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Abstract

Deconvolution is usually regarded as one of the so called ill-posed problems of applied math-
ematics if no constraints on the unknowns can be assumed. In this paper, we discuss the idea
of well-de�ned statistical models being a counterpart of the notion of well-posedness. We show
that constraints on the unknowns such as non-negativity and sparsity can help a great deal to
get over the inherent ill-posedness in deconvolution. This is illustrated by a parametric decon-
volution method based on the spike-convolution model. Not only does this knowledge, together
with the choice of the measure of goodness of �t, help people think about data (models), it also
determines the way people compute with data (algorithms). This view is illustrated by taking
a fresh look at two familiar deconvolvers: the widely-used Jansson method, and another one
which is to minimize the Kullback-Leibler distance between observations and �tted values. In
the latter case, we point out that a counterpart of the EM algorithm exists for the problem
of minimizing the Kullback-Leibler distance in the context of deconvolution. We compare the
performance of these deconvolvers using data simulated from a spike-convolution model and
DNA sequencing data.
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1 Introduction and background

Many signals from natural phenomena and advanced scienti�c instruments can be approximately

described by the following model,

y(t) = w(t) � x(t) =
Z �

��
w(t� s)x(s) ds ; (1)

where x(t) is the unknown function of interest, w(t) is a known point spread function, and the
observed function y(t) is recorded over a �nite period [��; �]. The task of deconvolution is to
reconstruct x from the observations on y, the knowledge of w and any prior knowledge concerning

x. We make two remarks here. First, the convolution relation is frequently an approximation
to a true but more complex relationship. Second, data are always observed in the presence of
measurement errors. Di�erent variants of the deconvolution problem arise in many areas such as
spectroscopy, chromatography, tomography, geophysics, seismology and pharmacokinetics. We also

see it in the form of equalization in communication theory, and deblurring in image analysis.

Our work on deconvolution was motivated by the problem of base-calling in DNA sequencing.
The current Sanger sequencing technique is a combination of enzymatic reactions, electrophoresis
and 
uorescence-based detection, see [1]. This procedure produces a four-component vector time

series. Base-calling is the analysis part of DNA sequencing, which attempts to recover the un-
derlying DNA sequence from the vector time series. Figure 1 and 2 illustrate two segments of a
signal from a single DNA sequencing run. The data shown here have been preprocessed by color-

correction to eliminate the so called \cross talk" phenomenon, see [26, 19] for recent progress in
this issue. In each of the two �gures, several peaks can be observed within each channel. Typically,

each major peak in the series corresponds to one base. Channels 1, 2, 3 and 4 correspond to bases
C, G, A and T respectively. If we superimpose the four channels, then we obtain a train of peaks.

The rationale of base calling is that the order of peaks from the four channels should agree with the

order of bases on the underlying DNA fragment. In Figure 1, the order of the underlying bases is:
CGTAGGACTTAGATGTTCTGTGATATCGCCTGGGT. This segment is easy to handle, since it
comes from the beginning of a sequencing trace. As sequencing progresses, electrophoretic di�usion

spreads peaks more and more. In regions where there are multiple occurrences of the same base,
several successive peaks may merge into one large block. This can be seen in Figure 2. Some
research showed that errors associated with runs of the same base constitute more than half of the

total errors in base-calling made by one widely-used system, see [2, 20, 23]. Furthermore, this kind
of error is more di�cult to deal with than other kinds in the assembling and editing step of DNA
sequencing. For this reason, it is worth making a greater e�ort in the regions with runs of the same
peaks.

The point spread function in (1) usually represents a blurring e�ect. If we assume that a sparse
virtual spike train corresponds to occurrences of one of the four kinds of bases, then the observations

in the the corresponding channel can be approximated by a convolution of this positive spike train,
denoted by x, with a �xed point spread function denoted by w. Thus the convolution relation shown

in (1) may be suitable for modeling DNA sequencing data, with di�erent point spread functions

being appropriate in di�erent regions of the run.
Deconvolution is one of the so called ill-posed problems of applied mathematics if no further con-

straints on the unknowns can be assumed. In this paper, we discuss the general idea of well-de�ned
statistical models being a counterpart of the notion of well-posedness. We show that constraints
on the unknowns such as non-negativity and sparsity can help a great deal to get over the inherent

2



Channel corresponding to base C

scan

co
nc

en
tra

tio
ns

150 200 250 300 350 400 450

20
00

60
00

10
00

0

Channel corresponding to base G

scan

co
nc

en
tra

tio
ns

150 200 250 300 350 400 450

0
20

00
60

00
10

00
0

Channel corresponding to base A

scan

co
nc

en
tra

tio
ns

150 200 250 300 350 400 450

0
20

00
40

00
60

00

Channel corresponding to base T

scan

co
nc

en
tra

tio
ns

150 200 250 300 350 400 450

0
20

00
60

00
10

00
0

Figure 1: A segment of slab gel electrophoresis sequencing data from near the beginning (provided
by the engineering group at Lawrence Berkeley National Laboratory). Each sub-plot of a run
contains a component of the vector time series. Since the data has been color-corrected, the
vertical scales are concentrations.
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Figure 2: A segment of slab gel electrophoresis sequencing data from near the end of a run (cf.
�gure 1 above).
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ill-posedness in deconvolution. This is illustrated by a parametric deconvolution method based on
the spike-convolution model. Not only does this knowledge, together with the choice of the measure

