
Kingman's coalescent as a random metric

space

Steven N. Evans �

Department of Statistics, University of California at Berkeley

Abstract

Kingman's coalescent is a Markov process with state{space the collection
of partitions of the positive integers. Its initial state is the trivial partition
of singletons and it evolves by successive pairwise mergers of blocks. The
coalescent induces a metric on the positive integers: the distance between two
integers is the time until they both belong to the same block. We investigate
the completion of this (random) metric space. We show that almost surely it
is a compact metric space with Hausdor� and packing dimension both 1, and
it has positive capacities in precisely the same gauges as the unit interval.

1 Introduction

Kingman's coalescent was introduced in [Kin82b, Kin82a] as a model for genealogies
in the context of population genetics. This process has since been the subject of
a large amount of applied and theoretical work. We refer the reader to [Ald97]
for a recent survey and bibliography covering coalescent models in general, and
[Tav84, Wat84] for an indication of some of the applications of Kingman's coalescent
in genetics.

Here is a quick description of Kingman's coalescent (which we will hereafter
simply refer to as the coalescent). Recall that a partition of a set S is a collection
fA�g of subsets of S (the A� are called the blocks of the partition) such that
A� \ A� = ; for � 6= � and

S
�A� = S. Let � denote the collection of partitions

of N := f1; 2; : : :g. For n 2 N let �n denote the collection of partitions of Nn :=
f1; 2; : : : ; ng. Each partition � in � (resp. �n) corresponds to an equivalence
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relation �� on N (resp. Nn) by setting i �� j if i and j belong to the same block
of �. Write �n for the natural restriction map from � onto �n. Kingman [Kin82b]
showed that there was a (unique in law) �{valued Markov process � such that for
all n 2 N the restricted process �n := �n � � is a �n{valued, time{homogeneous
Markov chain with initial state �n(0) the trivial partition ff1g; : : : ; fngg and the
following transition rates: if �n is in a state with k blocks, then

� a jump occurs at rate
�
k

2

�
,

� the new state is one of the
�
k
2

�
partitions that can be obtained by merging

two blocks of the current state,

� and all such possibilities are equally likely.

There is a natural (random) metric � on N de�ned by

�(i; j) := infft � 0 : i ��(t) jg:

In the original interpretation of the coalescent as the random genealogical tree of a
countable collection of individuals (with time run backwards from the present), the
distance �(i; j) is just how long before the present the respective lines of descent of
i and j diverged. Note that � is actually an ultrametric on N; that is,

�(i; j) � �(i; k) _ �(k; j) for all i; j; k 2 N.

Let (S; �) denote the completion of (N; �). Clearly, the extension of � to Sis also
an ultrametric. Before presenting our main theorem giving some of the properties
of S, we will take some time to sketch a description of Sthat some readers might
�nd helpful.

Recall that a rooted tree is a directed graph with the properties that, with the
exception of a a unique vertex (the root), every vertex has exactly one directed edge
leading to it and the corresponding undirected graph is connected and acyclic. If
two vertices v and w of a rooted tree are conncected by a directed edge leading from
v to w, then w is said to be a child of v.

As we recall in Section 2, almost surely the random partition �(t) has �nitely
many blocks for all t > 0, � evolves by blocks coalescing in pairs, and �(t) consists of
the single block N for all t su�ciently large. Let A denote the collection of subsets
A of the integers such that A is a block of �(t) for some t > 0. We can think of the
elements of A as the vertices of a tree rooted at N: a block A 2 A is the child of
a block C 2 A if A 2 �(s) and C 2 �(u) for some pair of times s < u and there is
another (unique) block B 2 A such that A coalesces with B at some time s < t � u
to form C. Almost surely, each vertex in this rooted tree has two children.

In the usual terminology, an end of this rooted tree is an in�nite directed path
starting at the root, that is, an in�nite sequence N = A1; A2; : : : of blocks such that
An+1 is a child of An for all n. It is not hard to show that there is a one{to{one
relationship between Sand the set of ends.

The correspondence between coalescing partitions, tree structures and ultra-
metrics is a familiar idea, particularly in the physics literature (see, for example,
[MPV87]). Some properties of the space (N; �) are considered explicitly in Section
4 of [Ald93].

