uent hypergeometric function [1, 7.2].

Proposition 7 If I � 3 then for each t 2 T[I] with m edges,

P (shape(Sc) = t) =

 
IY

i=1

cDit�1
i

!
	m�1(c)
(m� 2)!

:

Proof. Consider t 2 T[I] with #E(t) = m. By integration of the basic formula (1) over
all length vectors with total length s,

P (shape(Sc) = t; L(Sc) 2 ds) =

 
IY
i=1

cDit�1
i

!
sm�1

(m� 1)!
(s+ c)e�

1
2
s2�scds: (13)

Integrating out s and applying the recursion (12) gives the stated formula. 2
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4.2 Enumeration of spanning trees by degree sequence

We start with an enumeration which is the basis of all subsequent calculations.

Proposition 8 For each 0 � d � I�2 and each vector of non-negative integers (di; 1 �
i � I) with

P
i di = d, let T (d1; : : : ; dI) be the set of trees t 2 T[I] such that Dit� 1 = di

for all 1 � i � I. Then

#T (d1; : : : ; dI) =

 
d

d1; : : : ; dI

!
(2I � d� 4)!

d!(I � d� 2)!
2d�I+2: (14)

Proof. According to Cayley's multinomial theorem [7, 21, 16], for d = I � 2 the multi-
nomial coe�cient in (14) is the number of trees labeled by [I] in which the excess degree
of vertex i is di for each i 2 [I]. For a tree t 2 T (d1; : : : ; dI ) let u be the number of
unlabeled vertices of t. By (17), u = I � d� 2. Let T̂ (d1; : : : ; dI ) be the set of all trees
labeled by [I + u] in which vertex i has excess degree di for 1 � i � I and vertex I + j
has excess degree 2 for 1 � j � u. By Cayley's multinomial theorem,

#T̂ (d1; : : : ; dI) =

 
d + 2u

d1; : : : ; dI ; 2; : : : 2

!
=

(2I � d� 4)!

d1! : : : dI !2I�d�2
: (15)

Because the unlabeled vertices of a tree t 2 T[I] are implicitly labeled by their locations

in t relative to the vertices in I, the delabeling map from T̂ (d1; : : : ; dI) to T (d1; : : : ; dI)
is u! to 1, and the equality (14) follows by dividing both sides of (15) by u!. 2

For a tree t 2 T[I], let

D(t) :=
IX

i=1

(Dit� 1)

and call D(t) the excess degree of t. The set of possible values of the excess degree is
f0; 1; : : : ; I � 2g. It is easy to check the counting formulas

#E(t) = 2I � 3�D(t) (16)

#(unlabeled vertices of t) = I �D(t)� 2: (17)

Sum formula (14) over all (di; 1 � i � I) with
P

i di = d and use the multinomial theorem
to see that

#T[I ] =
I�2X
d=0

Id
(2I � d� 4)!2d�I+2

d!(I � d� 2)!
(18)

where the dth term is the number of t 2 T[I ] with excess degree d.
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4.3 Distribution of the total length

For a tree with edge lengths t, write

L(t) :=
X

e2E(t)
le

for the total edge-length of t. The density of L(Sc) induced by formula (1) will now be
derived. It will be checked in the next section that this density integrates to 1 for all
choices of I and c. This constitutes a proof of Theorem 1, as the only point in doubt is
the value of a normalization constant. Let (di; 1 � i � I) be non-negative integers withP

i di = d � I � 2. Formula (13) and Proposition 8 imply that for s > 0

P (Di(Sc)� 1 = di; 1 � i � I;L(Sc) 2 ds)=ds = 
d

d1; : : : ; dI

! 
IY
i=1

cDit�1
i

!
1

(I � 2)!

 
I � 2

d

!
2d�I+2 s2I�d�4(s+ c)e�

1
2s

2�sc: (19)

So the multinomial theorem gives

P (D(Sc) = d; L(Sc) 2 ds)=ds =
cd2d�I+2

(I � 2)!