of goodness of �t, help people think of data (models), it also determines the way people compute
with data (algorithms). This view is illustrated by taking a fresh look at two familiar deconvolvers:
the widely-used Jansson method, and another one which is to minimize the Kullback-Leibler dis-

tance between observation and �tted values. In the latter case, we point out that a counterpart of
the EM algorithm, to which we refer by the term synchronization and minimization, exists for the
problem of minimizing the Kullback-Leibler distance in the context of deconvolution. We arrange
the material as follows. In section 2, we discuss the general philosophy, and give our point of view

on the problem of deconvolution of positive sparse spikes. In section 3, we discuss one concrete ver-
sion of this view, namely, the spike-convolution model and the associated parametric deconvolution
method. In Section 4 and 5, we look at Jansson's method, and deconvolution by minimizing the
Kullback-Leibler distance via the synchronization-minimization algorithm, respectively. In section

6, we compare the performance of various deconvolvers using two numerical examples, one based
on the data simulated from a spike-convolution model, and one based on DNA sequencing data.

2 General philosophy

2.1 A statistician's counterpart of the notion of well-posedness

Technically, we assume the following throughout this section in (1): the point spread function w(�)
has �nite support (��; �), where 0 < � < � and w(�) 2 C2[��; �]; x(t) has support in [��+�; ���].
In DNA sequencing, we can cut the raw data into pieces at valley points, and deconvolve each piece

separately. By doing so, we can not only make the assumption that there are no signi�cant signals
near the two ends as mentioned above, but we can also assume the point spread functions are more

or less homogeneous in terms of their spread.
Let us ignore measurement errors and focus on the signal structure for the moment The con-

tinuous version of the deconvolution problem (1) can be regarded as one of solving a Fredholm
integral equation of the �rst kind as follows:Z �

��
w(t; s)x(s) ds = y(t) ; (2)

if the kernel w(t; s) is taken to be w(t � s). The structure of Fredholm equations of the �rst
kind is revealed by the singular value decomposition theorem. If

R �
��
R �
�� w

2(t; s) dtds < 1, then
the integral operator W as de�ned in the equation (2) is a compact operator from L2[��; �] to
L2[��; �]. Its adjoint operator W� de�ned by

R �
�� w(s; t)x(s) ds = y(t), is also compact. In this

case, there exist two orthogonal sequences f�kg and f kg in L2[��; �] such that W�k = �k k,
W� k = �k�k for all positive integers n, where �1 � �2 � � � � > 0 are the singular values of W. If

there are in�nite many nonzero �k's, then zero is their only cluster point. Let Q be the orthogonal
projection from L2[��; �] onto the null space N(W). Then for any x(�) 2 L2[��; �], we have the
following decomposition:

x =
1X
k=1

< x; �k > �k +Qx; Wx =
1X
k=1

�k < x; �k >  k :

The equation of the �rst kind Wx = y is solvable if and only if y 2 N(W�)? and
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P1
k=1

1
�k2

j < y; k > j2 <1. In this case, a solution is given by

x =
1X
k=1

1

�k
< y; k > �k : (3)

This is in fact the result of Picard Theorem, see [21, 5]. A reproducing kernel view of this structure
can be found in Wahba [42] and references mentioned there. As can be seen, the problem of

solving a Fredholm equation of the �rst kind is ill-posed because one of the three well-posedness
conditions is violated. According to Hadamard [12], a problem in mathematical physics is well-
posed if it satis�es the following three properties: the existence of a solution, the uniqueness of
the solution, and the continuous dependence of the solution on the data; otherwise, it is called

ill-posed. The deconvolution problem (1) as a special case of (2) is generally an ill-posed one if no
further knowledge can be assumed. To see this more clearly, let us denote the Fourier coe�cients of
x, w and y by f�xkg, f �wkg and f�ykg respectively. By the convolution theorem, we have �yk = �wk �xk .
Now the Fourier base feiktg plays the roles of �k and  k in the singular decomposition as described

above. We expect one of the following would happen.

1. For some k, �wk = 0, but �yk 6= 0. In this case, the solution does not exist.

2. For some k, �wk = 0, and �yk = 0. In this case, the solution is not unique for we cannot
reconstruct the information contained in the corresponding term of �xk.

3. None of �wk is zero, but �wk ! 0 as k ! 0 according to the smoothness condition we impose

on w. In this case, the solution x is not stable with respect to small perturbation of y.

The point spread functions in deconvolution are usually low pass linear �lters, and do indeed have
Fourier coe�cients which are zero or close to zero in the high frequency range.

The method of regularization introduced by Tikhonov [37], also see [38], is widely used in
numerical analysis to deal with ill-posed problems. One major idea underlying the regularization

method is to try to damp out the in
uence of the factor 1=�k in (3). O'Sullivan [31] provided a

statistical perspective of the method of regularization, and identi�ed the tools for assessing the
performance characteristics of an inversion algorithm.

