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Abstract

The in�nitely divisible distributions on R+ of random variables Ct, St and Tt
with Laplace transforms
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respectively are characterized for various t > 0 in a number of di�erent ways: by

simple relations between their moments and cumulants, by corresponding relations

between the distributions and their L�evy measures, by recursions for their Mellin

transforms, and by di�erential equations satis�ed by their Laplace transforms.

Some of these results are interpreted probabilistically via known appearances of

these distributions for t = 1 or 2 in the description of the laws of various func-

tionals of Brownian motion and Bessel processes, such as the heights and lengths

of excursions of a one-dimensional Brownian motion. The distributions of C1

and S2 are also known to appear in the Mellin representations of two important

functions in analytic number theory, the Riemann zeta function and the Dirichlet

L-function associated with the quadratic character modulo 4. Related families of

in�nitely divisible laws, including the gamma, logistic and generalized hyperbolic

secant distributions, are derived from St and Ct by operations such as Brownian

subordination, exponential tilting, and weak limits, and characterized in various

ways.

Keywords: Riemann zeta function, Mellin transform, characterization of distribu-
tions, Brownian motion, Bessel process, L�evy process, gamma process, Meixner process
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1 Introduction

This paper is concerned with the in�nitely divisible distributions generated by some par-
ticular processes with stationary independent increments (L�evy processes [6, 56]) associ-
ated with the hyperbolic functions cosh, sinh and tanh. In particular, we are interested
in the laws of the processes Ĉ; C; Ŝ; S; T̂ and T characterized by the following formulae:
for t � 0 and � 2 R

E[exp(i�Ĉt)] = E
�
exp

��1
2�

2Ct

��
=

�
1

cosh �

�t

(1)
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E[exp(i�Ŝt)] = E
�
exp

��1
2
�2St

��
=

�
�

sinh �

�t

(2)

E[exp(i�T̂t)] = E
�
exp

��1
2�

2Tt
��

=

�
tanh �

�

�t

(3)

according to the mnemonic C for cosh, S for sinh and T for tanh. These formulae
show how the processes Ĉ, Ŝ and T̂ can be constructed from C,S and T by Brownian
subordination: for X = C;S or T

X̂t = �Xt
(4)

where � := (�u; u � 0) is a standard Brownian motion, that is the L�evy process such
that �u is has Gaussian distribution with E(�u) = 0 and E(�2u) = u, and � is assumed
independent of the increasing L�evy process (subordinator) X. Both Ĉ and Ŝ belong to
the class of generalized z-processes [30], whose de�nition in recalled in Section 4. The
distributions of Ĉ1, Ŝ1 and T̂1 arise in connection with L�evy's stochastic area formula
[40] and in the study of the Hilbert transform of the local time of a symmetric L�evy
process [9, 25]. As we discuss in Section 6.5, the distributions of Ŝ1 and Ŝ2 arise also
in a completely di�erent context, which is the work of Aldous [2] on asymptotics of the
random assignment problem.

The laws of Ct and St arise naturally in many contexts, especially in the study of
Brownian motion and Bessel processes [70, x18.6]. For instance, the distribution of
C1 is that of the hitting time of �1 by the one-dimensional Brownian motion �. The
distribution of S1 is that of the hitting time of the unit sphere by a Brownian motion in
R3 started at the origin [17], while (�=2)

p
S2 has the same distribution as the maximum

of a standard Brownian excursion [15, 9]. This distribution also appears as an asymptotic
distribution in the study of conditioned random walks and random trees [60, 1]. The
distributions of Ct and St for t = 1; 2 are also of signi�cance in analytic number theory,
due to the Mellin representations of the entire function

�(s) := 1
2s(s� 1)

�
1

�

� s
2

�
�s
2

�
�(s) where �(s) :=

1X
n=1

n�s (<s > 1) (5)

is Riemann's zeta function, and the entire function

�4(s) :=

�
4

�

�s+1
2

�

�
s+ 1

2

�
L�4(s) where L�4(s) :=

1X
n=0

(�1)n
(2n+ 1)s

(<s > 0)

(6)
is the Dirichlet series associated with the quadratic character modulo 4. The functions
2�(2s) and �4(2s+ 1) appear as the Mellin transforms of �

2S2 and
�
2C1 respectively, and
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the Mellin transforms of S1, C2, T1 and T2 are also simply related to �. These results
are presented in Table 1, where � 2 R, s 2 C , (with <s > �t=2 for T̂t), and n = 1; 2; : : :.
The discussion around (8) and (9) below recalls the classical de�nitions of the numbers
Am and B2n appearing in Table 1.

Table 1. The Mellin transforms of C1, C2, S1, S2, T1 and T2.

X E

�
e�

1
2
�2X

�
E
��

�
2
X
�s� (2n)!

2nn!
E(Xn) = E(X̂2n)

C1
1

cosh �
�4(2s+ 1) A2n

C2

�
1

cosh �

�2
(4s+1 � 1)

(s+ 1)

2

�
�(2s + 2)) A2n+1

S1
�

sinh �

(21�2s � 1)

(1� 2s)
2�(2s) (22n � 2)jB2nj

S2

�
�

sinh �

�2

2�(2s) (2n� 1)22njB2nj

T1

�
tanh �

�

�
(4s+1 � 1)

(2s + 1)(s+ 1)

2

�
�(2s + 2)) A2n+1

2n+1

T2

�
tanh �

�

�2 (4s+2 � 1)

(s+ 1)(s+ 2)

2

�2
�(2s + 4)) A2n+3

2n+2

See [8] for a recent review of these and other properties of the laws of Ct and St with
emphasis on the special cases when t = 1 or 2. The formulae in the table for Tt are
derived in Section 6.4 of this paper. As shown in [9] and [8, x3.3], the classical functional
equations �(s) = �(1 � s) and �4(s) = �4(1 � s) translate into symmetry properties of
the laws of S2 and C1, and there is a reciprocal relation between the laws of C2 and S1.
The formulae for positive integer moments in the table are read by comparison of the
expansions

E

�
e�

1
2 �

2X

�
=

1X
n=0

E(Xn)

��1
2�

2
�n

n!
=

1X
n=0

(�1)nE(X̂2n)
�2n

(2n)!
(j�j < "); (7)

for some " > 0, with classical expansions of the hyperbolic functions (see [28, p. 35],
or (83) and (96) below). The formulae for moments of Ct and Tt for t = 1 or 2 in-
volve the numbers Am of alternating permutations of f1; 2; : : : ;mg, that is permutations
(a1; : : : ; am) with a1 > a2 < a3 > � � �. The A2n are called Euler or secant numbers, and
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the A2n+1 are called tangent numbers, due to the expansions [19, p. 259]

1

cos �
=

1X
n=0

A2n
�2n

(2n)!
; tan � =

1X
n=0

A2n+1
�2n+1

(2n + 1)!
: (8)

The formulae for moments of S1 and S2 involve the rational Bernoulli numbers B2n, due
to the expansion

� coth � � 1 =
1X
n=1

B2n
(2�)2n

(2n)!
(9)

and the elementary identity 1= sinh � = coth(�=2) � coth � . Because tan � = cot � �
2 cot 2� the tangent and Bernoulli numbers are related by

A2n+1 = (�1)n (2
2n+2 � 1)22n+1

n+ 1
B2n+2: (10)

The �rst few Am and B2n are shown in Table 2. See [21] for a bibliography of the
Bernoulli numbers and their applications.

Table 2. Secant, tangent and Bernoulli numbers.

n 1 2 3 4 5 6
A2n 1 5 61 1385 50521 2702765
A2n+1 2 16 272 7936 353792 22368256
B2n

1
6

�1
30

1
42

�1
30

5
66

�691
2730

Implicit in Table 1 is Euler's famous evaluation [65] of �(2n), and so is the companion
evaluation of L�4(2n� 1) given in [22, 1.14 (14)]: for n = 1; 2; : : :

�(2n) =
22n�1�2n

(2n)!
jB2nj and L�4(2n� 1) =

�2n�1

22n(2n � 2)!
A2n�2: (11)

Our interest in these results led us to investigate the Mellin transforms of St, Ct and
Tt for arbitrary t > 0, and to provide some characterizations of the various in�nitely
divisible laws involved. These characterizations are related to various special features of
these laws: special recurrences satis�ed by their moments and Mellin transforms, simple
relations between their moments and cumulants, corresponding relations between the
laws and their L�evy measures, and di�erential equations satis�ed by their Laplace or
Fourier transforms. These analytic results are related to various representations of the
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laws in terms of Brownian motion and Bessel processes, in particular the heights and
lengths of excursions of a one-dimensional Brownian motion.

The rest of this paper is organized as follows. Section 2 recalls some background for
the discussion of L�evy processes. Section 3 presents some special recurrences satis�ed by
the moments and Mellin transforms of the laws of St and Ct. We also show in this section
how various processes involved can be characterized by such moment recurrences. In
Section 4, we briey review some properties of the gamma process, and the construction
of both S and C as weighted sums of independent gamma processes. Section 6 presents
a number of characterizations of the in�nitely divisible laws under study. Some of these
characterizations were presented without proof in [8, Proposition 2]. Section 7 presents
several constructions of functionalsX of a Brownian motion or Bessel process such thatX
has the distribution of either St or Ct for some t > 0. There is some overlap between that
section and Section 4 of [8]. There we reviewed the large number of di�erent Brownian
and Bessel functionals whose laws are related to St and Ct. Here we focus attention
on constructions where the structure of the underlying stochastic process brings out
interesting properties of the distributions of S2 and C2, in particular several of those
properties involved in the characterizations of Section 6.

2 Preliminaries

For a L�evy process (Xt), with E(X2
t ) < 1 for some (and hence all) t > 0, the charac-

teristic function of Xt admits the well known Kolmogorov representation [10, x28]

E[ei�Xt] = exp[t	(�)] with 	(�) = i�c+

Z
(ei�x � 1� i�x)x�2K(dx) (12)

Here c 2 R, the integrand is interpreted as ��2=2 at x = 0, and K = KX is the �nite
Kolmogorov measure associated with (Xt),

KX(dx) = �2�0(dx) + x2�X(dx) (13)

with �2 the variance parameter of the Brownian component of (Xt), with �0 a unit mass
at 0, and with �X the usual L�evy measure of (Xt). Assuming that the exponent 	 in
(12) can be expanded as

	(�) =
1X

m=1

�m
(i�)m

m!
(j�j < ") (14)
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for some " > 0, it follows from (12) that

�1 = c; �2 = �2 +

Z
x2�X(dx); �n =

Z
xn�X(dx) for n � 3: (15)

According to the de�nition of cumulants of a random variable, recalled later in (91)
the nth cumulant of Xt is �nt. In particular, if c =

R
x�X(dx) and �2 = 0, as when

X = S;C; Ŝ or Ĉ, the cumulants �n of X1 are just the moments of the L�evy measure
�X .