 
I � 2

d

!
s2I�4�d(s+ c)e�

1
2
s2�sc: (20)

Note that this joint distribution depends only on I and c :=
PI

i=1 ci. Now sum over d to
deduce the formula for the density of L(Sc) stated in part (i) of the following corollary of
Theorem 1. The remaining parts of the corollary then follow easily. The corollary shows
how to construct a random tree Sc with the distribution de�ned by the basic formula by
a �ve step process from more elementary ingredients. For instance, for modest values of
I it would be quite feasible to simulate Sc by computer using this construction.

Corollary 9 For I � 2 and c := (c1; : : : ; cI) with ci � 0 and
P

i ci = c
(i) the density of L(Sc) at s > 0 is

P (L(Sc) 2 ds)=ds =
1

(I � 2)!

�
s

2

�I�2
(s+ 2c)I�2(s+ c)e�

1
2 s

2�sc; (21)

(ii) the law of D(Sc) given L(Sc) = s is binomial (I � 2; 2c=(s + 2c)):

P (D(Sc) = d jL(Sc) = s) =

 
I � 2

d

!�
2c

s+ 2c

�d � s

s+ 2c

�I�2�d
; (22)

10



(iii) for c > 0, given L(Sc) = s and D(Sc) = d, the joint law of the (Di(Sc)�1; 1 � i � I)
is multinomial with parameters d and (ci=c; 1 � i � I);
(iv) given L(Sc) = s and Di�1 = di for 1 � i � I, the shape of Sc is picked uniformly at
random from the set T (d1; : : : ; dI) of all trees in TI with the given excess degree sequence,
as enumerated in (14);
(v) given L(Sc) = s and that the shape of Sc equals t with m := 2I � 3� d edges, the m
segment lengths of Sc are distributed as the spacings between m� 1 independent uniform
(0; s) variables.

From (16) and (ii) above, for the number #E(Sc) of edges of Sc, we �nd that
the distribution of #E(Sc)� I + 1 given L(Sc) = s is binomial (I � 2; s=(s+ 2c).

Also, (ii) and (iii) combine to show that

the conditional distribution of (I � 2 � D;Di; i 2 [I]) given L(Sc) = s is
multinomial with parameters I � 2 and (s=(s + 2c); 2ci=(s + 2c); i 2 [I]).

Several further implications of the corollary are spelled out in following sections.

4.4 Checking the constant of integration

Writing fI;c(s) for the right side of (21), it su�ces to verify that for �xed c � 0Z 1

0
fI;c(s)ds = 1; 2 � I <1: (23)

But for 0 � z < 1 we can compute

1X
I=0

zI
Z 1

0
fI+2;c(s)ds

Z 1

0

1X
I=0

zI

I!

�
s

2

�I
(s+ 2c)I(s+ c)e�

1
2 s

2�sc ds

=
Z 1

0
(s+ c) exp

�
�(1 � z)(12s

2 + sc)
�
ds =

1

1� z

and (23) follows.

4.5 Distribution of the excess degree

Corollary 9 speci�ed the distribution of the length of Sc and the conditional law of the
excess degrees Di(Sc) given the length. Integrating out the length yields the two formulae
stated in the following proposition, which can also be deduced from Propositions 8 and
7. Recall that D(Sc) :=PI

i=1Di(Sc) and that this number determines both the number
of edges of Sc and the number of unlabeled vertices of Sc via (16) and (17). So the
distribution of either of these numbers can be read from that of D(Sc).
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Proposition 10 Let I � 3.
(i) For each 0 � d � I � 2, and each vector of non-negative integers (di; 1 � i � I) withP

i di = d,

P (Di(Sc) � 1 = di; 1 � i � I) =

 
d

d1; : : : ; dI

!
(2I � d� 4)2d�I+2

d!(I � d� 2)!
	2I�d�4(c)

IY
i=i

cdii :

(ii)

P (D(Sc) = d) =
(2I � d � 4)2d�I+2

d!(I � d � 2)!
cd	2I�d�4(c); 0 � d � I � 2: (24)

Note the implication of (ii) that the distribution of D(Sc) depends only on the sum
c of c. The consequence of (ii), that the right side of (24) sums to 1 as d ranges from 0
to I � 2, can also be checked using the recursion (12).

