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Abstract

In the context of uniform random mappings of an n-element set
to itself, Aldous and Pitman (1994) established a functional invari-
ance principle, showing that many n ! 1 limit distributions can be
described as distributions of suitable functions of re
ecting Brownian
bridge. To study non-uniform cases, in this paper we formulate a sam-

pling invariance principle in terms of iterates of a �xed number of ran-
dom elements. We show that the sampling invariance principle implies
many, but not all, of the distributional limits implied by the functional
invariance principle. We give direct veri�cations of the sampling in-
variance principle in two successive generalizations of the uniform case,
to p-mappings (where elements are mapped to i.i.d. non-uniform el-
ements) and P -mappings (where elements are mapped according to
a Markov matrix). We compare with parallel results in the simpler
setting of random trees.
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1 Introduction

A function M from the n-element set [n] := f1; 2; : : : ; ng to itself, in this
context called a mapping, induces a digraph on vertex-set [n] whose edges
are (i;M(i)); i 2 [n]. From a random function M we get a random di-
graph, and the subject of random mappings concerns exact and asymptotic
properties of such random graphs, most commonly under the uniform model
where M is uniform on all nn mappings [10, 30, 34, 39], but also under
various non-uniform models. Saying M is uniform is equivalent to saying
that M(1);M(2); : : : ;M(n) are independent uniform on [n], so a natural
non-uniform model can be de�ned by requiring M(1);M(2); : : : ;M(n) to
be independent with some general probability distribution p on [n]. Such
p-mappings are the subject of both classical and current research, reviewed
brie
y in Section 1.1. A more general model is to takeM(1); : : : ;M(n) inde-
pendent on [n] with probabilities P (M(i) = j) = pij for some Markovmatrix
P = (pij); call this a P -mapping. One might guess that some n!1 asymp-
totic results for uniform random mappings would extend to p-mappings or
P -mappings, under appropriate conditions on the sequence p(n) or P (n), or
to other models of non-uniform random mappings. The purpose of this
paper is to set out a technical framework for studying such questions and
specifying limit distributions.

Classical work on the uniform model focussed on speci�c statistics of
mappings, such as component sizes and cycle lengths, which in the uniform
case scale as order n and order n1=2, and on joint distributions of such
statistics [41]. As an extension, in the uniform model Aldous and Pitman
[7] gave a Brownian bridge limit theorem which encompasses simultaneously
limit distributions for many di�erent statistics which scale as order n and
order n1=2. That functional invariance principle, based on coding mappings
as walks, is reviewed in Section 4. A drawback is that the statement of the
functional invariance principle is complicated and seemingly rather arbitrary.

In Section 3 we introduce a more direct method for studying random
mappings, which we call the sampling invariance principle. This method
is based on studying n ! 1 asymptotics of the iterates of a �xed number
of elements. Our central result is that a variety of asymptotic results ex-
tend from the uniform case to any model of non-uniform random mappings
which satis�es the sampling invariance principle. Theorem 15 formulates
this generally, and then we set down asymptotic distributional results more
explicitly. Parallel results for random trees are simpler; we start by review-
ing these in Section 2. The mathematical content of Theorem 15 (and the
parallel Proposition 7 for trees) is that the sampling invariance principle
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can be reinterpreted as weak convergence of random functions, but using a
weaker topology than is used in the functional invariance principle.

The essence of the sampling invariance principle is that, for �xed k, the
union of the orbits of k elements converges (as n!1, after rescaling) to a
random \mapping with edge-lengths" G[k] whose distribution has a simple
explicit form. Such random graphs with edge-lengths, which also arise in
the context of trees (Section 2.1), are perhaps of independent interest.

Our results are \abstract" in that instead of starting from a speci�c
model, we are starting from the assumption that the model satis�es the
sampling invariance principle, and exploring the non-obvious implications
of that principle. For illustration we give two non-uniform random mapping
models, which can be regarded as successive generalizations of the uniform
model, and which can be shown directly to satisfy the sampling invariance
principle. Theorem 25, proved in Section 6.1 as a simple consequence of
Poisson approximation for the non-uniform birthday problem, establishes
the sampling invariance principle for p-mappings under a natural condition.
Then in Section 6.2 we indicate some conditions on P -mappings which imply
the sampling invariance principle. It seems likely that other models of non-
uniform random mappings could be shown to satisfy the sampling invariance
principle, and this is a natural topic for future research.

1.1 p-mappings and p-trees

Though our main results are not tied to a particular model of random
mappings, our approach was motivated by consideration of the p-mappings
model. Older papers on that model focused on exact combinatorial prop-
erties related to Burtin's lemma [17, 32, 47] (see [45] for recent systematic
discussion of combinatorial properties) and on asymptotics in the special
case where all but one of the p-values are equal [12, 40, 48]. Asymptotics
for general p were �rst considered explicitly only recently, when O'Cinneide
and Pokrovskii [42] proved convergence of the rescaled height pro�le to an
unspeci�ed limit (our Corollary 19 reproves this and speci�es the limit).
However, asymptotics for the closely related p-trees model of random trees
(Section 2.3(b)) have been extensively studied [18, 11, 9, 8]. It has recently
become clear that an e�cient way to study p-mapping asymptotics is to ex-
ploit the Joyal bijection between marked trees and mappings, which enables
one to deduce asymptotics for p-mappings from already known asymptotics
for p-trees. This approach, to be developed elsewhere [6], turns out to give
stronger information about p-mappings than does the approach in this pa-
per. But that method seems tied to the particular p-mappings model.
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A �nal remark on our methodology. The sampling invariance principle
for random trees (involving spanning subtrees of random vertices: Section
2.1) appears as part of the circle of ideas around the Brownian continuum
random tree [4], but is somewhat overshadowed by the stronger and more
succinct functional invariance principle for trees (Section 2.2). But in the
context of mappings, studying the orbits of a �xed number of vertices (which
is the essence of the sampling invariance principle) is very natural and often
easy; and it is the statement of the functional invariance principle which is
harder to interpret. That is why it seems worthwhile exploring the conse-
quences of the sampling invariance principle.

2 Invariance principles for random trees

Consider the assertion

� For certain models of non-uniform random trees T on [n], the n!1
asymptotic distributions of many statistics should be the same as for
the uniform model.

An invariance principle is a way of formalizing such an assertion. In this
Section we give a slightly new perspective on some known results. We em-
phasize two apparently di�erent ways of thinking about asymptotics (look-
ing at spanning subtrees in Section 2.1; coding trees as walks in Section
2.2) and then describe carefully their relationship in Section 2.4. In Section
2.3 we recall hypotheses under which these invariance principles are true or
conjectured.

2.1 Spanning subtrees and the sampling invariance principle

Consider a rooted tree T on vertex-set [n]. Take distinct vertices �1; : : : ; �k
and consider the spanning subtree on froot; �1; : : : ; �kg. Relabel vertex �i
as i and unlabel other vertices, while still marking the root. Picture the
resulting tree as on the left of �gure 1. Take each edge to have length 1;
then delete unlabeled degree-2 vertices to obtain a \tree with edge-lengths"
where the edge-lengths are integers. Call this tree SPAN(�1; : : : ; �k;T ). For
real c > 0 write c
SPAN(�1; : : : ; �k;T ) for the tree obtained by multiplying
all edge-lengths by c. For asymptotics we anticipate getting a \tree with
edge-lengths" t as pictured on the right in �gure 1. Such a tree t has the
following properties.
(i) There is a degree-1 root, and k other leaves labeled by [k].
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(ii) It is a binary tree, with unlabeled degree-3 branchpoints.
(iii) Each edge has a strictly positive real length.
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FIG. 1. Instances of SPAN(�1; : : : ; �4;T ) and of a t 2 T[4].

Write T[k] for the set of such graphs. A tree t 2 T[k] can be speci�ed by
its shape (pedantically, the shape is the equivalence class of isomorphic leaf-
labeled rooted trees-without-edge-lengths) and by its 2k � 1 edge-lengths.
Inductively, the number of shapes equals (2k�3)!! := (2k�3)(2k�5) � � �3�1
because the k'th leaf can be attached at 2k � 3 di�erent places. (Make the
convention (�1)!! = 1.) Following [4] Section 4.3, de�ne a distribution for a
random graph T [k] with edge lengths L1; : : : ;L2k�1 as follows. For each of
the (2k � 3)!! possible shapes t,

P (shape(T [k]) = t;L1 2 d`1; : : : ;L2k�1 2 d`2k�1)

= f2k�1(`1; : : : ; `2k�1) d`1 : : : d`2k�1 (1)

where

f2k�1(`1; : : : ; `2k�1) :=

0@2k�1X
j=1

`j

1A exp

0B@�1
2

0@2k�1X
j=1

`j

1A2
1CA ; (2)

and where we adopt some arbitrary convention for ordering the edges asso-
ciated with each possible shape. The convention does not matter because
f2k�1(�) is symmetric. De�nition (1) - (2) implies that shape(T [k]) is uniform
on the (2k� 3)!! possible shapes and that the edge-lengths are independent
of the shape. Saying that (1) - (2) de�nes a probability density on T[k] is
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saying

(2k� 3)!!