For a L�evy process (Xt) with all moments �nite, it is a well known consequence of the
Kolmogorov representation (12) that the sequence of functions t! E(Xn

t ) is a sequence
of polynomials of binomial type [20]. That is to say, E(Xn

t ) is a polynomial in t of degree
at most n, and

E(Xn
t+u) =

nX
k=0

�
n

k

�
E(Xk

t )E(X
n�k
u ): (16)

The coe�cients of these moment polynomials are determined combinatorially by the
�n via the consequence of (12) and (14) that for 0 � k � n

k![tk]E(Xn
t ) = n![�n]

 
1X

m=1

�m
m!

�m

!k

(17)

where [yp]f(y) denotes the coe�cient of yp in the expansion of f(y) in powers of y.
Equivalently, starting from E(X0

t ) = 1, these polynomials are determined by the follow-
ing recursion due to Thiele [31, p. 144, (4.2)] (see also [44, p.74, Th. 2], [20, Th. 2.3.6]):
for n = 1; 2; : : :

E(Xn
t ) = t

n�1X
i=0

�
n � 1

i

�
E(X i

t)�n�i: (18)

Table 3 displays the �rst few moment polynomials for �ve of the L�evy processes
considered in this paper: the standard gamma process � de�ned by

P (�t 2 dx) = 1

�(t)
xt�1e�x dx (t > 0; x > 0); (19)

Brownian motion �, and the processes C, S and T .
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Table 3. Some moment polynomials

X E(Xt) E(X2
t ) E(X3

t ) E(X4
t )

� t t(t+ 1) t(t+ 1)(t+ 2) t(t+ 1)(t+ 2)(t+ 3)

� 0 t 0 3t2

C t
t(2 + 3t)

3

t(16 + 30t+ 15t2)

15

t(272 + 588t+ 420t2 + 105t3)

105

S
t

3

t(2 + 5t)

45

t(16 + 42t+ 35t2)

945

t(144 + 404t+ 420t2 + 175t3)

14175

T
2t

3

4t(7 + 5t)

45

8t(124 + 147t + 35t2)

945

16t(2286 + 3509t + 1470t2 + 175t3)

14175

The moment polynomials of � and � illustrate some basic formulae, which we recall
here for ease of later reference. First of all,

E(�st ) =
�(t+ s)

�(t)
(<s > �t); (20)

which reduces to t(t + 1) � � � (t + n � 1) for s = n a positive integer. The identity in

distribution �2t
d
= 2t�1=2 and (20) give

E(j�tj2s) = (2t)s
�(12 + s)

�(12)
= 2

�
t

2

�s
�(2s)

�(s)
(<s > �1

2
); (21)

where the second equality is the gamma duplication formula. In particular,

E(�2n1 ) =
(2n)!

2nn!
(n = 0; 1; 2; : : :): (22)

For X = C, S or T we do not know of any explicit formula or combinatorial interpre-
tation for the nth moment polynomial for general n. Table 5 in Section 4 shows that in
these cases the cumulants �n, which appear in the descriptions (17) and (18) of E(Xn

t ),
turn out to involve the Bernoulli numbers B2n, which are themselves recursively de�ned.
The recursive description of the moment polynomials via (17) or (18) is consequently
rather cumbersome. It is therefore remarkable that for X = C;S and T there are simple
recurrences for the moments and Mellin transforms of Xt, which make no reference to
the Bernoulli numbers. These recurrences are the subject of the next section.
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3 Some special recurrences

Theorem 1 (i) The process C is the unique L�evy process satisfying the following mo-
ment recurrence for t � 0 and s = 1; 2; : : ::

(t2 + t)E[Cs
t+2] = t2E[Cs

t ] + (2s+ 1)E[Cs+1
t ]: (23)

Moreover, the recurrence continues to hold for all t � 0 and s 2 C , with E(Cs
t ) an entire

function of s for each t.
(ii) The process S is the unique L�evy process satisfying the following moment recur-

rence for t � 0 and s = 1; 2; : : ::

(t2 + t)E[Ss
t+2] = (t� 2s)(t� 2s+ 1)E[Ss

t ] + 2st2E[Ss�1
t ]: (24)

Moreover, the recurrence continues to hold for all t � 0 and s 2 C , with E(Ss
t ) an entire

function of s for each t.
(iii) The process T is the unique L�evy process satisfying the following moment recur-

rence for t � 1 and s = 1; 2; : : ::

(2s + t)E[T s
t ] = tE[T s

t�1] + 2stE[T s�1
t+1 ]: (25)

Moreover, the recurrence continues to hold for all t � 1 and s 2 C with <s > (1� t)=2.

Here and in similar assertions below, unique means of course unique in law. The
fact that E(Cs

t ) and E(Ss
t ) are entire functions of s for each t is easily seen. The

random variables Ct and St have all positive moments �nite, because they have moment
generating functions which converge in a neighbourhood of 0, and they have all negative
moments �nite by application to X = Ct or X = St of the following general formula: for
X a non-negative random variable with 'X(�) := E(e��X),

E[X�p] =
21�p

�(p)

Z 1

0

�2p�1'X(
1
2�

2)d� (p > 0): (26)

This holds for a positive constant X by de�nition of �(p), hence for every positive random
variable X by Fubini's theorem. Similarly, consideration of (26) shows that E[T s

t ] <1
for real s i� s > �t=2. See also [69] and Yor [70, Exercise 11.1] for other applications
of (26) to St. Another application of (26) shows that E(T s

t ) < 1 i� s > �t=2. For

X̂t = �Xt as in (4), where X may be C;S or T , Brownian scaling gives X̂t
d
= �1

p
Xt,

hence
E(jX̂tj2s) = E(j�1j2s)E(Xs

t ) (<s > �1
2): (27)
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Using (21) and �(x+ 1) = x�(x) we see that

E[j�1j2(s+1)] = (2s+ 1)E[j�1j2s] (<s > �1
2): (28)

The recurrences in Theorem 1 are equivalent via (27) and (28) to the following recurrences
for Ĉ, Ŝ and T̂ : for all t > 0 and <(s) > �1

2

(t2 + t)E[jĈt+2j2s] = t2E[jĈtj2s] + E[jĈtj2s+2]; (29)

(t2 + t)E[jŜt+2j2s] = (t� 2s)(t� 2s+ 1)E[jŜtj2s] + 2s(2s � 1)t2E[jŜtj2s�2]; (30)

and for all t � 1 and s with <(2s) > �1 and <(2s) > 1 � t

(2s + t)E[jT̂tj2s] = tE[jT̂t�1j2s] + 2s(2s � 1)tE[jT̂t+1j2s�2]: (31)

The following Lemma presents some recurrences for probability density functions. The
formulae (29) and (30) for s > 0 are obtained by multiplying both sides of (33) and
(35) by jxj2s and integrating, using integration by parts, which presents no di�culty
since the functions �t(x) and  t(x) are Fourier transforms of functions in the Schwartz
space, hence also members of the Schwartz space. This establishes the recurrences of the
theorem for all real s > 0, hence all s 2 C by analytic continuation. A similar argument
allows (31) to be derived from (37). More care is required to justify the integrations by
parts, but this can be done using the fact that E(jT̂tj2s) <1 for all s > 0, which is used
in the proof for large s. Theorem 1 follows, apart from the uniqueness claims, which we
establish in Section 3.1.

Lemma 2 The density

 t(x) :=
P (Ĉt 2 dx)

dx
=

1

2�

Z 1

�1

�
1

cosh y

�t

eiyxdy (32)

satis�es the recurrence
t(t+ 1) t+2(x) = (t2 + x2) t(x) (33)

while

�t(x) :=
P (Ŝt 2 dx)

dx
=

1

2�

Z 1

�1

�
y

sinh y

�t

eiyxdy (34)

satis�es the recurrence

t(t+ 1)�t+2(x) = (x2 + t2)�00t (x) + (2t+ 4)x�0t(x) + (1 + t)(2 + t)�t(x) (35)
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and

�t(x) :=
P (T̂t 2 dx)

dx
=

1

2�

Z 1

�1

�
tanh y

y

�t

eiyxdy (36)

satis�es the recurrence

�x�0t(x) + (t� 1)�t(x) = t�t�1(x) + t�00t+1(x) (37)

for x 6= 0 and t � 1.

Remarks. Formula (33) for t = 1; 2; : : : was given by Morris [44, (5.3)]. As noted there,
this recursion and known formulae for  t(x) for t = 1 or 2 (displayed in Table 6) show
that  t(x) is a polynomial of degree t divided by cosh(�x=2) if t is an odd integer, and
divided by sinh(�x=2) if t is even. It is known that the classical integral representations
of the beta functionZ 1

�1

ce�qcydy

(1 + e�cy)p+q
=

Z 1

0

up�1(1� u)q�1du =: B(p; q) =
�(p)�(q)

�(p + q)
(38)

where c > 0;<p > 0;<q > 0, yield the formula [23, 1.9.5], [32]

 t(x) =
2t�2

�
B

�
t+ ix

2
;
t� ix

2

�
=

2t�2

��(t)

�����
�
t+ ix

2

�����
2

: (39)

As shown in [9] and [8] the Laplace transforms of Ct and St can be inverted to give series
formulae for the corresponding densities for a general t > 0.
Proof. The recurrence (33) follows from (39) using �(x+1) = x�(x). In the case of �t
we do not know of any explicit formula like (39) for general t > 0. So we proceed by the
following method, which can also be used to derive the recurrence for  t without appeal
to (39). By di�erentiating (34) with respect to x, then integrating by parts, we obtain

x

�
�0t(x) +

t+ 1

x
�t(x)

�
= t

Z 1

�1

cosh y

�
y

sinh y

�t+1

eiyxdy: (40)

Di�erentiating again with respect to x, and integrating by parts again, leads to (35).
Lastly, by standard formulae for Fourier transforms, the recurrence (37) is equivalent to
the fact that gt(�) := tanh �=� solves the following di�erential equation:

d

d�
(�gt(�)) + (t� 1)gt(�) = tgt�1(�)� t�2gt+1(�): (41)

2

12



Examples. To illustrate (35), from the known results recalled in Table 6, we have
�1(x) = (�=4)= cosh2(�x=2), so deduce from (35) that

�3(x) =
�[6� 2�2(1 + x2)� 6�x sinh(�x) + (6 + �2(1 + x2)) cosh(�x)]

16 cosh4
�
�x
2

�
and �4(x) can be derived similarly from �2(x), but the result is quite messy. We note in
passing that the density �n(x) of Ŝn appears for n = 1; 2; : : : in the formula of Gaveau
[27] for the fundamental solution of the heat equation on the Heisenberg group of real
dimension 2n + 1. As shown by Gaveau, this is closely related to the appearance of the
distribution of Ŝ1 in connection with L�evy's stochastic area formula [40].

