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Abstract. In this paper, we study sib-pair IBD probabilities under a general mul-
tilocus model for disease susceptibility which doesn't assume random mating, linkage
equilibrium or Hardy-Weinberg equilibrium. We derive the triangle constraints satis�ed
by a�ected, discordant and una�ected sib-pair IBD probabilities, as well as constraints
distinguishingbetween sharing of maternal and paternalDNA, under generalmonotonic-
ity assumptions concerning the penetrance probabilities. The triangle constraints are
valid for age and sex-dependent penetrances, and in the presence of parental imprinting.
We study the parameterization of sib-pair IBD probabilities for common models, and
present examples to demonstrate the impact of non-randommating and the necessity of
our assumptions for the triangle constraints. We prove that the a�ected sib-pair possi-
ble triangle is covered by the IBD probabilities of two types of models, one with �xed
mode of inheritance and general mating type frequencies, the other with varying mode
of inheritance and randommating. Finally, we consider IBD probabilities at marker loci
linked to disease susceptibility loci and derive the triangle constraints satis�ed by these
probabilities.
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1. Introduction. The a�ected sib-pair method is used routinely to
test for linkage between a marker locus and a disease susceptibility (DS)
locus. The method consists of sampling nuclear families with two a�ected
children and establishing the number of chromosomes on which the two
sibs share DNA identical by descent (IBD) at a marker. The observed
distribution (N0; N1; N2) for the number of a�ected sib-pairs sharing DNA
IBD at the marker on 0, 1, and 2 chromosomes, respectively, is then com-
pared to the expected proportions under random Mendelian segregation,
(14 ;

1
2 ;

1
4). Deviations from the (14 ;

1
2 ;

1
4 ) null distribution are taken as evi-

dence of linkage between the marker and a DS locus. Several test statistics
have been proposed to test for linkage, such as the \mean IBD" statistic,
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N2+
1
2N1 (Blackwelder and Elston [2], Knapp et al. [16, 17, 18]). In order

to increase the power to detect DS loci, other tests have been suggested
which make use of the triangle constraints satis�ed by the a�ected-sib pair
IBD probabilities: �1 � 1

2 and 2�0 � �1, where �i is the probability that
an a�ected sib-pair shares DNA IBD at a DS locus on i, i = 0; 1; 2, chromo-
somes (Holmans [13], Faraway [9], Holmans and Clayton [14], Cordell et al.
[3], Knapp et al. [18]). For a single DS locus model, these constraints have
only been proved under the stringent assumptions of random mating and
Hardy-Weinberg equilibrium at the DS locus (Suarez et al. [35], Holmans
[13]). For a model with two unlinked DS loci, the constraints were proved
with the additional assumption of linkage equilibrium between the two loci
(Cordell et al. [3]).

In this paper, we study sib-pair IBD probabilities under a general
multilocus model for disease susceptibility which doesn't assume random
mating, linkage equilibrium or Hardy-Weinberg equilibrium. We derive
the triangle constraints satis�ed by a�ected, discordant and una�ected sib-
pair IBD probabilities, as well as constraints distinguishing between sharing
of maternal and paternal DNA, under general monotonicity assumptions
concerning the penetrance probabilities. The triangle constraints are valid
for age and sex-dependent penetrances, and in the presence of parental
imprinting. We study the parameterization of sib-pair IBD probabilities
for common models, and present examples to demonstrate the impact of
non-random mating and the necessity of our assumptions for the triangle
constraints. We prove that the a�ected sib-pair possible triangle is covered
by the IBD probabilities of two types of models, one with �xed mode of
inheritance and general mating type frequencies, the other with varying
mode of inheritance and random mating. In general, a triple (�0; �1; �2)
satisfying the triangle constraints corresponds to the IBD probabilities for
many di�erent modes of inheritance, thus it is inappropriate to estimate the
IBD probabilities and solve for parameters such as penetrances and allele
frequencies, unless one has knowledge of the mode of inheritance. Finally,
we consider IBD probabilities at marker loci linked to disease susceptibility
loci and derive the triangle constraints satis�ed by these probabilities. Note
that we do not address the question of linkage testing in this paper, but
derive properties of the IBD probabilities which may be used subsequently
in devising appropriate tests of linkage. Although this paper is concerned
with sib-pair IBD probabilities, we present the basic de�nitions, models and
derivations for sibships of arbitrary size and phenotype pattern in order to
retain the generality of our approach. We used this approach to derive score
tests of linkage for general sibships and optimal weights for combining such
test statistics across the various types of sibships [7].

The remainder of this section presents basic de�nitions and an
overview of the a�ected sib-pair method. We introduce the general multilo-
cus model in Section 2 and derive the conditional distribution of inheritance
vectors at DS loci given the phenotype vector of a sibship in Section 3. In
Sections 4 and 5, we derive the triangle constraints for a single DS locus
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model and for a general multilocusmodel. In Section 6, we consider a single
diallelic DS locus and study the parameterization of sib-pair IBD proba-
bilities. Finally, in Section 7, we consider IBD probabilities at marker loci
linked to disease susceptibility loci.

1.1. Identity by descent. DNA at the same locus on two homolo-
gous chromosomes is said to be identical by descent (IBD) if it originated
from the same ancestral chromosome. If two homologous chromosomes
from di�erent people are IBD at some locus, the people are related. If two
homologous chromosomes from the same person are IBD at some locus,
this person is inbred, i.e. has related parents. Two people, neither of whom
is inbred, can share DNA IBD at a particular locus on either 0, 1, or 2
chromosomes.

1.2. Inheritance vectors. Consider a sibship of k � 2 sibs, and
suppose we wish to identify the parental origin of the DNA inherited by each
sib at a particular autosomal locus, L say. Arbitrarily label the paternal
chromosomes containing the locus of interest by (1,2), and similarly label
the maternal chromosomes by (3,4). The labeling of parental chromosomes
is done independently for unlinked loci. The inheritance vector (also called
gene-identity state or vector of segregation indicators) of the sibship at the
locus L is the 2k-vector

X(L) = x = (x1; x2; :::; x2k�1; x2k);

where for 1 � i � k,

x2i�1 = label of paternal chromosome from which

sib i inherited DNA at L
= 1 or 2;

x2i = label of maternal chromosome from which

sib i inherited DNA at L
= 3 or 4:

According to the above de�nition there are 22k inheritance vectors for
the sibship. However, inheritance vectors obtained by permuting the labels
1 and 2 and/or 3 and 4 represent the same IBD con�guration in terms of
sharing of paternal and maternal DNA, so there are only 22(k�1) distinct
inheritance vectors. There may be further collapsing of the inheritance vec-
tors into IBD con�gurations in the case of a�ected only sibships (Ethier and
Hodge [8]). Note that the labels 1, 2, 3 and 4 for the parental chromosomes
are only meaningful within a sibship and may correspond to di�erent DNA
sequences in di�erent sibships. Hence, these \alleles" are neither trans-
portable across families nor functional. If there is no inbreeding at L, then
1, 2, 3 and 4 represent DNA sequences that are distinct by descent. Here
we only consider IBD sharing resulting from the 2k segregations giving
rise to the sibship, and allow inbreeding in the population. In practice,
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the inheritance vector of a sibship is determined by �nding enough poly-
morphism in the parents to be able to identify the chromosomal fragments
transmitted to individuals in the sibship. When IBD information is incom-
plete, partial information extracted from marker data may be summarized
by the inheritance distribution, a conditional probability distribution over
the possible inheritance vectors at the marker locus (Kruglyak and Lander
[20], Kruglyak et al. [19]). Risch [33], Holmans [13] and Holmans and
Clayton [14] also address the issue of incomplete marker polymorphism.

For sib-pairs, one usually considers three distinct IBD con�gurations
at a particular locus, according to the number of chromosomes sharing
DNA IBD at the locus. In some cases (e.g. parental imprinting), it may
be appropriate to distinguish the parental origin of the DNA shared IBD
by the sib-pair, and consider four IBD con�gurations as shown in Table 1.

Table 1
Sib-pair IBD con�gurations.

Number IBD Representative inheritance vector
0 (1,3,2,4)

1 paternal (1,3,1,4)
1 maternal (1,3,2,3)

2 (1,3,1,3)

1.3. Phenotype vector. For a disease of interest, denote the
phenotype vector of the k sibs by the vector �

� = (�1; :::; �k);

where for 1 � i � k, �i is the phenotype indicator of the ith sib

�i =

�
1; if the ith sib is a�ected,
0; if the ith sib is una�ected.

For sib-pairs, there are three phenotype patterns, corresponding to the
number of a�ected sibs.

Table 2
Sib-pair phenotype vectors.

Pattern (abbreviation) Number of Phenotype vector
a�ected sibs

A�ected sib-pair (ASP) 2 (1,1)
Discordant sib-pair (DSP) 1 (1,0) or (0,1)
Una�ected sib-pair (USP) 0 (0,0)
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1.4. The a�ected sib-pair method. In general, there is an associ-
ation between phenotype and IBD con�guration of related individuals at
loci linked to DS loci. This may be illustrated in a simple case, by con-
sidering IBD sharing and phenotype in sib-pairs for a fully recessive DS
locus D, with alleles D and d, where D is recessive with respect to d (i.e.
only individuals with genotype DD are a�ected). To simplify computation,
we further assume that both parents are heterozygous. Considering all 16
possible transmission patterns from these two parents to the two children,
we build up tables of joint probabilities of phenotype and IBD con�gura-
tion at the DS locus and at a locus unlinked to the DS locus. Table 3
clearly indicates an association between phenotype and IBD con�guration
at the DS locus, while Table 4 indicates independence of phenotype and
IBD con�guration at a locus unlinked to the DS locus.

Table 3
Joint probability of # a�ected sibs and # chromosomes sharing DNA IBD at DS

locus.

# a�ected sibs
0 1 2

# chromosomes 0 1
8

1
8 0 1

4

sharing DNA IBD 1 1
4

1
4 0 1

2

at DS locus 2 3
16 0 1

16
1
4

9
16

3
8

1
16

This association suggests the following strategy for mapping disease
genes: take groups of related individuals with particular disease phenotypes
and examine the frequencies with which speci�c IBD con�gurations arise
at candidate DS loci. The most popular strategy is the a�ected sib-pair
method, which studies IBD sharing between two sibs a�ected with the dis-
ease of interest. In 1975, Cudworth and Woodrow [5] considered the IBD
distribution of the HLA haplotypes of 15 sib-pairs a�ected with juvenile-
onset diabetes mellitus and compared this distribution to the proportions
of (14 ;

1
2 ;

1
4) expected under random Mendelian segregation. They found a

signi�cant deviation from the (14 ;
1
2 ;

1
4 ) distribution and their study initi-

ated a large body of research on the implication of HLA and other loci in
insulin-dependent diabetes mellitus (IDDM) (Day and Simons [6], Thom-
son and Bodmer [36], Suarez et al. [35], Motro and Thomson [26], Louis
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Table 4
Joint probability of # a�ected sibs and # chromosomes sharing DNA IBD at a

locus unlinked to the DS locus.