Z
: : :

Z
f2k�1(`1; : : : ; `2k�1) d`1 : : : d`2k�1 = 1;

check by rewriting the integral as 1
(2k�2)!

R1
0 s2k�2 exp(�s2=2)ds. (There is

an alternate interpretation of the distribution of T [k] using a line-breaking
construction: [4] Lemma 21.)

Note there is a natural notion of convergence in T[k]: t(n) ! t if
shape(t(n)) = shape(t) ultimately and the edge-lengths converge. This con-

vergence can be metrized. So convergence in distribution (written
d! ) of

random trees with edge lengths means weak convergence with respect to the
underlying metric.

By a weighted tree on vertices [n] we mean a tree together with a prob-
ability distribution q = (qi) on the vertex-set [n]. Picture the qi as deter-
ministic \weights" on vertices, which for a random tree do not depend on
the realization of the tree. We may consider the uniform distribution as a
\default" choice of q, but allowing more generality may be useful. In the
context of n ! 1 asymptotics for such random weighted trees we always
assume, without further mention, that the distributions q = q(n) satisfy

max
i

qi ! 0 as n!1: (3)

De�nition 1 A model for random weighted trees (T; q) on [n] satis�es the
sampling invariance principle with scaling constants c = c(n) if, as n!1,

c
 SPAN(�1; : : : ; �k;T )
d! T [k]; k � 1 (4)

where f�1; : : : ; �kg are independent of each other and of T with distribution
q(n).

The word \sampling" is intended to convey the idea of \spanning tree on ran-
domly sampled vertices". Note that for �nite n the tree SPAN(�1; : : : ; �k;T )
might not be in T[k], for instance if two of the �i coincide. However, one
can make sense of convergence in distribution of random objects Xn even
if the objects are well-de�ned only on events An with P (An) ! 1 (for in-
stance by appending a \�ctitious state"), and we adopt this view through-
out the paper. Note that hypothesis (3) is exactly what is needed to ensure
limn P (�1; : : : ; �k distinct ) = 1.

Examples of models where De�nition 1 is satis�ed will be given shortly
(section 2.3), after we recall an alternative notion of invariance principle.
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2.2 Coding trees as walks: the functional invariance princi-

ple

In a rooted ordered tree, the children of each vertex are ordered as �rst,
second, third . . . . For a rooted ordered tree on n vertices there is a depth-
�rst relabeling of the vertices as f0; 1; : : : ; n � 1g de�ned as follows. Label
the root as 0. Having labeled some vertex as i, give label i+ 1 to
(i) the �rst child of i, if any; else
(ii) the �rst not-yet-labeled child of parent(i), if any; else
(iii) the �rst not-yet-labeled child of parent(parent(i)); and so on.
After thus relabeling vertices in depth-�rst order, de�ne a walk

w(i) = height(i); 0 � i � n � 1

where the height of vertex i is its distance to the root. Note that the walk
determines the tree, because vertex i is the next child of vertex maxfi0 < i :
w(i0) = w(i)� 1g.

Given a weight function q on the vertices, we can de�ne a rescaled walk
( ew(t); 0 � t � 1) by

ew(t) = w(i) for q0 + q1 + � � �+ qi�1 � t < q0 + q1 + � � �+ qi: (5)

So ew is an element of the usual space D[0; 1] of right-continuous functions
with left limits [16]. The functional invariance principle (which we are about
to de�ne) relates to ordered trees, whereas the sampling invariance principle
was de�ned for unordered trees. An unordered tree T can be made into an
ordered tree by putting the children of each vertex into uniform random
order. The resulting depth-�rst labeling of vertices of T by f0; 1; : : : ; n� 1g
will be called the randomized depth-�rst ordering of T .

Write Bexc = (Bexc
t ; 0 � t � 1) for standard Brownian excursion [13, 15].

Consider the following property for a model of random weighted trees (T; q)
on [n] and constants c = c(n).

Property 2 The rescaled walk fW (t) de�ned by (5) based on the randomized
depth-�rst ordering satis�es

(cfW (t); 0 � t � 1)
d! (2Bexc

t ; 0 � t � 1) as n!1
with respect to a speci�ed metric on D[0; 1].

De�nition 3 A model for random weighted trees (T; q) on [n] satis�es the
functional invariance principle with scaling constants c = c(n) if Property 2
holds for the usual (Skorokhod J1) metric on D[0; 1].
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We shall shortly show (Proposition 7) that the functional invariance prin-
ciple implies the sampling invariance principle. But before continuing the
theoretical development to show this, let us discuss some speci�c models of
random trees where these invariance principles are known or conjectured.

2.3 Models of non-uniform random trees

Model (a). The uniform random rooted tree on [n] is a special case (where
� has Poisson distribution) of the CBP(n) model (here CBP stands for con-
ditioned branching process). This is the Galton-Watson branching process,
with some o�spring distribution � satisfying

E� = 1; 0 < �2 := var � <1 ;

conditioned to have total size equal to n.

Theorem 4 The CBP(n) model (with uniform weights q) satis�es the func-
tional invariance principle with scaling constants �n�1=2.

This was proved in [4] with a slightly di�erent walk coding, though it is easy
to deduce the stated form. See [38] for a more direct proof and further refer-
ences; and see [21, 22] for cases with in�nite variance. Because of the special
combinatorial structure of the CBP(n) model one can obtain more re�ned
results, for instance the local limit theorem corresponding to Corollary 10
[20].

Model (b). Given a probability distribution p on [n], a p-tree [18, 45] is
a random rooted tree T on vertex-set [n] whose distribution is de�ned by

P (T = t) =
Y
i2[n]

pCit

i (6)

where Cit denotes the number of children of vertex i in t. For a probability
distribution p on [n] write

cp :=

sX
i

p2i :

For a sequence p(n) of probability distributions on [n], introduce the condi-
tion

maxi pi
cp

! 0 as n!1: (7)
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For reasons to be touched upon in Section 7(b), one can view condition (7)
for p-trees as closely analogous to Lindeberg's condition in the central limit
theorem.

Theorem 5 Under assumption (7), a sequence of p-trees with weight func-
tions q = p satis�es the sampling invariance principle with scaling constants
cp.

This is obtained by combining Corollary 9 of Camarri and Pitman [18], who
speci�ed the limit in terms of a line-breaking construction, with Lemma
21 of Aldous [4], which obtains the formula stated for T [k] from the line-
breaking construction. One can deduce from [18] that (7) is also necessary
for the sampling invariance principle. But assumption (7) is not enough
to imply the functional invariance principle for p-trees (the example for p-
mappings in Section 6.1 can be adapted to p-trees). We do not know the
precise necessary and su�cient condition.

In the analogous result for random mappings (Theorem 25) the weight
functions can be arbitrary. This is surely also true in Theorem 5, though
we have not attempted a proof.

Model (c). Attach i.i.d. costs to the edges of the complete graph on [n],
and then let T be the minimum-cost spanning tree, rooted at 1 say. Frieze
[25] studied the total cost of T , and Aldous [3] studied some asymptotic
distributions associated with the tree T itself, but the following conjecture
remains open.

Conjecture 6 T satis�es the sampling invariance principle with uniform
weights and with scaling constants n�1=2.

Model (d). Given an irreducible Markov transition matrix P = (pij) on
[n], one can de�ne a P -tree via

P (T = t) /
Y

(i;j)2t

pij

where we are regarding t as a set of edges directed toward the root. Such
trees arise as part of a circle of ideas around the Markov chain tree theo-
rem [37]. It seems plausible that one can �nd conditions on P that imply
invariance principles, but this setting has apparently not been studied.
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2.4 Relating the sampling and functional invariance princi-

ples

The de�nitions of the sampling invariance principle and the functional in-
variance principle look quite di�erent, but we now give a result revealing
a close relationship. On the function space D[0; 1], the usual Skorokhod
metric is stronger than the L0 metric

jjf1 � f2jj0 :=
Z 1

0
min(1; jf1(t)� f2(t)j) dt:

It is easy to check there is yet another metric on D[0; 1], which we call the
\�-metric", intermediate between the L0 and the Skorokhod metrics, with
the property

for fn; f 2 D[0; 1] with f continuous, fn !� f i�

jjfn � f jj0 ! 0 and

inf
a�t�b

fn(t) ! inf
a�t�b

f(t) for all intervals [a; b] of positive length: (8)

Proposition 7 A model for random weighted trees (T; q) on [n] satis�es the
sampling invariance principle with scaling constants c = c(n) if and only if
Property 2 holds for the �-metric.

De�nition 3 and this alternate characterization of sampling invariance make
it clear that the functional invariance principle does imply the sampling
invariance principle. Proposition 7 is new, though the key underlying con-
ceptual fact (Lemma 8) is known; let us explain this fact �rst.

Given f : [0; 1] ! [0;1) and distinct fu1; u2; : : : ; ukg � (0; 1), one can
de�ne a tree-with-edge-lengths t(u1; : : : ; uk; f) by specifying
(i) leaf i is at height (distance from root) f(ui);
(ii) if ui < uj then the branchpoint between the paths from the root to i
and to j is at height minui�t�uj f(t).

We can make t(u1; : : : ; uk; f) into an ordered tree by giving the leaves i
the order inherited from the natural order of the ui in (0; 1).