From the Mellin transform E[(�2S2)
s] = 2�(2s) in Table 1 we deduce with (24) that

E[(�
2
S4)

s] =
2

3
[(s� 1)(2s � 3)�(2s) + 2�s�(2s � 2)] (s 2 C ): (42)

Using �(s) = �(1� s) and the duplication formula for the gamma function, formula (42)
can also be deduced by analytic continuation of the series for E(S�m4 ) for m > 0 derived
from (26) in [70, Exercise 11.1] (which should be corrected by replacing 23m�2 by 23m).
In particular, (42) implies

�
�

sinh �

�4

= 1 +
1X
n=1

22n

3(2n)!
(2n � 1)(2n � 3)(nB2n�2 � (n� 1)B2n) �

2n (43)

where the series converges for j�j < �, and the coe�cient of �2n is (�1)nE(Sn
4 )=(2

nn!).
Formula (43) can also be checked using (96) and (52) below.

As a generalization of (42), we deduce using (24) that for n = 1; 2; : : :

E[(�2S2n)
s] =

n�1X
j=0

bn;j(s)�(2s � 2j) (s 2 C ) (44)

where the bn;j(s) for 0 � j � n� 1 are polynomials in s with real coe�cients, of degree
at most 2(n � 1), which are determined by b1;0(s) = 2 and the following recurrence: for
n = 1; 2; : : :

2n(2n + 1)bn+1;j(s) = (2n � 2s)(2n+ 1 � 2s)bn;j(s)1(j < n) + (2n)2�bn;j(s)1(j > 0):

By combining Theorem 1 and the results of Table 1, similar descriptions can be given
for E[(�2C2n)s] and E[(

�
2S2n�1)

s] involving �, and for E[(�2C2n�1)s] involving �4.

13



3.1 Uniqueness in Theorem 1

By consideration of moment generating functions, to establish the uniqueness claims in
Theorem 1 it is enough to show that the recursions in Theorem 1 determine the positive
integer moments of Ct, St and Tt for all t > 0. We complete the proof of Theorem 1
by establishing the following corollary, which presents the desired conclusion in more
combinatorial language.

Corollary 3 Each one of the following three recursions (45), (46) and (47), with p0(t) =
1, de�nes a unique sequence of polynomials pn(t); n = 0; 1; 2; : : : of binomial type:

(t+ t2)pn(t+ 2) = t2pn(t) + (2n + 1)pn+1(t); (45)

(t+ t2)pn(t+ 2) = (t� 2n)(t� 2n+ 1)pn(t) + 2nt2pn�1(t); (46)

(2n + t)pn(t) = tpn(t� 1) + 2ntpn�1(t+ 1): (47)

The corresponding generating functions

Gt(�) :=
1X
n=0

pn(t)
(1
2
�2)n

n!
(j�j < �=2): (48)

are (1= cos �)t for (45), (�= sin �)t for (46), and (��1 tan �)t for (47).

Proof. That the polynomials de�ned by the generating functions satisfy the recursions
follows from the result established in the previous section that the moments of the
associated L�evy processes satisfy these recursions. Or see the remarks below. For (45)
the uniqueness is obvious. To deal with uniqueness for (46), we consider this recurrence
with

(t� 2n)(t� 2n+ 1) = 2n(2n � 1) + (1� 4n)t+ t2 (49)

replaced by �n + �nt + t2, and argue that the solution will be unique provided �n 6= 0
and

�n =2 f3; 5; : : : ; 2n + 1g (50)

for all n, as is the case in (49) with �n = 1�4n. Suppose that pn(t) solves the recurrence.
Take t = 0 and use �n 6= 0 to see that pn(0) = 0 for all n. For n = 1 the recurrence
amounts to

�1 = 2 and p1(t) = 2t=(3 � �1):

So any solution of the recurrence must be of the form pn(t) =
Pn

j=1 an;jt
j for some array

of coe�cients (an;j). Assume inductively that suitable coe�cients an�1;j exist for some

14



n � 2. The recurrence amounts to a system of n + 3 coe�cient identities obtained by
equating coe�cients of tk for 0 � k � n + 2. These coe�cient identities are trivial for
k = 0 and k = n + 2, leaving a system of n + 1 linear equations in n unkowns an;j; 1 �
j � n. The identity of coe�cients of tn+1 reduces easily to an;n(2n+1��n) = �nan�1;n�1
which determines an;n by (50). For 2 � k � n it is easily checked that the identity of
coe�cients of tk involves only an;j for j � k � 1 and an�1;k�2, and that the coe�cient
of an;k�1 in this identity is 2(k � 1) + 1 � �n 6= 0 by (50). Thus for each 2 � k � n
the coe�cient an;k�1 can be expressed in terms of the an;j for j � k and an�1;k�2. This
completes the inductive proof of uniqueness for (46). A similar argument establishes
uniqueness for (47). 2

Remarks. For the recurrence (46), with (t� 2n)(t� 2n+ 1) replaced by �n + �nt+ t2,
the identity of coe�cients of t reads

pn(2) = �np
0
n(0) or

nX
j=1

an;j2
j = �nan;1: (51)

In general, this identity provides a constraint on �n and �n which is necessary for the
generalized recurrence to admit a solution. That (51) holds for the pn(t) generated by
Gt(�) = (�= sin �)t with �n = 2n(2n � 1) can be checked using formula (17) with k = 1
and the expressions for the moments and cumulants of Ŝ2 displayed in Table 6. We show
later in Theorem 8 how this identity (51) provides simple characterizations of the laws
of S2 and Ŝ2.

The recursions can also be checked by showing that the corresponding generating
function Gt(�) satis�es a suitable di�erential equation. For instance, by routine manip-
ulations, the recursion (46) is equivalent to the di�erential equation

(t+ t2)Gt+2(�) = (t+ t2 + t2�2)Gt(�)� 2�tG0
t(�) + �2G00

t (�) (52)

where the primes denote di�erentiation with respect to �. But if Gt(�) = (G(�))t,
then after dividing both sides by (G(�))t, the equation (52) reduces to an equality of
coe�cients of t and an equality of coe�cients of t2, which read respectively

�1 +G2 + �2
�
G0

G

�2

� �
G00

G
= 0 (53)

and

�1� �2 +G2 + 2�
G0

G
� �2

G00

G
= 0: (54)
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For G(�) = �= sin � we have

G0

G
=

1

�
� cot � and

G00

G
=
�2 cot �

�
+ cot2 � +

1

sin2 �
(55)

which imply (53) and (54), hence (52). The corresponding di�erential equation for
Gt(�) = (��1 tan �)t appeared in (41), expressed in terms of gt(�) := Gt(i�). The recur-
sion (47) for this case is a generalization of the recursion

T (n+ 1; k) = T (n; k � 1) + k(k + 1)T (n; k + 1)

found by Comtet [19, p. 259] for the array of positive integers T (n; k) de�ned by
(tan �)k=k! =

P
n�k T (n; k)�

n=n!. The di�erential equation for Gt(�) = (1= cos �)t ap-
pears below, again in terms of gt(�) := Gt(i�), in the argument leading to (69). In this
case, the polynomials pn(t) evaluated for t a positive integer are related to the numbers
E(n; k) de�ned by (1= cosh �)k =

P
n E(n; k)�

n=n!. These Euler numbers of order k were
studied by Carlitz [14].

3.2 Some special moments

For X = Ct we �nd that (26) for p = 1=2 reduces using (38) to the simple formula

E[C�1=2
t ] =

�(t=2)p
2�((t+ 1)=2))

: (56)

As a check, the recursion (23) for s = �1
2
simpli�es to (t + 1)E[C

�1=2
t+2 ] = tE[C

�1=2
t ],

which is also implied by (56) and �(x+ 1) = x�(x). The following proposition presents
some explicit formulae for E[Ss

t ] in particular cases which correspond to a simpli�cation
in the recursion (23) for this function of s and t.

Proposition 4 For all t > 0

E[S
(t�1)=2
t ] =

2(t�1)=2�(t=2)p
�

(57)

and

E[S(t�2)=2
t ] =

p
�2(t�4)=2

(�(t=2))2

�((t+ 1)=2)
: (58)
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Remarks. Comparing formulae (56), (57) and (58), we observe the remarkable identity

2E[S
(t�2)=2
t ] = �E[C

�1=2
t ]E[S

(t�1)=2
t ] (59)

for all t > 0, but we have no good explanation for this. We also note that the expectations
in (56), (57) and (58) are closely related to the moments of j�1j and

p
A, where A has

the arc sine law on [0; 1]. Speci�cally the expectations in (56), (57) and (58) are equal to
(�=2)1=2E[(

p
A)t�1], E[j�1jt�1] and (�=2)3=2E[(j�1j

p
A)t�1] respectively, where �1 and A

are assumed independent. But we do not see any good explanation of these coincidences
either. As a check, the case t = 2 of (57) can also be read from Table 1 using �(1) = 1=2.
Proof. Observe from (24) that

(1 + t)E[Ss
t+2] = 2stE[Ss�1

t ] if t = 2s � 1 or 2s: (60)

Use these recurrences on one side, and �(x+1) = x�(x) on the other side, to see that it
su�ces to verify (57) and (58) for 0 < t � 2. Formula (57) for t 2 (0; 1) is established by
use of (26) with p = (1� t)=2, so 2p + t� 1 = 0 and the right hand side of (26) reduces
to a beta integral. The case t = 1 is trivial, and the formula is obtained for t 2 (2; 3],
by the recurrence argument. The case t 2 (1; 2] is �lled in by analytic continuation,

using the following variant of (26) to show that E[S(t�1)=2
t ] is an analytic function of t

for <t 2 (1; 3): for any non-negative random variable X and 0 < p < 1

E(Xp) =
p21+p

�(1 � p)

Z 1

0

d�

�2p+1
(1 � 'X(

1
2
�2)): (61)

This formula, which appears in [61, p. 325], is easily veri�ed using Fubini's theorem,
In the case of (58), for 0 < t < 2 we can apply (26) with p = (2�t)=2, so 2p+t�1 = 1.