4.6 A coincidence in distribution

There is a remarkable coincidence between the distribution of D(Sc) displayed in Propo-
sition 10, and a distribution derived from sampling the excursion intervals of a Brownian
motion B := (Bt; 0 � t � 1). Let (Lt; t � 0) be the usual local time process of B at 0.
Let Kn be the number of equivalence classes of the random partition of [n] de�ned by
the random equivalence relation i � j i� there is no zero of B between times Ui and Uj ,
where the Ui are i.i.d. uniform [0; 1] random variables independent of B. As observed in
[18], L1 = limn!1Kn=

p
2n almost surely. It can be deduced from results of [15, 18] that

for each n = 2; 3; : : : the conditional distribution of Kn given L1 = c is identical to the
distribution of D(Sc) + 1 as determined by (24) for any c = (c1; : : : ; cI) with I = n + 1
and

PI
i=1 ci = c. Due to results of [4], this distribution of Kn given L1 = c can also be

interpreted as the distribution of number of components of the partition of [n] generated
as follows: �rst construct a Brownian CRT, then pick n points X1; : : : ;Xn uniformly at
random from the mass measure of the CRT, and partition [n] by the random equivalence
relation i � j i� the path from Xi to Xj in the CRT contains no point of a Poisson
process of rate c per unit length on the skeleton of the tree. As explained in section
7, the subtree of the Brownian CRT spanned by Xi; 1 � i � n is a copy of Sc for c a
vector of zeros of length n. These observations can be developed to give an essentially
combinatorial proof of the coincidence in distribution between Kn given L1 = c and
D(Sc)+ 1 for c = (c1; : : : ; cI) with I = n+1, but the argument is tricky and will not be
attempted here.
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5 Scaling and limiting cases of c

5.1 Some speci�c limits

For a tree s with edge-lengths (le) and for 0 < a < 1 write a 
 s for the tree whose
edge-lengths are (ale). In this section we shall see that in several limit cases rescaled
edge-lengths become i.i.d. with exponential distribution.
Case 1. Consider c = (c1; : : : ; cI) = (�; 0; 0; : : : ; 0). Write starI for the discrete tree in
which each vertex 2 � i � I is connected to vertex 1 by an edge. Then as �!1 there
is the convergence in distribution

�
 Sc d! starI( with independent exponential(1) edge-lengths): (25)

To see why, the basic formula implies

P (shape(Sc) = starI ; lengths(Sc) 2 [l; l + dl])=dl = �I�2(� + s) exp(�1
2s

2 � s�)

where s =
P

e le. Multiplying edge-lengths by � gives

P (shape(Sc) = starI ; �� lengths(Sc) 2 [l; l+ dl])=dl = (1 + s
�2
) exp(� s2

2�2 � s)

As �!1 this density tends to e�s, which is the joint density of I�1 i.i.d. exponential(1)
variables (�e; e 2 E(starI)).
Case 2. c = (c1; : : : ; cI) = (�;�; �; : : : ; �). Write uI for the random tree with edge
lengths obtained by �rst picking a discrete tree t 2 U[I] uniformly from all II�2 trees in
U[I] and then making the edge-lengths be independent exponential(1). Then

I�
 Sc d! uI as �!1: (26)

To see why, for t 2 U[I] the basic formula implies

P (shape(Sc) = t; lengths(Sc) 2 [l; l + dl])=dl = �I�2(I�+ s) exp(�1
2s

2 � sI�)

where s =
P

e le. Multiplying edge-lengths by I� gives

P (shape(Sc) = t; I�� lengths(Sc) 2 [l; l+ dl])=dl

= 1
II�2

(1 + s
I2�2

) exp(� s2

2I2�2 � s)

! 1
II�2

e�s

= P (shape(uI) = t; lengths(uI) 2 [l; l + dl])=dl:

13



Case 3. c = (c1; : : : ; cI) = (0; 0; 0; : : : ; 0). By (2) and symmetry in the basic formula,
shape(Sc) is uniform on the subset T 0

[I] � T[I] of discrete trees in which each labeled
vertex has degree 1. It is well known (and a special case of Proposition 8) that

#T 0
[I] =

(2I � 4)!

