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Abstract. We study a class of Gaussian random �elds with negative corre-
lations. These �elds are easy to simulate. They are de�ned in a natural way
from a Markov chain that has the index space of the Gaussian �eld as its
state space. In parallel with Dynkin's investigation of Gaussian �elds having
covariance given by the Green's function of a Markov process, we develop con-
nections between the occupation times of the Markov chain and the prediction
properties of the Gaussian �eld. Our interest in such �elds was initiated by
their appearance in random matrix theory.

1. Introduction

Let X be a �nite set. Our goal is to de�ne and study a rather general class of
mean zero Gaussian �elds Z = fZxgx2X with negative correlations. These �elds
may be used for smoothing, interpolation and Bayesian prediction as in [Ylv87,
Bes74, BG93, BGHM95, BK95, BH99], where there are extensive further references.

The de�nition begins with a reversible Markov chain X with state space X .
Our development in the body of the paper will be for continuous time chains,
because the exposition is somewhat cleaner in continuous time, but we will �rst
explain the construction in the discrete time setting. Let P (x; y) be the transi-
tion matrix of a (conservative) discrete time Markov chain X with state space X .
Assume for simplicity that the chain X has no holding (that is, the one-step tran-
sitions of X are always to another state). Thus, P (x; y) � 0 for all x; y 2 X ,P

y2X P (x; y) = 1 for all x 2 X , and P (x; x) = 0 for all x 2 X . Suppose further

that the chain X is reversible with respect to some probability vector (�(x))x;y2X ;
that is, �(x)P (x; y) = �(y)P (y; x) for all x; y 2 X . The matrix � given by

�(x; y) :=

(
�(x); if x = y,

��(x)P (x; y); if x 6= y,

is positive semi{de�nite, and hence is the covariance matrix of a mean zero Gaussian
�eld Z = fZxgx2X . Note that the dependence structure of the �eld Z accords with
the local neighbourhood structure de�ned by the transition matrixP : if P (x; y) = 0
(that is, the chain X is unable to go from x to y in one step), then the Gaussian
random variables Zx and Zy are independent.
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Figure 1. Signs of the Gaussian �eld arising from the simple ran-
dom walk on the 50� 50 discrete torus

Example 1.1. Let X be the points of the n � n discrete torus (that is, Zn�Zn,
where Zn is the group of integers modulo n), and let P be the transition matrix of
nearest neighbour random walk on X . Thus, P (x; y) = 1

4 if x and y are adjacent
(that is, x � y 2 f(�1; 0); (0;�1)g) and P (x; y) = 0 otherwise. This chain is
reversible with respect to the uniform distribution �(x) = 1

n2
. A realisation of

the resulting �eld is shown in Figure 1 for the case n = 50. Sites at which the
corresponding Gaussian variable is positive (resp. negative) are coloured black
(resp. grey).

For the sake of comparison, the corresponding picture for a �eld of i.i.d. Gauss-
ian random variables is shown in Figure 2. Note that the negative correlation is
apparent to the eye as a more clustered pattern. This phenomenon is an example
of the Julesz conjecture, which claims that the eye can only distinguish �rst and
second order statistical features (densities and correlations). A review of the litera-
ture on this conjecture and its connections to de Finetti's theorem { an early joint
interest of Bretagnolle and Dacunha-Castelle { is in [DF81].

1.1. Continuous time and Dirichlet forms. As we noted above, it will be more
convenient to work with continuous time Markov chains. To this end, let X now
be a continuous time Markov chain on the �nite state space X . Write Q for the
associated in�nitesimal generator and suppose that X is reversible with respect to
the probability measure � (that is, �(x)Q(x; y) = �(y)Q(y; x) for all x; y 2 X ). We
do not suppose that X is conservative. That is, we allow

P
y Q(x; y) < 0, in which

case the chain is killed at rate �
P

y Q(x; y) when it is in state x.
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Figure 2. Signs of the i.i.d. Gaussian �eld on the 50� 50 discrete torus

Set L2(X ; �) := ff : X ! Rg equipped with the inner product hf j gi :=P
x f(x)g(x)�(x). The kernel Q operates on L2 by

Qf(x) =
X
y

Q(x; y)f(y):

Reversibility of X is equivalent to requiring that the operator Q is self{adjoint on
L2. Of course, if P is the transition matrix of a reversible, conservative, discrete
time chain with no holding as above, then Q = P�I is the in�nitesimal generator of
a reversible, conservative, continuous time chain, namely the chain that exits state
x 2 X at rate 1 and jumps to state y 6= x with probability P (x; y) upon exiting.
Consequently, the discrete time construction above can be subsumed under the
more general construction we are now considering.