The integral in (26) for X = St can then be evaluated using the result of di�erentiation
of (38) with respect to p, which is [28, p. 538, 4.253.1]Z 1

0

up�1(1� u)q�1 log u du = B(p; q)[ (p)�  (p+ q)] (62)

for <p > 0;<q > 0; where  (x) := �0(x)=�(x) is the digamma function. For p = t=2 and
q = 1 � t we �nd using the reection formulae for  and � that

 (t=2)�  (1� t=2) = � cot �t=2 = �
�(t=2)�(1 � t=2)

�((1� t)=2)�((1 + t)=2)

and the right hand expression in (58) is �nally obtained after simpli�cation using the
gamma duplication formula. 2
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Comparison of the formulae (57) and (58) with those obtained from (61) yields the
following two evaluations of integrals involving (1= sinh �)t:Z 1

0

d�

�
1

�t
� 1

(sinh �)t

�
=

�((3� t)=2)�(t=2)p
�(t� 1)

(1 < t < 3) (63)

and Z 1

0

�d�

�
1

�t
� 1

(sinh �)t

�
=

p
��((4 � t)=2)(�(t=2))2

2(t� 2)�((t+ 1)=2)
(2 < t < 4): (64)

As a check, (63) for t = 2 can be obtained by Fourier inversion of (88), using the
expression for �Ŝ in Table 5. We also con�rmed these evaluations for various t by
numerical integration using Mathematica. But we do not know how to prove them
analytically without the Fourier argument involved in the recursion (35), which yielded
(24) and (60). For X a positive random variable with E(Xn) < 1 for some n =
0; 1; 2; : : :, and n < s < n+ 1 there is the formula [61, (14)]

E(Xs) =
1

�(�s)
Z 1

0

d�

�s+1

 
'X(�)�

nX
k=0

(��)k
k!

E(Xk)

!
: (65)

With 'X(
1
2
�2) replaced (1= cosh �)t or (�= sinh �)t, these formulae (26), (61) and (65) give

expressions for E(Cs
t ) and E(S

s
t ) for all real s except s = 1; 2; 3; : : :, when the moments

can be obtained from the moment polynomials discussed in Section 3. Comparison of
(65) with (57) and (58) then gives two sequences of integral identities.

3.3 Variants of Theorem 1

We start by writing (29) in the functional form

(t2 + t)E[f(Ĉt+2)] = t2E[f(Ĉt)] + E[Ĉ2
t f(Ĉt)] (66)

where f is an arbitrary bounded Borel function. This follows from (29) �rst for symmetric
f by uniqueness of Mellin transforms, then for general f using

E[f(Ĉt)] = E[f(�Ĉt)] = E[ ~f(jĈtj)] where ~f(x) := (f(x) + f(�x))=2:

Consider now the Meixner process M (a), that is the L�evy process whose marginal
laws are derived by exponential tilting from those of Ĉ, according to the formula

E[f(M (a)
t )] = (cos a)tE[f(Ĉt) exp(aĈt)] (t � 0;��=2 < a < �=2): (67)
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The functional recursion (66) for Ĉ generalizes immediately to show that X = M (a)

satis�es the functional recursion (68) presented in the following theorem. There is a
similar variant for M (a) of the moment recursion (29) for Ĉ. These observations lead us
to the following characterizations

Theorem 5 A L�evy process X satis�es the functional recursion

c(t2 + t)E[f(Xt+2)] = t2E[f(Xt)] + E[X2
t f(Xt)] (68)

for all bounded Borel f and all t � 0, for some constant c, if and only if X is a Meixner
process M (a) for some a 2 (��=2; �=2); then c = 1= cos2 a � 1 and (68) holds for all
Borel f such that the expectations involved are well de�ned and �nite.

Before the proof, we note the following immediate corollary of this theorem and the
discussion leading to (66):

Corollary 6 The process X = Ĉ is the unique L�evy process such that either
(i) the moment recursion (29) holds all s = 0; 1; 2; : : : and the distribution of X1 is

symmetric about 0, or
(ii) the functional recursion (68) holds with c = 1 for all bounded Borel f .

Proof of Theorem 5. That X = M (a) satis�es (68) has already been established via
the moment recursion (23) for Ĉ. (This can also be seen by reversing the steps in the
following proof of the converse, which parallels the analysis around (52).) Suppose that
X satis�es (68). By consideration of (68) for f constant, it is obvious that E(X2

1 ) <1
and c = 1 + (E(X1))2. Thus c � 1 and X1 has characteristic function g with two
continuous derivatives g0 and g00. Now take f(x) = ei�x in (68) to obtain the following
identity of functions of �:

c(t2 + t)gt+2 = t2gt � (gt)00 = t2gt � (t2 � t)gt�2(g0)2 � tgt�1g00

where all di�erentiations are with respect to �, and for instance gt(�) = (g(�))t. Can-
celling the common factor of gt and equating coe�cients of t2 and t, this amounts to the
pair of equalities �

g0

g

�0
= �cg2 =

�
g0

g

�2

� 1 (69)

The argument is completed by the following elementary result: the unique solution g of
the di�erential equation�

g0

g

�0
=

�
g0

g

�2

� 1 with g(0) = 1 and g0(0) = i tan � for � 2 (��
2 ;

�
2 ) (70)
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is g(�) = (cos �)= cosh(� + i�). 2

For Ŝ instead of Ĉ the following functional recursion can be derived from (24). For
f with two continuous derivatives, and t � 0, let

Ltf(x) :=
1
2
(x2 + t2)f 00(x)� txf 0(x):

Then for all t � 0

t(t+ 1)E[f(Ŝt+2)] = t(t+ 1)E[f(Ŝt)] + 2E[Ltf(Ŝt)]: (71)

As a check, for f(x) = e�x this relation reduces to the previous equation (52). There is
also a variant for the family of processes derived from Ŝ by exponential tilting. Presum-
ably this could be used to characterize these processes, by a uniqueness argument for
the appropriate variation of the di�erential equation (52). Similar remarks can be made
for T̂ instead of Ŝ.

To give another application of these recurrences, for any L�evy process X subject to
appropriate moment conditions, the formula

Pn(y; t) := E[(y +Xt)
n] =

nX
k=0

�
n

k

�
E[Xk

t ]y
n�k

de�nes a polynomial in two variables y and t. Using E(Xn
u jXt) = Pn(Xt; u � t) for

0 � t � u, it is easily shown that for each u 2 R, in particular for u = 0, the process

(Pn(Xt; u� t); t � 0)

is a martingale. In other terms, Pn(y;�t) is a space-time harmonic function for X.
The formulae (68) and (71) yield recurrences for these space-time harmonic polynomials
Pn(y;�t) in the particular cases when X is a Meixner process, or when X = S. These
space-time harmonic polynomials are not the same as those considered by Schoutens
and Teugels [58], because for �xed t the Pn(y;�t) are not orthogonal with respect to
P (Xt 2 dy). In particular, forX a Meixner process the polynomials Pn(y;�t) are not the
Meixner polynomials, and their expression in terms of Meixner polynomials appears to
involve complicated connection coe�cients. Thus there does not seem to be any easy way
to relate the recurrence for the Pn(y; t) deduced from (68), which involves evaluations
with t replaced by t+2, to the classical two-term recurrence for the Meixner polynomials
[3, p. 348], in which t is �xed.
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4 Connections with the gamma process

The following proposition presents some elementary characterizations of the gamma pro-
cess (�t) in the same vein as the characterizations of (Ct), (St) and related processes
provided elsewhere in this paper. Recall that the distribution of �t can be characterized
by the density (19), by the moments (20), or by the Laplace transform

E(exp(���t)) =
�

1

1 + �

�t

: (72)

Proposition 7 The gamma process (�t; t � 0) is the unique subordinator with any one
of the following four properties:
(i) for all m = 0; 1; : : :

tE[�mt+1] = E[�m+1
t ]; (73)

(ii) for all bounded Borel f

tE[f(�t+1)] = E[f(�t)�t]; (74)

(iii) '(�) := E[e���1] solves the di�erential equation

'0(�)

'(�)
= �'(�); (75)

(iv) the L�evy measure �� of (�t) is such that

P (�1 2 dx) = x��(dx): (76)

Proof. From (74) we deduce

t't+1(�) = �'0(�)'t�1(�)t
and hence the di�erential equation (75), whose unique solution with '(0) = 1 is obviously
'(�) = 1=(1 + �). It is elementary and well known that � satis�es (76), with both sides
equal to e�xdx, and (75) is the Laplace transform equivalent of (76). 2

Following [16], [5] and [8], let (�n;t; t � 0) be a sequence of independent gamma
processes, and consider for � > 0 the subordinator (��;t; t � 0) which is the following
weighted sum of these processes

��;t :=
2

�2

1X
n=0

�n;t
(�+ n)2

; t � 0: (77)
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The weights are chosen so by (72)

E

�
e�

1
2
�2��;t

�
=

1Y
n=0

�
1 +

�2

�2(�+ n)2

��t
=

8>><
>>:

(1= cosh �)t if � = 1
2

(�= sinh �)t if � = 1

(78)

where the second equality expresses Euler's in�nite products for cosh � and sinh �. Thus

(Ct)
d
= (�1

2
;t
) and (St)

d
= (�1;t): (79)

Consider now the subordinated process (���;t; t � 0) derived from Brownian motion �
and the subordinator (��;t; t � 0) as in (77). As shown in [5],

���;1
d
= ��1 log(��=�

0
�) (80)

where �� and �0� are independent, with �0�
d
= ��. By (79), formula (80) for � = 1

2

and � = 1 describes the distributions of Ĉ1 and Ŝ1 respectively. Thus Ĉ and Ŝ are
instances of L�evy processes X such that for some a > 0; b > 0 and c 2 R there is the

equality in distribution (Xa� c)=b d
= log(��=�0�) for some �; � > 0 where �� and �0� are

independent with �0�
d
= ��. These are the generalized z-processes studied by Grigelionis

[30]. The distribution of log(��=�0�), known as a z-distribution, has found applications
in the theory of statistics [5], and in the study of Bessel processes [50].