(I � 2)!2I�2
= (2I � 5) � (2I � 7) � : : :� 3� 1:

Using Corollary 9(i),

P (L(Sc) 2 ds)=ds =
1

(I � 2)!

 
s2

2

!I�2
se�s

2=2:

It follows that L(Sc) �
p
2I as I ! 1. From Corollary 9(v) and routine properties of

spacings, for �xed k the joint distribution (le1; : : : ; lek) of any k of the 2I edge-lengths
satis�es: as I !1

p
2I (le1 ; : : : ; lek)

d! independent exponential(1):

5.2 Limits of degree distributions

Recall that the excess degree D(Sc) is between 0 and I�2. The next result, which follows
by routine arguments from the exact formulas in Corollary 9, indicates the asymptotic
regime in which the excess degree is between these extremes.

Corollary 11 Consider a sequence of vectors c = (c1; : : : ; cI); c =
P

i ci, such that

I !1; c=
p
2I ! � 2 [0;1]:

Then
(i) L(Sc)=

p
2I

p! p
�2 + 1 � �.

(ii) D(Sc)
I

p! 2�p
�2+1+�

.

(iii) If also ci � �=
p
2I for some 0 � � �1 then

Di(Sc)� 1
d! Poisson

 
�p

�2 + 1 + �

!

interpreting the limit as 1 when � =1.
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6 Applications of the master formula

Throughout section 6, c := (c1; : : : ; cI) 2 C is �xed and
P

i ci = c. By application of
Proposition 8 and appropriate summations and integrations, using the master formula
in place of the basic formula, there is the following analog of (19):

Proposition 12 Let V � [I] have #V � 2. Let SV
c

be the subtree of Sc spanned by V .
Then for each H with V � H � I, each possible excess degree sequence (dh; h 2 H) of
non-negative integers with

P
h dh = d, where 0 � d � #H � 2, and each s > 0

P (hubs(SV
c
) = H;Dh(SV

c
)� 1 = dh for h 2 H;L(SV

c
) 2 ds)=ds

=
s2#H�4�d

�Q
h2H cdhh

�
(s+ cH)e�

1

2
s2�sc

(
Q

h2H dh!) (#H � d � 2)!2#H�d�2 (27)

Proof of Corollary 3. It is enough to consider the case i = 1 and j = 2. When V = [2],
the spanning subtree S [2]

c
consists of a path from vertex 1 to vertex 2 passing through

some set A � [I] n [2] of other vertices. So (27) gives

P (hubs(S [2]
c
) = [2] [ A;L(S [2]

c
) 2 ds)=ds = s#A�A(s+ c1 + c2 + cA)e

� 1

2
s2�sc

where �A :=
Q

i2A ci and cA :=
P

i2A ci . Summing over all A � [I] n [2] gives a formula
for the density of L(S [2]

c
) at s which can be simpli�ed by application of the following

elementary identities of polynomials in variables xb; b 2 B applied to B = [I] n [2]:X
A�B

Y
a2A

xa =
Y
b2B

(1 + xb);

X
A�B

 Y
a2A

xa

!0@X
b2A

xb

1A =

 X
a2B

x2a
1 + xa

! Y
b2B

(1 + xb):

The result of this simpi�cation is

P ((L(S [2]
c
) 2 ds)=ds =

 
s+ c1 + c2 +

IX
i=3

c2i t

1 + cit

!
e�

1

2
s2�sc

IY
j=3

(1 + cjs) (28)