# a�ected sibs
0 1 2

# chromosomes 0 9
64

3
32

1
64

1
4

sharing DNA IBD at a 1 9
32

3
16

1
32

1
2

locus unlinked to the DS locus 2 9
64

3
32

1
64

1
4

9
16

3
8

1
16

et al. [23, 22], Payami et al. [29, 28], Cox and Spielman [4], to name a
few). Since then, the a�ected sib-pair method has been studied extensively,
initially in the context of HLA-disease association and subsequently for var-
ious complex diseases (Alzheimer disease [30], schizophrenia [1], atopy [24])
and genome scans (Kruglyak and Lander [20], Feingold et al. [10], Feingold
and Siegmund [11]). Day and Simons [6] derived the IBD distribution of
a�ected sib-pairs and a�ected cousin-pairs at a single random mating dial-
lelic DS locus for quasi-recessive and quasi-dominant modes of inheritance
(see Section 6). Suarez et al. [35] derived the IBD distribution for the
three types of sib-pairs (ASPs, DSPs and USPs) at a marker linked to a
diallelic random mating DS locus. Motro and Thomson [26], Louis et al.
[23, 22] and Payami et al. [29, 28] considered the problem of estimating the
mode of inheritance and the allele frequency for a single diallelic DS locus
with random mating, using IBD data from a�ected sib-pairs and a�ected
sib-trios. Louis et al. [22] and Payami et al. [29] also studied the impact
of selection, non-random mating, meiotic drive and recombination on the
IBD probabilities. Risch [31, 32] considered multilocus models, with the
usual assumptions of random mating and Hardy-Weinberg equilibrium at
the DS loci and linkage equilibrium between the DS loci, and expressed the
IBD probabilities of a�ected relative pairs in terms of �R, the risk ratio for
relatives of type R compared with population prevalence.

Several test statistics have been suggested to test the null hypothesis of
no linkage including the \mean IBD" statistic N2 +

1
2N1 (Blackwelder and

Elston [2], Knapp et al. [16, 17, 18]), N2 +
1
4
N1 (Feingold and Siegmund

[11]), likelihood ratio statistics and �2 goodness-of-�t statistics, either un-
restricted or restricted to the \possible triangle" (Risch [32, 33], Holmans
[13], Faraway [9], Feingold et al. [10], Holmans and Clayton [14], Cordell
et al. [3], Knapp et al. [18]).
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Until now, the properties of the ASP method have been studied mainly
under the population genetic assumptions of Hardy-Weinberg equilibrium,
random mating, and linkage equilibrium for the DS loci. However, these
population genetic assumptions are not only likely to be violated for most
diseases of interest, but are hard to verify and their violation has a po-
tentially large impact on the IBD probabilities (cf. Section 6.4). In what
follows, we will be concerned with deriving the conditional probabilities of
inheritance vectors given the phenotype vector of a sibship, as well as in-
equalities satis�ed by these probabilities, under the general genetic model
introduced in the next section.

2. Genetic model. The genetic model consists of three main com-
ponents: a model for disease susceptibility, connecting disease phenotypes
to genotypes at DS loci in the groups of related individuals of interest
(Section 2.1); a population genetic model, describing the population joint
distribution of genotypes at the DS loci for the relevant founders (Section
2.2); and a segregation model, describing the segregation of alleles at the
DS loci during meiosis (Section 2.3).

2.1. Model for disease susceptibility.

2.1.1. Basic model. In our general model, we consider L unlinked
autosomal DS loci, D1; : : : ;DL, where Dl has ml alleles, D

l
1; : : : ; D

l
ml
, l =

1; : : : ; L. We de�ne the multilocus penetrance of a genotype at the L DS
loci to be the conditional probability of a�ectedness given the multilocus
genotype at the L DS loci, i.e.

fi1j1;:::;iLjL = pr(A�ected j D1
i1
D1

j1
; : : : ; DL

iL
DL

jL
);

where il; jl = 1; : : : ;ml, l = 1; : : : ; L, and

Dl
il
= paternally inherited allele at locus Dl;

Dl
jl
= maternally inherited allele at locus Dl:

This de�nition allows the possibility of parental imprinting, i.e. dif-
ferent paternal and maternal contributions to disease susceptibility, as ob-
served with Prader-Willi and Angelman syndromes (Lalande [21], Niikawa
[27]). The involvement of imprinting was also suggested in the aetiology of
atopy (Mo�att et al. [24]), IDDM and bipolar a�ective disorder (Lalande
[21]). Special cases of these general penetrances include the multiplicative,
additive and heterogeneity models of Risch [31].

In order to derive constraints satis�ed by conditional IBD probabili-
ties, we make the following assumption about the dependence structure of
genotypes and phenotypes within a family:

. Assumption G1. Within a family, the phenotype of a particular sib is
conditionally independent of the phenotypes and genotypes of his siblings,
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given his multilocus genotype at D1; : : : ;DL. That is, for a family of k sibs

pr(�1; : : : ; �kjsg1; : : : ; sgk) =
kY

i=1

pr(�ijsgi);

where �i and sgi denote the phenotype and multilocus genotype of the ith
sib, respectively. This assumption rules out environmental covariance in
the sib phenotypes.

Note that the marginal penetrances for genotypes at single DS loci
depend on conditional genotype frequencies. For example, for D1

pr(A�ected j D1
i1
D1

j1
)

=
X

i2j2;:::;iLjL

fi1j1;:::;iLjL pr(D
2
i2
D2

j2
; : : : ; DL

iL
DL

jL
j D1

i1
D1

j1
):

Also, we have assumed conditional independence of sib phenotypes given
multilocus genotypes at all DS loci, and not given marginal genotypes at
individual loci. Hence, even when computing conditional IBD probabilities
at a single DS locus, we need to condition on the genotypes at all DS loci.

2.1.2. Age and sex-dependent penetrances. We may also con-
sider a more general model that allows age and sex-dependent penetrances
as follows:

fai1j1;:::;iLjL = pr(A�ected j D1
i1
D1

j1
; : : : ; DL

iL
DL

jL
; a);

where a denotes the age and sex of a particular individual. Autosomal
dominant inheritance with age-dependent penetrances has been used to
explain the familial aggregation of Alzheimer disease (Pericak-Vance et al.
[30]), and sex-dependent penetrances may be involved in IDDM (Morahan
et al. [25]). Assumption G1 then becomes

. Assumption G1b. Within a family, the phenotype of a particular sib is
conditionally independent of any phenotype, genotype, age and sex data
on his siblings, given his multilocus genotype at D1; : : : ;DL, and his age
and sex. That is, for a family of k sibs

pr(�1; : : : ; �kjsg1; : : : ; sgk; a1; : : : ; ak) =
kY

i=1

pr(�ijsgi; ai);

where �i, sgi and ai denote the phenotype, multilocus genotype, age and
sex of the ith sib, respectively. We can extend this model to accommodate
other types of covariates.
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2.2. Population genetic model. In order to derive the conditional
distribution of inheritance vectors given the phenotype vector of a sibship,
we will need to refer to the pairs of genotypes possessed by the parents
at the DS loci. Let pgl = (pgl1; pg

l
2; pg

l
3; pg

l
4) denote the ordered parental

genotype at the DS locus Dl, l = 1; : : : ; L, where pgli is the allele at Dl

on the parental chromosome labeled i, i = 1; 2; 3; 4. For a DS locus with
m alleles, there are m2 � m2 ordered parental genotypes. These may be
grouped into (m(m + 1)=2)2 parental mating types, by grouping genotypes
which may be obtained from one another by permuting alleles 1 and 2
and/or 3 and 4. Let mtl denote the parental mating type at the DS lo-
cus Dl, and let pg = (pg1; : : : ; pgL) and mt = (mt1; : : : ;mtL) denote the
multilocus ordered parental genotypes and mating types, respectively (see
Table 5). For unlinked DS loci, because of the independent labeling of
parental chromosomes, all ordered genotypes within a mating type have
the same frequency. Hence

pr(pg1; : : : ; pgL) =
pr(mt1; : : : ;mtL)QL

l=1#fpg 2 mtlg
;

where #fpg 2 mtlg is the number of ordered parental genotypes which are
part of the mating type mtl .

Table 5
Representative parental mating type and ordered genotypes at Dl.

Parental mating type mtl Parental genotypes pgl

Dl
hD

l
i �Dl

jD
l
k

[hijk] Dl
hD

l
i �Dl

kD
l
j

Dl
iD

l
h �Dl

jD
l
k

Dl
iD

l
h �Dl

kD
l
j

Most authors assume Hardy-Weinberg equilibriumand randommating
at the DS loci, as well as linkage equilibrium between the loci. These
assumptions would give expressions for the mating type frequencies in terms
of a series fplig of allele frequencies at each DS locus Dl. We avoid these
problematic assumptions as far as possible, and study the impact of non-
random mating on the IBD probabilities in Section 6.4. Our general model
also allows for the possibility of inbreeding at the DS loci and selective
disadvantage on a�ected individuals (Louis et al. [22] and Payami et al.
[29]). A lot may be gained in generality by dropping the usual population
genetic assumptions, and with minimal cost in terms of added complexity.

2.3. Segregation model. We will make one last assumption in or-
der to derive constraints satis�ed by conditional probabilities of inheritance
vectors. Let xl denote the inheritance vector of a sibship of size k at the
DS locus Dl, l = 1; : : : ; L, and x = (x1; : : : ; xL).
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. Assumption G2. There is no segregation distortion, i.e. for a sibship
of size k with multilocus parental genotype pg and multilocus inheritance
vector x at unlinked DS loci

pr(xjpg) =
�
1

4k

�L

:

3. Multilocus conditional distribution of inheritance vectors

at DS loci given phenotype vector of sibship.