5 L�evy measures

For a L�evy process X whose L�evy measure �X has a density, let �X(x) := �X(dx)=dx
be this L�evy density. Directly from (76) and (77), the subordinator �� has L�evy density
at x > 0 given by

���(x) =
1

x

1X
n=0

e��
2(�+n)2x=2 =

8>><
>>:

�C(x) if � = 1
2

�S(x) if � = 1

(81)

Integrating term by term givesZ 1

0

xs���(x)dx =

�
2

�2

�s

�(s)

1X
n=0

1

(� + n)2s
(<s > 1

2) (82)
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which for � = 1
2
or 1 involves Riemann's zeta function. On the other hand, from (2) and

(12) we can compute for 0 6= j�j < �Z 1

0

�xe�
1
2
�2x�S(x)dx = � d

d�

�
log

�
�

sinh �

��
= coth � � 1

�
: (83)

By expanding the leftmost expression of (83) in powers of �, and comparing with (82)
and the expansion (9) of � coth �� 1, we deduce the descriptions of the L�evy measure of
S given in the following table, along with Euler's formula for �(2n) displayed in (11). In
this table, x > 0;<s > 1

2
, and n = 1; 2; : : :.

Table 4: The L�evy densities of C,S and T

X �X(x) =
�X(dx)

dx

R1
0
xs�X(x)dx �n(X1) =

R1
0
xn�X(x)dx

S x�1
1X
n=1

e��
2n2x=2 2s

�2s
�(s)�(2s) 23n�1

(n� 1)!

(2n)!
jB2nj

C x�1
1X
n=1

e��
2(n�

1
2
)2x=2 (4s � 1)

2s

�2s
�(s)�(2s) (4n � 1)23n�1

(n� 1)!

(2n)!
jB2nj

T �C(x)� �S(x) (4s � 2)
2s

�2s
�(s)�(2s) (4n � 2)23n�1

(n� 1)!

(2n)!
jB2nj

The formulae for moments of the L�evy measure of C follow immediately from those
for S and the formula

1

4
�S

�x
4

�
= �S(x) + �C(x) (84)

which is easily checked using the series for �S(x) and �C(x). Put another way, (84)
amounts to

4St
d
= St + Ct (85)

where St and Ct are assumed independent. By the Laplace transforms (78), this is just
a probabilistic expression of the duplication identity sinh 2� = 2 sinh � cosh �. Similarly,
the formula

�C(x) = �S(x) + �T (x)

corresponds to the identity in distribution

Ct
d
= St + Tt (86)
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where St and Tt are independent. By the Laplace transforms (78), this is a probabilistic
expression of the identity 1= cosh � = (�= sinh �)(tanh �)=�. Knight [38] discovered the
decomposition (86) of C1 using a representation of S1, T1 and C1 in terms of Brownian
motion, which we recall in Section 7.

From Table 4 we deduce the formulae presented in the next table, where x 2 R;<s >
1
2
and n = 1; 2; : : ::

Table 5: The L�evy densities of Ĉ,Ŝ and T̂

X̂ �X̂(x) :=
�
X̂
(dx)

dx

R1
�1

jxj2s�X̂(x)dx �2n(X̂1) =
R1
�1

x2n�X̂(x)dx

Ŝ
coth

�
�jxj
2

�
� 1

2jxj
2�(2s)

�2s
�(2s)

22n�1

n
jB2nj

Ĉ
1

2x sinh(�x=2)
(4s � 1)

2�(2s)

�2s
�(2s) (4n � 1)

4n

2n
jB2nj

T̂ �Ĉ(x)� �Ŝ(x) (4s � 2)
2�(2s)

�2s
�(2s) (4n � 2)

4n

2n
jB2nj

The formulae for Mellin transforms and integer moments of �X̂ are read from those
of X in the previous table using the following fact: if X is a subordinator without drift,
then by [56, (30.8)]Z 1

�1

jxj2s�T̂ (dx) = E[j�1j2s]
Z 1

0

xs�T (dx) (s > �1
2): (87)

where E[j�1j2s] is given by (27). The formulae for �Ŝ(x) and �Ĉ(x) can also be checked by
inverting the following Fourier transforms, obtained from the Kolmogorov representation
(12): Z 1

�1

x2ei�x�Ŝ(x)dx = � d2

d�2

�
log

�
�

sinh �

��
=

1

�2
� 1

sinh2 �
; (88)

Z 1

�1

x2ei�x�Ĉ(x)dx = � d2

d�2

�
log

�
1

cosh �

��
=

1

cosh2 �
: (89)

See [18, p. 261], [30] for variations and applications of (88). By an obvious variation of

(85), there is the identity 2Ŝt
d
= Ŝt + Ĉt, so

�Ĉ(x) =
1

2
�Ŝ

�x
2

�
� �Ŝ(x): (90)
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This allows each of the formulae in the table for �Ĉ(x) and �Ŝ(x) to be deduced from
the other using the elementary identity coth z=2 � coth z = 1= sinh z. Similar remarks
apply to the formulae for T̂ , using (86).

6 Characterizations

Recall that for a random variable X with E[jXjm] < 1 the cumulants �n(X) for 1 �
n � m are de�ned by the formula

logE[ei�X] =

mX
n=1

�n(X)
(i�)n

n!
+ o(�m) as �! 0 with � 2 R. (91)

The following table collects together formulae for the characteristic functions, proba-
bility densities, even moments and even cumulants of Ĉt, Ŝt and T̂t for t = 1 or 2. Except
perhaps for T̂2, these formulae are all known. As indicated in the table, for X̂ := �X,
as in (4), for n = 1; 2; : : : the nth moment or cumulant of X is obtained from the 2nth
moment or cumulant of X̂ by simply dividing by E(�2n1 ) = (2n)!=(2nn!). For moments
this is just (27), and the companion result for cumulants is easily veri�ed. Thus the
moments and cumulants of Ct, St and Tt for t = 1 or 2 can also be read from the ta-
ble. The cumulants in particular are already determined by Table 5 and the sentence
following (15). There is no such simple recipe for recovering the density of X from that
of X̂ := �X , because the elementary formula

P (X̂ 2 dx) = dx

Z 1

0

P (X 2 dt)p
2�t

exp

�
�x

2

2t

�
(x 2 R) (92)

shows that recovering the density of X from that of X̂ amounts to inverting a Laplace
transform. As indicated in [8, Table 1], the densities of Ct and St for t = 1; 2 are known
to be given by in�nite series related to derivatives of Jacobi's theta function. But we
shall not make use of these formulae here. The distributions of T1 and T2 are described
in Section 6.4.
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Table 6. Features of the laws of Ĉ1, Ĉ2, Ŝ1 , Ŝ2, T̂1 and T̂2.

X̂ E(ei�X̂) P (X̂ 2 dx)=dx E(X̂2n) = (2n)!
2nn!E(X

n) �2n(X̂) = (2n)!
2nn!�n(X)

Ĉ1
1

cosh �

1

2 cosh
�
�
2
x
� A2n A2n�1

Ĉ2

�
1

cosh �

�2
x

2 sinh
�
�
2
x
� A2n+1 2A2n�1

Ŝ1
�

sinh �

�

4 cosh2
�
�
2x
� (4n � 2)jB2nj 4n

2n
jB2nj

Ŝ2

�
�

sinh �

�2 �
2

�
�
2
x coth

�
�
2
x
�� 1

�
sinh2

�
�
2
x
� (2n � 1)4njB2nj 4n

n
jB2nj

T̂1
tanh �

�

1

�
log coth

��
4
jxj
�

A2n+1

2n+1
(4n�2)4n

2n
jB2nj

T̂2

�
tanh �

�

�2 Z 1

jxj

y(y � jxj)dy
2 sinh (�y=2)

A2n+3

2n+2
(4n�2)4n

n
jB2nj

The formulae for the densities of Ĉ1, Ĉ2, Ŝ1 and T̂1 are well known Fourier transforms
[40], [23, 1.9], [32], [9]. The Fourier transform expressed by the density of Ŝ2 was found
in [9]. The density �2 of T̂2 is derived from the density �1 of T̂1 using (37) for t = 1,
which reduces to

�002(x) = �x�01(x) = P (Ĉ2 2 dx)=dx (93)

where the second equality is read from the formulae in the table for the densities of T̂1
and Ĉ2. Thus

�002(x) = E[(Ĉ2 � jxj)+]: (94)

In particular

�2(0) =
1

�

Z 1

0

�
tanh �

�

�2

d� =

Z 1

0

y2dy

2 sinh �y=2
=

14�(3)

�3
: (95)

The formulae for moments and cumulants are equivalent to classical series expansions
of the hyperbolic functions [28, p. 35] involving the secant and tangent numbers Am

and Bernoulli numbers Bn. For instance, by di�erentiation of the expansion of coth �
displayed in (83),�

�

sinh �

�2

=

1X
n=0

(2n� 1)(�1)n+1B2n2
2n �2n

(2n)!
(0 < j�j < �) (96)
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from which we read the moments of Ŝ2. Table 6 reveals some remarkable similarities
between moments and cumulants, especially for Ĉ2 and Ŝ2. These observations lead to
the following

Theorem 8 (i) Let X be a random variable with all moments �nite and all odd moments
equal to 0. Then

X
d
= Ĉ2 () �2n+2(X) = 2E(X2n) (n = 0; 1; 2; : : :) (97)

while

X
d
= Ŝ2 () E(X2) =

2

3
and �2n(X) =

E(X2n)

n(2n� 1)
(n = 1; 2; : : :): (98)

(ii) Let X be a random variable with all moments �nite. Then

X
d
= C2 () �n+1(X) =

E(Xn)

n+ 1
2

(n = 0; 1; 2; : : :) (99)

while

X
d
= S2 () E(X) =

2

3
and �n(X) =

E(Xn)

n(2n � 1)
(n = 1; 2; : : :): (100)

Remarks. Similar but less pleasing characterizations could be formulated for other
variables featured in Table 6. For instance, the results for Ĉ1 and C1 would involve the
ratio A2n=A2n�1 for which there is no simple expression. In Section 7 we interpret the
identities (99) and (100) in terms of Brownian motion. Later in this section we give
several variations of these identities.
Proof. Each of the four implications =) is found by inspection of Table 6. These
properties determine the moments of these four distributions uniquely because for any
random variable X1 with all moments �nite, the moments E(Xn

1 ); n = 1; 2; : : : and
cumulants �n := �n(X1); n = 1; 2; : : : determine each other via the recursion (18) with
t = 1. Since each of the four distributions involved has a convergent moment generating
function, each of these distributions is uniquely determined by its moments. 2

In the previous theorem the four distributions involved were characterized without
assuming in�nite divisibility, but assuming all moments �nite. The following corollary
presents corresponding results assuming in�nite divisibility, but with only a second mo-
ment assumption for most parts.
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Corollary 9 Let (Xt; t � 0) be the L�evy process associated with a �nite Kolmogorov
measure KX via the Kolmogorov representation (12), and let U be a random variable
with uniform distribution on [0; 1], with U independent of X2. Then
(i) For each �xed t > 0, assuming that the distribution of Xt is symmetric,

Xt
d
= Ĉt () KX(dx) = P (X2 2 dx) (101)

while

Xt
d
= Ŝt () d2

dx2

�
KX(dx)

dx

�
=
P (X2 2 dx)

dx
(102)

where for the implication (= in (102) it is assumed that KX has a density k(x) :=
KX (dx)=dx with two continuous derivatives, and that both k(x) and k0(x) tend to 0 as
jxj ! 1.