Now let U1; : : : ; Uk be i.i.d. uniform (0; 1) random variables, independent
of Bexc. Recall T [k] from Section 2.1; we can make T [k] into an ordered tree
by putting, independently at each branchpoint, the two edges leading away
from the root into random order.

Lemma 8 ([4] Corollary 22) t(U1; : : : ; Uk; 2B
exc)

d
= T [k].
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Proof of Proposition 7. Now for a tree T and a weight function q, make
the tree ordered as in Section 2.2, and write

�(u) := minfi : q0 + q1 + : : :+ qi � ug: (9)

So �(�) depends on the tree via the ordering of vertices. Take (U1; : : : ; Uk)
independent of the random trees T . So �(U1); : : : ; �(Uk) are independent
random vertices chosen from distribution q. Therefore

SPAN(�1; : : : ; �k;T )
d
= SPAN(�(U1); : : : ; �(Uk);T ). But from their de�ni-

tions, SPAN(�(U1); : : : ; �(Uk);T ) and t(U1; : : : ; Uk;fW ) are almost the same;
the di�erence is that the heights of branchpoints in the latter are exactly 1
less than their heights in the former, and because c! 0 this di�erence van-
ishes asymptotically. Thus by Lemma 8 the sampling invariance principle is
equivalent to: for each k,

t(U1; : : : ; Uk; cfW )
d! t(U1; : : : ; Uk; 2B

exc): (10)

Write 0 < V1 < V2 < : : : < Vk < 1 for the order statistics of (U1; : : : ; Uk).
Consider the assertion

c

�fWn(V1); inf
V1�t�V2

fWn(t);fWn(V2); inf
V2�t�V3

fWn(t); : : : ;fWn(Vk)

�
d! (2Bexc(V1); inf

V1�t�V2
2Bexc(t); 2Bexc(V2); inf

V2�t�V3
2Bexc(t); : : : ; 2Bexc(Vk)):

(11)
Using the fact that (Vi) is independent of the permutation associating the
(Ui) with the (Vi), and the random ordering of branches within trees, we see
that (11) implies (10). Conversely, since in (10) the trees t(�) are ordered,
from a realization of t(�) we can determine the permutation associating the
(Ui) with the (Vi), and it follows that (10) implies (11).

We have now reformulated the sampling invariance principle as (11).
Proposition 7 is a consequence of this reformulation, together with the fol-
lowing reformulation of �-convergence. (Note that in our setting the �rst
and last components of the vectors below are automatically tending to zero).

Lemma 9 Let Xn(t) and X(t) be processes in D[0; 1], and suppose X(�)
has continuous paths. Then Xn

d! X with respect to the �-metric if and
only if for each k�

inf
0�t�V1

Xn(t); Xn(V1); inf
V1�t�V2

Xn(t); Xn(V2); inf
V2�t�V3

Xn(t); : : : ; Xn(Vk); inf
Vk�t�1

Xn(t)

�
d!
�

inf
0�t�V1

X(t); X(V1); inf
V1�t�V2

X(t); X(V2); inf
V2�t�V3

X(t); : : : ; X(Vk); inf
Vk�t�1

X(t)

�
:(12)
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Proof. The \only if" is immediate. For \if", the key fact (proved as Propo-
sition 29 in the Appendix) is that convergence in distribution with respect
to the L0 metric is equivalent to

(Xn(V1); Xn(V2); : : : ; Xn(Vk))
d! (X(V1); X(V2); : : : ; X(Vk)); k � 1:

(13)

So in particular, assumption (12) implies Xn
d! X in L0. Now let us

be more precise about notation and write (Vk;i; 1 � i � k) for the order
statistics of (Ui; 1 � i � k). Fix a < b and consider i(k) � ak and j(k) � bk

as k !1. For �xed k,

inf
Vk;i(k)�t�Vk;j(k)

Xn(t)
d! inf

Vk;i(k)�t�Vk;j(k)
X(t)

and so by taking k = kn !1 su�ciently slowly

inf
Vkn;i(kn)�t�Vkn;j(kn)

Xn(t)
d! inf

a�t�b
X(t);

using path-continuity of X . We could choose i(k) such that Vk;i(k) > a
ultimately, or such that Vk;i(k) < a ultimately, and analogously for j(k); so

inf
a�t�b

Xn(t)
d! inf

a�t�b
X(t): (14)

Using the Skorokhod representation theorem ([24] Theorem 3.1.8) we may
assume Xn

a:s:! X in L0, and then convergence in (14) must be a.s. also.
Since a < b is an arbitrary interval, it follows thatXn

a:s:! X in the �-metric.

Remark. The construction of a tree-with-edge-lengths t(u1; : : : ; uk; 2B
exc)

with an arbitrary �nite number k of leaves labeled by fu1; : : : ; ukg � [0; 1]
extends to the construction [4] of the Brownian continuum random tree
(CRT) whose leaves are indexed by almost all u 2 [0; 1], but we do not
emphasize that formalism in this paper.

2.5 Distributional limits implied by invariance principles

Here we brie
y recall some instances of what can be deduced from each
type of invariance. Write height(i; T ) for the height of vertex i in tree T . In
the context of an invariance principle, de�ne the rescaled cumulative height
pro�le by

Hn(u) :=
nX
i=1

q
(n)
i 1(height(i;T )�u=cn):

12



Regard Hn as a random element of the space D of distribution functions,
where D is equipped with the topology of \convergence in distribution".
Note that the map D[0; 1]! D de�ned by

f ! Hf : where Hf (u) :=

Z 1

0
1(f(t)�u) dt

is L0-continuous at almost all realizations of Bexc. So we can use the con-
tinuous mapping theorem to get

Corollary 10 Consider a model for random weighted trees (T; q) on [n]
which satis�es the sampling invariance principle with scaling constants c.
Then

Hn
d! H

as random elements of D, where

H(u) :=

Z 1

0
1(2Bexc

t �u) dt; 0 � u <1:

See [27, 31] for discussion of the explicit distribution of H .
The map f ! sup0�t�1 f(t) is continuous with respect to the Skorokhod

topology but not with respect to the �-topology, so we cannot deduce the
following from the sampling invariance principle.

Corollary 11 Consider a model for random weighted trees (T; q) on [n]
which satis�es the functional invariance principle with scaling constants c.
Then

c �max
i

height(i; T )
d! sup

0�t�1
2Bexc

t :

See [14] Section 4.1 for discussion of the explicit distribution of suptB
exc
t .

To visualize the distinction between the sampling and functional invari-
ance principles, consider trees T (n) satisfying the functional invariance prin-
ciple with respect to uniform weights. Takem = o(n) and make trees T̂ (m+n)

by linking an arbitrarym-vertex tree ~T (m) to the root of T (n). Then T̂ (m+n)

will still satisfy the sampling invariance principle, but in general not the
functional invariance principle. One can easily make examples where the
convergence of maximum heights assertion in Corollary 11 fails for T̂ (m+n).
In the random walk coding, the point is that the walk excursion for ~T (m)

is vanishingly short and so is not noticed by L0 convergence. At the tech-
nical level, if one knows that the weak invariance principle holds, then to
prove the strong invariance principle one needs only to prove tightness of
the rescaled walks in the Skorokhod metric. It would be interesting to �nd
useful su�cient conditions for tightness in our random tree context.
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3 Formulating the sampling invariance principle

for random mappings

In a sense, the rest of the paper is devoted to describing the \random map-
pings" analogs of the results for random trees in Section 2. The reader may
wish �rst to look at Section 6 for speci�c models of random mappings.

For a mapping M and an element i 2 [n], consider the iterates M0(i) =
i;M1(i) = M(i);M j+1(i) = M(M j(i)); j � 1. There is a smallest number
L1 + L2 such that

ML1+L2(i) = ML1(i) for some 0 � L1 < L1 + L2

and the associated L1 is unique. As shown in the left of �gure 2, we picture
the set of interates of i as a line of length L1 attached to a cycle of length
L2 � L1.

i - r- r- r- r- r- r- r- r
?r
?r

��	r�r�r�r6r
6
r6 i &%

'$r

FIG. 2.

For the uniform random mapping M , the elementary \birthday problem"
argument shows

P (L1 = x; L2 = y) = (n)x+y=n
x+y+1; x = 0; 1; 2; : : : ; y = 1; 2; : : :

where (n)k := n(n� 1)(n� 2) � � �(n� k + 1). In the n!1 limit,

n�1=2(L1; L2)
d! (L1;L2); where fL1;L2(`1; `2) = exp(�(`1+`2)2=2): (15)

We picture the limit as a \mapping with edge-lengths", as in right of �gure
2: there are two edges, a line of length L1 and a loop of length L2.

Instead of starting with a single vertex, one can �x k distinct vertices
�1; : : : ; �k and consider the graph of all iterates (M j(�i); j � 0; 1 � i � k).
Relabel vertex �i as i and unlabel other vertices. Picture the resulting graph
as on the top of �gure 3, which shows an example where no �j falls in the
orbit of any �i; i < j. Take each edge to have length 1; then delete unlabeled

14



degree-2 vertices to obtain a \mapping with edge-lengths" where the edge-
lengths are integers. Call this graph ORBITS(�1; : : : ; �k;M). For asymp-
totics, after suitably scaling edge-lengths we anticipate getting a \mapping
with edge-lengths" g as pictured on the bottom in �gure 3.