3.1. Basic model. We will compute the multilocus conditional distribu-
tion pr(xj�) of the inheritance vectors at all L DS loci given the phenotype
vector � of a sibship of size k under our general model. By Bayes Theorem
and under Assumption G2:

pr(xj�) =
P

pg pr(�jx; pg) pr(xjpg) pr(pg)P
x

P
pg pr(�jx; pg) pr(xjpg) pr(pg)

(1)

=

P
pg pr(�jx; pg) pr(pg)P

x

P
pg
pr(�jx; pg) pr(pg) :

Now, x and pg together yield the multilocus ordered sib genotypes (distin-
guishing paternally and maternally inherited alleles), sg1; : : : ; sgk. Hence,
under Assumption G1:

pr(xj�)=
P

pg1 : : :
P

pgL f
Qk

i=1 pr(�ijsgi)g pr(pg1; : : : ; pgL)P
x1 : : :

P
xL

P
pg1 : : :

P
pgL f

Qk

i=1 pr(�ijsgi)g pr(pg1; : : : ; pgL)
;

where 1 � i � k labels individual sibs and

pr(�ijsgi) = pr(�i j pglxl
2i�1

pgl
xl
2i

; l = 1; : : : ; L):

This multilocus conditional distribution is a function of the multilocus pen-
etrances and the mating type frequencies which we denote by the global
parameter �.

The following proposition allows us to derive constraints satis�ed by
the IBD probabilities regardless of the mating type frequencies, by deriving
a su�cient condition for the constraints which doesn't involve the popula-
tion genetic model.

Proposition 1. Under Assumption G2, a su�cient condition for the
following inequality

8 x2; : : : ; xL
X
x1

c(x1) pr(x1; : : : ; xLj�) � 0(2)

is 8 mt1; 8 pg2; : : : ; pgL; 8 x2; : : : ; xL

X
x1

c(x1)

8<
:

X
fpg12mt1g

pr(�jx1; : : : ; xL; pg1; : : : ; pgL)
9=
; � 0:(3)
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Proof. For all x2; : : : ; xL, equation (3) implies

X
pg2

: : :
X
pgL

X
mt1

pr(mt1; : : : ;mtL)QL

l=1#fpg 2 mtlg

�
X
x1

c(x1)

8<
:

X
fpg12mt1g

pr(�jx1; : : : ; xL; pg1; : : : ; pgL)
9=
; � 0

)
X
x1

c(x1)
X
pg

pr(�jx1; : : : ; xL; pg1; : : : ; pgL) pr(pg1; : : : ; pgL) � 0

)
X
x1

c(x1)

P
pg pr(�jx1; : : : ; xL; pg) pr(pg)P

x

P
pg pr(�jx1; : : : ; xL; pg) pr(pg) � 0

)
X
x1

c(x1) pr(x1; : : : ; xLj�) � 0; which is (2).

This generalizes in the obvious way for constraints at other loci.

3.2. Age and sex-dependent penetrances. In the presence of age
and sex-dependent penetrances (or penetrances depending on other covari-
ates), two approaches are possible. In the �rst, we stratify the IBD data
according to phenotype, age and sex, and compute the conditional distri-
bution of the inheritance vectors given the phenotype vector � and the age
and sex information a of the sibship. Then, by Assumptions G1b, G2:

pr(xj�; a) =
P

pg pr(�jx; pg; a) pr(xjpg; a) pr(pgja)P
x

P
pg pr(�jx; pg; a) pr(xjpg; a) pr(pgja)

=

P
pgf
Qk

i=1 pr(�ijsgi; ai)g pr(pg)P
x

P
pgf
Qk

i=1 pr(�ijsgi; ai)g pr(pg)
:

With the second approach, we compute the conditional distribution of
the inheritance vectors given only � as follows:

pr(xj�) =
P

pg

P
a pr(�jx; pg; a) pr(xjpg; a) pr(pgja) pr(a)P

x

P
pg

P
a pr(�jx; pg; a) pr(xjpg; a) pr(pgja) pr(a)

=

P
pg

P
af
Qk

i=1 pr(�ijsgi; ai)g pr(pg) pr(a)P
x

P
pg

P
af
Qk

i=1 pr(�ijsgi; ai)g pr(pg) pr(a)
;

where pr(a) is the hypothetical probability of a sibship with age and sex a.
pr(xj�) may be expressed as a mixture of the IBD probabilities conditional
on the age and sex information of the sibship,

pr(xj�) =
X
a

pr(aj�) pr(xj�; a):
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Consequently, if there are large di�erences in penetrances between ages
and/or sexes (Morahan et al. [25]), strati�cation as in the �rst approach
may increase power to detect linkage in one of the age/sex groups. In
either case, Proposition 1 may be modi�ed to accommodate age and sex-
dependent penetrances as follows:

Proposition 2. Under Assumption G2 and for a model with age and
sex-dependent penetrances, a su�cient condition for the following inequal-
ities

8 x2; : : : ; xL
X
x1

c(x1) pr(x1; : : : ; xLj�) � 0

and

8 a; 8 x2; : : : ; xL
X
x1

c(x1) pr(x1; : : : ; xLj�; a) � 0

is 8 a; 8 mt1; 8 pg2; : : : ; pgL; 8 x2; : : : ; xL

X
x1

c(x1)

8<
:

X
fpg12mt1g

pr(�jx1; : : : ; xL; pg1; : : : ; pgL; a)
9=
; � 0 :

Hence, the age and sex data a on a sibship may be treated as the parental
genotype at another unlinked DS locus, at least for the purpose of deriving
constraints. In order to highlight the main ideas in our approach for deriv-
ing the triangle constraints, without the complexity of notation introduced
by multilocus models with age and sex-dependent penetrances, we will de-
fer the treatment of these models to Section 5. Unless speci�ed otherwise,
we will consider the basic model of Section 2.1.1.

4. Constraints for sib-pair conditional IBD probabilities un-

der a general single autosomal disease locus model. In this section
we consider a single autosomal DS locus D, with m alleles, D1; : : : ; Dm,
and arbitrary mating type frequencies, and we are concerned with deriving
constraints satis�ed by sib-pair conditional IBD probabilities at this locus.

For a�ected sib-pairs, let

�ASPi (�) = pr(Sib-pair shares DNA IBD on i chromosomes at DjASP )
=
X
Ci

pr(xjASP );

where Ci = fx : �(x1; x3) + �(x2; x4) = ig, i = 0; 1; 2, x = (x1; x2; x3; x4)
denotes the inheritance vector of the sib-pair at D, and �(k; l) = 1 if k = l
and 0, otherwise. In some cases (e.g. parental imprinting), we may be
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interested in distinguishing between sharing of maternal and paternal DNA
by the sib-pair, so let

�ASPij (�) = pr(Sib-pair shares DNA IBD at D on i paternal and

j maternal chromosomesjASP )
=
X
Cij

pr(xjASP );

where Cij = fx : �(x1; x3) = i; �(x2; x4) = jg, i; j = 0; 1. Then

�ASP10 (�) + �ASP01 (�) = �ASP1 (�):

The DSP and USP IBD probabilities are de�ned similarly, and we may drop
the parameter � and the sib-pair type to simplify notation when there is
no ambiguity. Examples of models for which �01 6= �10 are given in Sec-
tion 6. We will prove constraints satis�ed by the sib-pair conditional IBD
probabilities under our general single DS locus model and the following
monotonicity assumption concerning the penetrances:

. Assumption M1. 8 i; j; k; l = 1; : : : ;m

[M1a] (fik � fjk)(fil � fjl) � 0,

and

[M1b] (fik � fil)(fjk � fjl) � 0.

For symmetric penetrances (i.e. no parental imprinting), this is equiv-
alent to the existence of an ordering of the alleles at the DS locus such
that:

8 i = 1; : : : ;m fi1 � fi2 � : : : � fim:

Assumption M1 is satis�ed by the usual diallelic recessive, dominant
and additive modes of inheritance, but not by over-dominant modes of
inheritance (e.g. f11; f22 < f12 = f21). It is also satis�ed in the case of
parental imprinting where paternally and maternally inherited alleles are
ordered di�erently in terms of \severity" (e.g. f21 � f11 � f12, f21 �
f22 � f12, where D2 is protective if paternally inherited, but increases
susceptibility if maternally inherited).

Proposition 3. Under a general single autosomal DS locus model
with m alleles, arbitrary mating type frequencies, and Assumptions G1,

G2, M1, the ASP conditional IBD probabilities at the DS locus satisfy the
following constraints:

�ASP10 (�) + �ASP01 (�) � �ASP00 (�) + �ASP11 (�);(4)
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�ASP00 (�) � �ASP10 (�);(5)

�ASP00 (�) � �ASP01 (�):(6)

Consequently,

�ASP1 (�) � 1

2
;(7)

�ASP1 (�) � 2�ASP0 (�):(8)

Hence, the ASP IBD probabilities at the DS locus fall in a triangle with
vertices �

1

4
;
1

2
;
1

4

�
;

�
0;
1

2
;
1

2

�
and (0; 0; 1)

which we call the ASP possible triangle. The USP IBD probabilities satisfy
the same constraints.

Note that the IBD probabilities satisfy the possible triangle constraints
under the assumptions of random mating and Hardy-Weinberg equilibrium
at the DS locus, without requiring Assumption M1. However, in real map-
ping situations, it is more likely to encounter non-random mating than
modes of inheritance which violate Assumption M1. The ASP possible tri-
angle is also referred to in the literature as Holmans' possible triangle.

Proof. The proof relies on Proposition 1 and the fact that if ~x is
obtained from x by permuting 1 and 2 and/or 3 and 4, then 8 mtX

fpg2mtg
pr(�j~x; pg) =

X
fpg2mtg

pr(�jx; pg):(9)

Table 6
Conditional probability of ASP given inheritance vector x and parental genotype

pg for a representative mating type mt.

pr(ASP jx; pg)

Parental genotype Inheritance vector x
pg (1,3,1,3) (1,3,1,4) (1,3,2,3) (1,3,2,4)

DiDj �DkDl f2ik fikfil fikfjk fikfjl
DiDj �DlDk f2il filfik filfjl filfjk
DjDi �DkDl f2jk fjkfjl fjkfik fjkfil
DjDi �DlDk f2jl fjlfjk fjlfil fjlfik

� To prove that �ASP10 (�)+�ASP01 (�) � �ASP00 (�)+�ASP11 (�), it su�ces to show
that 8 mtX

fpg2mtg
pr(ASP j(1; 3; 1; 4); pg) +

X
fpg2mtg

pr(ASP j(1; 3; 2; 3); pg)
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�
X

fpg2mtg
pr(ASP j(1; 3; 2; 4); pg) +

X
fpg2mtg

pr(ASP j(1; 3; 1; 3); pg):

This inequality is true since

X
fpg2mtg

pr(ASP j(1; 3; 2; 4); pg) +
X

fpg2mtg
pr(ASP j(1; 3; 1; 3); pg)

�
X

fpg2mtg
pr(ASP j(1; 3; 1; 4); pg) �

X
fpg2mtg

pr(ASP j(1; 3; 2; 3); pg)

= fik(fik + fjl � fil � fjk) + fil(fil + fjk � fik � fjl)
+ fjk(fjk + fil � fjl � fik) + fjl(fjl + fik � fjk � fil)

= (fik + fjl � fil � fjk)
2 � 0:

� To prove that �ASP10 (�) � �ASP00 (�), it su�ces to show that 8 mt
X

fpg2mtg
pr(ASP j(1; 3; 1; 4); pg) �

X
fpg2mtg

pr(ASP j(1; 3; 2; 4); pg):

This inequality is true since

X
fpg2mtg

pr(ASP j(1; 3; 1; 4); pg) �
X

fpg2mtg
pr(ASP j(1; 3; 2; 4); pg)

= fik(fil � fjl) + fil(fik � fjk) + fjk(fjl � fil) + fjl(fjk � fik)

= (fik � fjk)(fil � fjl) + (fil � fjl)(fik � fjk)

= 2(fik � fjk)(fil � fjl) � 0 under Assumption M1a.