= � d

ds

0@e� 1

2
s2�sc

IY
j=3

(1 + cjs)

1A
which yields Corollary 3. 2
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As will be described in section 7.4, there is some motivation for studying the length
of the subtree S [k]

c
when c1 = c2 = : : : = ck = 0 but ci > 0 for k < i � I. For k = 2

this is the special case c1 = c2 = 0 of Corollary 3. In principle we can derive the length
distribution from the master formula for general k. But the result is complicated, so
we record only the case k = 3. The subtree spanned by f1; 2; 3g must have three edges
meeting at a vertex of degree 3, which might be hub i for some i > 3, or an unlabeled
junction point. Applying the master formula to each possibility yields the following
conclusion:

Corollary 13 If c1 = c2 = c3 = 0 then

P (L(S [3]
c
) 2 ds)=ds =

X
A�[I]n[3]

1
2s

#A+1�A(s+ cA)
2e�

1

2
s2�sc

where the Ath term equals P (hubs(S [3]
c
) = [3] [ A).

7 Interpretation as spanning subtrees in the ICRT

7.1 Some abstract theory

We �rst outline very brie
y some abstract theory. Let v1; : : : ; vn be a uniform ran-
dom ordering of the vertices of some n-vertex random tree with edge lengths. For
2 � k � n let Rk be the subtree spanned by fv1; : : : ; vkg, with these vertices relabeled
as f1+; 2+; : : : ; k+g and other vertices unlabeled. Then the family (Rk; 2 � k � n)
automatically has the properties
(i) The distribution ofRk is invariant under permutations of the labels f1+; 2+; : : : ; k+g.
(ii) Rk is distributed as the subtree of Rk+1 spanned by f1+; 2+; : : : ; k+g.
Now suppose we are given an in�nite family (Rk; 2 � k <1) satisfying (i) and (ii), and
such that each vertex j+ is a leaf of Rk for k � j. Under extra technical conditions,
[3] Theorem 3 asserts there exists a representing continuum random tree T . Roughly, a
realization of T is a tree with edge lengths with an uncountable set of leaves, and with
a non-atomic probability measure � on the leaves. One can therefore pick (conditionally
on T and �) independent leaves v1; v2; : : : with distribution �, and the \representation"
is that

Rk is distributed as the subtree of T spanned by fv1; : : : ; vkg: (29)

To see the relevance of this abstract theory to our model, consider c = (c1; : : : ; cI)
where 0 � I <1 and ci > 0 for 1 � i � I. For k � 0 write c[+k] for the vector obtained
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by appending k zero terms to c:

(c[+k])i = ci; i � I (30)

= 0; I + 1 � i � I + k:

To avoid trivialities, suppose I + k � 2. In the associated tree Sc[+k] relabel vertices
I+1; : : : ; I+k as 1+; : : : ; k+. WriteRc

k for the subtree of Sc[+k] spanned by f1+; : : : ; k+g.
The vertices j+ are leaves by (2). The family (Rc

k; 2 � k <1) satis�es (i) because, by
symmetry in the basic formula, the distribution of Sc[+k] is invariant under permutations
of the labels f1+; 2+; : : : ; k+g. Similarly, to check (ii) it is enough to check Sc[+k] is
distributed as the subtree of Sc[+k+1] spanned by f1+; 2+; : : : ; k+g. But this follows
from the master formula, since the hubs of this subtree are evidently [I][f1+; : : : ; k+g.

Thus by checking the technical conditions in [3] one could establish the existence of
a representing continuum random tree, say bT c. However, Aldous and Pitman [2] give
a more algorithmic construction (reviewed in section 7.2) of an inhomogeneous contin-
uum random tree (ICRT), which we shall see (Proposition 14) is the same object up to
parametrization. As described in section 7.4, the problem studied in [2] motivates some
di�cult distributional questions concerning Sc.