It is our aim in this paper to investigate some of the dimension and capacity
properties of (S; �). We remark that there is a large literature on such \fractal" prop-
erties of random trees constructed in various ways from Galton{Watson branching
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processes; for example, [Haw81] computed the Hausdor� dimension of the boundary
of a Galton{Watson tree equipped with a natural metric (see also [Lyo90, LS98]).
We refer the reader to [LP96] for an account, including an extensive bibliography,
of this and other facets of probability on trees.

We remind the reader of the de�nitions and basic properties of Hausdor� dimen-
sion, packing dimension, energy and capacity. For more detail see [Mat95], [RT61]
and [TT85]

Let (T; �) be a metric space. Consider a non-decreasing, continuous function
g : R+ ! R+ with g(0) = 0. The Hausdor� outer measure of a set A � T with
respect to the measure function g is de�ned by

mg(A) := lim
"#0

m"
g(A);

where

m"
g(A) := inf

(X
i

g(diam(Bi))

)
;

with the in�mum taken over all countable collections of open balls B1; B2; : : : such
that A �

S
iBi (that is, B1; B2; : : : is a cover of A) and supi diam(Bi) � ". The

Hausdor� dimension of such a set A is given by

inff� > 0 : mg� (A) = 0g = supf� > 0 : mg� (A) =1g;

where g�(s) := s�, s � 0.
Let (T; �), g and A be as above. The packing premeasure of A with respect to

the measure function g is de�ned by

Pg(A) := lim
"#0

P "
g (A);

where

P "
g (A) := sup

(X
i

g(diam(Bi))

)
;

with the supremum taken over all countable collections of pairwise disjoint open
balls B1; B2; : : : with centres in A (that is, B1; B2; : : : is a packing of A) such that
supi diam(Bi) � ". (We remark that it (T; �) is an ultrametric space, then any
point of a ball B is a centre, and so in this case the requirement that the balls
B1; B2; : : : are centred in A is equivalent to the requirement that they intersect
A.) The packing outer measure of A with respect to the measure function g is then
de�ned to be

pg(A) := inf

(X
i

Pg(Ai)

)
;

where the in�mum is over all countable collections of Borel sets A1; A2; : : : such
that A �

S
iAi. The packing dimension of A is given by

inff� > 0 : pg�(A) = 0g = supf� > 0 : pg�(A) =1g;

with g� as above.
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By arguments similar to those in Lemma 5.11 of [TT85] it is possible to show
that the inequalitymg(A) � pg(A) always holds and so, in particular, the Hausdor�
dimension of a set is at most its packing dimension.

We now recall the de�nitions of energy and capacity. Again let (T; �) be a metric
space. WriteM1(T ) for the collection of (Borel) probabilitymeasures on T . A gauge
is a function f : [0;1[! [0;1], such that:

� f is continuous and non-increasing,

� f(0) =1,

� f(r) <1 for r > 0,

� limr!1 f(r) = 0.

Given � 2M1(T ) and a gauge f , the energy of � in the gauge f is the quantity

Ef (�) :=

Z
�(dx)

Z
�(dy) f(�(x; y)):

The capacity of A � T in the gauge f is the quantity

Capf (A) := (inffEf (�)g)
�1 ;

where the in�mum is over probability measures � 2 M1(T ) with closed support
contained in A (note by our assumptions on f that we need only consider di�use
� 2M1(T ) in the in�mum). The capacity dimension of a set A � T is given by

inff� > 0 : Capf�(A) = 0g = supf� > 0 : Capf�(A) =1g;

where f�(s) := s��, s > 0.
The capacity dimension of a set equals its Hausdor� dimension (see Ch. 8

of [Mat95]), and hence the capacity dimension is also dominated by the packing
dimension.

Our main result is the following, which, inter alia, asserts in the terminology of
[PP95] (see, also, [BP92, PPS96, Per96]) that Sis a.s. capacity{equivalent to the
unit interval [0; 1].