� The proof of �ASP01 (�) � �ASP00 (�) is similar and involves

X
fpg2mtg

pr(ASP j(1; 3; 2; 3); pg) �
X

fpg2mtg
pr(ASP j(1; 3; 2; 4); pg)

= 2(fik � fil)(fjk � fjl) � 0 under Assumption M1b.

Equation (8) follows immediately from (5) and (6). Equation (4) implies
�1 � �0 + �2 = 1� �1, which is (7).

The proof for USPs is similar to that for ASPs, but with fij replaced
by its complement 1� fij .

Proposition 4. Under a general single autosomal DS locus model
with m alleles, arbitrary mating type frequencies, and Assumptions G1,

G2, M1, the DSP conditional IBD probabilities at the DS locus satisfy the
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following constraints:

�DSP00 (�) + �DSP11 (�) � �DSP10 (�) + �DSP01 (�);(10)

�DSP10 (�) � �DSP00 (�);(11)

�DSP01 (�) � �DSP00 (�):(12)

Consequently,

�DSP1 (�) � 1

2
;(13)

�DSP1 (�) � 2�DSP0 (�):(14)

Hence, the DSP IBD probabilities at the DS locus fall in a triangle with
vertices �

1

4
;
1

2
;
1

4

�
;

�
1

2
;
1

2
; 0

�
and

�
1

3
;
2

3
; 0

�

which we call the DSP possible triangle.

Proof. The proof relies on Proposition 1, equation (9) and the fact
that 8 x and 8 mtX

fpg2mtg
pr((1; 0)jx; pg) =

X
fpg2mtg

pr((0; 1)jx; pg):

Table 7
Conditional probability of DSP given inheritance vector x and parental genotype

pg for a representative mating type mt.

pr((1; 0)jx;pg)

Parental genotype Inheritance vector x
pg (1,3,1,3) (1,3,1,4) (1,3,2,3) (1,3,2,4)

DiDj �DkDl fik(1� fik) fik(1� fil) fik(1� fjk) fik(1� fjl)
DiDj �DlDk fil(1� fil) fil(1� fik) fil(1� fjl) fil(1� fjk)
DjDi �DkDl fjk(1� fjk) fjk(1� fjl) fjk(1� fik) fjk(1� fil)
DjDi �DlDk fjl(1� fjl) fjl(1� fjk) fjl(1� fil) fjl(1� fik)

The rest of the proof is similar to the proof for ASPs, and involves the
following quantities:

�
X

fpg2mtg
pr((1; 0)j(1; 3; 1;4); pg) +

X
fpg2mtg

pr((1; 0)j(1; 3; 2;3); pg)

�
X

fpg2mtg
pr((1; 0)j(1; 3; 2;4); pg) �

X
fpg2mtg

pr((1; 0)j(1; 3; 1; 3); pg)

= (fik + fjl � fil � fjk)
2 � 0:
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�
X

fpg2mtg
pr((1; 0)j(1; 3; 2;4); pg) �

X
fpg2mtg

pr((1; 0)j(1; 3; 1; 4); pg)

= 2(fik � fjk)(fil � fjl) � 0 under Assumption M1a.

�
X

fpg2mtg
pr((1; 0)j(1; 3; 2;4); pg) �

X
fpg2mtg

pr((1; 0)j(1; 3; 2; 3); pg)

= 2(fik � fil)(fjk � fjl) � 0 under Assumption M1b.

Since the trinomial probabilities (�0; �1; �2) must be nonnegative and
add up to unity, the triple (�0; �1; �2) corresponds to a point in the simplex

S = f(�0; �1; �2) : �i � 0; i = 0; 1; 2; and �0 + �1 + �2 = 1g:

A convenient way of displaying the trinomial probabilities is using a bary-
centric representation. Barycentric coordinates in the plane represent the
triple (�0; �1; �2) by the vector �0A0 + �1A1 + �2A2, where the Ai's are
�xed vectors in the plane, such as the columns of the 2 � 3 matrix in the
following equation:

�
x
y

�
=

" p
2

p
2
2 0

0
q

3
2 0

#
�
2
4 �0
�1
�2

3
5 :

With this representation, (0; 0; 1) is located at the origin and (�0; �1; �2)
are points in an equilateral triangle with sides of length

p
2. The vertices

of the triangle correspond to one of the �'s being unity, and along the sides
of the triangle one of the �'s is zero (see Figures 1, 2 p. 19). Holmans
[13] uses a di�erent representation for the trinomial probabilities which is
two-dimensional and involves only (�0; �1). The boundaries of the space
for (�0; �1) are �0 = 0, �1 = 0 and �1 + �0 = 1, and the boundaries of the
ASP possible triangle are �0 = 0, �1 =

1
2 and �1 = 2�0.

5. Constraints for sib-pair conditional IBD probabilities un-

der a general multilocus model. In this section we consider a general
model with L unlinked autosomal DS loci and de�ne sib-pair multilocus
IBD probabilities as follows. For il; jl = 0; 1, l = 1; : : : ; L, let

�ASPi1j1;:::;iLjL
(�)= pr(Sib-pair shares DNA IBD at Dl on il paternal

and jl maternal chromosomes, l = 1; : : : ; L j ASP )
=

X
Ci1j1;:::;iLjL

pr(x1; : : : ; xLjASP );

where

Ci1j1;:::;iLjL = f(x1; : : : ; xL) : �(xl1; xl3) = il; �(x
l
2; x

l
4) = jl; l = 1; : : : ; Lg;
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and xl is the inheritance vector of the sib-pair at the DS locus Dl. The
marginal IBD probabilities at the DS locus Dl, l = 1; : : : ; L, are de�ned
by

�ASP++;:::;iljl;:::;++(�)= pr(Sib-pair shares DNA IBD at Dl on il

paternal and jl maternal chromosomes j ASP )
=

X
C++;:::;iljl;:::;++

pr(x1; : : : ; xLjASP );

where C++;:::;iljl;:::;++ = f(x1; : : : ; xL) : �(xl1; x
l
3) = il; �(x

l
2; x

l
4) = jlg.

DSP and USP IBD probabilities are de�ned similarly.
We will derive constraints satis�ed by the sib-pair multilocus IBD

probabilities under our general multilocus model and the following mono-
tonicity assumption which is a generalization of Assumption M1 for multi-
ple loci:
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(0, 0, 1)

(0, 1, 0)

(1, 0, 0)
0

1

2

π

π

π

Fig. 1. Simplex S.

0.0 0.2 0.4 0.6 0.8 1.0

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

(1/4,1/2,1/4)

ASP

DSP
(0,1/2,1/2) (1/2,1/2,0)

(1/3,2/3,0)

Fig. 2. ASP and DSP possible triangles.
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. Assumption M2. For each DS locus Dh, h = 1; : : : ; L, let g; ~g denote
any two multilocus ordered genotypes at the remaining L � 1 loci. Then
8 h = 1; : : : ; L; 8 g; ~g and 8 i; j; k; l = 1; : : : ;mh

[M2a] (fik;g � fjk;g)(fil;~g � fjl;~g) � 0,

[M2b] (fik;g � fil;g)(fjk;~g � fjl;~g) � 0,

[M2c] (fik;g + fjl;g � fil;g � fjk;g)(fik;~g + fjl;~g � fil;~g � fjk;~g) � 0;

where fik;g is the probability of a�ectedness given ordered genotype Dh
i D

h
k

at Dh and g at the remaining L � 1 loci.
This assumption is satis�ed by Risch's [31] multiplicative and additive

penetrances, with the single locus constraints (Assumption M1) holding at
each DS locus.

Proposition 5. Under a general multilocus model with arbitrary mat-
ing type frequencies and Assumptions G1,G2, M2, the ASP (and USP)
multilocus IBD probabilities at the DS loci satisfy the following constraints.
For each DS locus Dl, l=1; : : : ; L, and 8 ih; jh=0; 1; h = 1; : : : ; L; h 6= l

�ASPi1j1;:::;00;:::;iLjL(�) � �ASPi1j1;:::;10;:::;iLjL(�);(15)

�ASPi1j1;:::;00;:::;iLjL
(�) � �ASPi1j1;:::;01;:::;iLjL

(�);(16)

�ASPi1j1;:::;01;:::;iLjL(�) + �ASPi1j1;:::;10;:::;iLjL(�)(17)

� �ASPi1j1;:::;00;:::;iLjL(�) + �ASPi1j1;:::;11;:::;iLjL(�):

Consequently, for each DS locus, the marginal IBD probabilities satisfy

�ASP++;:::;00;:::;++(�) � �ASP++;:::;10;:::;++(�);(18)

�ASP++;:::;00;:::;++(�) � �ASP++;:::;01;:::;++(�);(19)

�ASP++;:::;01;:::;++(�) + �ASP++;:::;10;:::;++(�)(20)

� �ASP++;:::;00;:::;++(�) + �ASP++;:::;11;:::;++(�);

and hence the single locus ASP possible triangle constraints are satis�ed.
The DSP multilocus IBD probabilities satisfy the reverse inequalities

�DSPi1j1;:::;00;:::;iLjL(�) � �DSPi1j1;:::;10;:::;iLjL(�);(21)

�DSPi1j1;:::;00;:::;iLjL(�) � �DSPi1j1;:::;01;:::;iLjL(�);(22)

�DSPi1j1;:::;01;:::;iLjL(�) + �DSPi1j1;:::;10;:::;iLjL(�)(23)

� �DSPi1j1;:::;00;:::;iLjL(�) + �DSPi1j1;:::;11;:::;iLjL(�):

