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Abstract

Microarrays are part of a new class of biotechnologies which allow the monitoring of expres-
sion levels for thousands of genes simultaneously. This paper describes statistical methods
for the identification of differentially expressed genes in replicated cDNA microarray experi-
ments. Although it is not the main focus of the paper, we stress the importance of issues such
as image processing and normalization. Image processing is required to extract measures of
transcript abundance for each gene spotted on the array from the laser scan images. Nor-
malization is needed to identify and remove systematic sources of variation, such as differing
dye labeling efficiencies and scanning properties. There can be many systematic sources of
variation and their effects can be large relative to the effects of interest. After a brief presen-
tation of our image processing method, we describe a within-slide normalization approach
which handles spatial and intensity dependent effects on the measured expression levels.

Given suitably normalized data, our proposed method for the identification of single differ-
entially expressed genes is to consider a univariate testing problem for each gene and then
correct for multiple testing using adjusted p-values. No specific parametric form is assumed
for the distribution of the expression levels and a permutation procedure is used to esti-
mate the joint null distribution of the test statistics for each gene. Several data displays
are suggested for the visual identification of genes with altered expression and of important
features of these genes. The above methods are applied to microarray data from a study of
gene expression in two mouse models with very low HDL cholesterol levels. The genes iden-
tified using data from replicated slides are compared to those obtained by applying recently
published single-slide methods.

Keywords: replicated cDNA microarrays; differential gene expression; normalization; ad-
justed p-values; permutation test; graphical display.



1 Introduction

DNA microarrays are part of a new class of biotechnologies which allow the monitoring of
expression levels for thousands of genes simultaneously (see Section 2 for an introduction
to microarrays). Applications of microarrays range from the study of gene expression in
yeast under different environmental stress conditions to the comparison of gene expression
profiles for tumors from cancer patients. In addition to the enormous scientific potential
of microarrays to help in understanding gene regulation and interactions, microarrays have
very important applications in pharmaceutical and clinical research. Microarray experiments
raise numerous statistical questions, in diverse fields such as image processing, experimental
design, and discriminant analysis.

This paper describes statistical methods for the analysis of gene expression data from a
study of lipid metabolism in mice (Callow et al. [6]). The goal of the cDNA microarray
experiments is to identify genes with altered expression in two mouse models with very low
HDL cholesterol levels (treatment groups) compared to inbred control mice. The two mouse
models considered in this study are the apolipoprotein Al (apo AI) knock-out and the scav-
enger receptor BI (SR-BI) transgenic mice, where apo Al and SR-BI are two genes known
to play pivotal roles in HDL metabolism.

The identification of differentially expressed genes is a question which arises in a broad range
of microarray experiments (Callow et al. [6], Friddle et al. [12], Galitski et al. [13], Golub
et al. [14], and Spellman et al. [34], to name a few). The types of experiments include:
single-slide ¢cDNA microarray experiments, in which one compares transcript abundance
(i.e., expression levels) in two mRNA samples, the red and green labeled mRNA samples
hybridized to the same slide; multiple-slide experiments comparing transcript abundance in
two or more types of mRNA samples hybridized to different slides. Time-course experiments,
in which transcript abundance is monitored over time for processes such as the cell cycle,
are a special type of multiple-slide experiments which we will not discuss here.

A number of methods have been suggested for the identification of differentially expressed
genes in single-slide cDNA microarray experiments. In such experiments, the data for each
gene (spot) consist of two fluorescence intensity measurements, (R,G), representing the
expression level of the gene in the red (Cyb) and green (Cy3) labeled mRNA samples, re-
spectively (the most commonly used dyes are the cyanine dyes, Cy3 and Cy5, however, other
dyes such as fluorescein and X-rhodamine may be used as well). We distinguish two main
types of single-slide methods: those which are based solely on the value of the expression
ratio R/G and those which also take into account overall transcript abundance measured by
the product RG. Early analyses of microarray data (DeRisi et al. [8], Schena et al. [30, 31])
relied on fold increase/decrease cut-offs to identify differentially expressed genes. For exam-
ple, in their study of gene expression in the model plant Arabidopsis thaliana, Schena et al.
[30] use spiked controls in the mRNA samples to normalize the signals for the two fluorescent
dyes (there, fluorescein and lissamine) and declare a gene differentially expressed if its ex-
pression level differs by more than a factor of 5 in the two mRNA samples. DeRisi et al. [8]



identify differentially expressed genes using a 3 cut-off for the log ratios of the fluorescence
intensities, standardized with respect to the mean and standard deviation of the log ratios
for a panel of 90 “housekeeping” genes (i.e., genes believed not to be differentially expressed
between the two cell types of interest). More recent methods have turned to probabilistic
modeling of the (R, G) pairs and differ mainly in the distributional assumptions they make
for (R, @) in order to derive a rule for deciding whether a particular gene is differentially
expressed. Chen et al. [7] propose a data dependent rule for choosing cut-offs for the red and
green intensity ratio R/G. The rule is based on a number of distributional assumptions for
the intensities (R, G), including normality and constant coefficient of variation. Sapir and
Churchill [27] suggest identifying differentially expressed genes using posterior probabilities
of change under a mixture model for the log expression ratio log R/G (after a type of back-
ground correction, the orthogonal residuals from the robust regression of log R vs. log G are
essentially normalized log expression ratios). A limitation of these two methods is that they
both ignore the information contained in the product RG. Recognizing this problem, New-
ton et al. [23] consider a hierarchical model (Gamma-Gamma-Bernoulli model) for (R, G)
and suggest identifying differentially expressed genes based on the posterior odds of change
under this hierarchical model. The odds are functions of R + G and RG and thus produce
a rule which takes into account overall transcript abundance. The approach of Roberts et
al. [25] is based on assuming that R and G are approximately independently and normally
distributed, with variance depending on the mean. It thus also produces a rule which takes
into account overall transcript abundance. At the end of the day, each of these methods pro-
duces a model dependent rule which amounts to drawing two curves in the R, G—plane and
calling a gene differentially expressed if its (R, G) falls outside the region between the two
curves. The relative merits of the methods depend on their ability to successfully identify
differentially expressed genes (i.e., their power or one minus their false negative rate), while
avoiding to call unchanged genes differentially expressed (i.e., their false positive or Type
I Error rate). For any given single-slide experiment, thousands of comparisons are made,
raising the concern of an elevated chance of committing at least one Type I Error. Finally
and most importantly, the gene expression data may be too variable (noisy) for successful
identification of differentially expressed genes without replication, no matter how good the
rule.

Note that the fluorescence intensity pairs (R, G) are already highly processed data and the
choice of image processing methods for segmentation and background correction of the laser
scan images can have a very large impact on these quantities. Before applying any of the
above single-slide methods, or for that matter any inference or cluster analysis method, it
is essential to identify and remove systematic sources of variation (e.g. different labeling
efficiencies and scanning properties of the Cy3 and Cyb dyes, print-tip or spatial effects) by
an appropriate normalization method. With many different users of the technology and dif-
fering protocols, a substantial portion of the variation is likely to reflect a host of systematic
effects. Until these are properly accounted for, there can be no question of the system being
in statistical control and hence no basis for a statistical model to describe chance variation.