The convolution structure in (1) is frequently an approximation to a true but more complex
relationship. Besides, data are always observed in the presence of measurement errors. Thus
the idea of statistical modeling could be helpful in these problems. In a well de�ned statistical

model, assumptions are made about the elements involved in a system which re
ect the best of

our knowledge. Inference can then be made based on data and the model structure. In fact,
statisticians have the counterpart of concepts of Hadamard's well-posedness. In a well de�ned
statistical model, usually we can �nd: 1. identi�ability of the unknowns; 2. existence of an
unbiased estimate or something close to this; 3. reasonable stability of estimates in the statistical

sense|variance, robustness, etc. We make several remarks here. First, the unknowns, either in
the form of parameters or random variables, are not necessarily points in Euclidean space. They
could be de�ned as equivalence classes whose elements share some common feature de�ned by

researchers, and they could be represented by typical elements in the classes or by some other
mathematical device. Second, in many cases, especially in nonparametric statistical problems,
the bias and variance cannot be controlled simultaneously, and a trade-o� has to be made when
constructing estimates. Third, we can measure the degree of well-posedness or ill-posedness using
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the achievable rate of convergence of the estimates towards the unknowns, one such example can
be found in Fan [9]. Finally, it is quite possible that we cannot propose legitimate or well de�ned

statistical models in the early stages of some piece of scienti�c research. There are two possibilities.
It could be that we have not found the appropriate mathematical tool. Or it could be that we do
not have enough information to build up a model for the purpose of the research. In the latter

case, more \shoe leather" seems to be the only way to carry on the work, though usually this is
a hard job, see Freedman [10]. Statisticians can still play an useful role here for we can provide
guidance as what information could be relevant and where the labor should be spent. Con�dence in
a hypothetical model relies on both a good understanding of the relevant mathematical structures

and the solid scienti�c evidence supporting the model's assumptions.

2.2 Deconvolution of positive sparse spikes

Sometimes we consider a discretized version of (1):

y(tk) =

Z �

��
w(tk � s)x(s) ds �

[(n�1)=2]�lX
j=�[n=2]+l

w(tk � sj)x(sj); (4)

where y is observed at tk, and (tk) and (sk) are the lattice points 2�k=n, k = �[n=2]; � � � ; [(n� 1)=2],

l = [2��=n]. Let y = (y(tk))
0, x = (x(sj))

0, and W = (w(tk � sj)). Then we can rewrite (4)

y =Wx : (5)

Note that W is only a n by (n � 2l) matrix, for we have removed from x the zero elements
near the ends of the interval. Later we also use the notation yk, xj, wk;j , where k = 1; � � � ; n,
j = 1; � � � ; n � 2l, and it is understood that they are the elements of y, x and W. Usually the

design matrix W is very-ill conditioned, and so direct least squares method does not apply. One
immediate modi�cation is the ridge regression estimate given by (W0W+ �I)�1W0y, which is the
minimizer of (y �Wx)0(y �Wx) + �x0x. That is, we impose a penalty on the \energy" of the

unknowns while minimizing the residual sum of squares. This is one example of the regularization
method. It is known in statistics that the ridge estimate can give a considerably smaller variance
at the price of a slightly larger bias.

In order to have a better understanding of this problem, we ask ourselves a few fundamental

questions: How should we measure the goodness of a solution? Is there any other information
available on the unknowns x? If so, how can be use it? One way of answering the �rst question

is to select a measure of distortion between y and Wx. Candidates include the L2 norm, L1

norm, or in general a Lp norm with 1 � p � 1. A deeper yet di�cult question relevant to the
discussion here is: what is the distortion measure used by human perception? As for the second
question, in many situations the unknowns represent some kind of \energy" produced by nature
or a relevant experiment. Thus we might describe them by a positive spike train, possibly with

various inter-arrival times and amplitudes. In addition, the spikes|the \signal" to be detected
or monitored|are sparse in many applications, though they could be quite close to each other.
Roughly speaking, sparsity in the formulation (5) means that the number of nonzero elements in
the unknown is comparatively small in relation to the number of observations. We note that the

above two questions are related to one another. For example, if we can assume that all the elements
of x, y and W are nonnegative, then we can use the Kullback-Leibler divergence to measure the

6



distance between y and Wx. In this exposition, our focus is on the deconvolution of positive
sparse spikes motivated by the DNA sequencing data. We feel an e�ective deconvolver should take

into account known features of unknowns and appropriately address issues such as the distortion
measure. Consideration of these issues determines not only the way we think about data, but also
the the way we compute with the data. From the perspective of implementation, a deconvolver is

essentially a suite of algorithms, and algorithms that are good in terms of convergence, complexity,
use of memory, and ease of automation are extremely important in applications such as DNA
sequencing. Indeed, in the literature some researchers go directly to the design of algorithms
based on their previous experience. By contrast other researchers, especially statisticians, build

statistical models, and propose algorithms based on them. But even in the �rst case, the algorithms
used in a deconvolver should be consistent with the researchers' experience, and this experience
might be regarded as a kind of \model", though not one rigorously formulated in mathematical
terms. In the next three sections, we study several deconvolvers which are quite distinct in their

mathematical formulations and algorithms. The spike-convolution model described in Section 3,
which explicitly formulates the positivity and sparsity by assuming the unknowns have the form

of a positive Dirac train, is a well-de�ned statistical model in the sense that it is identi�able and

there exists consistent estimates of its parameters. If the spike-convolution model were a good
approximation to the problem being studied, this suggests that the problem of deconvolution of
positive sparse trains be not ill-posed.