(ii) For each �xed t > 0, without the symmetry assumption,

Xt
d
= Ct () KX(dx) = xP (U2X2 2 dx) (103)

while

Xt
d
= St () E(X2) =

2

3
and KX(dx) = xE[(1�U)X21(U

2X2 2 dx)]1(x > 0) (104)

Proof. Each of the implications =) follows easily from corresponding results in the
previous theorem, using (15). So do the converse implications, provided it is assumed
that X2 has all moments �nite. That a second moment assumption is adequate for the
converse parts of (101), (103) and (104) is a consequence of results proved later in the
paper. We refer to Theorem 10 for (101), to Proposition 11 for 103, and to Proposition
12 for (104). 2

6.1 Self-generating L�evy processes

Morris [44] pointed out the implication =) in (97), and coined the term self-generating
for a L�evy process (Xt) whose Kolmogorov measure KX is a scalar multiple of the
distribution of Xu for some u � 0:

KX(dx)

KX(R)
= P (Xu 2 dx): (105)

To indicate the value of u and to abbreviate, say X is SG(u). In particular, X is SG(0)
i� 	(�) = i�c+ �2�2=2, which is to say X is a Brownian motion with drift and variance
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parameters c and �2. We see from the Kolmogorov representation (12) that (Xt) is
SG(u) i�

	00(�)

	00(0)
= exp(u	(�)): (106)

Written in terms of g(�) = exp(	(�)) for u = 2, this is just the �rst di�erential equation
for g in (69). To restate either Corollary 6 or (101), the process X = Ĉ is the unique
symmetric SG(2) L�evy process with E(X2

1 ) = 1.
It is easily seen that for u > 0; a > 0; b 6= 0

(Xt; t � 0) is SG(u) i� (aXbt; t � 0) is SG(u=b). (107)

Also, if X is SG(u) and the moment generating functionM(�) := E[exp(�X1)] = g(�i�)
is �nite for some � 2 R, then the exponentially tilted process (X(�)

t ; t � 0) with

P (X(�)
t 2 dx) =M�t(�)e�xP (Xt 2 dx)

is easily seen to be SG(�). The self-generating L�evy processes obtained from Ĉ by these
operations of scaling and exponential tilting have been called generalized exponential
hyperbolic secant processes [32, 44, 42]. But we prefer the briefer term Meixner pro-
cesses proposed in [58], which indicates the relationship between these processes and the
Meixner-Pollaczek polynomials, analogous to the well known relationship between Brow-
nian motion and the Hermite polynomials [58, 57]. See also Grigelionis [29]. Another
self-generating family, which is a weak limit of the Meixner family [44], is the family of
gamma processes (b�at; t � 0) for 0 6= b 2 R and a > 0. Then, the orthogonal polyno-
mials involved are the Laguerre polynomials [57]. Morris [44, p. 74, Theorem 1] states
that the Poisson and negative binomial processes are self-generating, but this is clearly
not the case. Rather, the collection of examples mentioned above is exhaustive:

Theorem 10 The only L�evy processes (Xt) with the self-generating property (105) for
some u � 0 are Brownian motions (with u = 0), and Meixner and Gamma processes
(with u > 0).

Proof. The characterization for u = 0 is elementary, so consider X which is SG(u) for
some u > 0. Observe �rst that X cannot have a Gaussian component, or equivalently
that KX has no mass at 0. For a Gaussian component would make Xu have a density,
implying P (Xu = 0) = 0 in contradiction to (105). Similarly,X cannot have a �nite L�evy
measure (in particular X cannot have a lattice distribution) because then P (Xu = 0) > 0
which would force KX to have an atom at 0. By use of the scaling transformation (107),
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the problem of characterizing all L�evy processes X that are SG(u) for arbitrary u > 0 is
reduced to the problem of characterizing all L�evy processes X that are SG(u) for some
particular u, and the choice u = 2 is most convenient. Also, by suitable choice of a in
(107) we reduce to (106) with 	00(0) = �1. So it is enough to �nd all characteristic
exponents 	(�) such that

�	00(�) = exp(2	(�)) with 	(0) = 0: (108)

Set
D(�) := 1=E[exp(i�X1)] = exp[�	(�)] (109)

so (108) is equivalent to

DD00 � (D0)2 = 1 with D(0) = 1: (110)

According to Kamke [36, p.571, 6.111] the general solution of (110) is

Db(�) =
cosh(� cosh b+ b)

cosh b

for some b 2 C , including the limit case when cosh b = 0. In particular, for b = ia with
a 2 (��=2; �=2) we �nd

Dia(�) =
cosh(� cos a+ ia)

cos a
(111)

corresponding to a Meixner process, and the limit case a = ��=2 corresponds to ��
for � the standard gamma process. Other choices of a 2 R yield the same examples, by
symmetries of cosh and cos. To complete the argument, it su�ces to show that 1=Dia(�)
is not an in�nitely divisible characteristic function if a =2 R. For D derived by (109) from
a L�evy process X we have

D0(0) = �i� where � = E(X1) 2 R
whereas

D0
ia(0) = sinh(ia) = i sin a:

This eliminates the case when sin a =2 R, and it remains to deal with the case sin a 2
Rn[�1;1]. In that case cos2 a = 1 � sin2 a < 0 implying that cos a = iv for some real
v 6= 0. But then, since cosh is periodic with period 2�i, the function Dia(�) in (111)
is periodic with period 2�=v, hence so is 1=Dia(�). If 1=Dia(�) were the characteristic
function of X1, the distribution of X1 would be concentrated on a lattice, hence the L�evy
measure of X would be �nite. But then X could not be self-generating, as remarked at
the beginning of the proof. 2
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6.2 The law of C2

We start by observing from (3), (1) and (12) that

E[e��T1] =
tanh

p
2�p

2�
=

d

d�

�
log(cosh

p
2�)
�
=

Z 1

0

e��xx�1KC(dx) (112)

where KC is the Kolmogorov measure of (Ct). Thus we read from Table 4 that

P (T1 2 dx)
dx

=
KC(dx)

x dx
=

1X
n=1

e��
2(n�

1
2 )

2x=2: (113)

According to (113) and the property of C displayed in (103), if U has uniform distribution
on [0; 1] and U and C2 are independent, then

T1
d
= U2 C2: (114)

This also has a Brownian interpretation, indicated in Section 7.2. But in this section we
maintain a more analytic perspective, and use these identities in distribution to provide
some further characterizations of the law of C2. See Section 6.4 for more about the
distribution of T1. For a non-negative random variable X with E(X) <1 let X� denote
a random variable with the size-biased or length-biased distribution of X, that is

P (X� 2 dx) = xP (X 2 dx)=E(X):

As discussed in [62, 4], the distribution of X� arises naturally both in renewal theory,
and in the theory of in�nitely divisible laws. For � � 0 let 'X(�) := E[e��X]. Then
the Laplace transform of X� is E[e��X

�

] = �'0X(�)=E(X) where '0X is the derivative of
'X . According to the L�evy-Khintchine representation, the distribution of X is in�nitely
divisible i�

�'
0
X(�)

'X(�)
= c+

Z 1

0

xe��x�(dx)

for some c � 0 and some L�evy measure �, that is i�

E[e��X
�

] = 'X(�)'Y (�)

where Y is a random variable with

P (Y 2 dy) = (c�0(dy) + �(dy))=E(X): (115)
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Thus, as remarked by van Harn and Steutel [62], for a non-negative random variable X
with E(X) <1, the equation

X� d
= X + Y

is satis�ed for some Y independent of X if and only if the law of X is in�nitely divisible,
in which case the distribution of Y is given by (115) for � the L�evy measure of X. See
also [4] for further discussion. In this vein, we �nd the following characterizations of the
law of C2:

Proposition 11 For a non-negative random variable X with Laplace transform '(�) :=
E[exp(��X)], the following conditions are equivalent:

(i) X
d
= C2, meaning that 'X(�) =

�
1= cosh

p
2�
�2
;

(ii) ' = 'X solves the di�erential equation

�'
0(�)

'(�)
= 2

Z 1

0

'(�u2)du; (116)

(iii) E(X) = 2 and

X� d
= X + U2 ~X (117)

where X; ~X and U are independent random variables with ~X
d
= X and U uniform on

[0; 1];

(iv) E(X) = 2 and the function  (�) := 1=
q
'X(

1
2�

2) satis�es the di�erential equation

 00 � ( 0)2 = 1 on (0;1): (118)

Proof. This is quite straightforward, so we leave the details to the reader. For orienta-
tion relative to previous results, we note from (114) that '(�) := 'C2(�) = (1= cosh

p
2�)2

satis�es the di�erential equation (116), and the equation (118) was already encountered
in (110).

6.3 The law of S2

The following proposition is a companion of Proposition 11 for S2 instead of C2.