Statistical methods for identifying differentially expressed genes in multiple-slide experiments



seem to have received relatively little attention. Instead of considering a testing problem,
some investigators have turned to exploratory cluster analysis tools (Alizadeh et al. [3], Ross
et al. [26], Tamayo et al. [35]). In this setting, cluster analysis methods, such as hierarchical
clustering or self-organizing maps, are used to group genes with correlated expression pro-
files across experimental conditions. Groups of differentially expressed genes are identified
by visual inspection of the resulting clusters, using, for example, red and green images to
display the log intensity ratios for each gene in each of the slides (Eisen et al. [11]). Such
methods are unsupervised in that they do not use the class of the samples hybridized to the
slides (e.g. mRNA from treatment or control mice). Another approach is to identify single
differentially expressed genes by computing for each gene the correlation of its expression
profile with a reference expression profile, such as a vector of indicators for class membership
(in the case of two classes, this correlation coefficient is a type of t-statistic). Genes are then
ranked according to their correlation with the reference profile and permutation methods are
used to determine cut-offs for controlling the number of false positives (Galitski et al. [13]
and Golub et al. [14]). In a recent paper, Kerr et al. [20] stress the importance of replication
in order to assess the variability of estimates of change and suggest applying techniques from
the analysis of variance (ANOVA). They assume a fixed effect linear model for the logged
intensities, with terms accounting for dye, slide, treatment, and gene main effects, as well as
a few interactions between these effects. Differentially expressed genes are identified based
on contrasts for the (treatment x gene) interactions.

In this paper, we focus on the identification of single differentially expressed genes in repli-
cated ¢cDNA microarray experiments. After a brief presentation of our image processing
method, we describe a within-slide normalization method which handles spatial and inten-
sity dependent effects on the measured expression levels. Next, given suitably normalized
data, our basic approach is to consider a univariate testing problem for each gene and correct
for multiple testing using adjusted p-values. More specifically, for the lipid metabolism study
described above, the genes of interest are found by testing for each gene the null hypothe-
sis of equal mean expression levels in the treatment and control groups. This involves the
calculation of a t-statistic for each gene. Various data displays are suggested for the visual
identification of genes with altered expression and of important features of these genes. A
more precise assessment of the evidence against the null hypothesis of constant expression
can be obtained by calculating p-values. However, with a typical microarray dataset com-
prising thousands of genes, an immediate concern is multiple testing. Adjusted p-values
are used to control the family-wise Type I Error rate [18, 32, 33, 37]. Because the joint
null distribution of the test statistics is unknown, the adjusted p-values are estimated by
permutation (Westfall and Young [37]).

The paper is organized as follows. Section 2 contains a brief introduction to the biology
and technology of cDNA microarrays. The datasets are presented in Section 3 along with
a summary of our image processing methods for segmentation and background correction.
Section 4 describes our proposed normalization method, which allows print-tip and intensity
dependent effects. The test statistics, the calculation of adjusted p-values and the data
displays are also discussed in Section 4. In Section 5, we present the results of the study



and compare the genes identified using replicated slides to those identified by single-slide
methods. Finally, Section 6 discusses our findings and outlines open questions.

2 Background on cDNA microarrays

The ever increasing rate at which genomes are being sequenced has opened a new area of
genome research, functional genomics, which is concerned with assigning biological function
to DNA sequences. With the complete DNA sequences of many genomes already known (e.g.
the yeast S. cerevisae, the round worm C. elegans, the fruit fly D. melanogaster, and many
bacteria) and the recent release of the first draft of the human genome, an essential and
formidable task is to define the role of each gene and understand how the genome functions
as a whole. Innovative approaches, such as the cDNA and oligonucleotide microarray tech-
nologies, have been developed to exploit DNA sequence data and yield information about
gene expression levels for entire genomes. Next, we briefly review basic genetic notions useful
for understanding microarray experiments.

A gene consists of a segment of DNA which codes for a particular protein, the ultimate
expression of the genetic information. A deozyribonucleic acid or DNA molecule is a double-
stranded polymer composed of four basic molecular units called nucleotides. Each nucleotide
comprises a phosphate group, a deoxyribose sugar, and one of four nitrogen bases. The four
different bases found in DNA are adenine (A), guanine (G), cytosine (C), and thymine
(T). The two chains are held together by hydrogen bonds between nitrogen bases, with
base-pairing occurring according to the following rule: G pairs with C, and A pairs with
T. While a DNA molecule is built from a four-letter alphabet, proteins are sequences of
twenty different types of amino acids. The expression of the genetic information stored in
the DNA molecule occurs in two stages: (i) transcription, during which DNA is transcribed
into messenger ribonucleic acid or mRNA, a single-stranded complementary copy of the base
sequence in the DNA molecule, with the base uracil (U) replacing thymine; (ii) translation,
during which mRNA is translated to produce a protein. The correspondence between DNA’s
four-letter alphabet and a protein’s twenty-letter alphabet is specified by the genetic code,
which relates nucleotide triplets to amino acids. We refer the reader to Gonick and Wheelis
[15] and Griffiths et al. [16] for an introduction to the relevant biology.

Different properties of gene expression can be studied using microarrays, such as expres-
sion at the transcription or translation level, and subcellular localization of gene products.
To date, attention has focussed primarily on expression at the transcription stage, i.e., on
mRNA levels. Although the regulation of protein synthesis in a cell is by no means con-
trolled solely by mRNA levels, mRNA levels sensitively reflect the type and state of the cell.
Microarrays derive their power and universality from a key property of DNA molecules de-
scribed above: complementary base-pairing. The term hybridization refers to the annealing
of nucleic acid strands from different sources according to the base-pairing rules. To utilize
the hybridization property of DNA, complementary DNA or cDNA is obtained from mRNA
by reverse transcription. There are different types of microarray systems, including cDNA
microarrays [8, 9, 11, 30, 31] and high-density oligonucleotide arrays (proprietary Affymetrix
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chips) [22]; the description below focuses on the former.

c¢DNA microarrays consist of thousands of individual DNA sequences printed in a high den-
sity array on a glass microscope slide using a robotic arrayer. The relative abundance of
these spotted DNA sequences in two DNA or RNA samples may be assessed by monitoring
the differential hybridization of the two samples to the sequences on the array. For mRNA
samples, the two samples or targets are reverse-transcribed into cDNA | labeled using differ-
ent fluorescent dyes (e.g. a red-fluorescent dye Cyb and a green-fluorescent dye Cy3), then
mixed and hybridized with the arrayed DNA sequences or probes (following the definition
of probe and target adopted in the January 1999 supplement to Nature Genetics [1]). Af-
ter this competitive hybridization, the slides are imaged using a scanner and fluorescence
measurements are made separately for each dye at each spot on the array. The ratio of the
fluorescence intensity for each spot is indicative of the relative abundance of the correspond-
ing DNA sequence in the two nucleic acid samples. The diagram in Figure 1 describes the
main steps in a cDNA microarray experiment.