The usual quadratic form associated with Q is the Dirichlet form:

E(f; g) := �hQf j gi

=
1

2

X
x;y

(f(x) � f(y))(g(x) � g(y))�(x)Q(x; y)

+
X
x

f(x)g(x)�(x);

(1.1)

where

�(x) := �
X
y

�(x)Q(x; y) = �
X
y

�(y)Q(y; x) � 0:

It is clear from (1.1) that the Dirichlet form is a positive semi{de�nite, self{adjoint
quadratic form. The two terms on the right{hand side of (1.1) are called, respec-
tively, the jump part and the killing part of the form. If X is conservative (that
is, no killing occurs), then

P
yQ(x; y) = 0 for all x 2 X and � = 0. A standard
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reference for Dirichlet forms is [FOT94], but we �nd the original paper by Beurling
and Deny [BD58] useful and readable.

It follows from (1.1) that

(1.2) �(x; y) := ��(x)Q(x; y)

is a positive semi-de�nite self{adjoint matrix. Hence � is the covariance of a mean
zero Gaussian �eld Z = fZxgx2X indexed by X .

Example 1.2. Set X =Zn, the integers modulo n. TakeX to be nearest neighbour
random walk with unit jump rate, so

Q(x; y) =

8><>:
�1; if x = y;
1
2 ; if x� y = �1;

0; otherwise.

Then �(x) = 1
n , �(x; x) =

1
n , �(x; x� 1) = � 1

2n , and �(x; y) = 0 otherwise. When
n = 5 the matrix �(x; y) appears as the circulant

1

5

0BBBB@
1 �1

2 0 0 �1
2

�1
2 1 �1

2 0 0
0 �1

2 1 �1
2 0

0 0 �1
2 1 �1

2
�1
2 0 0 �1

2 1

1CCCCA :

1.2. Outline of the rest of the paper. In Section 2 we develop some properties
of this construction. We give a simple procedure for simulating the �eld Z using
independent Gaussian random variables associated with the \edges" (x; y) such
that Q(x; y) > 0. Generating realisations of Gaussian �elds on grids or graphs with
general covariances can be a complex enterprise. A useful review of the literature
is in [GS89].

In Section 3 we show how the problem of using the observations fZygy2B to
predict Zx for x =2 B � X is intimately related to the properties of the occupation
times of the Markov chain X. In Section 4 we indicate how certain questions
that involve minimising the variance of a linear combination

P
x f(x)Zx subject to

constraints can be related to the potential theory of X.
We conclude this Introduction with some comments on the background and

context of this paper.

1.3. A randommatrix connection. Our interest in this construction began with
some results in randommatrix theory. Let Un be the unitary group of n�nmatrices
M with MM� = I. Elements of Un have eigenvalues on the unit circle T in the
complex plane. The study of the distribution of these eigenvalues under Haar
measure makes up a chapter of random matrix theory (see, for example, [Meh91]).

Let H
1

2

2 denote the space of functions f 2 L2(T) such that

kfk21
2

:=
X
j2Z

jf̂jj
2jjj <1;

and de�ne an inner product on H
1

2

2 by

hf; gi 1
2

:=
X
j2Z

f̂jĝj jjj:
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Alternatively, H
1

2

2 is the space of functions f 2 L2(T) such that

(1.3)
1

16�2

ZZ
(f(�) � f(�))2

sin2
�
���
2

� d� d� <1;

and, moreover,

hf; gi 1
2

=
1

16�2

ZZ
(f(�) � f(�)) (g(�) � g(�))

sin2
�
���
2

� d� d�

(see Equations (1.2.18) and (1.2.21) of [FOT94]).
In independent work, Johansson [Joh97] and Diaconis-Shahshahani [DS94]

proved the following result which was extended in [DE01].

Theorem 1.3. Choose M 2 Un from Haar measure. For f in H
1

2

2 let Wf (M ) =Pn
j=1 f(e

i�j ), where �1; : : : ; �n are the eigenvalues of M . Then, as n tends to

in�nity, for any �nite collection f1; f2; : : :fK in H
1

2

2

fWfk (M )gKk=1 ) fZfkg
K
k=1;

where fZf : f 2 H
1

2

2 g is a mean zero Gaussian �eld with covariance E[ZfZg ] =
hf; gi 1

2

.