Proposition 12 For a non-negative random variable X with Laplace transform 'X(�) :=
E[exp(��X)] and E(X) = 2=3, the following conditions are equivalent:

(i) X
d
= S2, that is 'X(�) = (

p
2�= sinh

p
2�)2.
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(ii) if X1;X2; : : : are independent random variables with the same distribution as X, and
M1 > M2 > : : : are the points of a Poisson point process on (0; 1) with intensity measure
2m�2(1�m)dm, then X

i

M2
i Xi

d
= X; (119)

(iii) the function ' = 'X solves the following di�erential equation for � > 0:

'0(�)

'(�)
= 2

Z 1

0

(1 �m)'0(�m2)dm; (120)

(iv) if X;X� and H are independent, P (X� 2 dx) = xP (X 2 dx)=E(X) and

P (H 2 dh) = (h�1=2 � 1)dh (0 < h < 1) (121)

then
X� d

= X +HX�; (122)

(v) the function  (�) := �=
q
'X(

1
2�

2) satis�es the di�erential equation

 00 � ( 0)2 = �1 on (0;1): (123)

Proof.

(i) =) (ii). By a simple computation with L�evy measures, the nth cumulant of
P

iM
2
i Xi

is E(Xn)=(n(2n � 1)). Compare with (98), to see that if X
d
= S2 then

P
iM

2
i Xi and X

have the same cumulants, hence also the same distribution.
(ii) =) (i). By consideration of L�evy measures as in the previous argument, this is the
same implication as (= in (104) whose proof we have deferred until now. This is easy
if all moments of X are assumed �nite, by consideration of cumulants. But without
moment assumptions we can only complete the argument by passing via conditions (iii)
to (v), which we now proceed to do.
(ii) =) (iii). The identity (119) implies that the law of X is in�nitely divisible, with
probability density f and L�evy density � which are related as follows. From (119), we
deduce that the Laplace transform

'(�) := E[exp(��X)] = exp

�
�
Z 1

0

(1� e��x)�(x)dx

�

satis�es

'(�) = exp

�
�
Z 1

0

dyf(y)

Z 1

0

(1 � e��ym
2

)
2

m2
(1�m)dm

�
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Using Fubini's theorem, and making the change of variables y = x=m2, this yields

�(x) = 2

Z 1

0

dm

m4
(1 �m)f(x=m2); (124)

and (120) follows using

� '0(�)

'(�)
=

Z 1

0

xe��x�(x)dx:

(iii) () (iv). Rewrite (iii) as

3

2
'0(�) = '(�)

Z 1

0

dh(h�1=2 � 1)
3

2
'0(�h) (125)

But since

�3

2
'0(�) =

3

2
E(Xe��X) = E(e��X

�

)

formula (125) is the Laplace transform equivalent of (iv).
(iii) () (v). A simple argument using integration by parts shows that (iii) holds i�
' = 'X solves the following di�erential equation for � > 0:

�
p
�
'0(�)

'(�)
=

1

2

Z �

0

dx

x3=2
(1� '(x)): (126)

Straightforward but tedious computations show that ' with '(0) = 1; '0(0) = �2=3
solves (126) if and only if  satis�es (123) with  (0) = 0;  0(0) = 1.
(v) () (i). According to Kamke [36, 6.110], the solutions  of (123) are determined by

C1 (x) = sinh(C1x+ C2)

for two complex constants Ci. Since  > 0 with  (0+) = 0;  0(0) = 1, it follows that
 (x) = sinhx. 2

Remarks. The fact that '(�) := 2�= sinh2
p
2� is a solution of the di�erential equation

(126) appears in Yor [70, x11.7,Cor. 11.4.1], with a di�erent probabilistic interpretation.
Comparison of formula (83) with formula (11.38) of [70] shows that if W is a random
variable with P (W 2 dt) = 3t�S(dt), where �S(dt) is the L�evy measure of the process S

with S1
d
= T1(R3), then W has the same distribution as the total time spent below level

1 by a 5-dimensional Bessel process started at 1. This is reminiscent of the Ciesielski-
Taylor identities relating the distribution of functionals of Bessel processes of di�erent
dimensions [7, 17].
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As another remark, note that by iteration of (122) followed by an easy passage to the
limit,

X� d
= X +H1X1 + (H1H2)X2 + � � �+ (H1H2 � � �Hn)Xn + � � � (127)

where X;X1;X2; : : : and H1;H2; : : : are independent, with the Xi distributed like X and
the Hi distributed likeH. This is reminiscent of constructions considered in [63] and [51].

Regarding the stochastic equation X� d
= X +HX� considered here, given a distribution

of H one may ask whether there exists such a distribution of X. It is easily shown that
if H is uniform on [0; 1], then X must have an exponential distribution. See Pakes [45]
for a closely related result.

6.4 The laws of T1 and T2

A formula for the density of T1 was given already in (113). Either from (113) and the
partial fraction expansion of ��1 tanh �, or from (114), we �nd that the Mellin transform
of T1 involves the zeta function:

E[T s
1 ] =

Z 1

0

xs+1�C(dx) = (4s+1 � 1)
2s+1

�2s+2
�(s + 1)�(2s + 2): (<s > �1

2): (128)

We deduce from (3), (1) and tanh2 � = 1� 1= cosh2 � that the distributions of T2 and C2

are related by the formula

P (T2 2 dx)=dx = 1
2P (C2 > x) (x > 0): (129)

In terms of renewal theory [24, p. 370], if interarrival times are distributed like C2, the
limit distribution of the residual waiting time is the law of T2. Formula (129) allows the
Mellin transform of T2 to be derived from the Mellin transform of C2. The result appears
in Table 1. By inspection of the Mellin transforms of T1 and T2, we see that if T

�
1 has

the size-biased distribution of T1, and U1=3 is a random variable independent of T �
1 with

0 � U1=3 � 1 and P (U1=3 � u) = u=3 for 0 � u < 1, then

U1=3 T
�
1

d
= T2: (130)

By consideration of a corresponding di�erential equation for the Laplace transform, as
in Propositions 11 and 12, we see that the distribution of T1 on (0;1) is uniquely char-
acterized by this property (130) (with T2 the sum of two independent random variables
with the same distribution as T1) and E(T1) = 2=3.
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6.5 The laws of Ŝ1 and Ŝ2

We see from the density of Ŝ1 displayed in Table 6 that �Ŝ1 has the logistic distribution

P (�Ŝ1 > x) = (1 + ex)�1 (x 2 R);
which has found numerous applications [39]. Aldous [2] relates this both distribution and
that of �Ŝ2 to asymptotic distributions in the random assignment problem. According
to [2, Theorem 2 and Lemma 6] the function

h(x) := P (�Ŝ2 > x) =
e�x(e�x � 1 + x)

(1� e�x)2
(x > 0)

is the probability density on (0;1) of the limit distribution as n ! 1 of n"1;�n(1),
where "i;j; i; j = 1; 2; : : : is an array of independent random variables with the standard
exponential distribution P ("i;j > x) = e�x for x � 0, and �n is the permutation which
minimizes

Pn
i=1 "i;�(i) over all permutations � of f1; : : : ; ng.

For p > 0 we can compute

2

Z 1

0

pxp�1h(x)dx = E
�
j�Ŝ2jp

�

using (27), (21), and the Mellin transform of Ŝ2 given in Table 1. We deduce that the
density h(x) is characterized by the remarkably simple Mellin transformZ 1

0

xp�1h(x)dx = (p� 1)�(p)�(p) (<p > 0) (131)

where the right side is interpreted by continuity at p = 1. Aldous [2, Lemma 6] gave the
special cases of this formula for p = 1 and p = 2.

7 Brownian Interpretations

For a stochastic process X = (Xt; t � 0) let

Ha(X) := infft : Xt = ag
denote the hitting time of a by X. We now abbreviate H1 := H1(j�j) where � is a
standard one-dimensional Brownian motion with �0 = 0, and set

G1 := supft < H1 : �t = 0g; (132)
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so G1 is the time of the last zero of � before time H1. It is well known [17] that

H1
d
= C1 (133)

and
H1 �G1

d
= S1

where G1 is independent of H1�G1 by a last exit decomposition. Hence in view of (86)

G1
d
= T1: (134)

This Brownian interpretation of the decomposition C1
d
= T1+S1, where T1 is independent

of S1, was discovered by Knight [38].

7.1 Brownian local times and squares of Bessel processes

Let Lx
t ; t � 0; x 2 R be the process of Brownian local times de�ned by the occupation

density formula Z t

0

f(�s)ds =

Z 1

�1

f(x)Lx
t dx (135)

for all non-negative Borel functions f , and almost sure joint continuity in t and x. See [53,
Ch. VI] for background, and proof of the existence of Brownian local times. According
to results of Ray [52], Knight [37] and Williams [66, 67, 68], there are the identities in
distribution

(La
H1
; 0 � a � 1)

d
= (R2

2;1�a; 0 � a � 1)

and
(La

H1
� La

G1
; 0 � a � 1)

d
= (r22;a; 0 � a � 1)

where for � = 1; 2; : : : the process R2
� := (R2

�;t; t � 0) is the square of a �-dimensional
Bessel process BES(�),

R�;t :=

 
�X

i=1

�2i;t

!1=2

where (�i;t; t � 0) for i = 1; 2; : : : is a sequence of independent one-dimensional Brownian
motions, and r� := (r�;u; 0 � u � 1) is the �-dimensional Bessel bridge de�ned by
conditioning R�;u; 0 � u � 1 on R�;1 = 0. Put another way, r2� is the sum of squares of �
independent copies of the standard Brownian bridge. As observed in [59] and [47], the
de�nition of the processes R2

� and r
2
� can be extended to all positive real � in such a way
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that R2
+� is distributed as the sum of R2

 and an independent copy of R2
�. It then follows

from results of Cameron-Martin [13] and Montroll [43, (3.41)] for � = 1 that there are
the identities in law

(

Z 1

0

R2
�;udu; � � 0)

d
= (C�=2; � � 0) (136)

and

(

Z 1

0

r2�;udu; � � 0)
d
= (S�=2; � � 0): (137)

In particular, for � = 2, we see from these identities and the Ray-Knight theorems thatZ 1

0

R2
2;udu

d
= H1

d
= C1 while

Z 1

0

r22;udu
d
= H1 �G1

d
= S1:

More generally, for an arbitrary positive measure � on [0; 1], the Laplace transforms

of
R 1
0
R2
�;u�(du) and

R 1
0
r2�;u�(du) can be characterized in terms of the solutions of an

appropriate Sturm-Liouville equation. See [13, 43, 48] or [53, Ch. XI] for details and
further developments.