1 r r r r r r r rrrrrrrr
r
rr
6rrr4

r
3

2rrrrrrrr r

r r r 7

r r r rr5

��	 ���
@@I

1

6

4

3

2

7

5

"!
# �
��

rr
r

r

r
r

r

FIG. 3. Instances of ORBITS(�1; : : : ; �7;M) and of a g 2 G[7].

Such a graph g has the following properties.
(i) Each component consists of some number 
 � 1 of trees attached to a
directed cycle consisting of 
 edges.
(ii) Each tree is an unordered binary tree, with labeled leaves. The degree-3
branchpoints within trees or where trees meet cycles are unlabeled.
(iii) The set of leaf-labels is [k].
(iv) Each edge has a strictly positive real length.
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Write G[k] for the set of such graphs, which one could call mappings with
edge lengths. A graph g 2 G[k] can be speci�ed by its shape (pedantically,
the shape is the equivalence class of isomorphic leaf-labeled graphs-without-
edge-lengths) and by its edge-lengths. Inductively, the number of edges
equals 2k (adding a new leaf creates two extra edges) and the number of
shapes equals (2k� 1)!! := (2k� 1)(2k� 3)(2k� 5) � � �3 � 1 because the k'th
leaf can be attached at 2k� 1 di�erent places (the 2k� 2 existing edges, or
a new component). This closely parallels the discussion of tree-with-edge-
lengths in Section 2.1. Analogous to the de�nition (1) of T [k], we now de�ne
a distribution for a random mapping with edge lengths, G[k], as follows.

For each possible shape g,

P (shape(G[k]) = g;L1 2 d`1; : : : ;L2k 2 d`2k) = f�2k(`1; : : : ; `2k) d`1 : : : d`2k
(16)

where

f�2k(`1; : : : ; `2k) := exp

0B@�1
2

0@ 2kX
j=1

`j

1A2
1CA : (17)

Compare with (2) and note the missing prefactor in (17); a calculation at
(19) later will illuminate the connection between f�2k and f2k�1. As before,
de�nition (16) implies that shape(G[k]) is uniform on the (2k� 1)!! possible
shapes and that edge-lengths are independent of shape.

We can introduce weighted mappings in the same way as weighted trees:
there is a probability distribution (weight function) q = q(n) on [n]. We can
talk about convergence in G[k] as we did in T[k]: g(n) ! g if shape(g(n)) =
shape(g) ultimately and the edge-lengths converge. We can now copy the
format of De�nition 1.

De�nition 12 A model of random weighted mappings (M; q) on [n] satis�es
the sampling invariance principle with scaling constants c = c(n) if, as n!
1,

c
ORBITS(�1; : : : ; �k;M)
d! G[k]; k � 1 (18)

where �1; : : : ; �k are independent of each other and of M with distribution
q(n).

As noted below De�nition 1, our standing hypothesis (3) on the weights q
implies limn P (�1; : : : ; �k distinct ) = 1 and we only require the left side to
take values in G[k] on events of probability ! 1 as n!1.
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3.1 A construction of G[k]

Motivation for studying the random mapping with edge-lengths G[k] with
distribution (17) comes from its appearance as the limit (18) for the uni-
form random mapping (this is elementary, or a special case of Theorem 25
below). Now we already mentioned that the analogous random tree with
edge-lengths T [k] has a direct line-breaking construction [4, 9]. We will show
below that there is a simple way to construct G[k] from T [k+ 1]. This con-
struction, illustrated in �gure 4, is a \graphs with edge lengths" analog of
Joyal's bijection exploited in [6], though we will not elaborate on the analogy
here.
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r
r34
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r
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g
1

g
2

g
3

FIG. 4. The map J : T[0; k]! G[k] which takes the distribution of T [k+1]
to the distribution of G[k].

Start with a tree with edge lengths t = t1 with leaves labeled 0; 1; : : : ; k.
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In the �gure, leaf i is denoted i . Call the path from the root to leaf 0 the
spine. Let j1 be the junction where the path from leaf 1 to the root meets the
spine. At j1 cut away the edge leading toward leaf 0. Make the line from j1
to root into a cycle by identifying the root with j1, to form a component g1.
In the remaining part of the original tree, make a new root at the endpoint
previously at j1 to de�ne a new tree with edge lengths, say t2. Repeat
recursively, letting j2 be the junction where the path in t2 from the lowest-
numbered leaf (except 0) meets the spine, to construct another component
g2 with a cycle de�ned by identifying its root with j2. Continue until the
remaining tree tj+1 consists only of leaf 0 and a single edge; discarding that
tree, the components g1; : : : ; gj form a mapping with edge lengths. Cycles
are directed according to the direction along the original spine from the root
to leaf 0.

Abusing notation slightly, write T[0; k] for the set of trees with edge lengths
with leaf-set f0; 1; : : : ; kg.
Lemma 13 The map J : T[0; k]! G[k] described above carries the proba-
bility density f2k+1 de�ned at (2) to the density f�2k de�ned at (17).

Proof. It is straightforward to check the map is a bijection between the
two sets of shapes, each having cardinality (2k�1)!!. Checking the assertion
about densities reduces to checking the consequence of integrating out the
contribution from the length `0 of the discarded edge incident to 0, that is
to checking

f�2k(`1; : : : ; `2k) =

Z 1

0
(
2kX
j=0

`j) exp

0B@�1
2

0@ 2kX
j=0

`j

1A2
1CA d`0: (19)

But writing s =
P2k

j=1 `j , this is just the integration by parts formulaZ 1

0
(`0 + s) exp(�1

2(`0 + s)2) d`0 = exp(�1
2s

2):

4 Brownian bridge and random mapping-walks

Here we recall from [7] how to code a mapping as a walk, and a version of the
functional invariance principle for the uniform model of random mappings.
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4.1 Coding mappings as walks plus marks

Recall from Section 2.2 the coding of a rooted ordered tree as a walk. The
corresponding coding for mappings is more intricate. Here's the key con-
ceptual idea from [7], with a di�erent coding.

To a mapping M on [n] one can associate a walk and marks.
The walk and marks determine the mapping, up to vertex-labels.
Given a mapping, the de�nition of the walk and marks involves
three levels of choices of orderings.
(a) The trees in the mapping's digraph are naturally \unordered
trees"; we need to make them ordered trees.
(b) The components of the digraph are unordered; we need to
impose an order.
(c) The trees attached to a cycle in a component are (only) cycli-
cally ordered; we need to specify a \�rst" tree.
The mapping and these choices determine the walk. Some choices
will make the probabilistic structure more tractable.

Here are the details, deferring order choices until later. A walk is a sequence
0 = w(0); w(1); w(2); : : : ; w(n� 1) satisfying

w(i) 2 f0; 1; 2; 3; : : :g; w(i+ 1) � w(i) + 1:

So maybe w(i+ 1) < w(i)� 1. The marks are integers 0 = d(0) < d(1) <
: : : � n� 1, and for each marked integer d(j) we require w(d(j)) = 0.

Using a mapping and order choices to de�ne a walk and marks.

An order on components and an order of trees within each component specify
an order on all the trees, so breaking cyclic edges makes a forest (consisting of
trees, whose roots are the original cyclic vertices) whose trees are in speci�ed
order. To each tree is associated a walk, as in Section 2.2. Concatenating
the walks ~w for each tree, in the speci�ed order of trees, gives the walk w for
the mapping M , and de�nes a relabeling of the vertices as f0; 1; : : : ; n� 1g.
Then mark each i for which, after this relabeling, vertex i is in a di�erent
component of the mapping than all vertices i0 < i. So the marked vertices
are the �rst vertex of each component.

Using the walk and marks to de�ne a mapping. We will label ver-
tices as f0; 1; : : : ; n � 1g. The components of the digraph of M will be
f0; 1; : : : ; d(1) � 1g; fd(1); d(1) + 1; : : : ; d(2)� 1g; : : : : : :. The value w(i)
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will be the height of vertex i above the cycles of M . So the cyclic ver-
tices i will be exactly the vertices with w(i) = 0. If i < j are the posi-
tions of successive visits of w(�) to 0, then ( ~w(0); ~w(1); : : : ; ~w(j � i� 1)) =
(w(i); w(i + 1); : : : ; w(j � 1)) is a walk which determines a tree, and the
order of the excursions within each component determines the cyclic order
in which trees are attached to the cycle.

Together with the walk we de�ne

l(j) :=
iX

i=0

1(w(i)=0): (20)

So l(j) is the number of vertices i � j which are cyclic.
We now specify our order choices, for coding a mapping as a walk. Other

choices are possible, as discussed in [1]. The choices will use external ran-
domization.
(a) Within each tree, children of each vertex are put in uniform random
order.
(b) Order components in q-biased random order. That is, choose random
v1 2 [n] according to q(n), and let C1 be the component containing vertex
v1. Then choose random v2 2 [n] n C1 with probabilities proportional to
q(n), and let C2 be the component containing vertex v2; and so on.
(c) Within component Cj , put trees in cyclic order such that the tree con-
taining vertex vj is last.