3 The spike-convolution model and parametric deconvolution

With DNA sequencing data in mind, we [27] proposed a speci�c form for the unknown signal x as

follows.

x(t) = A0 +
pX

j=1

Aj �(t� �j); (6)

where �(�) is the Dirac delta function, and the coe�cients Aj , referred as \heights" of the spikes, are
positive. Thus the underlying signal x(t) is a linear combination of a �nite number of spikes with
positive heights, together with a constant baseline. We denote the signal x in (6) by SC(�; p;A; � ),

and refer its convolution with w as in (1) by SC(w; p;A; � ) We assume what can be observed in
practice is a sample of the SC(w; p;A; � ) corrupted by additive measurement errors:

z(tk) = y(tk) + �(tk) = A0 +
pX

j=1

Aj w(tl � �j) + �(tk); (7)

where tk are the lattice points 2�k=n, k = �[n=2]; � � � ; [(n� 1)=2]. Here fz(tk)g denotes the
observations, and the f�(tk)g are i.i.d. with E(�(tk)) = 0, V ar(�(tk)) = �2, and a �nite third
moment. The features of the unknowns|non-negativity and sparsity, as discussed in subsection

2.2|are included in this parameterization. Besides, the model is de�ned on a continuous scale,
and the use of Dirac deltas leaves the room for a high resolution deconvolution.

Within the setting of this model, deconvolution is a standard parameter estimation problem.
The parameters in a spike-convolution model include the baseline, the error variance, and the

number, locations and amplitudes of the spikes. This is why we term the deconvolution procedure
proposed in [27] as parametric deconvolution of positive spikes (abbreviated by PDPS later). The
notation of two inner products is useful. We de�ne the inner product of two functions y1(t) and
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y2(t), belonging to L2 [��; �], by < y1; y2 >=
1
2�

R �
�� y1(t) y2(t) dt. For functions z1(t) and z2(t)

well de�ned at the lattice points tk, we also de�ne the following inner product < z1; z2 >n=
1
n

P[n�1
2

]

k=�[n2 ]
z1(tk) z2(tk). PDPS does not require that the point spread function be nonnegative, but

does require that there be no hole in the Fourier transform of the point spread function. That is,
the Fourier coe�cients of w, vk =< w; eikt > are not zero for k = 0 ;�1; � � � ;�L0, where L0 is the
upper bound on the number of spikes.

The spike-convolution model SC(w; p;A; �) is identi�able, but as pointed in [27] it does have

a irregular structure. It is very di�cult to estimate all the parameters in one step because of their
di�erent roles in the model. PDPS uses residual sum of squares as the goodness of �t, and combines
several ideas such as Toeplitz structures, regression and model selection techniques. The core of

PDPS consists of two parts: model �tting and model selection, which are sketched in the following.

Algorithm 3.1 Model-�tting.
Starting with the empirical trigonometric moments f̂k =< z; eikt >n, for any given nonnegative

integer m � L0,

1. Deconvolution: let ĝ0 = f̂0, ĝk = f̂k v0=vk , for k = �1; � � � ;�m.

2. Trigonometric moment estimates of spike locations: construct the Toeplitz matrix Ĝm =

(ĝj�i), and compute its smallest eigenvalue Â
(m)
0 (assuming its multiplicity is one), and cor-

responding eigenvector �̂(m) = (�̂
(m)
0 ; � � � ; �̂(m)

m ). On the unit circle of the complex plane, �nd

the m distinct roots of Û (m)(z) =
Pm

j=0 �̂
(m)
j zj, which we denote by fei�̂

(m)
j g, j = 1; � � � ;m.

3. Eliminate those f�̂ (m)
j g falling outside [��+�; ���], and denote the locations of the remaining

spikes by f��j; j = 1; � � � ; �mg, where �m � m.

4. Estimate the heights �Aj corresponding to these spikes by minimizing

k z(t)� �A0 �
�mX

j=1

�Aj w(t� ��j) k2n : (8)

This results in the least squares estimates of the baseline and heights.

The output of this algorithm is a SC(w; �m; �A( �m); �� ( �m)). The model selection procedure has two
stages.

Algorithm 3.2 Two-stage model selection.

1. First stage. Among all the SC(w; �m; �A( �m); �� ( �m)) models �tted by Algorithm 3.1, choose the

one that minimizes the following

MGIC1(s) = ��(s)2 +
c1(n) log n

n
s ; (9)

where ��(s)2 is the quantity in (8), and c1(n) � 0 is a penalty coe�cient. Denote this model

by SC(w; �m0; �A
( �m0); �� ( �m0)).
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2. Second stage. We regard the model selected in the �rst stage as a hypothetical regression

model, and use a backward deletion procedure to select the �nal model. Namely, starting from

SC(w; �m0; �A
( �m0); �� ( �m0)), we delete the peak that is least signi�cant in terms of a penalized

sum of squares. Compare the two models according to the following statistic

MGIC2(s) = ��(s)2 +
c2(n) log n

n
s ; (10)

where ��(s) 2 is the sum of squares �tted by a model with s peaks, and c2(n) > 0 is another

penalty coe�cient possibly depending on n. Choose the one that minimizes MGIC2. If one

peak can be deleted according to this criterion, then we iterate this procedure until we cannot

delete any more peaks.

This two-stage model selection procedure is a bit subtle. Its goal is not only estimating the model
order, but also producing a parameter estimate with much smaller bias and variance than that of

the trigonometric moment estimate if the order could be assumed to be known, This is achieved by
�nding a "best over�tting" model in the �rst stage, and eliminating the false spikes in the second
stage. Usually we impose smaller penalty in the �rst stage, i.e. c1(n) < c2(n). The estimate

obtained from PDPS is
p
n-consistent if the spike number is estimated correctly from the model

selection procedure. Under the assumption of normal errors, we can further use Gauss-Newton
algorithm to construct one-step estimate to improve the accuracy. This estimate is asymptotically
normal and e�cient in the sense that the variance of its asymptotic distribution is the inverse of

the Fisher information matrix given by0
BBBBBBBBBBBB@

<  A0 ;  A0 > <  A0 ;  A1 > � � � <  A0 ;  Ap
> <  A0 ;  �1 > � � � <  A0 ;  �p >

<  A1 ;  A0 > <  A1 ;  A1 > � � � <  A1 ;  Ap
> <  A1 ;  �1 > � � � <  A1 ;  �p >

...
...