Theorem 1.1 Almost surely, the metric space (S; �) is compact, and the Hausdor�
and packing dimensions of Sare both 1. There exist random variables C�; C�� such
that almost surely 0 < C� � C�� <1 and for every gauge f

C�Capf ([0; 1]) � Capf (S)� C��Capf ([0; 1]): (1.1)

Let us say a little about the interpretation of Theorem 1.1. Capacities, Haus-
dor� measures and packing measures are all ways of capturing how large a set is.
By de�nition, knowing thatShas positive capacity in some gauge indicates thatSis
large enough to allow mass to be spread \smoothly" on it. It is possible to establish
analogues for Sof density results for Euclidean space Hausdor� and packing mea-
sures (see Theorems 2.1 and 5.4 of [TT85] for statements of the Euclidean results).
These results show that knowing Shas positive Hausdor� or packing measure for
some measure function is again equivalent to knowing that Ssupports a measure
that is \smooth" in an appropriate sense.
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The compactness claim of Theorem 1.1 and the fact that the Hausdor� and
packing dimensions are at most 1 are established in Section 3. The capacity{
equivalence (1.1) is proved in Section 6, and, by the general relationships between
Hausdor�, packing and capacity dimensions, this also establishes the required lower
bound on the Hausdor� and packing dimensions.

The results of this paper suggest a number of problems for future study. A
process of coalescing partitions of N is constructed in [DEF+98] using coalescing
Brownian motions on the circle. The techniques of the present paper are used there
to show that the corresponding metric space has Hausdor� and packing dimensions
both equal to 1

2 and that this space is capacity{equivalent to the middle{12 Can-
tor set (and hence, by the results of [PPS96], to the Brownian zero set). It is, of
course, natural to investigate the existence of exact Hausdor� and packing measure
functions for this Brownian model and the model considered here. In this regard,
the random measure � constructed in Section 5 and its analogue in the setting of
[DEF+98] are the natural candidates for applying the abovementioned analogues of
the density theorems of [RT61] and [TT85], provided one can obtain the requisite
upper and lower densities. Lastly, a number of other coalescing partition{valued
processes arising from models in chemistry, cosmology and physics are considered
in [EP98, Pit97, BS97] and it would be interesting to investigate the \fractal" prop-
erties of the corresponding metric spaces, which are typically not compact.

2 Some observations on the coalescent

We begin by recalling some results about the coalescent from [Kin82b]. Let N (t)
denote the number of blocks of the partition �(t). Almost surely, N (t) < 1 for
all t > 0 and the process N is a pure{death Markov chain that jumps from k to
k � 1 at rate

�
k
2

�
for k > 1 (the state 1 is a trap). For k 2 N, put �k := infft �

0 : N (t) = kg. The process � is constant on each of the intervals [�k; �k�1[, k > 1.
Write I1(t) < � � � < IN(t)(t) for an ordered listing of the least elements of the various
blocks of �(t). Almost surely, for all t > 0 the asymptotic block frequencies

Fi(t) := lim
n!1

n�1
���j 2 Nn : j ��(t) Ii(t)

	�� ; 1 � i � N (t);

exist (where we use jAj to denote the cardinality of a set A) and

F1(t) + � � �+ FN(t)(t) = 1:

It follows from the arguments that lead to Equation (35) in [Ald97] that

lim
t#0

tN (t) = 2; a:s: (2.1)

Finally, we claim that

lim
t#0

t�1
N(t)X
i=1

Fi(t)
2 = 1; a:s: (2.2)

To see this, set Xn;i := Fi(�n) for n 2 N and 1 � i � n, and observe from (2.1)
that it su�ces to establish

lim
n!1

n
nX
i=1

X2
n;i = 2; a:s: (2.3)
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By the \paintbox" construction in Section 5 of [Kin82b] (see also Section 4.2 of
[Ald97] for an exposition with some helpful pictures) the random variable

Pn

i=1X
2
n;i

has the same law as U2
(1)+(U(2)�U(1))

2+ � � �+(U(n�1)�U(n�2))
2+(1�U(n�1))

2,
where U(1) � : : : � U(n�1) are the order statistics corresponding to i.i.d. random
variables U1; : : : ; Un�1 that are uniformly distributed on [0; 1]. By a classical result
on the spacings between order statistics of i.i.d. uniform random variables (see, for
example, Section III.3.(e) of [Fel71]), the law of

Pn

i=1X
2
n;i is thus the same as that

of (
Pn

i=1 T
2
i )=(

Pn

i=1 Ti)
2, where T1; : : : ; Tn are i.i.d. mean one exponential random

variables.
Now for any 0 < " < 1 we have, recalling P[T 2

i ] = 2,

P

8<
:
 

nX
i=1

T 2
i

! .  nX
i=1

Ti

!2

> (1 + ")(1 � ")�22n�1

9=
;