The space H
1

2

2 is an example of a Bessel{potential function space and it coincides

with the Besov space B
1

2

2;2, the Sobolev{Lebesgue space F
1

2

2;2 and the Lipschitz space

�
1

2

2;2 (see Equations (18) and (19) in x3.5.4 and Equation (13) in x3.5.1 of [ST87]).

However, for our purposes the interesting observation is that the space H
1

2

2 equipped
with the inner product h�; �i 1

2

is nothing other than the Dirichlet space and Dirichlet

form of the symmetric Cauchy process on the circle (see Example 1.4.2 of [FOT94]).
(The symmetric Cauchy process on the circle is just the usual symmetric Cauchy
process on the line wrapped around the circle.) It is possible to carry through much
of what we do in the discrete state space setting of this paper to Dirichlet forms
of Markov processes on general state spaces, but we do not pursue that direction
here.

Note also that if we take the complex Poisson integral of f 2 L2(T), namely

Pf(z) :=
1

2�

Z
ei� + z

ei� � z
f(�) d�

= f̂0 + 2
1X
j=1

f̂jz
j; jzj < 1;

then, letting m denote Lebesgue measure on the disk fz 2 C : jzj < 1g,Z ����dPf(z)dz

����2 m(dz) =

Z 1

0

2�

244 1X
j=1

jf̂j j
2j2r2(j�1)

35 r dr
= 2�

X
j2Z

jf̂jj
2jjj
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Thus, f 2 H
1

2

2 if and only ifZ ����dPf(z)dz

����2 m(dz) <1;

and

hf; gi 1
2

=
1

2�

Z
dPf(z)

dz

dPg(z)

dz
m(dz); f; g 2 H

1

2

2 :

The form
1

2�

Z
dF (z)

dz

dG(z)

dz
m(dz)

is (up to a constant multiple) nothing other than the Dirichlet form of Brownian
motion on the unit disk. There has been much recent interest in studying the
Dirichlet form of Brownian motion on such restricted domains (see, for example,
[Gro99]).

The above connections suggest that we should be able to �nd a Brownian motion
or Cauchy process as a limit of objects de�ned in terms of the eigenvalues of random
unitary matrices. We have so far failed in this attempt.

1.4. Dynkin's isomorphism. We conclude with a brief review of Dynkin's iso-
morphism [Dyn80, Dyn83, Dyn84b, Dyn84a]. Assume that the continuous time
Markov chain X considered above is transient. The Green's function G(x; y) =
�Q�1(x; y)�(y)�1 is positive semi-de�nite and so can serve as a covariance of a
mean zero Gaussian �eld Y indexed by X . Note the parallel: roughly, our basic
construction uses �Q to construct a covariance while Dynkin used �Q�1. Dynkin
related properties of the Gaussian �eld to the underlying Markov chain. Among
other things he showed that the best prediction of the �eld at a point a given its
values at sites B � X is a linear combination of the observed values at B with
weights the �rst hitting distribution of the chain started at a when it �rst hits B.
We have a parallel version in Proposition 3.1.

Dynkin also proved the following distributional identity. Let

`xt = �(x)�1
Z t

0

1fXs = xg ds; x 2 X ;

denote the \local time" process for the chain X with respect to the measure �.
Suppose that on some probability space with expectation Pwe have a mean zero
Gaussian �eld Y = fYxgx2X with covariance G and an independent copy of the
Markov chain X. The chain X is started at x 2 X and conditioned to die upon
hitting y 2 X . Then, for any bounded Borel function F : RX ! Rwe have

E

�
YxYyF

�
Y 2

2

��
= E

�
F

�
Y 2

2
+ `1

��
G(x; y)

Here, Y2 = fY 2
x gx2X is the pointwise square of the Gaussian �eld Y and `1 =

f`x1gx2X .
In a sustained sequence of papers Marcus and Rosen [MR92d, MR92a, MR92c,

MR92b, MR93] have studied symmetric Markov processes by using Dynkin's iso-
morphism. The isomorphism is tight enough so that re�ned knowledge of Gaussian
�elds (e.g. continuity of sample paths) can be carried over to develop �ne properties
of Markov processes (e.g., continuity of local time). Sheppard [She85] gave a proof
of the Ray{Knight theorem on the Markovianity of local times of one-dimensional
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di�usions that used Dynkin's result and the obvious Markovianity of the associated
Gaussian �eld. We do not see such depth for our construction, but �nd the parallels
tantalising.