7.2 The line-breaking construction

This construction is from [2] section 2. Fix � = (�1; �2; : : : ; �I) with 0 � I <1, with each
�i > 0 and such that

P
i �

2
i � 1. De�ne a = 1 �P

i �
2
i . If a > 0 let ((Uj; Vj); 1 � j <1)

with 0 < U1 < U2 < : : : be the points of a Poisson point process of rate a per unit
area on the octant f(u; v) : 0 < v < u < 1g. For each i � 1 such that �i > 0, let
0 < �i;1 < �i;2 < : : : be the points of a Poisson point process on (0;1) of rate �i per
unit length. These are the \random" ingredients of our construction. The construction
is illustrated in �gures 2,3 and 4. In outline, we cut the line [0;1) into �nite-length
segments and reassemble the segments as \branches" of a tree, where each point of the
tree is labeled by some 0 � x <1, and then pass to a completion. Here are the details.

Call each point Uj a 0-cutpoint, and say that Vj is the corresponding joinpoint. Call
each point �i;j with �i > 0 and j � 2 (note the 2) an i-cutpoint, and say that �i;1 is
the corresponding joinpoint. Note that there are (with probability 1, a quali�cation in
e�ect throughout the construction) only �nitely many cutpoints in any �nite interval
[0; x], because for i � 1 the mean number of i-cutpoints in that interval equals �ix� (1�
exp(��ix)) � �2i x

2. We may therefore order the cutpoints as 0 < �1 < �2 < : : :, where
�k ! 1 as k ! 1. Figure 2 illustrates the cutpoints, with each �k identi�ed as some
Uj or �i;j.
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We build the tree by starting with the branch [0; �1] and then, inductively on k � 1,
attaching the branch (�k; �k+1] to the joinpoint ��k corresponding to the cutpoint �k.
Figure 3 illustrates the attachment of the �rst 8 branches, using the realization in �gure
2. The reader will �nd it helpful to work through the construction in �gure 3: the
sequence of attachments of branches is

[0; U1]; (V1; U2]; (V2; �1;2]; (�1;1; �4;2]; (�4;1; U3]; (V3; �2;2]; (�2;1; �1;3]; (�1;1; U4]:

In [2] the emphasis was on continuing this construction over the in�nite line [0;1)
to yield a realization of an ICRT T�, but for the purposes of this paper we need only
consider �nite numbers of branches. Given � and k � 0, stop the construction at the �rst
cutpoint �J such that J � max(1; k � 1) and such that the interval [0; �J ] contains each
�i;1; 1 � i � I. This gives a tree with edge lengths, as in �gure 3. For each 1 � i � I,
relabel the point �i;1 as hub i. And for each 1 � j � J relabel point �j�1 as leaf j+
(take �0 = 0). This yields a tree with edge lengths (see �gure 4) with I hubs and with
some number J � k of leaves j+ which span the tree. Finally, de�ne eS

�[+k]
to be the

subtree spanned by the hubs [I] and the subset of leaves f1+; : : : ; k+g, and de�ne eS
�

to be the subtree spanned by the hubs [I] only.
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7.3 Consistency of the ICRT and the basic formula

Proposition 14 shows that a rescaling of the line-breaking construction gives a random
tree with edge lengths distributed according to the basic formula. The proof uses a
result from Camarri and Pitman [6] which exhibits the partial trees in the line-breaking
construction as limits of spanning subtrees of p-trees.

Proposition 14 Let c = (c1; : : : ; cI), where 0 � I <1 and ci > 0 for each 1 � i � I.
Set � := (1 +

P
i c

2
i )
�1=2. For any k � 0 let eS�c[+k] denote the random tree constructed

as in the previous section from parameters �i := �ci, and let Sc[+k] be the tree whose
distribution is speci�ed by the basic formula for the vector c[+k] at (30). Then

Sc[+k] d
= � 
 eS�c[+k]

where 
 is the edge-scaling map from section 5.