Summary. Given a deterministic or random mapping on [n], the construc-
tion above leads to a random walk (w(i); 0� i � n� 1) and random marks
0 = d(0) < d(1) < : : : � n�1, and a relabeling of vertices by f0; 1; : : : ; n�1g.
From the walk and marks we can reconstruct the mapping digraph, up to
permutation of vertices. Figure 5 later illustrates such a walk and marks
(more precisely, their rescaling described below). Call (w(i); 0� i � n� 1)
the mapping-walk.

Finally, for a component C write q(C) :=
P

i2C qi for the weight of C,
and write cycle(C) for the cycle length in component C. We will give results
for the joint distributions

((q(Cj); c � cycle(Cj)) ; j � 1) (21)

where as above the components (Cj) are in q-biased random order.
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4.2 Rescaling mapping-walks

To discuss weak convergence as n ! 1 of mapping-walks (w(i); 0 � i �
n) = (w(n)(i); 0 � i � n) associated with random mappings M = M (n), we
need to introduce rescalings. Given weights q(i) = q(n)(i), set

�(i) := q(0) + q(1) + � � �+ q(i� 1)

and de�ne the rescaled walk ( �w(t); 0 � t � 1) by

�w(t) := w(i) for �(i) � t < �(i+ 1):

De�ne a rescaled \cyclic vertex counting" process (�l(t); 0 � t � 1) by

�l(t) := l(i) for �(i) � t < �(i+ 1):

And rescale the marks 0 = d(0) < d(1) < : : : by de�ning

�d(j) := �(d(j)); j = 0; 1; 2; : : :

so that 0 = �d(0) < �d(1) < : : : < 1.

4.3 The Brownian bridge limit

Write Bjbrj = (B
jbrj
t ; 0 � t � 1) for re
ecting Brownian bridge, obtained

from standard Brownian motion (Bt) via

B
jbrj
t := jBt � tB1j:

It turns out that the role of Brownian excursion for random trees is played
by re
ecting Brownian bridge for random mappings. To code the component
structure of the mappings, we require some external randomization provided
by an in�nite i.i.d. uniform (0; 1) sequence ( eUi). De�ne D0 = 0,

D1 := infft � eU1 : B
jbrj
t = 0g

and then for r = 1; 2; : : : de�ne

Dr+1 := infft � Dr + eUr+1(1�Dr) : B
jbrj
t = 0g: (22)

Write (L(t); 0 � t � 1) for local time at 0 for Bjbrj, normalized so that
P (L(1) > s) = exp(�s2=2); s > 0 [36].

Aldous and Pitman proved a variety of results for the uniform model of
random mappings, including the following.

21



Theorem 14 ([7]) For the uniform random mapping M on [n], with uni-
form weights, as n!1

n�1=2 �w(n) d! 2Bjbrj (23)

n�1=2�l(n)
d! L (24)

in the sense of weak convergence of processes in the usual Skorokhod metric
on D[0; 1]. Moreover��
q(C

(n)
j ); n�1=2 � cycle(C(n)

j )
�
; j � 1

�
d! ((Dj �Dj�1; L(Dj)� L(Dj�1)) ; j � 1)

(25)

The proof of Theorem 14 in [7] used a di�erent, but asymptotically equiv-
alent, way of coding trees as walks. Also, in section 4.1 we used a speci�c
choice of ordering of components to de�ne the mapping-walk. It turns out
there is an alternate choice based on size-biasing of cycles which also leads
to Bjbrj asymptotics. These random mapping considerations lead to two dif-
ferent recursive decompositions of Bjbrj, whose structure is explored in [1],
including explicit descriptions of the distribution of the right side of (25).

Note that the total cycle length is �l(n)(1) =
P

j cycle(C
(n)
j ). The asymp-

totic result
n�1=2 �

X
j

cycle(C
(n)
j )

d! L(1) (26)

follows from (24) but cannot be deduced directly from (25).

5 Functional implications of the sampling invari-

ance principle for random mappings

We �nally arrive at the central point of the paper. Though the assertion of
convergence to Bjbrj in Theorem 14 is elegant, the choice of extra properties
(24,25) seem somewhat arbitrary, as do the details of the mapping-walk
de�nition. In contrast, the sampling invariance principle is a \natural"
assertion without any arbitrary choices. One anticipates, by analogy with
Proposition 7 for random trees, that the sampling invariance principle itself
should imply results in the general format of Theorem 14. Theorem 15 and
Proposition 20 provide such results.

22



Theorem 15 Suppose a model of random weighted mappings (M; q) on [n]
satis�es the sampling invariance principle with scaling constants c = c(n).
Then as n!1

((q(Cj); c � cycle(Cj)) ; j � 1)
d! ((Dj �Dj�1; L(Dj)� L(Dj�1)) ; j � 1)

(27)
and

c �w
d! 2Bjbrj (28)

in the sense of weak convergence of processes in the �-metric de�ned in
Section 2.4.

Remarks. Here (27) just repeats (25). The conclusion of Theorem 15
is weaker than Theorem 14 in two ways. First, in (28) we have a weaker
topology on function space than in (23) { in the trees setting, this was the
only di�erence. Second, we do not have convergence (26) of total cycle
length (nor the re�nement (24)). See Section 5.1 for further discussion of
asymptotic distributions.

The proof of Theorem 15, which occupies the rest of this Section, follows
the general outline of the proof of Proposition 7, with extra complications
dealing with component ordering conventions. We will need an analog of
Lemma 8, stated as Lemma 16 below, which links sampling invariance to
Brownian bridge. We then proceed to the analog of (11), stated as Lemma
17. First we need to specify an operation g(�) (analogous to t(�) in Sec-
tion 2.4) which describes how graphs-with-edge-lengths are obtained from
functions and marks.
Construction (illustrated in �gure 5). Given:
� a function f : [0; 1]! [0;1);
� a non-decreasing function l : [0; 1]! [0;1) with l(0) = 0 and whose points
of increase are contained in ft : f(t) = 0g;
� marks 0 = d(0) < d(1) < : : :� 1, such that each f(d(i)) = 0;
� distinct u1; : : : ; uk � (0; 1)
we construct a graph-with-edge-lengths g(u1; : : : ; uk; f; l; d) as follows.
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(i) For each excursion of f from 0 which contains at least one of the ui,
construct the associated tree-with-edge-lengths t as de�ned above Lemma
8 (with the excursion interval I in place of [0; 1] and fi : ui 2 Ig in place of
[k] as the set of leaves). Write l(t) for l(�) evaluated at the starting point
left(t) of the excursion coding t.
(ii) For trees tj ; : : : ; tJ such that left(tj) < : : : < left(tJ) and such that these
are all the trees t with left(t) 2 [d(r � 1); d(r)) for some r, create a cyclic
path between their roots, where the cyclic edge from root(ti) to root(ti+1)
has length l(ti+1)� l(ti) for j � i < J , and the cyclic edge from root(tJ) to
root(tj) has length l(d(r))� l(tJ) + l(tj)� l(d(r� 1)).

Observe that external randomization appears twice in the statement of
Theorem 15: in the hypothesis of sampling invariance, and in the conclusion
where the mapping-walk is de�ned using q-biased random order of compo-
nents. For the proof (but not the statement) it will be important to take
these two randomization operations to be independent. So we now introduce
i.i.d. uniform (0; 1) random variables (Ui), independent of the mappings and
mapping-walks in section 4.1, and independent of Bjbrj and ( ~Ui; Di) in sec-
tion 4.3.

Lemma 16 g(U1; : : : ; Uk; 2Bjbrj; L;D)
d
= G[k], where L(t) is local time

for Bjbrj at 0 and D = (D0; D1; : : :) are the marks de�ned at (22).

Historically, Lemma 8 was �rst proved [4] as a consequence of the functional
invariance principle for uniform random trees, and later reproved [26, 43]
directly via excursion theory for Brownian excursion. Doubtless Lemma 16
could also be proved via excursion theory for Brownian bridge, but we shall
deduce it during the course of the next proof from Theorem 14 for uniform
random mappings. See [43] for further results in the spirit of Lemmas 8 and
16 for Brownian bridge and meander.

Lemma 17 Under the hypotheses of Theorem 15,

c

�
�w(V1); inf

V1�t�V2
�w(t); �w(V2); inf

V2�t�V3
�w(t); : : : ; �w(Vk)

�
d!
�
2Bjbrj(V1); inf

V1�t�V2
2Bjbrj(t); 2Bjbrj(V2); inf

V2�t�V3
2Bjbrj(t); : : : ; 2Bjbrj(Vk)

�
where (V1; : : : ; Vk) are the order statistics of (U1; : : : ; Uk).