� P

(
nX
i=1

�
T 2
i �P[T

2
i ]
�
> 2"n

)
+P

(
nX
i=1

(Ti �P[Ti]) < �"n

)
:

A fourth moment computation and Markov's inequality show that both terms on
the right{hand side are bounded above by c(")n�2 for a suitable constant c("). A
similar bound holds for

P

8<
:
 

nX
i=1

T 2
i

! .  nX
i=1

Ti

!2

< (1� ")(1 + ")�22n�1

9=
; :

The claim (2.3) and hence (2.2) now follows by an application of the Borel{
Cantelli Lemma. As the referee remarked, the tail estimates needed for the Borel{
Cantelli Lemma can also be obtained from Markov's inequality and known moment
formulae for Dirichlet distributions.

3 Compactness and upper bounds on dimensions

Given B �S, write clB for the closure of B. Each of the sets

Ui(t) = clfj 2 N : j ��(t) Ii(t)g

= clfj 2 N : �(j; Ii(t)) � tg

= fy 2S: �(y; Ii(t)) � tg

is a closed ball with diameter at most t (in an ultrametric space, the diameter
and radius of a ball are equal). The closed balls of Sare also the open balls and
every ball is of the form Ui(t) for some t > 0 (see, for example, Proposition 18.4 of
[Sch84]) and, in fact, every ball is of the form Ui(�k) for some k 2 N and 1 � i � k.
In particular, the collection of balls is countable. Any ball of diameter at most
t is contained in a unique one of the Ui(t), and any ball of diameter at least t
contains one or more of the Ui(t) (see, for example, Proposition 18.5 of [Sch84]).
Moreover, k � 1 of the balls Ui(�k), 1 � i � k, are of the form Uj(�k+1) for some
1 � j � k + 1; and the remaining ball is of the form Uh(�k+1) [ U`(�k+1) for some
pair 1 � h; ` � k + 1.

Because Sis complete by de�nition, in order to show that Sis a.s. compact it
su�ces by Ascoli's theorem to show that Sis a.s. totally bounded. However, for
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any t > 0 we have a.s. that Sis covered by N (t) < 1 closed balls of diameter at
most t.

In order to establish that both the Hausdor� and packing dimensions ofSare a.s.
at most 1 it su�ces to consider the packing dimension, because packing dimension
always dominates Hausdor� dimension.

Recall that a packing of S is a pairwise disjoint collection of balls in S. By
de�nition of packing dimension, in order to establish that the packing dimension is
at most 1 a.s. it su�ces to show for each � > 1 that there is a random variable C
such that C <1 a.s. and, for any packing B1; B2; : : : ofSwith balls of diameter at
most 1, we have

P
k diam(Bk)

� � C. As we observed above, if 2�p � diam(Bk) <
2�(p�1) for some p = 0; 1; 2; : : :, then Bk contains one or more of the balls Ui(2

�p).
Thus

jfk 2 N : 2�p � diam(Bk) < 2�(p�1)gj � N (2�p)

and

X
k

diam(Bk)
� �

1X
p=0

N (2�p)2�(p�1)� <1;

by (2.1), as required.

4 An alternative expression for energy

We need to adapt to our setting the alternative expression for energy obtained by
summation{by{parts in Section 2 of [PP95].

For t > 0 write U(t) for the collection of balls fU1(t); : : : ; UN(t)(t)g. Let U
denote the union of these collections over all t > 0. As remarked in Section 3, the
collection U is just the countable collection of all balls of S. Given U 2 U with
U 6= S, let U! denote the unique element of U such that U ( U! and if V 2 U
with U � V � U! then either V = U or V = U!. More concretely, such a ball
U is in U(�k) but not in U(�k�1) for some unique k > 1, and U! is the unique
element of U(�k�1) such that U � U!. De�ne S! := y, where y is an adjoined
symbol. Put diam(y) =1.

Given a gauge f , write 'f for the di�use measure on [0;1[ such that 'f ([r;1[) =
'f (]r;1[) = f(r), r � 0. For a di�use probability measure � 2 M1(S) we have,
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with the convention f(1) = 0,

Ef (�) =

Z
�(dx)

Z
�(dy) f(�(x; y))

=

Z
�(dx)

Z
�(dy)

X
U2U;fx;yg�U

f(diam(U )) � f(diam(U!))

=
X
U2U

(f(diam(U ))� f(diam(U!)))