Dynkin's construction has been used in statistical applications by Ylvisaker
[Ylv87]. He used the Gaussian �elds as Bayesian priors for prediction and de-
sign problems. Dynkin's �elds only have positive correlations while the �elds we
construct have negative correlations; using independent sums of both constructions
may prove useful.

The relationship between a Markov chain and the Gaussian �eld with covariance
given by the associated Green's function was discovered independently by several
people. In physics, there is work of Symanzik [Sym69] followed by work of Brydges
et al. [BFS82]. In statistics, Ylvisaker [Ylv87] gives references to Hammersley's
[Ham67] work on harnesses as followed up by Williams [Wil73], Kingman [Kin85,
Kin86] and Dozzi [Doz81, Doz89]. Variants of Dynkin's isomorphism have been
established by Eisenbaum [Eis95], as well as by Marcus and Rosen in the papers
cited above. Markov chain representations of �elds other than Gaussian ones have
also been studied: a recent paper with an extensive bibliography is [Bol01].

Here are two lesser known alternative appearances of this connection. Bhat-
tacharya [Bha82] establishes general results that specialise in our �nite setting to
the following. Suppose that the chain X is ergodic. For f in the range of Q,
1p
T

R T
0 f(Xs) ds converges in distribution as T ! 1 to a Gaussian �eld with co-

variance G
In a more applied context, various authors (see, for example, [BM74, Bor79,

Bor01]) have considered optimal estimates of height in surveying problems. There
are n points and estimates of height di�erences are available for some pairs. Forming
an undirected graph with the pairs as edges (assumed connected), they �nd the best

linear unbiased estimates of the true heights bhx. Assuming one true height, say at
site z, is known, they show that

Cov(bhx;bhy) = 1

q(y)
Gz(x; y)

with Gz(x; y) the expected number of times y is hit starting at x by a dis-
crete time reversible Markov chain constructed from edge weights 1=�2(x; y).
Here �2(x; y) is the variance of the (x; y)th height di�erence measurement and
q(y) =

P
x(1=�

2(y; x)). The walk is killed when it hits z. If the measurement

errors are assumed Gaussian, then bhx is a Gaussian �eld with covariance given by
the Green's function: Known asymptotics of Gz(x; y) in planar grids can then be
used to understand how the covariances fall o� with separation.

2. Finite State Spaces

The following result gives a representation of the �eld Z in terms of independent
Gaussian random variables and hence furnishes a simple way to simulate such a
�eld.

Proposition 2.1. Let X be a reversible Markov chain with �nite state space X .
Form a graph with vertex set X by placing an undirected edge from x to y if
Q(x; y) > 0. Choose an orientation for each edge e of the graph, that is, a func-
tion from the edge set to f�1g. This orientation may be chosen arbitrarily but,
of course, �(x; y) = �(y; x). Associate a mean zero, variance ��(x; y), Gaussian
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random variable W (x; y) to each edge and a mean zero, variance �(x), Gaussian
random variable W (x) to each vertex, with all of these random variables being in-
dependent. Set

Zx =
X

y:Q(x;y)>0

�(x; y)W (x; y) +W (x);

then the Gaussian �eld fZxgx2X has covariance �.

Proof. The random variable Zx has mean zero and variance

�
X

y:Q(x;y)>0

�(x; y) + �(x) =
X
y 6=x

�(x)Q(x; y)�
X
y

�(x)Q(x; y)

= ��(x)Q(x; x) = �(x; x):

Further, for x 6= y,

E[ZxZy] =
X

a;b:Q(x;a)Q(y;b)>0

�(x; a)�(y; b)E[W (x; a)W (y; b)]:

The sum is zero unless Q(x; y) > 0, and then it contains the single term

��(x; y)�(y; x)�(x; y) = �(x; y);

as desired. �

Remark 2.2. i) The construction is not limited to Gaussian variables. It gives a
2nd order �eld with the prescribed covariance for other uncorrelated choices of
W (x; y) and W (x) with the variances set out in Proposition 2.1. Vertices with
no edge between them are uncorrelated.