Proof of Lemmas 16 and 17. First �x n. For �(u) de�ned at (9),
�(U1); : : : ; �(Uk) are independent random vertices chosen from distribution
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q, as required for the sampling invariance principle. Moreover, from their
de�nitions ORBITS(�(U1); : : : ; �(Uk);M) is the same graph-with-edge-lengths
(except for heights of branchpoints di�ering by 1) as g(U1; : : : ; Uk; �w; �l; �d),
where �w is the rescaled mapping-walk de�ned in section 4.2, and �l and �d
are also as de�ned there. Letting n!1, the sampling invariance principle
implies

c
 g(U1; : : : ; Uk; �w; �l; �d)
d! G[k] as n!1: (29)

Now in the special case of uniform random mappings, it is not hard to see
that the argument in [7] to prove Theorem 14 implies

c
 g(U1; : : : ; Uk; �w; �l; �d)
d! g(U1; : : : ; Uk; 2B

jbrj; L;D): (30)

Thus the right sides of (29) and (30) must be equal in distribution, estab-
lishing Lemma 16. Returning to the general case of mappings satisfying the
sampling invariance principle, we have now established (30). Now the order
statistics (V1; : : : ; Vk) are related to (U1; : : : ; Uk) via some permutation Vi =
U�(i). Construct gord(U1; : : : ; Uk; 2Bjbrj; L;D) and gord(U1; : : : ; Uk; �w; �l; �d)

from g(U1; : : : ; Uk; 2Bjbrj; L;D) and g(U1; : : : ; Uk; �w; �l; �d) by relabeling leaf
�(i) as leaf i, to get a \leaf-ordered" graph (illustrated in �gure 5 with leaf
i labeled (i)). Clearly gord(U1; : : : ; Uk; 2Bjbrj; L;D) determines the (2k� 1)-
vector appearing on the right side in Lemma 17, and gord(U1; : : : ; Uk; �w; �l; �d)
determines the (2k�1)-vector appearing on the left side. So to prove Lemma
17 it is enough to prove the \ordered" version of (30):

Lemma 18 As n!1
c
 gord(U1; : : : ; Uk; �w; �l; �d)

d! gord(U1; : : : ; Uk; 2B
jbrj; L;D):

Proof. First �x n. The external randomization used to order components
of a mapping M as part of the walk coding can be implemented as follows.
Take i.i.d. (~�i) with distribution q. Take C1 to be the component containing
~�1 and then take Cr to be the component containing ~�Ir where

Ir = minfi : ~�i 62 [1�j<rCjg:
Fixing K and k, and letting n!1, the sampling invariance principle with
K + k sampled vertices implies

c
ORBITS(~�1; : : : ; ~�K; �(U1); : : : ; �(Uk);M)
d! G[K + k]:

But from a realization of ORBITS(~�1; : : : ; ~�K ; �(U1); : : : ; �(Uk);M) we can
not only derive (exactly) the realization of ORBITS(�(U1); : : : ; �(Uk);M),

26



but also we get information about the permutation � taking Ui to Vi = U�(i).
For instance, if a component contains ~�1 then it is the �rst component. In
fact, the order of tree-components is determined exactly unless

91 � j � k : �(Uj) in di�erent component from each ~�i; 1 � i � K:

Moreover the distribution of within-tree leaves is determined by the random
depth-�rst ordering imposed by that aspect of external randomization. So
to prove that the limit distribution in Lemma 18 does not depend on the
model of random mappings, it is enough to prove

lim
K

lim
n
P (91 � j � k : �j in di�erent component from each ~�i; 1 � i � K) = 0:

(31)
The probability in question is bounded by

kP (~�1 in di�erent component from each ~�i; 2 � i � K + 1): (32)

By the sampling invariance principle, the n! 1 limit of the probability in
(32) does not depend on the model of random mapping. Using Theorem 14,
the limiting distribution of component weights is (Dr�Dr�1; r � 1). So the
quantity in (31) is bounded by

lim
K

kE(1�D1)
K

which clearly equals 0. So we have shown that the limit distribution in
Lemma 18 does not depend on the model of randommappings. Use Theorem
14 again to identify the limit distribution as gord(U1; : : : ; Uk; 2B

jbrj; L;D).
Proof of Theorem 15. Having established Lemma 17, the same argument

as used in the proof of Proposition 7 shows c(n) �Wn
d! 2Bjbrj. Regarding

(27), we will prove

(q(C1); c � cycle(C1))
d! (D1; L(D1)) (33)

and the full version is similar. Recalling (Vi; 1 � i � k) are the order
statistics of (Ui; 1 � i � k), write

Ik := maxfi : �(Vi) in same component as �(V1)g:

Then VIk � q(C1) � VIk+1. Now (30) implies that as n!1 for �xed k,

(VIk ; VIk+1)
d! (VJk ; VJk+1) (34)
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where Jk := maxfi : Vi � D1g. But as k!1 we clearly have (VJk ; VJk+1)
d!

(D1; D1) and this establishes

q(C1)
d! D1: (35)

Now the sampling invariance principle (for the orbit of a single vertex),
and our \q-biased component order" convention, immediately imply that
c�cycle(C1) converges in distribution to a limit which does not depend on the
model; so by Theorem 14 the limit distribution is that of L(D1). Repeating
the argument above, convergence (34,35) holds jointly with convergence of
c � cycle(C1) and the joint limit does not depend on the model; so again the
joint limit distribution is that arising in the uniform model, (D1; L(D1)),
and (33) is established.

5.1 Distributional limits implied by the sampling invariance
principle

One can immediately use Theorem 15 to see that the sampling invariance
principle implies convergence of rescaled cumulative height pro�les, as for
trees in Corollary 10.

Corollary 19 Consider a model of random weighted mappings (M; q) on
[n] which satis�es the sampling invariance principle with scaling constants
c. De�ne the rescaled cumulative height pro�le by

Hn(u) :=
nX
i=1

qi1(height(i;M)�u=c):

Then
Hn

d! H

as random elements of D, where

H(u) :=

Z 1

0
1
(2B

jbrj
t �u)

dt; 0 � u <1:

See [28, 44] for discussion of the explicit distribution of H .
It is true that the sampling invariance principle implies convergence of

rescaled tree-sizes, but this cannot be deduced from Theorem 15. Instead
we can give a direct proof.
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Proposition 20 Consider a model of random weighted mappings (M; q) on
[n] which satis�es the sampling invariance principle with scaling constants
c. Let

�n
1 � �n

2 � : : : ;
X
i

�n
i = n

be the q-measures of the tree-components of the digraph of Mn. Then as
n!1

(�n
i ; i � 1)

d! (�1
i ; i � 1) (36)

where the right side denotes the lengths of excursions from 0 for Bjbrj, in
decreasing order.

See [46] for discussion of the limit distribution.
Proof. Let (Un

j ; j � 1) be independent vertices of Mn with distribution q.
For each n and k there is a random partition Pn

k of [k] de�ned by
j1 and j2 are in the some component of the partition if Un

j1
and Un

j2
are

in the same tree-component of the digraph of Mn.
By results on exchangeable random partitions going back to Kingman [33],
convergence (36) is equivalent to the assertion that, for each �xed k,

Pn
k

d! P1
k as n!1 (37)

where P1
k is the partition de�ned analogously in terms of i.i.d. uniform

(0; 1) random variables and the excursions of Bjbrj; and where \convergence
in distribution" has its elementary interpretation because the number of
possible partitions is �nite. Now implicit in the arguments of [7] is that
(36) and hence (37) holds for the uniform model of random mappings with
uniform weights. It is therefore su�cient to show that the n ! 1 limit of
Pn
k is the same in all models satisfying the sampling invariance principle.

But this is clear from the de�nition: c 
 ORBITS(�1; : : : ; �k;M)
d! G[k]

implies the shapes converge, and the shape determines the partition.

5.2 The functional invariance principle for random mappings

As we have already mentioned, it is not easy to decide exactly how to de-
�ne the functional invariance principle for random mappings. Here is our
tentative de�nition.

De�nition 21 A model of random weighted mappings (M; q) on [n] satis�es
the functional invariance principle with scaling constants c = c(n) if, as
n!1, the assertions of Theorem 14 hold (with n�1=2 replaced by c(n)) and
the assertion of Proposition 20 holds.
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With this de�nition it is true { though we omit details { that the functional
invariance principle implies the sampling invariance principle.

As with trees in Corollary 11, we can deduce convergence of maximal
heights from the functional, but not sampling, invariance principle.

Corollary 22 Consider a model of random weighted mappings (M; q) on
[n] which satis�es the functional invariance principle with scaling constants
c. Then

c �max
i

height(i;M)
d! sup

0�t�1
2B

jbrj
t :

The limit distribution of suptB
jbrj
t here is of course the classical Kolmogorov-

Smirnov statistic ([23] equation 7.8.11).
To visualize the distinction between the sampling and functional invari-

ance principles, consider mappings M (n) satisfying the functional invariance
principle with respect to uniform weights. Take m = o(n) and make a map-
ping M̂ (m+n) by including an arbitrary mapping ~M (m) on fn+1; : : : ; n+mg.
Then M̂ (m+n) will still satisfy the sampling invariance principle, but in gen-
eral not the functional invariance principle. One can easily make examples
of ~M (m) so that the convergence of maximum heights assertion in Corol-
lary 22 fails, or the convergence of total cycle length (26) fails. Indeed this
highlights a subtlety of the joint convergence of component weights and cy-
cle lengths in (27); saying that the cycle lengths of the largest components
converge is not saying that the longest cycle lengths converge.

Example 26 later provides a more concrete example.

6 Models for non-uniform random mappings

As already mentioned, the de�nition of the functional invariance principle
for random mappings was motivated by Theorem 14, the case of uniform
random mappings. There is no obvious mappings analog of CBP(n) trees,
but p-trees and P -trees do have natural mapping analogs. In the next Sec-
tions we show that direct analysis of these models can lead to proofs of the
sampling invariance principle.