. . .
...

...
. . .

...

<  Ap
;  A0 > <  Ap

;  A1 > � � � <  Ap
;  Ap

> <  Ap
;  �1 > � � � <  Ap

;  �p >

<  �1 ;  A0 > <  �1 ;  A1 > � � � <  �1 ;  Ap
> <  �1 ;  �1 > � � � <  �1 ;  �p >

...
...

. . .
...

...
. . .

...
<  �p ;  A0 > <  �p ;  A1 > � � � <  �p ;  Ap

> <  �p ;  �1 > � � � <  �p ;  �p >

1
CCCCCCCCCCCCA
;

where  A0 = 1,  Aj
= w(t� �j),  �j = �Ajw

0(t� �j), j = 1; � � � ; p. The likelihood structure in the

spike-convolution model is similar to that of the model used in Poskitt et al. [32]. We may skip
the maximum likelihood estimate or the one-step estimate tuning in applications, but the MLE,
as a benchmark in terms of asymptotics, helps us to evaluate other procedures. For example, we
found, in the simulation study in [27], that the bias and variance of PDPS parameter estimates are

much closer to those of MLE compared with a direct trigonometric moment estimate, even though
the number of spikes in the latter method is assumed to be known. Asymptotic e�ciency theory
also describes what resolution we can achieve based on this spike-convolution model. From the
computational point of view, PDPS requires the computation of minimum eigenvectors of Toeplitz

matrices with sizes determined by the possible number of spikes involved (usually up to 20 in DNA
sequencing), the calculation of roots of polynomials restricted on the unit circle, and regressions.

It is obviously more computationally intensive than the two methods discussed in the next two

sections, but is not a problem at all with current computing power. In practice, we could even skip
the second round of model selection, and all we need is to set a upper bound (and a lower bound
if possible) for the number of spikes and the penalty constant in MGIC.
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The identi�ability of the spike-convolution model and the consistency of the estimates generated
by PDPS imply that this model is well-de�ned. Hence the problem of deconvolution associated

with this model is really not ill-posed. If this model is a reasonable one for the real problem, this
analysis sheds lights on how far we can go. As for implementation, algorithms other than PDPS
do exist in the literature, and we now look at two of them.

4 Jansson's method

Jansson's method is very widely used in applied sciences, and works quite well. It has its roots in
the long standing Van Cittert iterative method, see [15], which can be regarded as a regularization
method. We here look at it from the perspectives of the last section. First we digress and study
a simpler but illuminating method. Assume the observations y in (5) are corrupted by additive

measurement errors �. Under the assumption that the measurement errors � are i.i.d. Gaussian,
the maximum likelihood estimate of x is

x̂ = argmin
x�0

ky �Wxk2 : (11)

In this case, we are naturally led to the L2 norm as a measure of goodness of �t. The computation

here is the minimizing a convex functional over a convex set. Conditions characterizing legitimate
solutions are provided by the Kuhn-Tucker theorem, see [29]. According to this theorem, we can
divide the set 1; 2; � � � ; n into two subsets: E and S, see [24]. A necessary and su�cient condition
for x̂ to be a solution of (11) is the following:

(
x̂k = 0; W0(Wx̂� y)k > 0; for k 2 E;
x̂k > 0; W0(Wx̂� y)k = 0; for k 2 S: (12)

The last quantity W0(Wx̂ � y) is in fact the derivative of the L2 loss function with respect to
x̂. Lawson and Hanson ([24], page 159-164) provided an algorithm solving the general problem

of nonnegative least squares, and prove its �nite convergence. In this algorithm, a series of least
squares problems without constraints are solved sequentially according to the tentative status of
the slack set S, whose initial state is an empty set. A positive component is added to S in the
main loop, followed by a possible deletion of some components from S in the inner loop, and the

loop is terminated when the Kuhn-Tucker condition is satis�ed. Other algorithms such as the
interior point algorithm have been developed for the optimization problem with constraints, see
[29]. Motivated by the Kuhn-Tucker condition, we describe the following algorithm, taking into

account the non-negativity constraints, to compute an approximate solution of (11).

Algorithm 4.1

1. Let xold = y, i.e. take the observations as our starting point. Go to step 2.

2. Let xnew = xold � rW0(Wx̂old � y), where r is a positive relaxation number. Go to step 3.

3. Let xnew = maxfxnew; 0g. Go to step 4.

4. Check condition (12). If satis�ed, stop; otherwise, set xold = xnew, and go to step 2.
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This algorithm guarantees that once we come to a point satisfying a Kuhn-Tucker condition, no
further iterations will move it away. In contrast with Lawson and Hanson's algorithm, each iteration

of this algorithm could change the tentative slack set S by adding some components and deleting
others simultaneously. Though the matrix W appears in the description, because of its special
structure the matrix multiplications in step two are in fact carried out by convolution. No storage

and inversion of large matrices is needed here. Another prominent feature of this algorithm is the
fact that the more iterations we carry out, the more complete the deconvolution, or, visually, the
sharper are the reconstructed spikes. We use this algorithm as a bridge to understand the core
algorithm in Jansson's method.