Aside from the enormous scientific potential of microarrays to help in understanding gene
regulation and interactions, microarrays have very important applications in pharmaceutical
and clinical research. By comparing gene expression in normal and disease cells, microarrays
may be used to identify disease genes and targets for therapeutic drugs. The supplement to
Nature Genetics [1] and the books DNA Microarrays : A Practical Approach [28] and Mi-
croarray Biochip Technology [29] provide general overviews of microarray technologies and
of different areas of application of microarrays.

*+* Place Figure 1 about here ***

3 Data

3.1 Apo AI and SR-BI experiments

The goal of the study is to identify genes with altered expression in the livers of two lines
of mice with very low HDL cholesterol levels compared to inbred control mice (Callow et al.
[6]). The two mouse models are the apolipoprotein Al (apo AI) knock-out and the scavenger
receptor BI (SR-BI) transgenic mice. Apo Al and SR-BI are two genes known to play pivotal
roles in HDL metabolism.

In the first experiment, the treatment group consists of 8 mice with the apo Al gene knocked-
out and the control group consists of 8 “normal” C57Bl1/6 mice. For each of these 16 mice,
target cDNA is obtained from mRNA by reverse transcription and labeled using a red-
fluorescent dye (Cyb). The reference sample (green-fluorescent dye Cy3) used in all hy-
bridizations was prepared by pooling cDNA from the 8 control mice. The design for the
second experiment is similar, but with 8 SR-BI transgenic mice comprising the treatment
group and 8 “normal” FVB mice comprising the control group.



In each experiment, target cDNA is hybridized to microarrays containing 5,548 cDNA probes,
including 200 related to lipid metabolism. Note that we call the spotted cDNA sequences
“genes”, whether they are actual genes, ESTs (expressed sequence tags), or DNA sequences
from other sources.

3.2 Image processing

The red and green fluorescence intensities (R, G) are already highly processed data. In a
c¢DNA microarray experiment, the hybridized arrays are imaged using a scanner (e.g. laser
scanning confocal microscope) and the output stored as 16-bit image files, one for each dye.
We view these image files as “raw” data. Image processing is required to extract measures
of transcript abundance for each gene spotted on the array from the laser scan images.

We have developed a new method for extracting information from microarray images. It is
implemented in the software Spot which was written in collaboration with CSIRO Mathe-
matical and Information Sciences (Buckley [5], Yang et al. [38]). The image processing can
be divided into three steps which are briefly described next.

1. Automatic address: In order to extract spot intensities from microarray images it
is necessary to accurately identify the location of each of the spots. This process is
called addressing and it assigns coordinates to each of the spots. We have developed
an automatic gridding procedure for addressing the spots; this procedure also includes
registration (alignment) between the two channels when necessary.

2. Segmentation: Segmentation allows the classification of pixels as signal (i.e., as cor-
responding to a spot of interest) or background. Our software implements an adaptive
segmentation algorithm known as seeded-region-growing [2]. Seeded-region-growing
makes no assumptions regarding the size or the shape of the spots, and segmentation
is performed using the total pixel intensities for both channels. Other commonly used
segmentation methods include fixed circle (e.g. ScanAlyze software [10]) and adaptive
circle (e.g. commercial image processing software GenePix for the Axon scanner).

3. Intensity extraction: After detecting the location, size, and shape of each spot,
we calculate signal (spot) intensities, background intensities, and quality measures for
each dye at each spot on the array.

e Signal: For each dye, the signal for any given spot is measured by the sum of the
pixel intensities within the spot. This sum represents the total amount of cDNA
hybridized to the spotted DNA sequence.

e Background: The motivation for background correction is that a spot’s mea-
sured fluorescence intensity (in each of the two channels) includes a contribution
which is not specifically due to the hybridization of the target to the probe (e.g.
fluorescence of the background due to other chemicals and the glass). Com-
mon approaches to background calculation include taking the median of the pixel



intensities in a region surrounding the spot (e.g. ScanAlyze) and taking the me-
dian of the pixel intensities in the local valleys in between spots (e.g. GenePix).
The Spot software implements a non-linear filter known as morphological opening
which provides an estimate of the background drift.

e Quality measures: For each spot, our software computes quality measures such
as spot size, shape and relative signal to background intensity. We have yet to
make use of these measures in our analyses.

A detailed discussion of our choice of image processing methods and a comparison to popular
alternatives is presented in Yang et al. [38]. Thus, starting with two 16-bit images, the image
processing steps described above produce two main quantities for each spot on the array: R
and G, which are measures of the fluorescence intensities (transcript abundance) for the red
and green labeled mRNA samples, respectively.

4 Methods

4.1 Single-slide data displays

Single-slide expression data are typically displayed by plotting the log intensity log, R in the
red channel vs. the log intensity log, G in the green channel (Newton et al. [23], Sapir and
Churchill [27], and papers in Schena [29]) !. We find that such plots give an unrealistic sense
of concordance and make interesting features of the data harder to see. We prefer to plot
the log intensity ratio M = log, R/G wvs. the mean log intensity A = log, v'RG (a similar
display was used in Roberts et al. [25]). An M wvs. A plot amounts to a 45° counterclock-
wise rotation of the (log, G, log, R)-coordinate system, followed by scaling of the coordinates
(Figure 3). If M’ and A’ denote the rotated coordinates, then A = A’/v/2 and M = M'y/2.

An M wvs. A plot is thus another representation of the (R, G) data in terms of the log in-
tensity ratios M which are the quantities of interest to most investigators. We have found
M wvs. A plots to be more revealing than their log, R vs. log, G counterparts in terms of
identifying spot artifacts and detecting intensity dependent patterns in the log ratios. They
are also very useful for normalization as illustrated next.

*+* Place Figure 3 about here ***

4.2 Normalization

The purpose of normalization is to identify and remove systematic sources of variation (e.g.
different labeling efficiencies and scanning properties of the dyes, print-tip or spatial effects)

Tt is preferable to work with logged intensities rather than absolute intensities for a number of reasons
including the facts that: (i) the variation of logged intensities and ratios of intensities is less dependent on
absolute magnitude; (ii) normalization is additive for logged intensities; (iii) taking logs evens out highly
skew distributions; and (iv) taking logs gives a more realistic sense of variation. Logarithms base 2 are used
instead of natural or decimal logarithms as intensities are typically integers between 0 and 2'6 — 1.



and allow between-slide comparisons. Imbalance in the red and green intensities can mani-
fest itself when two identical mRNA samples are labeled with different dyes and hybridized
to the same slide. In such a situation, the red intensities tend to be lower than the green
intensities and the magnitude of the difference may depend on overall intensity A. Reasons
for the imbalance in the two channels include properties of the dyes themselves (e.g. differ-
ent labeling efficiencies and scanning properties) and experimental variability resulting, for
example, from separate reverse transcription and labeling of the two samples.