ii) If � = 0 (that is, there is no killing), then
P

x2X Zx = 0.
iii) For simple random walk on Zn (Example 1.2), choose a clockwise orientation

and let Zj = Wj � Wj�1 (indices mod n) with Wj independent N (0; 1
2n)

variables.
iv) Conversely, if � = (�(x; y))x;y2X is a covariance matrix with positive diagonal

entries, non-positive o�-diagonal entries, and non-negative row sums, then �
can be realized as a matrix arising from the Markov chain construction in

many di�erent ways. Just take � to be an arbitrary probability measure on
the �nite set X with �(x) > 0 for all x and put Q(x; y) = ��(x)�1�(x; y).

v) The representation of Proposition 2.1 can be thought of as a factorisation
� = AA0, where A is a matrix that has a row for each element of X and a
column corresponding to each of the random variablesW (x; y) andW (x). This
factorisation should be compared to the Karhunen{Loeve decomposition � =
(�D

1

2 )(�D
1

2 )0 = �D�0 where the columns of � are the normalised eigenvectors
of � corresponding to non{zero eigenvalues and D = diag(�1; : : : ; �k), k =
rank�, is the diagonal matrix that has these eigenvalues down the diagonal.
Of course, the Karhunen{Loeve decomposition leads to another representation
of the �eld Z, namely

Zx =
X
�

�x�V�; x 2 X ;

where V�1 ; : : : ; V�k are independent mean zero Gaussian random variables, with
V� having variance �.
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For the n � n discrete torus �eld in Example 1.1, rank� � n2 whereas the
construction of Proposition 2.1 requires � 4n2 independent Gaussian random
variables. However, the computation of a particular Zx requires only 4 of
these variables, whereas the Karhunen{Loeve expansion requires the use of
all rank� � n2 variables. Thus simulation the entire �eld Z requires � 4n2

additions using our representation and the order of n4 multiplications and
additions for the Karhunen{Loeve representation. In this particular example,
the fast Fourier transform can be used to cut the latter number of operations
down to the order of n2 logn, but this improvement is not available for general
chains that lack such group structure.

vi) Most constructions of Gaussian �elds lead to positive correlations for near
neighbours. Of course, this is often scienti�cally natural. However, �elds in
which all sites are negatively correlated could arise in settings where growth
in one region deletes supplies from other regions. In situations like ours in
which all sites are negatively correlated, there are constraints on the strength
of the correlation. This is related to the well{known fact that n exchangeable
random variables have correlations at least � 1

n�1 .
More generally, let G = (X ; E) be an undirected graph with vertex set X

and edge set E. Suupose that the automorphism group G of G is such that
given two edges fx0; y0g and fx00; y00g there exists an element g of G such that
gx0 = x00 and gy0 = y00. Let Y = fYxgx2X be a mean zero Gaussian �eld
that is invariant under the action of G. By renormalising if necessary, we may
suppose that the common value of E[Y 2

x ], x 2 X , is d=(2jEj), where d is the
common degree of the vertices of G . Suppose the E[YxYy] � 0 for all x; y 2 X .
Write � for the common value of E[YxYy] when fx; yg is an edge. We have

0 � E

24 X
x2X

Yx

!235
= 1 +

X
x6=y

E [YxYy]

= 1 + 2jEj�+ 2
X

fx;yg=2E
E [YxYy]

� 1 + 2jEj�:

Thus � � �1=(2jEj) with equality if and only if E[YxYy] = 0 for all fx; yg =2 E.
This extremal case when all the non-edge covariances are zero corresponds to
our Markov chain construction with

�(x) =
d

2jEj
; x 2 X ;

and

Q(x; y) =

(
�1; if x = y;
1
d ; if x 6= y:

That is, the chain X exits from any state at rate 1, and when it exits it jumps
to each of the d neighbouring states with equal probability. Examples 1.1 and
1.2 �t into this framework. The exchangeable case also �ts into this framework,
with the graph G being the complete graph.
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3. Prediction and conditional distributions

The following result relates the dependence structure of the Gaussian �eld Z =
fZxgx2X to the properties of the occupation times of the original Markov chain X.
For B a proper subset of X , suppose the �eld is observed at x 2 B and we want to
predict it at y =2 B. The mean square optimal prediction is a linear combination of
the observed values ZB = fZxgx2B . In order to describe the associated weights in
terms of quantities for the chain X, let

Lt(C) :=

Z t

0

1fXs 2 Cg ds; t � 0; C � X ;

denote the occupation time �eld for the chain X. Write

�Ct := inffs � 0 : Ls(C) = tg

and let XC be the chain X time{changed according to Lt(C): that is, XC is a
Markov chain with state space C such that the law of XC starting at c 2 C is the
same as that of fX�Ct

: t � 0g starting at c. Denote by

S := infft � 0 : Xt 6= X0g

the �rst time that the chain X leaves its initial state and by

RD := infft � S : Xt 2 Dg; D � X ;

the �rst time after leaving its initial state that the chain X enters the subset of
states D.