In Jansson's method, the unknowns are not assumed to be zero at the two ends. With a slight
abuse of notation, from now throughout this section, we assume x has the same length n as y, and
so W is a n by n square matrix. For some point spread functions such as the Gaussian, which is
commonly seen in spectroscopy, the matrix W is almost nonnegative. That is, W� =W+ �I can

be a positive matrix even for a small �, though W� could still be ill-conditioned to some extent.
Notice that the solution y =W� x minimizes x0W� x� 2y0x. This observation suggests the use of

the following weighted L2 norm as a measure of goodness of �t:

min
x�0

[(W� x� y)0W�
�1(W� x� y)] : (13)

The Kuhn-Tucker condition for the solutions of this is the following:(
x̂k = 0; (W� x̂� y)k > 0; for k 2 E;
x̂k > 0; (W� x̂� y)k = 0; for k 2 S: (14)

In comparison with (12), W� appears only once here. Now we provide a version of Jansson's
method.

Algorithm 4.2 (Jansson's method)

1. Let xold = y. Go to step 2.

2. Let xnew = xold� r0 r(xold) (Wxold� y)), where r(�) is a positive relaxation function, and r0
is the relaxation number. Go to step 3.

3. For the �rst few iterations, apply a smoother to the estimate. Otherwise go to step 4.

4. Let xnew = maxfxnew; 0g.
5. To continue the iteration, set xold = xnew, go to step 2. Otherwise stop.

Jansson's method does not require convergence, but stops the iterations when the result is sat-
isfactory. Now let us compare this algorithm with Algorithm 4.1. If we skip step 3, ignore the
relaxation function r(�), and replace W by a slight di�erent version W�, then it is easy to see that

the goal of the iteration is to minimize the weighted L2 distance as in (13), whose derivative with
respect to x is given by W� x

old � y. Now let us look at the role of the relaxation function. This
nonnegative function takes the value zero at the boundary. One such example is shown in Figure

3, which will be used later in our numerical examples. Let us adopt the notation, EJ and SJ ,
analogous to E and S in the Kuhn Tucker condition (12). Whenever a component of x is set to zero
at some point in the iterations, it will remain in the zero component set EJ because of the special
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Figure 3: A relaxation function.

feature of the relaxation function. Thus the relaxation function introduces a backward deletion

procedure with respect to the nonzero component set SJ . If we skip the smoothing steps, then
we observe from our numerical experiments that each signal peak could split into several closely
standing spikes as iterations progress. A similar phenomenon occurs in Algorithm 4.1, see Figure
11. Moderate smoothing could dampen this e�ect, and this is inconsistent with the assumption

that the objects to be recovered are sparse. Keep in mind that over-smoothing could result in the
loss of resolution. From the computational point of view, the main algorithmic operations involved
in Jansson's method are multiplication and convolution of vectors, which are easily implemented
with simple computing facilities. But we do need to determine the relaxation function and the

smoothers.

5 Deconvolution by minimizing the Kullback-Leibler distance via

the synchronization-minimization algorithm

In this section, we assume that all the elements of x, y and W are nonnegative. It should be

noticed that our treatment to the deconvolution problem in this section applies to the general
linear inverse problems with positivity constraints discussed in Vardi and Lee, [40], and Vardi [39],
and referred to as LININPOS problems. With this generalization in mind, we denote the index

sets of x and y by J and K respectively. Without loss of generality, we normalize them such
that

P
j2J xj = 1,

P
k2K yk = 1, and

P
k2K wk;j = 1. Now y and Wx can be regarded as two

probability mass functions on K, and we can �nd an estimate of x by minimizing their Kullback-

Leibler divergence D(ykWx), see [3] for de�nition. At this moment, it is convenient to consider
two probability measures on J �K denoted by �(j; k) and �(j; k) respectively. The two marginal
probabilities and the two conditional probabilities of �(j; k) are denoted by �1(j), �2(k), �1j2(jjk),
�2j1(kjj). Similar notation are de�ned for �(j; k). The two sets of notation are linked as follows:

the marginal probability �2(k) is given by yk; the conditional probability �2j1(kjj) is given by wk;j .
According to the chain rule for the Kullback-Leibler distance, which can be easily checked or found
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in [3],
D(�(j; k)k�(j; k)) = D(�2(k)k�2(k)) +D(�1j2(jjk)k�1j2(jjk)) ;

and the problem of minimizing the Kullback-Leibler distance can be stated as a double minimization
problem

min
�1(j)

D(�2(k)k�2(k)) = min
�1(j)

min
�1j2(jjk)

[D(�(j; k)k�(j; k))�D(�1j2(jjk)k�1j2(jjk))] (15)

= min
�1(j)

min
�1j2(jjk)

[D(�1j2(jjk)�2(k)k�2j1(kjj)�1(j))�D(�1j2(jjk)k�1j2(jjk))] :

Algorithm 5.1 (Synchronization-minimization)

1. Initialization: let �1(j) be the uniform distribution. Go to step 2.

2. Synchronization: compute the reverse conditional probability �1j2(jjk) from �2j1(kjj) using

Bayes' theorem. Let �1j2(jjk) = �1j2(jjk). Go to step 3.