The plots in Figures 4 and 9 of M = log, R/G vs. A = log, V'RG clearly show the dependence
of the log ratio M on overall spot intensity A. This suggests that an intensity or A dependent
normalization method may be preferable to global methods such as normalization by the
mean or median of M values. Furthermore, for the apo Al experiment, the image in Figure
2 and the within print-tip group lowess curves in Figure 4 suggest the existence of spatial
or print-tip effects on the fluorescence intensities 2. In the image, the bottom 4 grids tend
to have high red signal, and this is reflected in the M wvs. A plot, where the corresponding
within print-tip group lowess curves clearly stand out from the remaining 12 curves. We
thus perform a within print-tip group intensity dependent normalization using the scatter-
plot smoother implemented in the lowess () function from the Splus software (Venables and
Ripley [36]):

logy, R/G — logy, R/G — ¢;j(A) = log, kj(A)R/G,

where ¢;(A) is the lowess () fit to the M wvs. A plot for spots printed using the jth print-tip
(i.e., data from the jth grid only). In the apo AI and SR-BI experiments j = 1,...,16.
The lowess () function is a scatter-plot smoother which uses robust locally linear fits. We
typically use f = 20 to 40% for the parameter specifying the fraction of the data used for
smoothing at each point. For the experiments considered here, a small proportion of the
genes are expected to vary in expression between the red and green labeled mRNA samples.
Thus, normalization is performed using all 5,548 genes. In other circumstances, a number
of “housekeeping” genes may be spotted on the slide and used for normalization purposes
(Yang et al. [39]). Normalization is a challenging question due to the possibly large number
of sources of systematic variation and the choice of a suitable gene set.

ik Place Figures 4 and 9 about here ***

4.3 Test statistics

The gene expression data considered here can be summarized by a matrix X of log intensity
ratios log, R/G, with k rows corresponding to the genes being studied and n = ny + no

2cDNA microarrays are spotted using different printing set-ups, such as 4 x 4 or 4 x 8 print-tip clusters.
The arrays are divided into grids and the spots on a given grid are printed using the same print-tip or
pin. We say that spots printed using the same print-tip are part of the same print-tip group. Systematic
differences may exist between the print-tips such as differences in length or in the opening of the tip. There
may also be spatial effects due, for example, to the placement of the cover-slip. Note that it may not be
possible to separate print-tip effects from spatial effects.
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columns corresponding to the n; control hybridizations (C57B1/6 or FVB) and ns treatment
hybridizations (apo Al knock-out or SR-BI transgenic). For ease of notation, let the first n,
columns refer to the n; control hybridizations and let the last ny columns refer to the treat-
ment hybridizations. In the two experiments considered here n; = ny = 8 and k = 5, 548.

Let H; denote the null hypothesis of equal treatment and control mean expression levels
for gene j, j = 1,...,k (in the remaining analysis we consider expression levels relative to
the green-labeled reference mRNA, i.e., the expression level of a gene is log, R/G). Here,
we consider only two-sided alternative hypotheses; one-sided alternatives can be handled in
a similar manner. For gene j, the t-statistic comparing gene expression in the control and
treatment groups is

.f'Qj —.f'lj
b= 2L
52, 52,

215 + 725

ni ng

where Z;; and Zy; denote the average expression level of gene j in the n; control and ns
treatment hybridizations, respectively. Similarly, s%j and sgj denote the sample variances of
gene j’s expression level in the control and treatment hybridizations, respectively. The ran-
dom variable and realization of the t-statistic for gene j are denoted by 7 and ¢;, respectively.

Large absolute t-statistics suggest that the corresponding genes have different expression
levels in the control and treatment groups. Note that replication is essential for such an
analysis as it is required for assessing the variability of the gene expression levels in the
treatment and control groups. Also note that we are not assuming that the t-statistics
actually follow a t-distribution, rather we use permutation to estimate their distribution
(see Section 4.5.2).

4.4 Data displays for test statistics
4.4.1 Quantile-Quantile plots

Quantile-Quantile plots (Q-Q plots) are a useful display of the test statistics for the thousands
of genes being studied in a typical microarray experiment. In a normal Q-Q plot, the
quantiles of the data are plotted against the quantiles of a standard normal distribution. In
general, Q-Q plots are used to assess whether data have a particular distribution or whether
two datasets have the same distribution. If the distributions are the same, then the plot
will be approximately a straight line. A plot with a ”U” shape means that one distribution
is skewed relative to the other. An ”S” shape implies that one distribution has heavier
tails than the other. In our application, we are not so much interested in testing whether
the t-statistics follow a particular distribution, but in using the Q-Q plot as a visual aid
for identifying genes with “unusual” t-statistics. Q-Q plots informally correct for the large
number of comparisons and the points which deviate markedly from an otherwise linear
relationship are likely to correspond to those genes whose expression levels differ between
the control and treatment groups. For the two datasets considered here, fewer than 20
genes have t-statistics which deviate markedly from a line going through the first and third
quartiles of a normal Q-Q plot.
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4.4.2 Plots vs. absolute expression levels

Important features of the genes with large absolute t-statistics can be identified by examining
plots of the t-statistics, their numerators and denominators, against absolute expression

levels. The absolute expression level for a particular gene is measured by A, the average of
A =log, v RG over the 16 hybridizations for the apo Al or SR-BI experiments.

4.5 Adjusted p-values
4.5.1 Definitions

The normal Q-Q plots for the t-statistics are useful visual aids for identifying genes with al-
tered expression in the treatment mice compared to the controls. A more precise assessment
of the evidence against the null hypothesis may be obtained by calculating p-values for each
gene. However, with a typical microarray dataset comprising thousands of genes, an imme-
diate concern is multiple testing [18, 32, 33, 37]. When many hypotheses are tested, as is the
case here, the probability that at least one Type I Error is committed can increase sharply
with the number of hypotheses. Numerous methods have been suggested for controlling the
family-wise Type I Error rate (FWE), i.e., the probability of at least one error in the family
(see Shaffer [33] for a review of such methods). Some procedures provide strong control of
the FWE, i.e., control this error rate for any combination of true and false hypotheses, while
others provide only weak control, i.e., control the FWE only when all null hypotheses in the
family are true. The procedures described below provide strong control of the error rate.

To account for multiple hypothesis testing, one may calculate adjusted p-values (Shaffer
[33] and Westfall and Young [37]). According to Shaffer [33], given any test procedure, the
adjusted p-value corresponding to the test of a single hypothesis H; can be defined as the
level of the entire test procedure at which H; would just be rejected, given the values of all
test statistics involved. There are several approaches for computing adjusted p-values and
these vary in the severity of the correction for multiplicity. Let p; and p; denote respec-
tively the unadjusted and adjusted p-values for hypothesis H; (gene j), j =1,...,k, and let
P < Pr, < ... < p,, denote the ordered unadjusted p-values. Hypothesis H; is rejected at
FWE « if p; < a.