7.2 Brownian excursions

Consider now the excursions away from 0 of the reecting Brownian motion j�j :=
(j�tj; t � 0). For t > 0 let G(t) := supfs � t : �s = 0g and D(t) := inffs > t : �s = 0g.
So G(t) is the time of the last zero of � before time t, and D(t) is the time of the �rst
zero of � after time t. The path fragment

(�G(t)+v; 0 � v � D(t)�G(t))

is then called the Brownian excursion straddling time t. The works of L�evy[41] and
Williams [66] show that the distribution of the Brownian excursion straddling time t is
determined by the identity� j�G(t)+u(D(t)�G(t))j

(D(t) �G(t))1=2
; 0 � u � 1

�
d
= (r3;u; 0 � u � 1) (138)

and the normalized excursion on the left side of (138) is independent of D(t)�G(t). See
also [15, 53] for further treatment of Brownian excursions, and [26] for a recent study of

the moments of
R 1

0 r3;sds.
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Recall from around (86) thatH1 is the �rst hitting time of 1 by the reecting Brownian

motion j�j, that G1 := G(H1), and that H1
d
= C1 and H1 � G1

d
= S1. According to

Williams [66, 67], the random variable

U := max
0�t�G1

j�tj

has uniform distribution on [0; 1], and if T� denotes the almost surely unique time at
which j�j attains this maximum value over [0; G1], then the processes

(U�1j�(tU2)j; 0 � t � T�=U
2) and (U�1j�(G(H1)� tU2)j; 0 � t � (G1 � T�)=U

2)

are two independent copies of (j�tj; 0 � t � H1), independent of U . Thus

G1 = U2(G1=U
2)

where U is independent of G1=U
2 and G=U2 is explicitly represented as the sum of two

independent copies of H1
d
= C1, so

G1

U2
=
T�
U2

+
G1 � T�
U2

d
= C2: (139)

This provides a Brownian derivation of the identity (114). Let Hx(R3) be the �rst hitting
time of x by R3. It is known [17, 38] that

H1 �G1
d
= H1(R3)

d
= S1: (140)

The �rst identity of laws in (140) is the identity in distribution of lifetimes implied by
the following identity in distribution of processes, due to Williams [66, 67]:

(j�G1+tj; 0 � t � H1 �G1)
d
= (R3;t; 0 � t � H1(R3)): (141)

Let D1 := D(H1) be the time of the �rst return of � to 0 after the timeH1 when j�j �rst
reaches 1. According to the strong Markov property of Brownian motion, the process
(j�H1+uj; 0 � u � D1 � H1) is just a Brownian motion started at 1 and stopped when
it �rst reaches 0, and this process is independent of the process in (141). Thus the
excursion of j�j straddling time H1 is decomposed into two independent fragments, a
copy of R3 run until it �rst reaches 1, followed by an unconditioned Brownian motion
for the return trip back to 0. Let

M := max
H1�t�D1

j�tj:
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As shown by Williams [68] (see also [54]), the identity in distribution (141) together
with a time reversal argument shows that conditionally given M = x, the excursion of
j�j straddling H1 decomposes at its maximum into two independent copies of (R3;t; 0 �
t � Hx(R3)) put back to back. Together with Brownian scaling and (140), this implies
the identity

(M;D1 �G1)
d
=
�
V �1; V �2 S2

�
(142)

where V is independent of S2 with uniform distribution on [0; 1]. In particular,

D1 �G1

M2

d
= S2 (143)

which should be compared with (139).

7.3 Poisson interpretations

By exploiting the strong Markov property of Brownian motion at times when it returns
to its starting point, L�evy[41], Itô[34] and Williams [68] have shown how to decompose
the Brownian path into a Poisson point process of excursions, and to reconstruct the
original path from these excursions. See Rogers-Williams [55], Revuz-Yor [53], Blumen-
thal [11], Watanabe [64], Ikeda-Watanabe [33] for various accounts of this theory and its
generalizations to other Markov processes. Here we give some applications of the Poisson
processes derived from the heights and lengths of Brownian excursions.

For � a standard one-dimensional Brownian motion, with past maximum process
�t := max0�s�t �s let

Rt := �t � �t (t � 0):

According to a fundamental result of L�evy[41], [53, Ch VI, Theorem 2.3], there is the
identity in law

(Rt; t � 0)
d
= (j�tj; t � 0)

so the structure of excursions of R and j�j away from zero is identical. As explained in
Williams [68], L�evy's device of considering R instead of j�j simpli�es the construction
of various Poisson point processes because the process (�t; t � 0) serves as a local time
process at 0 for (Rt; t � 0). Consider now the excursions of R away from 0, corresponding
to excursions of � below its continuously increasing past maximum process �. Each
excursion of R away from 0 is associated with some unique level `, the constant value of
� for the duration of the excursion, which equals H`+ �H` where we now abbreviate H`

for H`(�) rather than H`(j�j).
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Proposition 13 (Biane-Yor[9]) The random counting measure N on (0;1)3 de�ned by

N(�) :=
X
`

1((`;H`+ �H`; ` � min
H`�u�H`+

�u) 2 �); (144)

where the sum is over the random countable set of ` with H`+ �H` > 0, is Poisson with
intensity measure d`�(dv � dm) where (v;m) denotes a generic value of

(H`+ �H`; ` � min
H`�u�H`+

�u)

and

�(dv � dm) =
dvp
2�v3=2

P (
p
v r3;1 2 dm) =

dm

m2
P (m2S2 2 dv) (145)

where r3;1 := max0�u�1 r3;u is the maximum of a 3-dimensional Bessel bridge (or standard
Brownian excursion) and S2 is the sum of two independent random variables with the
same distribution as S1 and T1(R3).

See also [49] for further discussion of the agreement formula (145) and some general-
izations.

Consider now the counting measure N3(�) on (0;1)3 de�ned exactly like N(�) in
(144), but with the underling Brownian motion � replaced by a BES(3) process R3.
That is

N3(�) :=
X
`

1((`;H3;`+ �H3;`; `� min
H3;`�u�T3;`+

R3;u) 2 � );

where H` := T`(R3).
From Proposition 13 and the McKean-Williams description of BES(3) as a condi-

tioned Brownian motion, we deduce the following:

Corollary 14 The point process N3 on (0;1)3 is Poisson with intensity measure

dh1(m<h)�(dv � dm)

where � is the intensity measure on (0;1)2 de�ned in (145).

Proof. The Poisson character of the point process follows easily from the strong Markov
property of R3. To identify the intensity measure, it is enough to consider its restriction
to (a; b)� (0;1)2 for arbitrary 0 < a < b <1. The restriction of N3 to (a; b)� (0;1)2

is generated by R3 after time H3;a and before time H3;b, during which random interval
R3 evolves like � conditioned to hit b before 0. The Poisson measure N derived from
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� in Proposition 13 is then conditioned to have no points (h; v;m) such that h 2 (a; b)
and m � h. The conditioned Poisson measure is just Poisson with a restricted intensity
measure, and the conclusion follows. 2

Since
H3;1 =

X
0<`<1

(H3;`+ �H3;`)

where the sum is over the countable random set of ` with 0 < ` < 1 and H3;`+�H3;` > 0,
and these H3;`+ � H3;` > 0 are the points of a Poisson point process, whose intensity
is the L�evy measure �S(dt) of the common distribution of H3;1 and S1. Hence for each
non-negative Borel function g

E

" X
0<`<1

g(H3;`+ �H3;`)

#
=

Z 1

0

g(t)�S(dt) (146)

In particular, for g(x) = xs=2 we deduce from Table 4 the following probabilistic inter-
pretation of Riemann's � function:

E

" X
0<`<1

(H3;`+ �H3;`)
s=2

#
=

�
2

�

�s=2 2�(s)

s(s� 1)
(<(s) > 1): (147)

See also [35, x4.10] and [12] for more general discussions of the Poisson character of the
jumps of the �rst passage process of a one-dimensional di�usion.

If ~M1 > ~M2 > : : : are the ranked values of the maxima of the excursions of R3 � R3

away from 0 up to time H1(R3), and ~Vi is the length of the excursion whose maximum
is ~Mi, then we have the representation

H1(R3) =

1X
i=1

~Vi =

1X
i=1

~M2
i S2;i (148)

where the S2;i are independent copies of S2, with the S2;i independent also of the ~Mi.
Now the ~Mi are the ranked points of a Poisson process on (0; 1) with intensity measure
m�2(1�m)dm. If the last sum in (148) is considered for ~Mi that are instead the ranked
points of a Poisson process on (0; 1) with intensity measure 2m�2(1 �m)dm, the result
is distributed as the sum of two independent copies of H1(R3), that is like S2. Together
with the fact that E(S2) = 2E[H1(R3)] = 2=3, the above argument shows that X = S2
satis�es condition (ii) of Proposition 12. Indeed, it was by this argument that we �rst
discovered this property of the law of S2.
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7.4 A path transformation

There are several known constructions of the path of a BES0(3) process, or segments
thereof, from the path of a one-dimensional Brownian motion �. It will be clear to readers
familiar with Itô's excursion theory that the previous discussion can be lifted from the
description of the point processes of heights and lengths of excursions of R3 below its past
maximum process to a similar description of a corresponding point process of excursions
de�ned as a random counting measure on (0; 1) � 
 where 
 is a suitable path space.
Essentially, the conclusion is that the point process of excursions of R3 below its past
maximumprocess is identical in law to the point process obtained from the excursions of
� below its past maximum process by deletion of every excursion whose height exceeds
its starting level, meaning that the path of � hits zero during that excursion interval.
Since the path of R3 can be reconstructed from its process of excursions below its past
maximum process, we obtain the following result, found independently by Jon Warren
(unpublished).

Theorem 15 For a standard one-dimensional Brownian motion �, let �t := max0�u�t �u
and let Rt := �t��t. Let (Gs;Ds) be the excursion interval of R away from 0 that strad-
dles time s. LetMs := maxGs�u�Ds Ru be the maximum of R over this excursion interval,
and

Ut :=

Z t

0

1(Ms � �s) ds and �u := infft : Ut > ug

Then the process (��u; u � 0) is a BES0(3).

Note that the continuous increasing process U in this result is anticipating. See also
Section 4 of Pitman [46] for closely related results.
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