Proposition 3.1. Let Z = fZxgx2X be a mean zero Gaussian �eld with covariance
� given by (1.2). For a proper subset B � X and A = XnB, the conditional
distribution of ZA = fZx : x 2 Ag given ZB = fZx : x 2 Bg is Gaussian with mean
E[ZA j ZB ] =MZB , where

M (a; b) =
�(a)Q(a; a)

�(b)
Ea [LRA(fbg); XS 2 B] ;

and covariance given by

��(a0)QA(a0; a00); a0; a00 2 A;

where QA is the in�nitesimal generator of the time{changed chain XA.

Proof. Classical theory gives that the conditional distribution of ZA given ZB is
Gaussian with mean

E[ZA j ZB ] = �AB�
�1
BBZB :

Now � = ��Q where � := diag(�(x)), and thus

�AB�
�1
BB = �AAQABQ

�1
BB�

�1
BB :

By direct expansion,

�(Q�1
BB)b0b00 = Eb0 [LTA(fb

00g)] ; b0; b00 2 B:

Moreover,

Qa;b = �Q(a; a)Pa [XS = b] ; a 2 A; b 2 B:

Therefore,

(�AB�
�1
BB)ab =

�(a)Q(a; a)

�(b)
Ea [LRA(fbg); XS 2 B] :
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Classical theory also gives that the covariance of the conditional distribution of
ZA given ZB is

�AA � �AB�
�1
BB�BA = �

�
�AAQAA � �AAQABQ

�1
BBQBA

�
;

and it is straightforward to see that

QA = QAA +�AAQAB(�Q
�1
BB)QBA:

�

The following result is immediate from Proposition 3.1.

Corollary 3.2. In the notation of Proposition 3.1, construct a graph with vertex
set X by placing an (undirected) edge between two vertices, x 6= y if �(x; y) < 0.
Fix a point a 2 A. Say that a point b 2 B is shielded from a if every path from
a to b passes through a point of Anfag. Write Ba for the set of points in B that
are shielded from a. Then Za is conditionally independent of ZB given ZBnBa
(equivalently, Za is conditionally independent of ZBa given ZBnBa). Moreover, if

BnBa 6� ~B � B, then Za is not conditionally independent of ZB given Z ~B

Remark 3.3. i) For large state spaces, Ylvisaker [Ylv87] suggested using simu-
lation of the Markov chain as an aid to computing regression coe�cients via
Dynkin's construction. Proposition 3.1 can be used similarly.

ii) Note from the assumption of reversibility that

�(a)

�(b)
=
Q(b; a)

Q(a; b)
; a 2 A; b 2 B;

if the numerator and denominator on the right{hand side are positive. In this
case

M (a; b) =
Q(b; a)Q(a; a)

Q(a; b)
Ea [LRA(fbg); XS 2 B] ;

In any case, � only needs to be determined up to a constant.
iii) The coe�cients M (a; b) are always non-positive.
iv) Note the parallel with the form of the coe�cients in Dynkin's construction

described in the Introduction.

Example 3.4. Consider our running example of simple random walk on Zn (Ex-
ample 1.2). Choose a partition A;B of Zn into two non-empty subsets. Fix a
point a � A. If we have a + 1; a + 2; : : : ; a + r 2 B and a + r + 1 2 A, then set
B+ = fa+ 1; a+ 2; : : : ; a+ rg. Similarly, if we have a� 1; a� 2; : : : ; a� ` 2 B and
a� (`+ 1) 2 A, then set B� = fa� 1; a� 2; : : : ; a� `g. Of course, B+ or B� may
be empty. Then, in the notation of Corollary 3.2, Ba = Bn(B+ [B�).