It follows that the marginal DSP IBD probabilities at each DS locus fall in
the single locus DSP possible triangle.
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Proof. Without loss of generality, we will prove the inequalities for D1

using Proposition 1. We will use the fact that if ~x1 is obtained from x1 by
permuting the labels 1 and 2 and/or 3 and 4, thenX

fpg12mt1g
pr(�j~x1; : : : ; xL; pg1; : : : ; pgL)

=
X

fpg12mt1g
pr(�jx1; : : : ; xL; pg1; : : : ; pgL):

Table 8
Conditional probability of ASP given inheritance vectors x1; : : : ; xL and parental

genotypes pg1; : : : ; pgL for a representative mating type mt1. sg1 and sg2 denote the
multilocus genotypes of the two sibs at the last L�1 loci, as speci�ed by x2; : : : ; xL and
pg2; : : : ; pgL.

pr(ASP jx1; : : : ; xL; pg1; : : : ; pgL)

Inheritance vector at DS locus D1, x1

pg1 (1,3,1,3) (1,3,1,4) (1,3,2,3) (1,3,2,4)
D1

iD
1

j �D1

kD
1

l fik;sg1fik;sg2 fik;sg1fil;sg2 fik;sg1fjk;sg2 fik;sg1fjl;sg2
D1

iD
1

j �D1

lD
1

k fil;sg1fil;sg2 fil;sg1fik;sg2 fil;sg1fjl;sg2 fil;sg1fjk;sg2
D1

jD
1

i �D1

kD
1

l fjk;sg1fjk;sg2 fjk;sg1fjl;sg2 fjk;sg1fik;sg2 fjk;sg1fil;sg2
D1

jD
1

i �D1

lD
1

k fjl;sg1fjl;sg2 fjl;sg1fjk;sg2 fjl;sg1fil;sg2 fjl;sg1fik;sg2

� To prove that �ASP00;i2j2;:::;iLjL(�) � �ASP10;i2j2;:::;iLjL(�), it su�ces to show

that 8 mt1; 8 pg2; : : : ; pgL; 8 x2; : : : ; xLX
fpg12mt1g

pr(ASP j(1; 3; 1; 4); x2; : : : ; xL; pg1; : : : ; pgL)

�
X

fpg12mt1g
pr(ASP j(1; 3; 2; 4); x2; : : : ; xL; pg1; : : : ; pgL):

This inequality is true since under Assumption M2aX
fpg12mt1g

pr(ASP j(1; 3; 1; 4); x2; : : : ; xL; pg1; : : : ; pgL)

�
X

fpg12mt1g
pr(ASP j(1; 3; 2; 4); x2; : : : ; xL; pg1; : : : ; pgL)

= fik;sg1(fil;sg2 � fjl;sg2 ) + fil;sg1 (fik;sg2 � fjk;sg2)
+fjk;sg1(fjl;sg2 � fil;sg2 ) + fjl;sg1 (fjk;sg2 � fik;sg2)

= (fik;sg1 � fjk;sg1)(fil;sg2 � fjl;sg2 )
+(fil;sg1 � fjl;sg1)(fik;sg2 � fjk;sg2) � 0:

� The proof of �ASP00;i2j2;:::;iLjL(�) � �ASP01;i2j2;:::;iLjL(�) involves expressions
similar to those above, and Assumption M2b.
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� To prove that
�ASP01;i2j2;:::;iLjL(�)+�

ASP

10;i2j2;:::;iLjL(�)��ASP00;i2j2;:::;iLjL(�)+�
ASP

11;i2j2;:::;iLjL(�)

it su�ces to show that 8 mt1; 8 pg2; : : : ; pgL; 8 x2; : : : ; xLX
fpg12mt1g

pr(ASP j(1; 3; 1; 4); x2; : : : ; xL; pg1; : : : ; pgL)

+
X

fpg12mt1g
pr(ASP j(1; 3; 2; 3); x2; : : : ; xL; pg1; : : : ; pgL)

�
X

fpg12mt1g
pr(ASP j(1; 3; 1; 3); x2; : : : ; xL; pg1; : : : ; pgL)

+
X

fpg12mt1g
pr(ASP j(1; 3; 2; 4); x2; : : : ; xL; pg1; : : : ; pgL):

This inequality is true since under Assumption M2cX
fpg12mt1g

pr(ASP j(1; 3; 1; 3); x2; : : : ; xL; pg1; : : : ; pgL)

+
X

fpg12mt1g
pr(ASP j(1; 3; 2; 4); x2; : : : ; xL; pg1; : : : ; pgL)

�
X

fpg12mt1g
pr(ASP j(1; 3; 1; 4); x2; : : : ; xL; pg1; : : : ; pgL)

�
X

fpg12mt1g
pr(ASP j(1; 3; 2; 3); x2; : : : ; xL; pg1; : : : ; pgL)

= fik;sg1(fik;sg2 + fjl;sg2 � fil;sg2 � fjk;sg2)

+fil;sg1 (fil;sg2 + fjk;sg2 � fik;sg2 � fjl;sg2 )
+fjk;sg1(fjk;sg2 + fil;sg2 � fjl;sg2 � fik;sg2)

+fjl;sg1(fjl;sg2 + fik;sg2 � fjk;sg2 � fil;sg2)

= (fik;sg1 + fjl;sg1 � fil;sg1 � fjk;sg1)

�(fik;sg2 + fjl;sg2 � fil;sg2 � fjk;sg2) � 0:

The proof of the USP inequalities follows immediately by replacing
the penetrances by their complements. The inequalities for DSPs also
follow immediately by replacing the penetrances involving sg2 by their
complements.

The proof of corresponding constraints for age and sex-dependent pen-
etrances, with or without conditioning on the age and sex information of
the sibship, is similar and relies on Proposition 2. It involves penetrances of
the form faik;g and constraints similar to those in Assumption M2, namely:
8 a; ~a, 8 h = 1; : : : ; L; 8 g; ~g and 8 i; j; k; l = 1; : : : ;mh



TRIANGLE CONSTRAINTS FOR SIB-PAIR IBD PROBABILITIES 23

(faik;g � fajk;g)(f
~a
il;~g � f~ajl;~g) � 0,

(faik;g � fail;g)(f
~a
jk;~g � f~ajl;~g) � 0,

(faik;g + fajl;g � fail;g � fajk;g)(f
~a
ik;~g + f~ajl;~g � f~ail;~g � f~ajk;~g) � 0:

Under Risch's [31] multiplicative model with Hardy-Weinberg equilib-
rium, random mating and linkage equilibrium,

pr(x1; : : : ; xLj�) =
LY
l=1

pr(xlj�);

consequently,

�i1j1;:::;iLjL =
LY
l=1

�++;:::;iljj ;:::;++:

6. Single diallelic DS locus models. In this section, we will study
the parameterization of the ASP IBD probabilities under common models
for disease susceptibility. We will give examples of genetic models for which
the triangle constraints are violated and examine the impact of non-random
mating on the IBD probabilities. Note that the models considered in this
section may not always be realistic, but are nevertheless useful for our
purpose.

Consider a single DS locus D with two alleles: a \disease" allele, D,
and a \wild-type" allele, d, and de�ne three penetrance probabilities as
follows:

f2 = pr(A�ected j DD);
f1 = pr(A�ected j Dd) = pr(A�ected j dD);
f0 = pr(A�ected j dd):

Common models for the penetrances are:
� Strict-recessive: 0 = f0 = f1 < f2 (Thomson and Bodmer [36]);
� Quasi-recessive: 0 < f0 = f1 � f2 = rf0 (Day and Simons [6]);
� Strict-dominant: 0 = f0 < f1 = f2 (Thomson and Bodmer [36]);
� Quasi-dominant: 0 < f0 � f1 = f2 = rf0 (Day and Simons [6]);
� Additive: f1 =

f0+f2
2 (Motro and Thomson [26]);

� Intermediate: 0 = f0 � f1 = sf2 � f2 (Spielman et al. [34], Louis
et al. [23]).

There are nine di�erent mating types (Table 9), with frequencies denoted
by Pmt, mt = 1; : : : ; 9.

6.1. Random mating and Hardy-Weinberg equilibrium mod-

els. Denote the frequencies of alleles D and d in the population of interest
by p and q = 1 � p, respectively. Assume that mating is random at D
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Table 9
Parental mating types, ordered genotypes and their frequencies for a diallelic DS

locus with random mating and Hardy-Weinberg equilibrium.

Parental mating Parental Random mating and
type, mt genotypes, pg HW frequencies, Pmt

1 DD �DD p4

2 DD �Dd p3q
DD � dD p3q

3 Dd�DD p3q
dD �DD p3q

4 DD � dd p2q2

5 dd�DD p2q2

Dd�Dd p2q2

6 Dd� dD p2q2

dD �Dd p2q2

dD � dD p2q2

7 Dd� dd pq3

dD � dd pq3

8 dd�Dd pq3

dd� dD pq3

9 dd� dd q4

and the three genotypes DD, Dd and dd have the Hardy-Weinberg (HW)
frequencies p2, 2p(1� p) and (1� p)2, respectively. We will give a detailed
treatment of ASP IBD probabilities only, since they are more frequently
used and involve simpler expressions than DSP and USP IBD probabili-
ties. The ASP IBD probabilities at the DS locus only depend on the allele
frequency p and on the ratios of penetrances, f0=f2 and f1=f2. We will
examine the ASP IBD probabilities under six common penetrance models,
assuming random mating and Hardy-Weinberg equilibrium.

6.1.1. Strict-recessive model. (See Figure 3 p. 26.)

(�0; �1; �2) =

�
p2

(1 + p)2
;

2p

(1 + p)2
;

1

(1 + p)2

�
; 0 < p � 1:

The curve traced by the recessive probabilities when p varies is the Hardy-
Weinberg curve �21 = 4�0�2 joining (0,0,1) to (

1
4 ;

1
2 ;

1
4). Note that these IBD

probabilities are independent of f2. More generally, it may be shown that
the ASP IBD probabilities lie on the Hardy-Weinberg curve if f21 = f0f2
(Knapp et al. [16]).