The Bonferroni method is perhaps the best known method for dealing with multiple testing.
The Bonferroni single-step adjusted p-values are given by p; = min(kp;, 1). Closely related
to Bonferroni’s method is the Siddk method which is exact for protecting the FWE when the
unadjusted p-values are independently distributed as U[0, 1]. The Siddk single-step adjusted
p-values are given by p; = 1 — (1 — p;)*. These methods are called single-step because they
perform equivalent multiplicity adjustments for all hypotheses, regardless of the ordering
of the observed p-values. While single-step adjusted p-values are simple to calculate, they
tend to be very conservative. Improvement in power, while preserving strong control of the
FWE, may be achieved by considering step-down methods which order p-values and make
successively smaller adjustments. Holm’s step-down Bonferroni adjusted p-values are given
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Py = kpy, (1)
pr, = maX(ﬁ,«]._l, (k—7+ 1)pr],) for 2 < j <k,

with p-values greater than 1 set to 1. Holm’s procedure is less conservative than the stan-
dard Bonferroni procedure which would multiply the p-values by k at each step. However,
neither Holm’s method nor the single-step methods presented above take into account the
dependence structure between the variables. In a microarray experiment, groups of genes
tend to have highly correlated expression levels for reasons such as co-regulation. A more
general and less conservative definition of adjusted p-values, which takes into account the de-
pendence structure between variables, is proposed by Westfall and Young [37]. The Westfall
and Young step-down adjusted p-values are defined by

5 — in P< H 2
Pry pr(le{gl,{r.l,rk} ) < p,, | Ho) (2)
b, = max(ﬁ,«j_l, pr(le{g?r}rk P <p, | HO)) for 2<j5 <k,

where Hy denotes the intersection of all null hypotheses and P, the random variable for the
unadjusted p-value of the [th hypothesis. Note that computing the quantities in (2) under
the assumption that P, ~ U[0, 1] and using the upper bound provided by Boole’s inequality
yields (1).

4.5.2 Estimation of adjusted p-values by permutation

In practice, the joint null distribution of the t-statistics 71, ..., T} is unknown, it can however
be estimated by permuting the columns of the data matrix X. Permuting entire columns
of this matrix creates a situation in which membership to the control or treatment group
is independent of gene expression, while attempting to preserve the dependence structure
between the genes. The permutation distribution of the test statistics 73, 7 = 1,...,k, is
obtained by the following algorithm.

Basic permutation algorithm. For the bth iteration, b=1,... ) B:

1. Permute the n columns of the data matrix X. The first (last) n; (ng) columns now
refer to the “fake” control (treatment) group.

2. For each gene, compute t-statistics as above: t{”,... ¢\
When computationally feasible, the above steps are applied to each of the (;1) possible
treatment /control allocations. For the knock-out and transgenic mouse datasets, there are
(186) = 12, 870 such permutations. Otherwise, these steps are repeated for thousands of ran-
dom permutations of the columns of X. The permutation distribution of the t-statistic for

gene j is given by the empirical distribution of ¢, ¢5,... .
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Unadjusted permutation p-values. For two-sided alternative hypotheses, permutation
p-values for the t-statistics are

S 108 = 1)
pj - B )
where j = 1,...,k and I(-) is the indicator function equaling 1 if the condition in parentheses
is true, and 0 otherwise.

Adjusted p-values for the methods of Bonferroni, Siddk, and Holm can be estimated by re-
placing p; by p;. However, for the adjusted p-values of Westfall and Young, the joint null
distribution of P, ..., P, needs to be estimated. When the unadjusted p-values themselves
are unknown and estimated using resampling methods, additional resampling for estimating
adjusted p-values can be computationally intractable. Rather than obtaining unadjusted
p-values by permutation, Westfall and Young suggest approximating these p-values using
asymptotic theory. Adjusted p-values can then be estimated by permutation (p. 114 in West-
fall and Young [37]). In our setting, all the hypotheses are tested by t-statistics. In principle,
the t-statistics for individual genes could have a different null distribution. However, asymp-
totically, these statistics have the same null distribution and the p-values should be monotone
in the observed t-statistics across genes. We follow Algorithm 4.1 in Westfall and Young [37]

----------

Permutation algorithm for Westfall and Young step-down adjusted p-values
For the bth permutation

1. Permute the n columns of the data matrix X. The first (last) ny (n2) columns now
refer to the “fake” control (treatment) group.

(b)

2. For each gene, compute t-statistics: ¢1”, ...,y .
3. Next, compute
W=
uf’ = max(uéﬁ)rl, ]tﬁ?]) for 1 <j<k-—1,

where r; are such that |t | > |t,,| > ... > |t,, | for the original data.

The above steps are repeated B times and the adjusted p-values are estimated by

v (i )
pr]. - B )
with the monotonicity constraints enforced by setting

R ﬁfj — max(ﬁfj,ﬁfj_l) for 2 < j <k.
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5 Results

5.1 Normalization

Figures 4 and 9 display M wvs. A plots for individual slides from the apo AI and SR-BI ex-
periments. These plots illustrate the non-linear dependence of the log ratio M on the overall
intensity A; the dependence is especially strong in the SR-BI experiment. This suggests that
an intensity dependent normalization method may be preferable to a global one. Also, for
the apo AI hybridizations, 4 within print-tip group lowess curves clearly stand out from the
remaining 12 curves, suggesting strong print-tip or spatial effects. The 4 curves correspond
to the last row of pins in the 4 x 4 print-tip cluster (pins 13, 14, 15, and 16). This pattern
is visible in the images, where the bottom 4 grids tend to have high red signal (Figure 2).
In these two experiments, relatively few genes are expected to vary in expression between
the treatment and control mice. We thus normalize the data using lowess fits to the within
print-tip group M ws. A plots.

*+* Place Figure 2 about here ***

5.2 Identification of differentially expressed genes with replicated
experiments

Q-Q plots. For the apo Al experiment, the normal Q-Q plot in Figure 5 indicates that 8
genes have t-statistics that deviate markedly from an otherwise linear relationship. All 8
genes have negative t-statistics, suggesting down-regulation in the knock-out mice compared
to the controls. For the SR-BI experiment (Figure 10), the deviations from linearity are
more subtle and gradual. There are about a dozen genes with “unusual” t-statistics; these
seem like possible candidates for differential expression (both up and down-regulation). In
order to determine whether the extreme t-statistics do indeed reflect significant differences
between the control and transgenic or knock-out mice we turn to adjusted p-values.

*+* Place Figures 5 and 10 about here ***

Adjusted p-values. Figures 6 and 11 display plots of the unadjusted and adjusted p-values
for the 50 genes with the largest absolute t-statistics. For both experiments, unadjusted
p-values are very close to zero while adjusted p-values can be quite large. For the apo Al
experiment, 8 genes have very small (p* < 0.01) adjusted p-values and the remaining genes
have markedly higher p-values (p* > 0.60). In the SR-B1 experiment, 13 genes have adjusted
p-values lower than 5% and the increase in p-values is much more gradual than in the apo
A1 knock-out experiment. Thus, adjusted p-values sensitively reflect the pattern seen in the
Q-Q plots, while unadjusted p-values are as expected much too small and lack the sensitivity
of adjusted p-values.

*+* Place Figures 6 and 11 about here ***
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Features of differentially expressed genes. Important features of the genes with large abso-
lute t-statistics can be identified by examining plots of the numerator and denominator of
the t-statistics against absolute expression levels (Figures 7 and 12, and Tables 1 and 2).
For both experiments, the genes with large absolute t-statistics tended to have high total
expression levels, as measured by A. They typically had large differences in their relative
expression levels (M) between the two groups (numerator) as well as low standard errors
(SEs in denominator).

*** Place Figures 7 and 12 and Tables 1 and 2 about here ***

Identity of differentially expressed genes. Many of the genes with large absolute t-statistics
were re-sequenced because of the known possibility of mixed populations of clones, chimeric
clones, or errors in plate arraying of the bacterial clones. This resulted in several of the genes
in Tables 1 and 2 appearing multiple times after re-sequencing.