3. Minimization: minimize D(�1j2(jjk)�2(k)k�2j1(kjj)�1(j) over �1(j). Go to step 2.

Combining the solutions in step 2 and 3, which are �1j2(jjk) = �2j1(kjj)�1(j)=(
P

j �2j1(kjj)�1(j))
and �1(j) =

P
k �(j; k), we get the iterative formula,

�new1 (j) = �old1 (j)
X
k

�2j1(kjj)�2(k)P
j �2j1(kjj)�old1 (j)

: (16)

The Kullback-Leibler distance on the left hand side of (15) is non-increasing after each iteration.

In the synchronization step, we make the second term on the right hand side zero by synchronizing
the two reverse conditional probability measures while keeping the di�erence of the two terms

unchanged. In the minimization step, the �rst term on the right hand side is minimized while
the second term cannot go down at all. In fact, the synchronization and minimization under the

framework of Kullback-Leibler distance are the analogs of the expectation and maximization steps
in the E-M algorithm. The two terms on the right hand side of (15) correspond to the Q and
H in the study of the convergence of E-M algorithm, see Dempster et al. [6], and also Little

and Rubin [28], Wu [43], McLachlan and Krishnan [30]. The great power of E-M algorithm in

statistical modeling lies in the appropriate introduction of missing data. It opens modelers' minds
while keeping the computational job under control. The reason that we are taking another look
at it in this deconvolution or more generally LININPOS context is to point out that a parallel

idea, which we refer to by the terms of synchronization and minimization, exists for the problem
of minimizing the Kullback-Leibler distance. For similar ideas, see Csisz�ar and Tusn�ady, [4]. If we
put our argument in the framework of the majorization-minimization theory, see Lange et al. [22]
and Hunter and Lange [13, 14], the Kullback-Leibler distance between the joint measures plays the

role of the majorizing function.
Going back to the old set of notation, the synchronization-minimization algorithm leads to the

iterative formula,

xnewj = xoldj

X
k

wk;jykP
j wk;jx

old
j

: (17)
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In comparison to (12), the Kuhn-Tucker condition of a solution x̂ for this minimizing Kullback-
Leibler distance problem is given by8<

:
x̂j = 0;

P
k

wk;jykP
j
wk;j x̂j

< 1; for j 2 E;
x̂j > 0;

P
k

wk;jykP
j
wk;jx̂j

= 1 for j 2 S: (18)

Vardi and Lee [40] obtained the same algorithm by maximizing the likelihood of data with \in�nitely

large sample size" and using the E-M algorithm. We originally formulated deconvolution of DNA
sequencing in [25] as a missing data problem in a multinomial model with a two way indices. But
the determination of the e�ective sample size remains a problem, and needs further investigation
for the purpose of inference. As a matter of fact, the sample size does not appear in (17) at all,

and the idea of the minimizing the Kullback-Leibler divergence su�ces for deriving the algorithm.
Vardi, et al. [41] proved that the the sequence generated by (17) converges to a global minimizer of
(15), a convex functional over a convex set, using the Csisz�ar's three point inequality on Kullback-

Leibler divergence, [4, 3]. The condition that ensures the uniqueness of the global maximum can
also be found there. It is easy to see that the limit of the sequence generated in (16) is a solution
to the self-consistency equation,

�1(j) = �1(j)
X
k

�2j1(kjj)�2(k)P
j �2j1(kjj)�1(j)

;

and that it satis�es D(�2(k)k�2(k)) = D(�(j; k)k�(j; k)), which says the Kullback-Leibler diver-
gence of the two marginals equals that of the joint measures, and that the synchronization of the
two reverse conditional probabilities is achieved when the minimum is reached.

The iterative formula (17) is really a folk algorithm, for many writers have come up with it

in di�erent scenarios. Shepp and Vardi [34] and Vardi, et al. [41], proposed a model for positron
emission tomography (PET), in which emission occurs according to a spatial Poisson distribution,
and use this formula to obtain the maximum likelihood estimates of the emission intensities. Later,
Vardi and Lee [40] and Vardi [39] found this algorithm is applicable to a wide class of linear inverse

problem with positive constraints. Snyder et al. [35] obtained the algorithm as a solution to a
general Fredholm integral equation of the �rst type, and their derivation used the E-M algorithm.
Richardson [33], Kennett et al. [16, 17, 18], and Di Ges�u et al. [7] obtained the formula from an

intuitive Bayesian point of view, and termed it \Bayesian deconvolution". It is worth mentioning

that the 2-D image data studied by Shepp and Vardi [34], Vardi, et al. [41], Snyder et al. [35]
are quite distinct from the DNA sequencing data, the focus of this research, though the same
algorithm is derived. In the �rst case, if we project image data onto 1-D as curves, then the

purpose of deblurring is to sharpen the edges of a kind of \step function"s. In deconvolution, the
signal to be recovered are spikes. Thus the performance of the algorithm in the 2-D deblurring
case, although studied by many people, cannot be transplanted directly to the later case. From
the computational point of view, this algorithm is extremely easy to code and implement. But we

need to determine when to stop the iterations.