6.1.2. Quasi-recessive model. (See Figures 3 and 5 pp. 26, 28.)

�0 =
p4r2 + (2p2(1� p2))r + (1� p2)2

p2(1 + p)2r2 + 2p2(1 � p)(3 + p)r + (1 � p)(�p3 � 3p2 + 4p+ 4)
;
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�1 =
2(1� 2p2 + p3 + 2p2(1� p)r + p3r2)

p2(1 + p)2r2 + 2p2(1� p)(3 + p)r + (1� p)(�p3 � 3p2 + 4p+ 4)
;

�2 =
p2r2 + 1� p2

p2(1 + p)2r2 + 2p2(1� p)(3 + p)r + (1� p)(�p3 � 3p2 + 4p+ 4)
:

Note that f0 cancels out, and as r ! 1 we get the probabilities for
the strictly recessive case. We proved that for �xed p 2 (0; 1), the IBD

probabilities lie on a line going from (14 ;
1
2 ;

1
4) to ( p2

(1+p)2 ;
2p

(1+p)2 ;
1

(1+p)2 ),

and given by

�0 =
1

3 + p
((1 + p)� (1 + 3p)�2) ;

�1 =
2

3 + p
(1 + (p� 1)�2) :

Hence, the trinomial probabilities may be re-parameterized as

t �! t

�
1

4
;
1

2
;
1

4

�
+ (1� t)

�
p2

(1 + p)2
;

2p

(1 + p)2
;

1

(1 + p)2

�
; 0 < t � 1;

where t ! 0 yields the strict-recessive case, and t = 1 corresponds to the
case of no allele inuencing DS at the candidate locus. The parameter
t is used to obtain a simpler parameterization and has no direct genetic
interpretation. t may be expressed as a function of (r; p)

t =
4(1� 2p2 + 2p2r)

(4 � 7p2 + 2p3 + p4) + 2p2(3� 2p� p2)r + p2(1 + p)2r2
:

Each point strictly between the Hardy-Weinberg curve and the line
�1 = 2�0 (�21 < 4�0�2 and �1 > 2�0) corresponds to the ASP conditional
IBD probabilities for a unique (up to f0) quasi-recessive model. The pa-
rameters of this model are

p =
1� 3�0 � �2
3�2 + �0 � 1

2 (0; 1);(24)

r =
4�2(�2�22 + �2(3� 8�0) + (�1 + 5�0 � 6�20))

(�1 + 3�0 + �2)(�20 + (�1 + �2)2 � 2�0(1 + �2))
(25)

+
2(�1 + �0 + 3�2)2

p
�0
p
�1 + 2(�0 + �2)

(�1 + 3�0 + �2)(�20 + (�1 + �2)2 � 2�0(1 + �2))
2 (1;1):

6.1.3. Additive model. (See Figure 3 p. 26.)

�0 =
(f0 � f0p+ f2p)2

4f20 � 7f20p+ 6f0f2p+ f22p + 3f20p
2 � 6f0f2p2 + 3f22p

2
;

�1 =
1

2
;

�2 =
2f20 � 3f20p+ 2f0f2p+ f22 p+ f20 p

2 � 2f0f2p
2 + f22p

2

2(4f20 � 7f20p+ 6f0f2p+ f22p+ 3f20p
2 � 6f0f2p2 + 3f22p

2)
:
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0.0 0.2 0.4 0.6 0.8 1.0

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

(1/4,1/2,1/4)
(0,1/2,1/2)

Fig. 3. ASP quasi-recessive and quasi-dominant IBD probabilities. Strict-recessive
model: the IBD probabilities lie on the Hardy-Weinberg curve joining (0,0,1) to
( 1
4
; 1
2
; 1
4
). Quasi-recessive model: the lines under the Hardy-Weinberg curve are the

IBD probabilities for �xed p and varying r. For �xed p, as r increases from 1 to 1, the
IBD probabilities move along a line from ( 1

4
; 1
2
; 1
4
) to a point on the Hardy-Weinberg

curve. Strict-dominant model: the IBD probabilities are on the curve joining (0; 1
2
; 1
2
)

to ( 1
4
; 1
2
; 1
4
). Quasi-dominant model: the lines above the strict-dominant curve are the

IBD probabilities for �xed p and varying r.

0.0 0.2 0.4 0.6 0.8 1.0

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

(1/4,1/2,1/4)
(0,1/2,1/2)

Fig. 4. ASP intermediate IBD probabilities. From bottom to top, the curves are
for �xed s = 0:01;0:05;0:1;0:2;0:3;0:4 and varying 0 < p < 1.
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These probabilities lie on the line �1 =
1
2 joining the points (0; 12 ;

1
2 ) and

(14 ;
1
2 ;

1
4).

6.1.4. Strict-dominant model. (See Figure 3 p. 26.)
For 0 < p � 1,

(�0; �1; �2) =

�
p(2� p)2

p3 � 6p2 + 5p+ 4
;
2(�p2 + p+ 1)

p3 � 6p2 + 5p+ 4
;

2� p

p3 � 6p2 + 5p+ 4

�
:

The strict-dominant probabilities lie on a curve indexed by p and joining
(0; 12 ;

1
2) and (14 ;

1
2 ;

1
4). Note that these IBD probabilities are independent

of f2 and are very close to the line �1 = 1
2 . The strict-dominant and

strict-recessive curves intersect at the point (1; 2
p
2; 2)=(1 +

p
2)2, which

corresponds to the IBD probabilities for a strict-recessive model with p =p
2=2 and a strict-dominant model with p = 1�p2=2 (Louis et al. [23]).
6.1.5. Quasi-dominant model. (See Figure 3 p. 26.)

�0 =
(p2(2� p)2)r2 + (2p(1� p)2(2� p))r + (1� p)4

Den
;

�1 =
2p(1 + p� p2)r2 + 4p(1� 2p+ p2)r + 2(1� p)3

Den
;

�2 =
p(2� p)r2 + (1� p)2

Den
;

where

Den = p(4+5p�6p2+p3)r2+2p(4�9p+6p2�p3)r+4�12p+13p2�6p3+p4:
Again, f0 cancels out, and as r!1 we get the probabilities for the strictly
dominant case. We proved that for �xed p 2 (0; 1), the IBD probabilities
lie on a line going through (14 ;

1
2
; 1
4
), and given by

�0 =
1

4� p ((2� p) + (3p� 4)�2);

�1 =
2

4� p (1� p�2):

Hence, the trinomial probabilities may be re-parameterized as

t �! t

�
1

4
;
1

2
;
1

4

�
+ (1� t)

�
p(2� p)2

p3 � 6p2 + 5p+ 4
;

2(�p2 + p+ 1)

p3 � 6p2 + 5p+ 4
;

2� p

p3 � 6p2 + 5p+ 4

�
;

0 < t � 1, where t ! 0 yields the strict-dominant case, and t = 1 corre-
sponds to the case of no allele inuencing DS at the candidate locus.
Quasi-dominant probabilities are very close to the additive probabilities,
i.e. to the line �1 = 1

2 . Also, there is a small overlap between the IBD
probabilities of quasi-recessive and quasi-dominant models, and a large
region of the ASP triangle is not covered by either model.
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6.1.6. Intermediate model. (See Figures 4 and 5 pp. 26, 28.)

�0 =
p (�2 s+ p (�1 + 2 s))2

p + p3 (1� 2 s)
2
+ 4 p s+ 4 s2 + p2 (2� 8 s2)

;

�1 =
2
�
p2 (1� 2 s)� p (�2 + s) s+ s2

�
p + p3 (1� 2 s)2 + 4 p s+ 4 s2 + p2 (2� 8 s2)

;

�2 =
p+ 2 s2 � 2 p s2

p + p3 (1� 2 s)2 + 4 p s+ 4 s2 + p2 (2� 8 s2)
:

Special cases of the intermediate model include:
� s = 0: strict-recessive model;
� s = 1

2 : additive model with f0 = 0

(�0; �1; �2) =

�
p

1 + 3p
;
1

2
;
1 + p

2 + 6p

�
;

� s = 1: strict-dominant model.

0.0 0.2 0.4 0.6 0.8 1.0

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

(1/4,1/2,1/4)
(0,1/2,1/2)

Fig. 5. ASP quasi-recessive and intermediate IBD probabilities. Quasi-recessive
model: as in Figure 3. Intermediate model: the curves joining the Hardy-Weinberg
curve to the additive line are the IBD probabilities for intermediate models with �xed p

and 0 � s � 1

2
, while the curves joining the additive line to the strict-dominant curve

are the IBD probabilities for intermediate models with �xed p and 1

2
� s � 1. From left

to right p = 0:05;0:1;0:3;0:5. These two models cover the interior of the ASP possible
triangle.

For �xed p, as s increases from 0 to 1
2 , the IBD probabilities trace a curve

from the Hardy-Weinberg curve to the line �1 =
1
2 , and as s increases from
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1
2 to 1, the IBD probabilities trace a curve from the line �1 = 1

2 to the
strict-dominant curve. For �xed s 6= 0, as p increases from 0 to 1, the IBD
probabilities trace a curve from (0; 12 ;

1
2 ) to (

1
4 ;

1
2 ;

1
4 ).

The formulae for DSP and USP IBD probabilities are more complex
since they involve one more parameter than the ASP probabilities. How-
ever, we proved that for a �xed disease allele frequency p, 0 < p < 1,
the quasi-recessive IBD probabilities for ASPs, DSPs and USPs fall on the
same line going through (14 ;

1
2 ;

1
4 ). Similarly for the quasi-dominant proba-

bilities. For an additive model, �1 =
1
2 , and this also holds with arbitrary

mating type frequencies, but in the latter case we may have �10 6= �01.

6.2. Coverage of the ASP possible triangle. The a�ected sib-pair
possible triangle is covered by the IBD probabilities of two types of models,
one with �xed mode of inheritance and general mating type frequencies, the
other with varying mode of inheritance and random mating. In general,
a point in the possible triangle corresponds to the IBD probabilities for
many di�erent modes of inheritance, thus it is inappropriate to estimate
the IBD probabilities and solve for parameters such as penetrances and
allele frequencies, unless one has knowledge of the mode of inheritance.

6.2.1. Random mating and Hardy-Weinberg equilibrium mo-

dels.

Proposition 6. The interior of the ASP possible triangle is covered
by the ASP IBD probabilities under quasi-recessive and intermediate models
with random mating and Hardy-Weinberg equilibrium.

Proof. In Section 6.1.2 we proved that each point strictly between
the Hardy-Weinberg curve and the line �1 = 2�0 (�21 < 4�0�2, �1 > 2�0)
corresponds to the ASP IBD probabilities for a unique (up to f0) quasi-
recessive model with parameters (r; p) given in equations (24) and (25).
Each point strictly between the Hardy-Weinberg curve and the additive line
(�21 > 4�0�2, �1 <

1
2 , �0 > 0) corresponds to the ASP IBD probabilities

for a unique (up to f2) intermediate model with 0 < p < 1 and 0 < s < 1
2 .