For the apo AI knock-out experiment, apo Al appeared 3 times and apo CIII, a gene physi-
cally very close to apo Al and also associated with lipoprotein metabolism, appeared twice.
Sterol C5 desaturase, an enzyme involved in the later stages of cholesterol synthesis, also
appeared twice.

As expected, SR-B1 was the most significantly altered gene in the SR-B1 transgenic ex-
periment. Glutathione s-transferase and Cytochrome p450 2B10 both appeared twice along
with the hemoglobin alpha and beta chains. Although there is no obvious link between the
identified genes and cholesterol metabolism, the known functions of these genes may suggest
altered oxidative and steroid metabolism associated with over-expression of SR-B1. SR-B1
is believed to not only facilitate the uptake of cholesterol by cells but also other biological
molecules such as phospholipids. Several other genes were identified but have not yet been
confirmed by re-sequencing.

In an alternative method of analysis, expression levels of some of the genes were quantitated
by RT-PCR (real-time quantitative polymerase chain reaction). In this method, cDNA was
first synthesized from the mRNA by random priming and gene specific DNA primers were
then used to amplify DNA specific for the gene of interest. Production of DNA was quanti-
tated during the cycles of amplification with SYBR green dye in a 7700 sequence detector
(Perkin Elmer). This alternative method of quantitation confirmed changes observed by
microarray analysis (Callow et al. [6]).

Note that in Callow et al. [6], the gene expression data were analyzed using different image
processing and normalization methods than presented here. In Callow et al., the scan images
were processed using the ScanAlyze [10] software and the data were normalized within-slide
by subtracting the median of all log intensity ratios from individual log intensity ratios. For
the apo Al experiment, the same 8 genes clearly stood out from the rest, but had slightly
larger adjusted p-values than here. The gap between the 8 genes and the other genes was also
smaller. For the SR-BI experiment, our new image processing and normalization methods
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produced a longer list of genes with small adjusted p-values; we have not yet confirmed the
identity of all the new genes.

5.3 Comparison with single-slide methods

We have applied the Chen et al. [7], Newton et al. [23], and Sapir and Churchill [27] 3
single-slide methods to individual slides from the apo AI and SR-BI experiments. These
methods are used to identify genes with differential expression in mRNA samples from indi-
vidual treatment mice compared to pooled mRNA samples from control mice. Using an M
vs. A representation, Figures 8 and 13 show the contours for the posterior odds of change
in the Newton et al. method, the upper and lower limits of the Chen et al. 95% and 99%
“confidence intervals” for M, and the contours for the Sapir and Churchill 90%, 95%, and
99% posterior probabilities of differential expression. The regions between the contours for
the Newton et al. method are wider for low and high intensities A; this is a property of the
Gamma distribution which is used in the hierarchical model.

For the 8th knock-out mouse in the apo Al experiment (Figure 8), the Chen et al. 95%
and 99% rules both pick out the 8 genes identified using replicated data (green points).
However, it also picks out a large number of false positives, especially in the positive M
region. The Newton et al. rule with 1:1 posterior odds identifies all but one of the 8 genes
and selects a large number of false positives. With posterior odds of 100:1, the method now
only identifies 4 out of the 8 genes, with still a fairly large number of false positives, espe-
cially in the positive M region. The Sapir and Churchill method is a lot more conservative
than the Chen et al. method and yields contours similar to the Newton et al. method. In
general, the genes identified as differentially expressed seem to vary more between methods
than within method for different significance thresholds (e.g. different posterior probability
cut-offs). Similar patterns were observed for the other slides (not shown) and for the SR-BI
experiment (Figure 13).

*+* Place Figures 8 and 13 about here ***

6 Discussion

In this paper, we have presented statistical methods for the identification of single differ-
entially expressed genes in replicated microarray experiments. Although it is not the main
focus of the paper, we have stressed the importance of issues such as imaging (e.g. effect
of laser power and gain), image processing (segmentation and background adjustment), and
normalization (Yang et al. [38, 39]). Each of these pre-processing steps can have a poten-
tially large impact on the (R, G) intensity pairs used in further analyses, such as hypothesis

3Note that we are not performing the orthogonal regression for the log transformed intensities (Part I
of the poster). The orthogonal residuals of Sapir and Churchill are essentially normalized log expression
ratios. We have simply implemented Part II of the poster and are applying the mixture model to our already
normalized log ratios.
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testing or clustering.

Our first recommendation is to examine single-slide data using M wvs. A plots. Such a rep-
resentation is useful for the identification of spot artifacts and specific features of the slide
(e.g. print-tip effects). The intensity or A dependent normalization method proposed here
deals with the intensity dependence also often observed in M ws. A plots for experiments
in which the same mRNA is labeled in both channels (data not shown). The usefulness of
a print-tip group normalization for the apo Al experiment is clearly illustrated by its im-
pact on the results from single-slide methods: without a print-tip dependent normalization,
the single-slide methods are essentially picking genes from only four of the print-tips and
are thus making a large number of false positives (Figure 4). “Global” methods such as
mean, median, or ANOVA normalization do not deal with these features. Recently, Sapir
and Churchill [27] have proposed a normalization method based on orthogonal linear regres-
sion of log intensities log, R vs. log, G (after a type of background correction of R and G).
This is an intensity dependent normalization, but unlike our lowess based normalization
method it only allows a linear relationship between the log intensities in the two channels.
We have worked with a number of datasets from different labs and most exhibit non-linear
relationships between log, R and log, G. We do not claim by any means to have identified
all important systematic sources of variation in a ¢cDNA microarray experiment. Rather,
we believe that different systematic features could arise in different types of experiments
and that these should be investigated carefully before proceeding to any inference. Until
systematic sources of variation are identified and properly accounted for, there can be no
question of the system being in statistical control and so no basis for a statistical model
to describe chance variation. With many different users of this technology and a variety
of experimental protocols, a substantial proportion of the variation is likely to remain sys-
tematic and possibly more important than random variation. The situation should improve
with a deeper understanding of how the data are acquired and processed. However, given
our current limited knowledge of the possible sources of systematic variation, normalization
remains a challenging question which cannot always be addressed in a simple generic manner
or by relying on unverified modeling assumptions.

For suitably normalized data, our proposed approach for the identification of single differ-
entially expressed genes is to consider a univariate testing problem for each gene and then
correct for multiple testing using adjusted p-values. In the lipid metabolism study described
above, we used a t-statistic to test the null hypothesis of equal mean expression levels in the
treatment and control groups. One could have also used a non-parametric rank statistic such
as the Wilcoxon rank sum statistic. Unlike single-slide methods, no specific parametric form
is assumed for the distribution of the (R, &) intensity pairs and a permutation procedure
is used to estimate the joint null distribution of the test statistics for each gene. We found
Q-Q plots and plots of different components of the test statistics against overall intensity
A particularly useful for the visual identification of genes with altered expression and of
important features of these genes. There was a good correspondence between the patterns
seen in the Q-Q plots and the adjusted p-values. In the SR-BI experiment, there was no
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clear discontinuity in the t-statistics or their corresponding p-values. For brevity, we chose
to list only the genes with adjusted p-values less than 5%. However, this cut-off is somewhat
arbitrary and biologists may find a higher FWE acceptable for their purposes.