Equivalently, the continuum random tree bT c whose construction was outlined in section
7.1 does indeed exist and can be represented as bT c = � 
 T �c where T �c is the is ICRT
T � of [2] for the vector � := �c, with �i := 0 for i > I.

Proof. Given c[+k] 2 C, de�ne p[n] as at (7) in terms of c[+k]. Write �n =
qP

i(p
[n]
i )2.

So

�2
n =

IX
i=1

c2i
n
+ o( 1

n
) + 1�n�1=2c

n�I � 1
n
(1 +

IX
i=1

c2i ) =
1
n�2

and

p
[n]
i

�n
! �ci; 1 � i � I;

p
[n]
i

�n
! 0; I + 1 � i � I + k:

Recall from section 3.2 that Un is the random p[n]-tree and s(Un) is the subtree of Un
spanned by [I + k]. According to [6, Corollary 15]

�n 
 s(Un) d! eS�c[+k]:
But Proposition 6 implies

n�1=2 
 s(Un) d! Sc[+k]:
Since n�1=2 � ��n, the Proposition follows. 2

Alternative Proof of a special case of Corollary 3 Suppose cj = ck = 0. By
relabeling, we can assume j = 1; k = 2. Given c, let � := (1+

P
i c

2
i )
�1=2 as in Proposition
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14, and consider the line-breaking construction of eS�c[+2]. The distance eL12 between

leaves 1+ and 2+ in eS�c[+2] is just the position �1 of the �rst cutpoint in the construction.
So by construction

P (�1 > x) = exp(�1
2
ax2)

Y
i

(1 + �ix)e
��ix

where a = 1 �P
i �

2
i . By Proposition 14, L12

d
= � eL12. So

P (L12 > s) = P (�1 > s=�) = exp(�as2

2�2
)
Y
i

(1 + cis)e
�cis: (31)

But
a

�2
=

1 �P
i(�ci)

2

�2
=

1

�2
�X

i

c2i = 1

so (31) is consistent with (4). 2

Remark. As shown in [2], the line-breaking construction of the ICRT T � works not
only for �nite � = (�1; : : : ; �I) but also for in�nite � = (�1; �2; : : :) with

P
i �

2
i � 1. While

the combinatorial methods of this paper do not apply directly to the in�nite �, results
in the in�nite case can typically be deduced by approximation arguments with �nite �.
For instance, there are an analogs of formulae (4) and (28) in the in�nite case with �nite
sums and products replaced by in�nite sums and products.

7.4 Distributional aspects of eternal additive coalescents

Fix c 2 C and 0 < � < 1. For each k � 2, create a Poisson (rate � per unit length)
process of \cuts" along the edges of Sc[+k]. This creates a forest, and we can write

Yc;k(�) = (Y c;k
i (�); i � 1)

for the vector of proportions of the k leaves f1+; : : : ; k+g in the di�erent tree-components,
where the vector is written in decreasing order. It is shown in [2] that as k ! 1
there is a limit random vector Yc(�), which can also be obtained by a construction
involving cutting along the skeleton of the continuum random tree bT c. The process
(Yc(�); 0 < � <1) arises in [2] as the solution to a certain problem (\�nd all extreme
versions of the additive coalescent"), but this solution is not very explicit, and it would
be desirable to understand the distribution of Yc(�) for given c and �. In the special
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case c = 0 a description is given in [4], but the general case seems intractible. Some
partial information about the distribution can be obtained as follows. For k � 2 write

M (k)
c

(�) = E
X
i

(Y c

i (�))
k:

Then by (29) we can reinterpretM (k)
c

(�) as the probability of the event that f1+; : : : ; k+g
are all in the same component of Sc[+k]. This event occurs if and only if there are no
cuts within the spanning tree of f1+; : : : ; k+g, and so

M (k)
c

(�) = E exp(��L(S [+k]
c[+k]))

where L(S [+k]
c[+k]) is the length of the spanning tree of Sc[+k] spanned by f1+; : : : ; k+g.

This provides motivation for the study of L(S [+k]
c[+k]), mentioned in section 6.
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