Z
�(dx)

Z
�(dy)1ffx; yg � Ug

=
X
U2U

(f(diam(U ))� f(diam(U!)))�(U )2

=
X
U2U

Z
[0;1[

'f (dt)1fU 2 U(t)g�(U )2

=

Z
[0;1[

'f (dt)
X

U2U(t)

�(U )2:

(4.1)

5 Construction of a good measure on S

In order to establish the left{hand side of the capacity{equivalence (1.1), it appears,
a priori, that for each gauge f we might need to �nd a random probability measure
� depending on f such that CCapf ([0; 1]) � (Ef (�))�1 for some a.s. non{zero
random variable C that does not depend on f . It turns out, however, that we can
�nd a � that works simultaneously for all gauges f . We construct � as follows.

Let B denote the algebra of subsets of Sgenerated by the collection of balls U ;
so that B is just the countable collection of �nite unions of balls. Of course, the �{
algebra generated by B is the Borel �{algebra of S. It is clear that, on an event 
�

with P(
�) = 1, the sets in B are compact, and, moreover, for all k 2 N and indices
1 � i � k if Ui(�k) = Ui1(�k+1) [ Ui2 (�k+1) (that is, if fIi1(�k+1); Ii2(�k+1)g =
fI`(�k+1) : I`(�k+1) ��(�k) Ii(�k)g), then Fi(�k) = Fi1(�k+1) + Fi2(�k+1). It is
therefore possible on the event 
� to de�ne a �nitely additive set function � on B
such that

�(Ui(t)) = Fi(t); t > 0; 1 � i � N (t); (5.1)

and

�(S) = 1: (5.2)

Furthermore, if A1 � A2 � : : : is a decreasing sequence of sets in the algebra B
such that

T
nAn = ;, then, by compactness, An = ; for all n su�ciently large and

it is certainly the case that limn!1 �(An) = 0. A standard extension theorem (see,
for example, Theorems 3.1.1 and 3.1.4 of [Dud89]) gives that on the event 
� the
set function � extends to a probability measure (also denoted by �) on the Borel
�{algebra of S. De�ne � to be, say, the point mass �1 o� the event 
�.

6 Capacities and lower bounds on dimensions

Establishing the capacity{equivalence (1.1) in the statement of Theorem 1.1 will
certainly show that the capacity dimension of Sis 1 a.s. The packing dimension
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of a set is at least its Hausdor� dimension, which is in turn equal to its capacity
dimension. Therefore, (1.1) combined with the results of Section 3 will establish
that the packing and Hausdor� dimensions of Sare both 1 a.s.

From (4.1) and (2.2) we see that for some random variable C0 (not depending
on f) with 0 < C0 <1 a.s. we have

Capf (S)� (Ef (�))
�1

=

0
@Z 'f (dt)

X
U2U(t)

�(U )2

1
A
�1

=

0
@Z 'f (dt)

N(t)X
i=1

Fi(t)
2

1
A
�1

� C0
�Z

'f (dt)(t ^ 1)

��1
= C0

�Z 1

0

f(t) dt

��1
:

(6.1)

Note from the Cauchy-Schwarz inequality that for any � 2M1(S)

1 =

0
@ X

U2U(t)

�(U )

1
A
2

� N (t)
X

U2U(t)

�(U )2;

and so, by (4.1),

Capf (S)�

�Z
'f (dt)N (t)�1

��1
:

This sort of bound appears in Section IV.2 of [Car67]. Applying (2.1), we see that
for some random variable C00 (again not depending on f) with 0 < C00 <1 a.s. we
have

Capf (S)� C00
�Z

'f (dt)(t ^ 1)

��1
= C00

�Z 1

0

f(t) dt

��1
(6.2)

The capacity{equivalence (1.1) follows from (6.1) and (6.2) and the fact that
there exist constants 0 < c# � c## <1 such that

c#
�Z 1

0

f(t) dt

��1
� Capf ([0; 1]) � c##

�Z 1

0

f(t) dt

��1

(this is described as \classical" in [PPS96] and follows by arguments similar to
those used around equation (9) in Section 2 of that paper to prove the analogous
inequalities for [0; 1]2).

Acknowledgement

Thanks are due to David Aldous and Jim Pitman for helpful discussions about
Kingman's coalescent, and to an anonymous referee for several suggestions that
improved the presentation.