6.1 The sampling invariance principle for p-mappings

Our proof will use Poisson approximation to evaluate asymptotics in the
exact distribution of ORBITS([k];M), where [k] = f1; 2; : : : ; kg. We start
by isolating the Poisson approximation result we need.
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For a probability distribution p on [n] write

cp :=

sX
i

p2i :

It is well known (see e.g. [18] and papers cited there) that the elementary
analysis of the uniform \birthday problem" extends to the non-uniform case
under condition (7), as follows.

Lemma 23 Let (p(n)) satisfy (7). Suppose m = m(n) satis�es mcp ! s for
some 0 < s <1. For each n let (�i; 1 � i � m) be i.i.d.(p). Then

P (�i; 1 � i � m are all distinct )! exp(�s2=2):

The precise result we need is the following variant.

Corollary 24 In the setting of Lemma 23, �x k � 1. For each n let
i1; j1; i2; j2; : : : ; ik; jk be distinct elements of [m]. Then

P (�i 62 [k]; i 2 [m]; �i distinct for all i 2 [m]nfj1; : : : ; jkg; �ju = �iu ; 1 � u � k)

� c2kp exp(�s2=2):
Proof. First observe

P (�i 62 [k]; i 2 [m])! 1 (38)

because the complementary probability is at most kmmaxi pi = o(mcp) =
o(1). Conditioning on the event in (38) is equivalent to replacing (p(n))
by conditioned probabilities which satisfy the same hypotheses, so we can
reduce the problem to proving

P (�i distinct for all i 2 [m]nfj1; : : : ; jkg; �ju = �iu ; 1 � u � k) � c2kp exp(�s2=2):
(39)

By a similar conditioning argument and Lemma 23,

P (�i; i 2 [m] n fj1; : : : ; jkg are distinct j�i1 ; : : : ; �ik) � exp(�s2=2)

uniformly on f�i1 ; : : : ; �iu distinct g. From the de�nition of cp and (7),

P (�ju = �iu ; 1 � u � k; �iu distinct, 1 � u � k) � c2kp :

Combine these two relations to obtain (39).
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Theorem 25 (Weak invariance principle for p-mappings) For a se-
quence of p-mappings M , if the sequence (p(n)) satis�es (7), then as n!1

cp 
ORBITS([k];M)
d! G[k]; k � 1:

In particular, the sampling invariance principle holds for any weight func-
tions q, with scaling constants cp.

The proof of the �rst assertion will be given soon. The second assertion
follows from the �rst because, by relabeling vertices, the �rst holds for any
deterministic choice of k vertices, and hence for the q-random choices in the
sampling invariance principle.

Note in particular that Theorem 25 implies that, under (7), the rescaled
cumulative height pro�le converges (Corollary 19). O'Cinneide and Pokrovskii
[42] Theorem 2.1 used loosely similar methods to prove convergence (under
the same hypotheses) of the rescaled cumulative height process to an un-
speci�ed limit. The next example shows that (7) is not enough to imply
the functional invariance principle, though we speculate that a very slight
strengthening would be enough.

Example 26 Condition (7) is not su�cient to imply the functional invari-
ance principle for p-mappings.

Take

p
(n;m)
i = 1

2n ; 1 � i � n; p
(n;m)
i = 1

2m ; n+ 1 � i � n+m:

Write M = Mn;m for the associated p-mapping on [n+m]. Take m = m(n)
such that m=n ! 1, and then (7) holds with c(p(n;m)) � 1

2n
�1=2. Now �x

n. We shall show that, as m!1,

max
i

height(i;M)!1 in probability: (40)

By taking m = m(n) ! 1 su�ciently fast, (40) implies that Corollary 22
fails for Mn;m, and hence the functional invariance principle fails.

Fix n. Choose L = L(m)!1 so that

m
2L4

�L !1:

Take i1 = m + 1 and de�ne A1 = fi1;M(i1);M
(2)(i1); : : : ;M

(L�1)(i1)g.
Inductively, for 2 � r � m=(2L) let ir be the minimum element of fn +
1; : : : ; n+mgn[1�s<rAs and let Ar = fir;M(ir);M

(2)(ir); : : : ;M
(L�1)(ir)g.

Then the conditional probability of the event
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Ar consists of L elements, distinct from each other and from
[n][ [1�s<rAs

is at least (1=4)L. So the numberN(m) of such events (for some r � m=(2L))
tends in probability to in�nity as m ! 1, by speci�cation of L(m). Now
(40) follows easily.
Proof of Theorem 25. Fix k � 1. Fix g 2 G[k] with total edge-lengthP
`i = s. We shall prove Theorem 25 by proving the corresponding, formally

stronger, local limit theorem

if cp 
 g(n) ! g then P (ORBITS([k];M) = g(n)) � c2kp exp(�s2=2): (41)

Here g(n) denotes a possible value of ORBITS([k];M) which is in G[k].
Note that, although for �nite n the graph ORBITS([k];M) may not be in
G[k] (for example, because it may have degree-4 vertices or non-leaf labeled
vertices), combining (41) with the fact that G[k] is a probability distribution
will imply P (ORBITS([k];M) 2 G[k])! 1 and hence we need only consider
the case g(n) 2 G[k].

Consider the chance that, for a random p-mapping, ORBITS([7];M) is
exactly the graph g at the top of �gure 3. One can construct ORBITS([7];M)
from an i.i.d.(p) sequence (�j ; 1 � j � n) as follows. Declare the iter-
ates of 1, that is M(1);M2(1);M3(1); : : :, to be the values �1; �2; : : : ; �r1
for r1 := minfj : �j 2 f1; �1; : : : ; �j�1gg. Then, if 2 =2 f1; �1; : : : ; �r1�1g,
declare the iterates of 2 to be the subsequent �-values �r1+1; �r1+2; : : : ; �r2
until r2 := minfj > r1 : �j 2 f1; 2; �1; : : : ; �j�1gg; and so on. So the prob-
ability under consideration is exactly the chance that the i.i.d.(p) sequence
(�i) starts with a \pattern" of the form

[1]� � � a � � � b � � � � � c � � a [2]� d � � e � � � � e [3]� c
[4]� � � f � b [5]� � g � � g

[6]

f
[7]� � � d

whose meaning we now explain. The orbit of vertex 1 in �gure 3 consists of
a path of length 4 attached to a cycle of length 13. To create such an orbit
we need �4 = �17 and we need the other values �1; : : : ; �3; �5; : : : ; �16 to be
distinct and di�erent from the former common value. This makes r1 = 17.
Similarly, the orbit of vertex 2 consists of a path of length 5 attached to a
cycle of length 5; To create such an orbit we need �27 = �22 and we need
the other values �18; : : : ; �21; �23; : : : ; �26 to be distinct from each other and
from previous �-values. This makes r2 = 27. Vertex 3 is attached by a path
of length 2 to a particular point of the cycle from vertex 1; this requires
�29 = �k for a particular k (which turns out to be k = 14). And so on. The
upshot is that the graph in �gure 3 corresponds exactly to the case where
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�1; : : : ; �46 �t the \pattern" shown:
(i) the successive �-valuse denoted as � � �� are distinct except where indicated
otherwise; and they are distinct from [7];
(ii) �iu = �ju for each of the 7 pairs (iu; ju) whose positions are denoted by
symbols abcdefg: for instance, symbol a at positions (4; 17) indicates that
�17 = �4, and symbol e at positions (22; 27) indicates that �22 = �27. In the
pattern, superscript [i] denotes position ri+1, that is (because M(i) = �ri+1)
the position of the �-value giving M(i).

Applying this analysis to a general possible g(n) 2 G[k], we see that
P (ORBITS([k];M) = g(n)) is precisely equal to a probability of the form
appearing in Corollary 24, and so that Corollary implies (41).

6.2 Random walk P -mappings

Recall that a P -mapping is a randommappingM on [n] such thatM(1); : : : ;M(n)
are independent with P (M(i) = j) = pij for a Markov transition matrix P .
One can imagine qualitatively di�erent hypotheses on P which would lead to
the sampling invariance principle { note that in this context the stationary
distribution of P would be a natural choice of weight function.

Here we shall indicate one possible type of hypothesis. Suppose (for
some subsequence of n!1) we have size-n groupsGn with group operation
denoted by �. Suppose each P = P (n) is of the form pij = �(i�1�j) for some
probability distribution � = �(n) on Gn. That is, P is the transition matrix
of a random walk Xm = �1 � �2 � : : : � �m whose steps � have distribution �.
Suppose there exist constants � = �(n); t = t(n) and 
 not depending on n
such that the following hold as n!1.

(i) t!1; t=�! 0; n�1=2�! 0.
(ii) n1=2

P�
i=1 P (Xi = identity)! 0.

(iii) E(N(�)jN(�) � 1) ! 
, where N(�) :=
P�

i=0

P�
j=0 1(Xi=Yj) for

independent random walks (Xi) and (Yi) with Y0 independent uniform on
Gn.

(iv) maxg2Gn n
2jP (Xt = g)� n�1j ! 0.