This follows from the Inverse Function Theorem applied to the function
(�0(s; p); �1(s; p)) de�ned on the open set (0; 12) � (0; 1). Here, �i(s; p) is
the probability that an ASP shares DNA IBD at the DS locus on i = 0; 1
chromosomes under a random mating intermediate model with parameters
(s; p) and �xed f2. The Jacobian matrix for this function is

J(s; p) =

"
@�0
@s

@�0
@p

@�1
@s

@�1
@p

#

and the determinant of the Jacobian matrix is

jJ(s; p)j = 8 (�1 + p)2 p s (�1 + 2 s) (�p � 2 s + 2 p s) (�p � s + 2 p s)�
p+ p3 (1� 2 s)2 + 4 p s+ 4 s2 + p2 (2� 8 s2)

�3
6= 0 for (s; p) 2 (0; 12 )� (0; 1):
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Numerical solutions for (s; p) may be obtained by the Newton-Raphson
method (Louis et al. [23]). Finally, the Hardy-Weinberg curve is covered
by ASP strict-recessive IBD probabilities.

6.2.2. Strict-recessive model.

Proposition 7. The ASP possible triangle is covered by the ASP IBD
probabilities for a strict-recessive model with general mating type frequen-
cies. That is, for each (�0; �1; �2) with �1 � 1

2
, �0 � 0 and �1 � 2�0,

we can �nd a family of mating type frequencies (P1; : : : ; P9) such that
(�0; �1; �2) are the ASP IBD probabilities for the strict-recessive model with
mating type frequencies (P1; : : : ; P9).

This illustrates the potentially large impact of non-random mating on
the IBD probabilities.

Proof. The ASP strict-recessive IBD probabilities are independent of
f2, so, without loss of generality, we let f2 = 1. These probabilities may
be computed using Table 10 and are given by

�0 =
P1

4P1 + P2 + P3 + P6=4
;(26)

�1 =
2P1 + P2=2 + P3=2

4P1 + P2 + P3 + P6=4
;

�2 =
P1 + P2=2 + P3=2 + P6=4

4P1 + P2 + P3 + P6=4
:

Letting

P1 = c�0;

P2 = P3 = c(�1 � 2�0);

P6 = 4c(�0 + �2 � �1);

where c is a positive constant such that P1 + P2 + P3 + P6 � 1, yields
(�0; �1; �2). In particular, the boundaries of the ASP triangle are covered
by the following models:

� �0 = 0: Set P1 = 0 and vary P6 from 0 to 1;
� �1 =

1
2 : Set P6 = 0 and vary P1 from 0 to 1;

� �1 = 2�0: Set P2 = P3 = 0 and vary P1 from 0 to 1.

Note that for DSPs �2 = 0 and hence the strict-recessive model doesn't
cover the DSP possible triangle.

6.3. Some counterexamples. The following are two counterexam-
ples demonstrating the necessity of the assumptions of our model for the
triangle constraints, and examples of models for which �01 6= �10. Either
environmental covariance in the sib phenotypes or over-dominance may
lead to IBD probabilities that fall outside the ASP possible triangle.
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Table 10
Conditional probability of ASP given inheritance vector x and parental genotype

pg for a strict-recessive model, under Assumption G1. For parental genotypes not listed
in the table pr(ASP jx; pg) = 0.

pr(ASP jx; pg)

Mating Parental Inheritance vector x
type genotype
mt pg (1,3,1,3) (1,3,1,4) (1,3,2,3) (1,3,2,4)
1 DD �DD 1 1 1 1
2 DD �Dd 1 0 1 0

DD � dD 0 0 0 0
3 Dd �DD 1 1 0 0

dD �DD 0 0 0 0
Dd�Dd 1 0 0 0

6 Dd� dD 0 0 0 0
dD �Dd 0 0 0 0
dD � dD 0 0 0 0

6.3.1. Assumption M1 - Monotonicity of penetrances. Under
random mating and Hardy-Weinberg equilibrium, the triangle constraints
hold regardless of the penetrances. However, Assumption M1 is necessary
for the triangle constraints when we allow arbitrary mating type frequen-
cies. An extreme example is that of a diallelic model with over-dominance,
f0 = f2 = 0; f1 = 1, and mating type frequency P6 = 1. Then, for ASPs,
(�0; �1; �2) = (12 ; 0;

1
2 ).

6.3.2. Assumption G1 - Conditional independence of pheno-

types given genotypes. Consider a genetic model with random mat-
ing and Hardy-Weinberg equilibrium at the DS locus, and the following
extreme form of environmental covariance:

pr(Both sibs are a�ected j At least one sib has genotype DD) = 1;

pr(Both sibs are a�ected j Neither of the sibs has genotype DD) = 0:

For this model, the ASP IBD probabilities for p 6= 0 are given by

�0 =
p2 + 4p(1� p) + 2(1� p)2

4p2 + 12p(1� p) + 7(1� p)2 ;

�1 =
2p2 + 6p(1� p) + 4(1� p)2

4p2 + 12p(1� p) + 7(1� p)2 ;

�2 =
p2 + 2p(1� p) + (1� p)2

4p2 + 12p(1� p) + 7(1� p)2 :
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Hence, 2�0 > �1 and �1 >
1
2 for p 6= 1, and Assumption G1 is necessary

for the triangle constraints.

Proof. The result follows from Tables 11 and 12, and equation (1).

Table 11
Conditional probability of ASP given inheritance vector x and parental genotype

pg for a model which violates Assumption G1. For parental genotypes not listed in the
table pr(ASP jx; pg) = 0.

pr(ASP jx; pg)

Parental genotype Inheritance vector x
pg (1,3,1,3) (1,3,1,4) (1,3,2,3) (1,3,2,4)

DD �DD 1 1 1 1
DD �Dd 1 1 1 1
DD � dD 0 1 0 1
Dd�DD 1 1 1 1
dD �DD 0 0 1 1
Dd�Dd 1 1 1 1
Dd� dD 0 1 0 0
dD �Dd 0 0 1 0
dD � dD 0 0 0 1

Table 12

x
P

pg pr(ASP jx; pg)pr(pg)
(1,3,1,3) p4 + 2p3q + p2q2

(1,3,1,4) p4 + 3p3q + 2p2q2

(1,3,2,3) p4 + 3p3q + 2p2q2

(1,3,2,4) p4 + 4p3q + 2p2q2

6.3.3. Examples when �01 6= �10 . Either parental imprinting or
non-symmetry of parental mating type frequencies with respect to maternal
and paternal genotypes may result in �01 being di�erent from �10.

First, consider a single diallelic DS locus with random mating and
Hardy-Weinberg equilibrium, and assume that f00 = f01 = 0 and f10 =
f11 = 1. Then, for ASPs,X

pg

pr(ASP j(1; 3; 1; 4); pg) pr(pg) = p4 + 3p3q + 3p2q2 + pq3;

X
pg

pr(ASP j(1; 3; 2; 3); pg) pr(pg) = p4 + 2p3q + p2q2;

and hence, by equation (1), �01 6= �10.
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Consider now a strict-recessive model with general mating type fre-
quencies and P2 6= P3. From the derivation of equation (26) for ASPs

�10 =
P1 + P3=2

4P1 + P2 + P3 + P6=4
6= P1 + P2=2

4P1 + P2 + P3 + P6=4
= �01:

Hence, in some cases, distinguishing between maternal and paternal
sharing may lead to more powerful tests of linkage.

6.4. Non-randommating and Hardy-Weinberg disequilibrium

models. In order to investigate the impact of non-random mating and
Hardy-Weinberg disequilibrium on the IBD probabilities, we consider the
model used by Jin et al. [15] for the mating type frequencies at a single
m-allele DS locus. Let pij;kl denote the probability of a DiDj � DkDl

mating, pij the probability of genotype DiDj , and pi the allele frequency
of Di. The mating type frequencies are mixtures of the frequencies under
random mating and complete dependence, with the same margins. They
are given by

pij;kl =

�
(1� �R)p2ij + �Rpij; if i = k and j = l,
(1� �R)pijpkl; otherwise,

where

pij =

�
p2i + �HWpi(1� pi); if i = j,
2pipj(1� �HW ); if i 6= j,

and i � j, k � l. Here, �HW is a parameter representing deviation from
Hardy-Weinberg equilibrium, while �R represents deviation from random
mating. Positive �HW correspond to a de�ciency of heterozygotes compared
to Hardy-Weinberg frequencies, and similarly, positive �R correspond to a
de�ciency of di�erent genotype matings compared to random mating fre-
quencies. Louis et al. [22] used this model with �HW = 0 to study the
impact of positive assortative mating on ASP IBD probabilities and Weir
[37] used this model with �R = 0 as a one-parameter class of alternatives to
Hardy-Weinberg equilibrium. For the usual two-allele model, with alleles
D and d and allele frequencies p and q = 1 � p, respectively, the mating
type frequencies are given in Table 13. The parameters (�R; �HW ) are con-
strained to yield non-negative genotype and mating type frequencies, in
particular, �R � 1 and �HW � 1.

Proposition 8. Impact of non-random mating on ASP strict-recess-
ive curve.

For a strict-recessive model (f0 = f1 = 0; f2 = 1), the ASP IBD probabili-
ties satisfy the following:

� If �R = 1, then �1 = 2�0.
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Table 13
Mating type frequencies for non-random mating model.

Mating type Mating type frequency
mt Pmt

1 (1� �R)(p
2 + �HWpq)

2 + �R(p
2 + �HWpq)

2 (1� �R)(p2 + �HWpq)(2pq(1� �HW ))
3 (1� �R)(p2 + �HWpq)(2pq(1� �HW ))
4 (1� �R)(p2 + �HWpq)(q2 + �HWpq)
5 (1� �R)(p2 + �HWpq)(q2 + �HWpq)
6 (1� �R)(2pq(1� �HW ))2 + �R(2pq(1� �HW ))
7 (1� �R)(2pq(1� �HW ))(q2 + �HWpq)
8 (1� �R)(2pq(1� �HW ))(q2 + �HWpq)
9 (1� �R)(q2 + �HWpq)2 + �R(q2 + �HWpq)

� When �R = 0, i.e. mating is random, then regardless of �HW , the
ASP strict-recessive IBD probabilities lie on the Hardy-Weinberg
curve �21 = 4�0�2.

� When 0 < �R � 1, the ASP strict-recessive IBD probabilities are
between the Hardy-Weinberg curve and the line �1 = 2�0,
i.e. �21 � 4�0�2 and �1 � 2�0. Also, if 0 � �HW � 1

lim
p!1

(�0; �1; �2) =

�
1

4
;
1

2
;
1

4

�
;

lim
p!0;p6=0

(�0; �1; �2) =
1

7
2�HW + 1

2

�
�HW ; 2�HW ;

1

2
(�HW + 1)

�
;

hence the limit of the IBD probabilities as p ! 0 is on the line
�1 = 2�0 and is independent of �R.