More generally, standard probability calculations can be used to calculate the
matrixM of Proposition 3.1 for various con�gurations. For example, suppose that
a = 0 and B+ = f1; 2; : : : ; rg. The probability that the random walk gets to
1 � b � r before returning to a or hitting another point of A is, by the classical
Gambler's Ruin problem, 12

1
b
. Moreover, the probability that the walk returns to b

before hitting A is, again by Gambler's Ruin,

1

2

�
1�

1

r + 1� b

�
+

1

2

�
1�

1

b

�
;

and so the distribution of the number of visits to b given that b is reached at all is
the same as the number of trials up to and including the �rst success in Bernoulli
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trials with this return probability as the failure probability. It follows after a little
algebra that

M (a; b) = �

�
1�

b

r + 1

�
:

4. Minimizing variances subject to constraints

In this section we will study the problem of minimizing the variance

E

24 X
x

f(x)Zx

!235
of a linear combination

P
x f(x)Zx under certain constraints on the coe�cients.

Here Z = fZxgx2X is a mean zero Gaussian �eld with covariance � that has
positive diagonal entries, non-positive o�-diagonal entries, and non-negative row
sums. We will also assume that � is irreducible in the sense that for x 6= y we
can �nd a sequence x = z0 6= z1 6= : : : 6= zk = y such that �(zi; zi+1) 6= 0 for
0 � i � k � 1.

Proposition 4.1. Suppose that � has at least one row sum positive. Given a
proper subset B � X , consider the problem of minimizing E[(

P
x f(x)Zx)

2] subject
to f(x) = 1, x 2 B. The minimum is achieved by

fB(x) := PxfTB <1g

where TB = infft � 0 : Xt 2 Bg for X a Markov chain with in�nitesimal generator
Q(x; y) = ��(x)�1�(x; y) for any probability vector � with positive entries.

Proof. This follows immediately from Theorem 4.3.3 of [FOT94] once we note that
the condition that at least one row sum of � is positive is equivalent to the chain
X being transient. �

Proposition 4.2. Suppose that � has all row sums zero. Given a proper subset
B � X and a probability vector � with positive entries, consider the problem of
minimizing E[(

P
x f(x)Zx)

2] subject to f(x) = 1, x 2 B, and
P

x f(x)�(x) = 0.
The minimum is given by

(E� [TB ])
�1;

where TB = infft � 0 : Xt 2 Bg for X the Markov chain with in�nitesimal
generator Q(x; y) = ��(x)�1�(x; y). Moreover, the minimum is achieved by

fB(x) =
�Ex [TB ] + E� [TB ]

E� [TB]
:

Proof. We �rst recall some standard facts. For � > 0, let E� denote the inner
product E + �h� j �i. Write Cap� for the corresponding capacity. Then

(4.1) Cap�(B) = inffE�(f; f) : f = 1g = E�(p
�
B; p

�
B);

where p�B(x) := P
x[exp(��TB)] (see Theorem 4.2.5 of [FOT94] for the case � =

1, the proof for general � involves just obvious changes). By Theorem 4.3.1 of
[FOT94], p�B and 1� p�B are orthogonal with respect to E� and so

0 = E�(p
�
B ; 1� p�B) = �Cap�(B) + �hp�B j 1i = �Cap�(B) + �E� [exp(��TB)];
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where we have used the fact that E(1; 1) = 0. Thus

(4.2) c�B :=
X
x

p�B(x)�(x) = E� [exp(��TB)] = ��1Cap�(B):

We have

c�B = ��1 inffE�(f; f) : f = 1 on Bg

= ��1 inffE�(f; f) : f = 1 on B;
X
x

f(x)�(x) = c�Bg:

Thus, if we put

f�B(x) :=
p�B(x)� c�B
1� c�B

;

then

(4.3) inffE�(f; f) : f = 1 on B;
X
x

f(x)�(x) = 0g = E�(f
�
B ; f

�
B) =

�c�B
1� c�B

after a little algebra. By the assumption of irreducibility, P�fTB =1g = 0, and so

(4.4) lim
�#0

��1(1� c�B) = lim
�#0
E�

"Z TB

0

e��s ds

#
= E� [TB ]

and the last term in (4.3) converges to (E� [TB])�1 as � # 0.
Note, by the same argument that gave (4.4), that

lim
�#0

��1(1� p�B(x)) = Ex [TB]:

Therefore, in order to establish the claim of the proposition, it su�ces to observe
that

lim
�#0

inffE�(f; f) : f = 1 on B;
X
x

f(x)�(x) = 0g

= inffE(f; f) : f = 1 on B;
X
x

f(x)�(x) = 0g

and that

lim
�#0

E�(f
�
B ; f

�
B) = E(fB ; fB):

�
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