Proposition 27 ([2] Prop. 33) Under the hypotheses above, as n!1

(
n)�1=2 
ORBITS(identity;M)
d! G[1]:

Though we shall not give details, the analysis in [2] can be extended to show

Proposition 28 Under the hypotheses above, (M; uniform) satis�es the sam-
pling invariance principle with constants (
n)�1=2.
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As an illustrative example ([2] Example 34) takeGn to be the cyclic group on
f0; 1; : : : ; n�1g and take �(i) = 1

2n for i 6= 1 and �(1) = 1
2+

1
2n . Here one can

show the hypotheses hold with 
 = 4=3. Note P (M(1) = 2) = 1=2+1=(2n);
this \immediate dependence" implies we do not have

(
n)�1=2
ORBITS(1; 2;M)
d! G[2]

in contrast to Theorem 25. This explains why we use randomly-chosen
vertices �i in De�nition 12.

7 Remarks

(a) The coding of trees as walks in this paper is via \depth �rst search"
or the \exploration process", used also in e.g. [35]. See [38] for further
references and the asymptotic equivalence of variant de�nitions. Note that
a di�erent family of breadth-�rst walks are used for other purposes, e.g. [5].

(b) The literature on asymptotics for p-trees [18, 11, 9, 8] develops a com-
plete theory of all possible limits of p-trees without assumption (7), in which
setting the limit tree-with-edge-lengths T [k] will have some di�erent distri-
bution. This is the sense in which condition 7 is analogous to Lindeberg's
condition in the central limit theorem. The method of deriving random
p-mapping asymptotics from p-trees asymptotics via Joyal's bijection, men-
tioned in Section 1.1, should lead to a parallel complete description of all
possible limits of p-mappings. We plan to investigate this elsewhere [6].
At a technical level, note that Theorem 25 holds for arbitrary weights q(n)

whereas the method of [6] seems tied to the choice q(n) = p(n).

(c) Conceptually, one can think of using Bjbrj to construct a continuum
random mapping analogously to the continuum random trees constructed
from Brownian excursion. This idea also may be developed elsewhere.

(d) It is intriguing, and easy to check, that the distribution of G[k] is (up
to scaling constants) the maximum entropy distribution on its state space
G[k] subject to the constraint E( sum of edge-lengths)2 = constant. The
corresponding assertion is not true for T [k] because of the prefactor in (2).

Acknowledgement. We thank Gr�egory Miermont for a careful reading of
a draft.
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A Appendix: Weak convergence on L0

Recall L0 is the space of measurable functions f : [0; 1]! R with metric

jjf1 � f2jj0 :=
Z 1

0
min(1; jf1(t)� f2(t)j) dt:

Weak convergence of stochastic processes with respect to the L0 metric
has been discussed in several places [19, 29]; in particular it is known that
convergence of �nite dimensional distributions implies convergence in L0.
We need the following, apparently new, result which characterizes L0 weak
convergence as convergence of random �nite dimensional distributions.

Proposition 29 Let X and Xn, n = 1; 2; : : :, be random elements of L0.
For each k let 0 < Vk;1 < Vk;2 < : : : < Vk;k < 1 be the order statistics of k
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independent uniform(0; 1) random variables. Then Xn
d! X in L0 if and

only if for each �xed k,

(Xn(Vk;1); Xn(Vk;2); : : : ; Xn(Vk;k))
d! (X(Vk;1); X(Vk;2); : : : ; X(Vk;k)) as n!1:

The \only if" part is immediate. The proof of the \if" part occupies the rest
of this Appendix. Fix B and set

FB := ff 2 L0 : esssuptjf(t)j � Bg:

On FB the L0 metric is equivalent to the L1 metric

jjf1 � f2jj1 :=
Z 1

0
jf1(t)� f2(t)j dt:

For m � 1 de�ne Am : FB ! FB by averaging over dyadic rational intervals:

(Amf)(t) = 2m
Z (i+1)2�m

i2�m
f(u) du; i2�m � t < (i+ 1)2�m:

The following compactness criterion is straightforward.

Lemma 30 A sequence ffn; n � 1g � FB is relatively compact if and only
if

lim
m

lim sup
n

jjfn �Amfnjj1 = 0:

For f 2 FB and k � 1 de�ne a random element ~fk of FB by

~fk(t) = f(Vk;i);
i�1
k � t < i

k :

Because a measurable function can be approximated by functions constant
on intervals, it is straightforward to show

Lemma 31 limk Ejj ~fk � f jj1 = 0; f 2 FB.

The technical heart of the argument is the following lemma, whose proof we
defer.

Lemma 32 Fix B and m. Then

jjf � Amf jj1 � Ejj ~fk �Am
~fkjj1 + �(k; B;m) 8f 2 FB ; 8k � 1

where the constants �(k; B;m) satisfy limk �(k; B;m) = 0.
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To prove the Proposition, �rst truncate at �B to reduce to the case where
Xn and X take values in FB; the general case then follows by letting B " 1.
By hypothesis, eXk

n
d! eXk as n!1; k �xed.

Since Am is a continuous function, we deduce

lim
n
Ejj eXk

n �Am
eXk
njj1 = Ejj eXk �Am

eXkjj1: (42)

Now

lim sup
n

EjjXn �AmXnjj1 � Ejj eXk � Am
eXkjj1 + �(k; B;m)

by Lemma 32 and (42)

� EjjX �AmX jj1
letting k !1, using Lemma 31:

So
lim
m

lim sup
n

EjjXn � AmXnjj1 � lim
m

EjjX � AmX jj1:

But the right side equals zero by applying Lemma 30 to X alone; and so
Lemma 30 implies that the sequence fXn; n � 1g is tight in L1. To prove
convergence it therefore su�ces to verify the identi�ability result

if (X(Vk;1); X(Vk;2); : : : ; X(Vk;k))
d
= (Y (Vk;1); Y (Vk;2); : : : ; Y (Vk;k)); k � 1

then X
d
= Y

and this is straightforward.
Proof of Lemma 32. The desired inequality can be split into two

parts:
jjf �Amf jj1 � Ejj ~fk � Amf jj1 + �1(k; B;m) (43)

EjjAmf � Am
~fk jj1 � �2(k; B;m) (44)

where we want limk �(k; B;m) = 0 in each case. We will prove these for
m = 1, the general case being similar. Note A1f is constant on the intervals
[0; 1=2) and [1=2; 1]. To study (43), the contribution to Ejj ~fk�A1f jj1 from
the interval [0; 1=2) equals

E

Z 1=2

0
j ~fk(t)�A1f(1=4)j dt:
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By a Fubini argument, this equals

Z 1

0
jf(s)�A1f(1=4)j �k(s)ds; for �k(s)ds = k�1

k=2X
i=1

P (Vk;i 2 [s; s+ ds]):

(45)
And we can write the contribution to jjf �A1f jj1 from the interval [0; 1=2)
as Z 1

0
jf(s)� A1f(1=4)j1(s<1=2)ds: (46)

Using the de�nition of the Vk;i as uniform order statistics one can show
�k(s) = P (Vk�1;k=2 > s) and we lose nothing in assuming k is even. Now
observe

quantity (46) � quantity (45) �
Z 1=2

0
jf(s)�A1f(1=4)j P (Vk�1;k=2 < s)ds:

The integrand is bounded by 2B, and combining with the symmetric con-
tribution from [1=2; 1] we see

jjf � A1f jj1 �Ejj ~fk � A1f jj1 � 2B EjVk�1;k=2� 1=2j:

Since clearly Vk�1;k=2
d! 1=2 as k ! 1, we have a bound of the required

form (43).
To argue (44), the value of A1

~fk on [1=2; 1] equals

2
k

k=2X
i=1

f(Vk;i) := �k ; say:

So the contribution to (44) from [1=2; 1] can be bounded by�����12E�k �
Z 1=2

0
f(t)dt

�����+ 1
2Ej�k �E�kj

�
�����12E�k �

Z 1=2

0
f(t)dt

����� + 1
2

p
var �k: (47)

But

E�k = 2

Z 1

0
f(s)�k(s) ds (48)

for �k(�) as before. So the �rst term in (47) equals����Z 1

0
f(s)(�k(s)� 1(s�1=2)) ds

���� � B

Z 1

0
j�k(s)�1(s�1=2)j ds = BEjVk�1;k=2�1

2 j
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and this bound is of the required form. For the second term of (47), a brief
calculation (whose details we omit) gives

E�2
k =

2
kE�k+

4(k�1)
k

Z 1

0

Z 1

0
f(s1)f(s2)P (Vk�2;k=2�1 > max(s1; s2)) ds1ds2:

So using (48),

var �k = E�2
k � (E�k)

2

= 2
kE�k � 4

k

Z 1

0

Z 1

0
f(s1)f(s2)P (Vk�2;k=2�1 > max(s1; s2)) ds1ds2

+4

Z 1

0

Z 1

0
f(s1)f(s2)

�
P (Vk�2;k=2�1 > max(s1; s2))� �k(s1)�k(s2)

�
ds1ds2:

Because jf j � B we then see

var �k � 2B
k +4B2

k +4B2
Z 1

0

Z 1

0

���P (Vk�2;k=2�1 > max(s1; s2))� �k(s1)�k(s2)
��� ds1ds2:

Since Vk�2;k=2�1
d! 1=2 as k !1, this bound ! 0 as k!1, as required.
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