A common criticism for procedures that control the FWE in the strong sense, such as the
Westfall and Young adjusted p-values, is that they are too conservative and that strong
control is not always needed. Recently, Benjamini and Hochberg [4] have proposed a less
conservative approach to multiple testing which calls for controlling the expected proportion
of falsely rejected hypotheses or false discovery rate (FDR). Control of the FDR implies
weak control of the FWE. Benjamini and Hochberg give a simple Bonferroni-type procedure
which controls the FDR for independent test statistics. This procedure is not applicable to
the gene expression data for which genes tend to be highly correlated.

A comparison of the genes identified with replicated slides and confirmed by RT-PCR to
those identified using single-slide methods highlights the importance of replication and a
careful study of systematic effects (Figures 8 and 13). Single-slide methods tend to produce
a large number of false positives and at the same time miss a few of the confirmed genes.
There is no easy way to tell which genes are differentially expressed on the basis of data
from a single microarray experiment. Recently proposed methods are based on assumed
parametric models (e.g. Gamma or Gaussian) for the (R, G) intensities and at this point,
we do not know enough about the systematic and random variation within a microarray
experiment to justify such strong assumptions. In addition, existing single-slide methods
do not as yet cope with replicated spots within slides or with between slide variation. The
claimed significance levels are thus dubious and it is not clear what progress has been made
over the early fold increase/decrease cut-off rules. For the two experiments presented here
“eye-balling” would have worked at least as well as any of the single-slide methods we exam-
ined. Most importantly, gene expression data may be too noisy for successful identification
without replication, no matter how good the rule.

The importance of replication was also stressed by Kerr et al. [20] who proposed a linear
model for the log intensities. However, such a “global” model tries to do too much in one step
and may lose some of the sensitivity of the experiment: only one main effect for normaliza-
tion (the dye main effect D; amounts to a normalization by the mean of log intensities across
genes and arrays), only one error term for all genes. Furthermore, interactions are included
or not included somewhat arbitrarily and the issue of multiple testing is not addressed. Our
approach can also be cast in an ANOVA setting: instead of having one “big” ANOVA for all
genes, we consider a “small” ANOVA for each gene, with only treatment and array effects for
already normalized data. The “big” and “small” ANOVAs produce the same contrast esti-
mates, but different SEs for these estimates. The relative merits of these two approaches for
the calculation of standard errors deserve further study. We are currently exploring the use
of smoothed variance estimators for situations in which only a few replicates are available.

These smoothed estimators represent intermediate ground between the “big” and “small”
ANOVA SEs.
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The design of the apo AI knock-out and SR-BI transgenic experiments has a number of
deficiencies. Firstly, the reference sample used in all 16 hybridizations (for treatment and
control mice) consists of a mix of mRNA from the 8 control mice. This creates an asymme-
try between the treatment and control groups, even in the absence of differential expression.
The use of a common reference sample for all hybridizations is favored by biologists in order
to compare gene expression across slides. In that case, it may have been better to use a more
general reference sample, not directly related to the mRNA samples being probed. Secondly,
the reference mRNA was always labeled with the green dye, and the treatment and control
mRNA with the red dye. It may be more efficient to have the treatment and control mRNA
hybridized to the same slide and reverse the dye assignment in different slides (dye swap
experiment). Clearly more research is needed on the design of microarray experiments; pre-
liminary work on this subject can be found in Kerr and Churchill [19].

A natural question arising with the design of this study is whether there is any need to make
use of comparisons involving mRNA from individual control mice and pooled control mRNA |
rather than simply comparing mRNA from individual treatment mice to pooled mRNA from
control mice. In an obvious sense, using 8 treatment mice and 8 control mice leads to a more
symmetric experimental design, and one which admits a permutation analysis, but is it nec-
essary? We can get a partial answer to this question by examining our two data sets, but
this time using only the data from the 8 experiments comparing treatment mouse mRNA
to pooled control mouse mRNA. By analogy with our initial analysis, we can compare the
mean relative expression levels to zero by computing one-sample rather than two-sample t-
statistics. We can then make normal Q-Q plots and plots of t-numerator, t-denominator and
t against overall intensity A, all as before. However, in such an analysis, we can no longer
determine the statistical significance of outlying points in the Q-Q plots by permutation.
It seems to us that we now have no choice but to assume the normality of the t-statistics,
or to carry out a more extensive bootstrapping approximation based on resampling the 8
treatment mice. We do not present the results of this here, but simply comment that for
the knock-out experiment, 7 out of the 8 genes identified with the 16 slides were among the
20 genes with the largest absolute one sample t-statistics. The remaining gene (apo CIII)
had a large t-numerator, but also a fairly large SE. The other 13 (out of 20) genes tended to
have fairly low standard error and A. For the SR-BI experiment, only 4 out of the 13 genes
identified with the 16 slides were among the 20 genes with the largest absolute one sample
t-statistics. We do not yet have a good explanation for this discrepancy, but hope to find
one, as the design issue is an important one.

The present paper focuses on only two types of mRNA samples (treatment and control),
but three or more types can be handled in a similar fashion with different test statistics.
For factorial experiments, in which several factors are being monitored (e.g. study of ploidy
and mating types in Galitski et al. [13]), one could perform an ANOVA for each gene. It
is implicit in our approach that there are only a modest number of differentially expressed
genes in the experiments we consider, rather than a continuum, and that it is reasonable to
attempt to identify them all. While it is perhaps too early to say in general when this ap-
proach makes sense, there are clearly situations such as tissue or organ comparisons in which
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it may not. When comparing gene expression between whole mouse brain and olfactory bulb
cells, for example, a large proportion of the genes seem to be differentially expressed, and it
seems futile to seek a clear cut-off between the genes which are and which are not. Also, note
that the question addressed in this paper, as well as in [7, 20, 23, 27], is the identification of
single differentially expressed genes only, i.e., we consider a large scale single gene screen in
which the null hypothesis of equal expression is tested for one gene at a time. We recognize
that having data on many arrays gives us the potential for learning about the joint behavior
of genes and the next step would be to seek clusters of genes which change in a coordinate
manner. However, statistical methods for doing so are still in their infancy; recent efforts
include the work of Hastie et al. [17] and Lazzeroni and Owen [21].

Finally, although the methods described in the present paper were illustrated on data from
a cDNA microarray study, some apply to oligonucleotide arrays (Affymetrix chips) as well.
The testing approach, diagnostic plots for the test statistics and adjusted p-value calculation
extend directly. For example, K. Vranizan and B. R. Conklin (private communication) have
used the method outlined in Section 4.5.2 above to adjust p-values for Affymetrix chip data
on 6,320 genes from an experiment involving 8 control mice and 9 mice expressing Rol at 8
weeks, see Redfern et al. [24] and the supplemental material at http://www.pnas.org for
fuller details. In this comparison, many hundreds of genes had small unadjusted p-values, but
just 55 had adjusted p-values less than 0.05, 26 involving a relative over-expression and 29 a
relative under-expression at the 8-week time point compared to the control. Our approach to
normalization is not directly applicable, however, our general discussion on the identification
of systematic sources of variation is equally relevant to this other type of technology.
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Table 1: Apo Al. Genes with adjusted p-value < 0.01. For each gene, the table lists the gene
name, the permutation adjusted p-value (p*), the two-sample t-statistic (¢), the numerator
(Num) and denominator (Den) of the t-statistic.