6 Numerical examples and discussion

In this section, we show the performance of various deconvolvers discussed in this paper using two
numerical examples. First let us look at one data set generated from a spike-convolution model.
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Example 6.1

z(tl) = 0:5 + w(tl + 1:9) + 1:25w(tl + 1:6) + 1:25w(tl + 1:3) + w(tl) +

1:25w(tl � 0:5) + 1:1w(tl � 1:0) + 1:25w(tl � 2:5) + �(tl) ;

where the sample size n = 1024, w(t) is a Gaussian function bp
2�

expf� b2 t2

2 g with the scale param-

eter b = 8 being truncated at �4 SD. Errors are normally distributed with mean 0 and standard

deviation 0.3. Figure 4 shows a simulated sample from this model. The seven spikes contained
in this signal have similar heights, and this is typical for sequencing data. The three on the left
are quite close to one another, and this is the tough part. The baseline is assume to be known in
all methods except PDPS. In Figure 5, we show the result of PDPS by depicting the estimated

locations and heights of the spikes, which is essentially the truth. A systematic simulation study of
PDPS using the same model can be found in [27]. Figure 6 is a result of applying Jansson's method.
The spikes are easily identi�ed by not so sharp but well separated peaks, though the relative heights
are slight di�erent from the truth. The synchronization-maximization algorithm, which is used to

minimize the Kullback-Leibler distance, is quite slow. Figure 7 is the result after 200,000 iterations.
The Kuhn-Tucker condition (18) is checked to be approximately true up to the the �fth-digit to
the left of the decimal point. The convergence rate of this algorithm is obviously not high. As the

iterations approach a minimum point, which satis�es the Kuhn-Tucker condition, we found there
exists a kind of spike splitting phenomenon around the true ones. But it is also observed that this
sensitive phenomenon occurs gradually, which could be due to the the monotonicity property of
the Kullback-Leibler distance being minimized. Thus solutions obtained part way to convergence

make more sense if we prefer to have sparse peaks, especially when we more or less know how many
peaks there should be. Figure 8 shows a result after 1000 iterations. At the early stage of the
synchronization-maximization algorithm, the boundary e�ect is strong. This could be dampened
out by padding some number of zeros to the two ends of the raw data. We also apply Lawson and

Hanson's algorithm to minimize the L2 distance, and the solution is shown in Figure 9. The sharp
spikes being reconstructed by this method is impressive. One the other hand, the ridge regression

solution is unsatisfactory, no matter how the � parameter is selected. Figure 10 shows the result

with � = 100. Algorithm 4.1, is much less computationally intensive and storage-demanding than
Lawson and Hanson's algorithm, and it is interesting to look at one of its solution in Figure 11. By
applying a smoother to it, we can generate a signal very similar to that in Figure 6. In fact, there

is no signi�cant di�erence if we replace step 2 in Jansson's method by that of Algorithm 4.1.

Example 6.2 Real sequencing data.

We now extend our comparison of these deconvolvers to a segment of typical DNA sequencing data,
depicted in Figure 12. It was provided by the engineering group at Lawrence Berkeley National
Laboratory. Deconvolution is carried out separately for each channel, and so only one channel is

presented here. The point spread function is chosen to be a truncated Gaussian function. A result

of Jansson's method and a solution of minimizing the Kullback-Leibler distance after 600 iterations
are shown in Figure 14 and 15 respectively. The results of applying Lawson and Hanson's method
and Algorithm 4.1 can are in Figure 16 and 17. For this data set, we also tried the method of

minimizing the L1 distance between y and Wx via the linear programming algorithm. It can be
seen that the results obtained by minimizing L1 or L2 are similar to each other. We also tried
the maximum entropy deconvolution method, see Gull and Daniel [11], which is to maximize the
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entropy of the unknown x subject to the L2 distance, namely,

min
x�0

X
k

xk log xk subject to kWx� yk2 � E; (19)

where E is a suitable positive number which controls the goodness of �t of the model. A regularized

form of the maximum entropy deconvolution is given by

min
x�0

[kWx� yk2 + �
X
k

xk log xk] ;

where � is a positive number. In fact, there is a one-to-one correspondence between the E in
(19) and � if we can make it data-dependent, see [29]. Donoho et al. [8] show that this maximum

entropy deconvolution procedure has certain advantages such as the enhancement of signal-to-noise
and super-resolution when the signal is nearly-black. However, note that the estimate obtained
by maximizing the entropy functional is not scale-invariant. One result from such a procedure
is shown in Figure 19. Stark and Parker [36] proposed new algorithms for solving this kind of

problem. In comparison with these \ non-parametric" methods, the result obtained by parametric
deconvolution as shown in Figure 12 is much cleaner and more more accurate in estimating the
locations and heights of the major spikes.

To summarize, if non-negativity constraints can be identi�ed as prior knowledge on the un-
knowns, this is a great help in a deconvolution problem. The gains are greatly enhanced if a
parsimonious parametric model such as the spike-convolution model can be proposed for the un-
knowns. In the application of deconvolution to DNA sequencing, Jansson's method, which is easy

in implementation, is a good practical choice. The method of minimizing the Kullback Leibler
distance, which has been used widely in similar contexts, provides a fair solution. The fairly new
parametric deconvolution method based on the spike-convolution model seems promising based on
our analytic and numerical experience.
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Figure 4: Data.
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Figure 5: PDPS.
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Figure 6: Jansson's method.
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Figure 7: Minimum K-L distance
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Figure 8: Halfway of Minimizing K-L distance.
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Figure 9: Minimum L2 norm.
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Figure 10: Ridge regression.
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Figure 11: Algorithm 4.1.
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Figure 12: Raw data.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13: PDPS.
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Figure 14: Jansson's method.
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Figure 15: Minimizing K-L distance.
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Figure 16: Minimum L2 norm.
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Figure 17: Algorithm 4.1.
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Figure 18: Minimum L1 norm.
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Figure 19: Maximum entropy.
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