� When �R < 0, then regardless of �HW , the ASP strict-recessive
IBD probabilities are between the Hardy-Weinberg curve and the
line �1 =

1
2 , i.e. �

2
1 � 4�0�2 and �1 � 1

2 .

These observations are illustrated in Figures 6 and 7 p. 36.

Proof. For the strict-recessive model, the ASP probabilities are given
by equation (26). Since P3 = P2, then

4�0�2 � �21 =
P1P6 � P 2

2

(4P1 + 2P2 + P6=4)2

=
�RpDDpDd(1� pdd + pdd�R)

(4P1 + 2P2 + P6=4)2
;

and we have the following cases:
� �R = 0: �21 = 4�0�2.
� 0 < �R � 1: �21 � 4�0�2.
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� �R < 0: Since P1 � 0, then �R � �pDD
1�pDD and hence

1� pdd + pdd�R � 1�pDD�pdd
1�pDD � 0. It follows that �21 � 4�0�2.

� �R = 1: P2 = P3 = 0 and it follows that �1 = 2�0.

7. Multilocus conditional distribution of inheritance vectors

at marker loci linked to the DS loci given phenotype vector of sib-

ship. Consider L unlinked markers, M1; : : : ;ML, where Ml is linked to
Dl at recombination fraction �l , l = 1; : : : ; L. Let yl denote the inheritance
vector of the sibship atMl, l = 1; : : : ; L, and let y = (y1; : : : ; yL). We wish
to compute pr(yj�), the conditional distribution of the inheritance vectors
at the marker loci given the phenotype vector of the sibship. This distri-
bution is obtained by conditioning on all possible recombination patterns
in the sibship between the markers and the DS loci. Since the inheritance
vectors at the marker loci are conditionally independent of the phenotype
vector given the inheritance vectors at the DS loci, then

pr(yj�) =
X
x

pr(y; xj�) =
X
x

pr(yjx; �) pr(xj�) =
X
x

pr(yjx) pr(xj�):

Now, the number of coordinates at which xl and yl di�er, �(xl; yl) =P2k
i=1(1 � �(xli; y

l
i)), is the total number of recombinants between Dl and

Ml. The chance that a coordinate di�ers between xl and yl is the chance
of a recombination between Dl andMl, i.e. the recombination fraction �l.
Since recombination events are independent for unlinked loci and across
meioses, then

pr(yj�) =
X
x

(
LY
l=1

pr(yl jxl)
)
pr(xj�)

=
X
x

(
LY
l=1

�
�(xl;yl)
l (1� �l)2k��(x

l;yl)

)
pr(xj�):

Hence, the conditional distribution pr(yj�) of inheritance vectors at mark-
ers linked to DS loci in the manner described above may be obtained from
the conditional distribution pr(xj�) of the inheritance vectors at the DS
loci by means of the transition matrix

T (�1; : : : ; �L) = T (�1) 
 : : :
 T (�L):
T (�l) is the Kronecker power of the 2�2 transition matrices corresponding
to transitions in each of the 2k coordinates between Dl and Ml

T (�l) =

�
1� �l �l
�l 1� �l

�
2k
:

This matrix representation separates the contributions of the genetic
model for disease susceptibility (pr(xj�)) and of linkage (�'s). Note that
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Fig. 6. ASP strict-recessive curves for non-random mating model with �HW = 0
and �R = �0:5;�0:4; : : : ; 0:5 (from top to bottom). For �xed �R, as p ! 1, the ASP
IBD probabilities move along a curve toward ( 1

4
; 1
2
; 1
4
).
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Fig. 7. ASP strict-recessive curves for non-random mating model with �HW = 0:1
and �R = �0:5;�0:4; : : : ; 0:5 (from top to bottom). For �xed �R, as p ! 1, the ASP
IBD probabilities move along a curve toward ( 1

4
; 1
2
; 1
4
).
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T (0) is the 22k � 22k identity matrix and the entries of T (12 ) are all equal
to 1

22k .
Let us now consider the simple case of sib-pairs and a single marker

M linked to a DS locus D at recombination fraction � (D could be one of
several unlinked DS loci). For ASPs and i = 0; 1; 2, let

�ASPi (�) = pr(Sib-pair shares DNA IBD on i chromosomes at DjASP )

and let

�ASPi (�; �) = pr(Sib-pair shares DNA IBD on i chromosomes at MjASP ):

The IBD probabilities �ij and �ij, i; j = 0; 1, distinguishing between shar-
ing of maternal and paternal DNA, are de�ned at D and M as in Section
4. The same notation is used for DSPs and USPs. By Proposition 5, the
�'s satisfy the triangle constraints.

It may be shown that for each type of sib-pair2
664
�00(�; �)
�01(�; �)
�10(�; �)
�11(�; �)

3
775 =

2
664
 2  �  � � 2

 �  2 � 2  � 
 � � 2  2  � 
� 2  �  �  2

3
775�

2
664
�00(�)
�01(�)
�10(�)
�11(�)

3
775 ;(27)

where  = �2 + (1 � �)2 and � = 1 �  = 2���. When we do not distin-
guish between maternal and paternal sharing, the transition matrix T (�)
collapses into a 3� 3 matrix2

4 �0(�; �)
�1(�; �)
�2(�; �)

3
5 =

2
4  2  � � 2

2 �  2 + � 2 2 � 
� 2  �  2

3
5�

2
4 �0(�)
�1(�)
�2(�)

3
5 :(28)

This 3�3 transition matrix is given in Haseman and Elston [12] and Suarez
et al. [35].

Proposition 9. Under our general multilocus model with arbitrary
mating type frequencies and Assumptions G1,G2, M2

� (�ASP0 (�; �); �ASP1 (�; �); �ASP2 (�; �)), the ASP IBD probabilities at a
marker linked to the DS locus D at a recombination fraction �, fall
in a triangle with vertices�

1

4
;
1

2
;
1

4

�
; ( � 2; 2 � ;  2) and

1

2

�
� ; 1;  

�
where  = �2 + (1� �)2;

� this triangle is contained in the ASP possible triangle (� = 0);
� as � ! 1

2 the triangles shrink toward (
1
4 ;

1
2 ;

1
4 ) along the line �1 =

1
2 .

Similarly,
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� (�DSP0 (�; �); �DSP1 (�; �); �DSP2 (�; �)), the DSP IBD probabilities at a
marker linked to the DS locus D at a recombination fraction �, fall
in a triangle with vertices�
1

4
;
1

2
;
1

4

�
;

1

2
( ; 1; � ) and

1

3
(1� � 2; 2( � + 2 + � 2); 1�  2);

� this triangle is contained in the DSP possible triangle (� = 0);
� as � ! 1

2 the triangles shrink toward (
1
4 ;

1
2 ;

1
4) along the line �1 =

1
2 .

Again, USP IBD probabilities satisfy the same constraints as ASP IBD
probabilities.

Proof. For ASPs (USPs), the proof relies on 1
2 �  � 1, on equa-

tions (7) and (8), and on the relationship between IBD probabilities at the
marker and at the DS locus2

4 �0
�1
�2

3
5 = �0

2
4  2

2 � 
� 2

3
5+ �1

2
4  � 
 2 + � 2

 � 

3
5+ �2

2
4 � 2

2 � 
 2

3
5 ;(29)

whereby (�0; �1; �2) is a convex combination of 3 trinomial probability vec-
tors contained in the triangle with vertices (1,0,0), (0,1,0), (0,0,1). The
proof is similar for DSPs.

The possible triangles are shown in Figure 8 for various values of the
recombination fraction �. Figure 9 shows the impact of recombination on
the IBD probabilities for four models. The following can easily be shown
with representation (29):

� If �21 = 4�0�2, then �21 = 4�0�2. Hence, strict-recessive random
mating ASP IBD probabilities at the marker M remain on the
Hardy-Weinberg curve.

� If �1 =
1
2 , then �1 =

1
2 . Hence additive probabilities at the marker

M remain on the additive line.

8. Open questions. In this paper, we studied sib-pair IBD probabil-
ities under general multilocus models for disease susceptibility. We proved
the possible triangle constraints under general monotonicity assumptions
concerning the penetrances, and without the problematic assumptions of
random mating, Hardy-Weinberg equilibrium and linkage equilibrium. We
also studied the parameterization of sib-pair IBD probabilities for common
genetic models and showed that the ASP possible triangle was covered by
the IBD probabilities of at least two types of models. Finally, we illustrated
the potentially large impact of non-random mating on IBD probabilities.

Several open questions regarding IBD probabilities come to mind.
Firstly, the problem of linked DS loci remains to be addressed. An obvious
complication in the derivation of constraints for this type of models arises
since pr(xjpg) now involves recombination fractions between the linked DS
loci and hence does not cancel out of equation (1).
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Fig. 8. ASP and DSP possible triangles for IBD probabilities at a marker � away
from a DS locus, � = 0; 0:05; : : : ; 0:5.
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Fig. 9. Curves traced by ASP IBD probabilities at a marker, as recombination
fraction � between the marker and a DS locus varies between 0 and 1

2
. The 4 models

considered involve a single diallelic random mating DS locus. Starting from the top
curve, the models are: strict-dominant with p = 0:1, intermediate with s = 0:1, p = 0:1,
strict-recessive with p = 0:1, and quasi-recessive with r = 10, p = 0:1.
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This invalidates Proposition 1 for linked loci. A second open problem is
the coverage of the space for multilocus IBD probabilities. For two loci, for
example, what region of (3�3)-1�dimensional space is covered by �i1;i2,
the probability that an ASP shares DNA IBD on i1 and i2 chromosomes
at locus 1 and 2, respectively? A third question is the generalization of the
constraints to larger sibships with both a�ected and una�ected individuals.
We have already derived constraints for a�ected sib-trio IBD probabilities,
however generalizing the constraints to arbitrary sibships is challenging.

We used the matrix representation of the IBD probabilities at markers
linked to DS loci (transition matrix T (�)) to derive a score test of the null
hypothesis of no linkage between a marker and a DS locus for sibships of
various sizes and phenotype patterns [7]. This test is locally most powerful
in the recombination fraction � between the marker and a DS locus, and
provides optimal weights for combining the test statistics across the di�er-
ent types of sibships. For a�ected only sibships, the score statistic is the
usual statistic Spairs, obtained by forming all possible pairs of a�ected sibs
and averaging the proportions of chromosomes on which they share DNA
IBD. The matrix representation and score tests may be extended to other
types of pedigrees.
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