Gene D t Num Den
Apo Al 0.00 -22.85 -3.19 0.14
Sterol C5 desaturase 0.00 -13.14 -1.06 0.08
Apo Al 0.00 -12.21 -1.90 0.16
Apo CIII 0.00 -11.88 -1.02 0.09
Apo Al 0.00 -11.44 -3.09 0.27
EST AA080005 0.00 -9.11 -1.02 0.11
Apo CIII 0.00 -8.36 -1.04 0.12
Sterol C5 desaturase 0.01 -7.72 -1.04 0.13

Table 2: SR-BI. Genes with adjusted p-value < 0.05. For each gene, the table lists the gene
name, the permutation adjusted p-value (p*), the two-sample t-statistic (¢), the numerator
(Num) and denominator (Den) of the t-statistic.

Gene p* t Num Den
SR-BI 0.00 13.70 3.05 0.22
SR-BI 0.00 12.13 3.30 0.27
Glutathione s-transferase 0.00 9.66 1.25 0.13
Un-identified 0.00 9.46 1.22 0.13
Glutathione s-transferase 0.00 8.79 1.11 0.13
Un-confirmed 0.02 6.97 0.60 0.09
Un-confirmed 0.02 696 0.13 0.02

Cytochrome P450 2B10  0.03 -6.90 -0.74 0.11
Hemoglobin alpha chain  0.03 6.85 0.74 0.11
Cytochrome P450 2B10  0.03 -6.83 -1.46 0.21
Un-confirmed 0.03 6.80 0.50 0.07
Un-confirmed 0.03 -6.77 -0.32 0.05
Hemoglobin beta chain 0.04 6.69 0.55 0.08
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Figure 1: ¢cDNA microarray experiment for apo Al knock-out mice. For each apo Al knock-
out mouse, target cDNA is obtained from liver mRNA by reverse transcription and labeled
using a red-fluorescent dye (Cyb5). The reference sample (green-fluorescent dye Cy3) used in
all hybridizations is prepared by pooling ¢cDNA from the 8 C57B1/6 control mice. The two
target samples are mixed and hybridized to a microarray containing 5,548 cDNA probes. Fol-
lowing this competitive hybridization, the slides are imaged using a scanner and fluorescence
measurements are made separately for each dye at each spot on the array.
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Figure 2: Apo Al. RGB image for visualizing the results from the microarray experiment for
knock-out mouse #8. For display purposes, the two 16-bit TIFF images (scan output from
the Cy3 and Cyb channels) were compressed into 8-bit images using a square root transfor-
mation. This transformation is required in order to display the fluorescence intensities for
both wavelengths using a 24-bit composite RGB overlay image. In this RGB image, blue
values (B) are set to zero, red values (R) are used for the Cy5 intensities, and green values
(G) are used for the Cy3 intensities. Bright green spots represent genes under-expressed
in the knock-out mouse, bright red spots represent genes over-expressed in the knock-out
mouse, and yellow spots represent genes with similar expression in the knock-out mouse and
the reference sample. The coordinates of the three apo Al clones are (2,2,8,7), (4,1,8,6), and
(3,3,8,5), where, for example, (2,2,8,7) is the spot in row 8 and column 7 of the spot matrix
which is in row 2 and column 2 of the grid matrix.
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Figure 3: Apo Al log, R vs. log, G plot and M ws. A plot for gene expression data from
knock-out mouse 8. The log, R = log, G and M = 0 lines are drawn for reference.
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Figure 4: Apo AI. M ws. A plot for print-tip group normalization: lowess lines (f = 20%)
for each of the 16 print-tips (data from knock-out mouse 8). The curve labeled by “g”
corresponds to the lowess fit to the entire dataset.
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Figure 5: Apo Al. Histogram and Q-Q plot for two-sample t-statistics. The points corre-
sponding to genes with adjusted p-value less than 0.01 are colored in green.

30



o [
Unadjusted
© Adjusted
S
.
a9
- S
=
.
o
)
()
=
g < |
A o
N
o
o © 6 0606 0606 0 3 060606 0606 0606060 0 060 06 000 060 0 00 00 000 0 ° 0 0 o0 ° 0 00 0 0 o o o
o
I I I I I I
0 10 20 30 40 50

Index, j

Figure 6: Apo Al. Adjusted and unadjusted p-values for the 50 genes with the largest
absolute t-statistics.

31



tvs. average A t denominator vs. average A

n
o 9]
g 3
o 3 °
N
h o
o
10 12 14 10 12 14
average A average A
[t numerator| vs. average A t denominator vs. |t numerator|
[=)
= @ B
= <
g g s
@ [To) £
E d 2«
] g °
= T
© o
10 12 14 0.0 0.5 1.0 15 2.0 25 3.0
average A |t numerator|

Figure 7: Apo Al Plots of t-statistics, numerator, and denominator, against overall intensity
A. The points corresponding to genes with adjusted p-value less than 0.01 are colored in
green.
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Figure 8: Apo Al Single-slide methods: For the M wvs. A representation, contours for the
methods of Newton et al. (orange, odds of change of 1:1, 10:1, and 100:1), Chen et al.
(purple, 95% and 99% “confidence”), and Sapir and Churchill (cyan, 90%, 95%, and 99%
posterior probability of differential expression). The points corresponding to genes with
adjusted p-value less than 0.01 (based on data from 16 slides) are colored in green. The data
are from knock-out mouse 8.
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Figure 9: SR-BI. M wvs. A plot for print-tip group normalization: lowess lines (f = 20%)
for each of the 16 print-tips (data from transgenic mouse 8). The curve labeled by “g”
corresponds to the lowess fit to the entire dataset.

34



100 200 300 400

0

lllIIIIII|""‘|||||||““IIIIII.II--- — -
0 5

t

-5 10

10

-4 -2 0 2 4

Quantiles of standard normal

Figure 10: SR-BI. Histogram and Q-Q plot for two-sample t-statistics. The points cor-
responding to genes with adjusted p-value less than 0.05 are colored in green (negative
t-statistic) and red (positive t-statistic).
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Figure 11: SR-BI. Adjusted and unadjusted p-values for the 50 genes with the largest abso-
lute t-statistics.
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Figure 12: SR-BI. Plots of t-statistics, numerator, and denominator, against overall intensity
A. The points corresponding to genes with adjusted p-value less than 0.05 are colored in
green (negative t-statistic) and red (positive t-statistic).
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Figure 13: SR-BI. Single-slide methods: For the M ws. A representation, contours for the
methods of Newton et al. (orange, odds of change of 1:1, 10:1, and 100:1), Chen et al.
(purple, 95% and 99% “confidence”), and Sapir and Churchill (cyan, 90%, 95%, and 99%
posterior probability of differential expression). The points corresponding to genes with
adjusted p-value less than 0.05 (based on data from 16 slides) are colored in green (negative
t-statistic) and red (positive t-statistic). The data are from transgenic mouse 8.
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