9



References

[Ald93] D. Aldous. The continuum random tree III. Ann. Probab., 21:248{289,
1993.

[Ald97] D.J. Aldous. Deterministic and stochastic models for coales-
cence (aggregation, coagulation): a review of the mean{�eld the-
ory for probabilists. To appear in Bernoulli, available via
http://www.stat.berkeley.edu/users/aldous, 1997.

[BP92] I. Benjamini and Y. Peres. Random walks on a tree and capacity in the
interval. Ann. Inst. H. Poincar�e Probab. Statist., 28:557{592, 1992.

[BS97] E. Bolthausen and A.-S. Sznitman. On Ruelle's probability cascades and
an abstract cavity method. Preprint, 1997.

[Car67] L. Carleson. Selected Problems on Exceptional Sets. van Nostrand,
Princeton, 1967.

[DEF+98] P. Donnelly, S.N. Evans, K. Fleischmann, T.G. Kurtz, and X. Zhou.
Continuum{sites stepping{stone models, coalescing exchangeable parti-
tions, and random trees. Preprint, 1998.

[Dud89] R.M. Dudley. Real Analysis and Probability. Wadsworth, Belmont CA,
1989.

[EP98] S.N. Evans and J. Pitman. Construction of Markovian coalescents. Ann.
Inst. H. Poincar�e Probab. Statist., 34:339{383, 1998.

[Fel71] W. Feller. An Introduction to Probability Theory and Its Applications,
volume II. Wiley, New York, 2nd edition, 1971.

[Haw81] J. Hawkes. Trees generated by a simple branching process. J. London
Math. Soc. (2), 24:374{384, 1981.

[Kin82a] J.F.C. Kingman. On the genealogy of large populations. In J. Gani and
E.J. Hannan, editors, Essays in Statistical Science, pages 27{43. Applied
Probability Trust, 1982. Special vol. 19A of J. Appl. Probab.

[Kin82b] J.F.C. Kingman. The coalescent. Stochastic Process. Appl., 13:235{248,
1982.

[LP96] R.D. Lyons and Y. Peres. Probability on trees and networks.
Book in preparation for Cambridge University Press, available via
http://php.indiana.edu/~rdlyons/, 1996.

[LS98] S.P. Lalley and T. Sellke. An extension of Hawke's theorem on the
Hausdor� dimension of a Galton{Watson tree. Preprint, 1998.

[Lyo90] R.D. Lyons. Random walks and percolation on trees. Ann. Probab.,
18:931{958, 1990.

[Mat95] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals
and Recti�ability, volume 44 of Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, Cambridge { New York, 1995.

10



[MPV87] M. Mezard, G. Parisi, and M.A. Virasoro. Spin Glass Theory and Be-
yond, volume 9 of World Scienti�c Lecture Notes in Physics. World
Scienti�c, Singapore, 1987.

[Per96] Y. Peres. Remarks on intersection{equivalence and capacity{equivalence.
Ann. Inst. H. Poincar�e Phys. Th�eor., 64:339{347, 1996.

[Pit97] J. Pitman. Coalescents with multiple collisions. Preprint available via
http://www.stat.berkeley.edu/users/pitman, 1997.

[PP95] R. Pemantle and Y. Peres. Galton{Watson trees with the same mean
have the same polar sets. Ann. Probab., 23:1102{1124, 1995.

[PPS96] R. Pemantle, Y. Peres, and J.W. Shapiro. The trace of spatial Brownian
motion is capacity{equivalent to the unit square. Probab. Theory Related
Fields, 106:379{399, 1996.

[RT61] C.A. Rogers and S.J. Taylor. Functions continuous and singular with
respect to a Hausdor� measure. Mathematika, 8:1{31, 1961.

[Sch84] W. H. Schikhof. Ultrametric Calculus: an Introduction to p-adic Analy-
sis, volume 4 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge { New York, 1984.

[Tav84] S. Tavar�e. Line{of{descent and genealogical processes, and their appli-
cations in population genetics. Theoret. Population Biol., 26:119{164,
1984.

[TT85] C. Tricot and S.J. Taylor. Packing measure, and its evaluation for a
Brownian path. Trans. Amer. Math. Soc., 288:679{699, 1985.

[Wat84] G. A. Watterson. Lines of descent and the coalescent. Theoret. Popula-
tion Biol., 26:77{92, 1984.

11


