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University of California at Berkeley and The Hebrew University of Jerusalem

∗†We consider nonparametric estimation of an object such as a prob-

ability density or a regression function. Can such an estimator achieve

the minimax rate of convergence on suitable function spaces, while, at the

same time, when “plugged-in”, estimate efficiently (at a rate of n−1/2 with

the best constant) many functionals of the object? For example, can we

have a density estimator whose definite integrals are efficient estimators

of the cumulative distribution function? We show that this is impossible

for very large sets, e.g., expectations of all functions bounded by M < ∞.

However we also show that it is possible for sets as large as indicators of all

quadrants, i.e., distribution functions. We give appropriate constructions

of such estimates.

1. Introduction We consider the following type of problem. Let X1, X2, . . . , Xn

be i.i.d. , X1 ∼ Pϑ, ϑ ∈ Θ, a subset of a linear space of function. Suppose the

minimax rate for estimating ϑ with some global loss function, for instance, a

Banach norm on Θ, is slower than the parametric n−1/2 rate. Let T be a collection

of functionals from Θ to R. Suppose that for each τ ∈ T , τ(ϑ) can be estimated at

the n−1/2 rate. Is there an estimator ϑ̂ of ϑ which achieves the minimum rate above

while at the same time, for all τ ∈ T , τ(ϑ̂) converges to τ(ϑ) at rate n−1/2? Even

better, can we have τ(ϑ̂) be best among all regular estimates of τ(ϑ) converging at
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rate n−1/2 (Efficient)? Even more, can we have the n−1/2 convergence be suitably

uniform on T ?

For instance, and this is the prototypical example, let Θ be a ball in a Sobolev

or Hölder space of densities or regression functions on Rd. Let the set of functionals

be

T =
{

τh, h ∈ H, τh(ϑ) =
∫

h(x)ϑ(x)dx

}
(1.1)

where H is a universal Donsker class. We want to find an estimate ϑ̂n that achieves

the minimax rate for integrated square error and, at the same time, can be “plugged-

in” to estimate all functionals (parameters) τ(ϑ) with τh ∈ T efficiently. For in-

stance, if, ϑ is a density, T as above, then, if Pn is the empirical distribution, we

would want

(1.2) τh(ϑ̂n) =
∫

h ϑ̂n =
∫

h dPn + op(n−1/2)

uniformly for ϑ ∈ Θ and h ∈ H. (By convention,
∫

h will be an integral with respect

to Lebesgue measure.)

Our interest in this problem stems from the fairly well known fact that if one takes

ϑ̃n to be a standard minimax estimate such as a nonnegative kernel or wavelet esti-

mate of appropriate bandwidth for the two derivative Sobolev spaces then, typically,

n1/2|τ(ϑ̃n)−τ(ϑ)| P→∞. Thus, if the density estimate ϑ̃n is based on a nonnegative

kernel with an optimal bandwidth, σn = O(n−1/5), then
∫

x2ϑ̃ = n−1
∑n

i=1 X2
i +σ2

n

which is not
√

n consistent estimator of EX2.

This failure can be seen as a lack of robustness against choice of loss function.

Such ϑ̃n behave well for l(ϑ, ϑ̃n) =
∫

(ϑ−ϑ̂n)2 but poorly for l(ϑ, ϑ̃n) =
∣∣∣
∫

h(ϑ̃n − ϑ)
∣∣∣

and more so for l(ϑ, ϑ̃n) = supH
∣∣∣
∫

h(ϑ̃n − ϑ)
∣∣∣.
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If this lack of robustness can be remedied there are practical consequences. It is

often the case that one wants to use the density estimate for inference about specific

features like skewness and kurtosis or other aspects of shape. Failure to have the

plug-in property means that for these purposes every subsequent user must return

to the empirical distribution for such estimates. We do argue in this paper that

there is no free lunch, i.e., one cannot hope to efficiently plug-in for all regular

parameters. But we also show that rather broad prior ideas of what one may need

to plug-in for can be accommodated.

Of equal interest is the fact that shape estimation of the density may itself be

qualitatively improved by “getting the functionals in T right”. Efron and Tibshirani

(1996) provide one method for getting a finite number of functionals right and

thereby improving an overly rough estimate. We go in the other direction. Start

with an oversmooth estimate and roughen it using the requirement that it has to

do well on T .

Cai (2000) establishes another plug-in property. He considers the white noise

model dY (t) = g(t)dt + σn−1/2dZ(t), t ∈ R and suggests an estimator ĝ of g, such

that for a wide range of linear operators, K−1ĝ is an almost rate efficient estimator

of K−1g. His main example for the operator K is the derivative.

We use the acronym PIP to denote plug-in properties of the type we have de-

scribed. An estimator with the PIP will be called a plug-in estimator, or PIE in

short. A statistical problem which admits a PIE will be considered as having the

PIP. As we have noted there are potentially many notions of plug-in. We will define

them completely as we discuss them in what follows. The PIP is a feature of a

statistical problem with specified global loss function and family T . Thus we shall

speak of problems having the PIP (and show that there are problems which do not
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have it). On the other hand we will focus on particular classes of estimates which

are well known and/or attractive computationally and see if they can be modified

to have a PIP.

Our paper is organized as follows. We begin in Section 2 by briefly discussing our

motivating example of kernel density estimation in connection with the strongest

version of PIP. Section 3 is conceptual and asks to what extent various PIP’s are

possible. The main result of this section, Theorem 3.2, is negative showing that if

one takes T too big, e.g. the set of all bounded linear functions, then we cannot

adapt uniformly as in (1.2). On the other hand, in Section 4 we provide an existence

theorem which shows that in an important special case, if T is a reasonably small

class, e.g. a universal Donsker class, then plug-in is typically possible and verify

the conditions in a number of important cases. Although the result of Section 4

suggests a possible PIE, this estimator is not ‘natural’. In Section 5 we exhibit

several specific and more plausible methods of estimation.

2. Kernel density estimation Consider a standard kernel estimator:

p̂n(x) =
1

nσ

n∑

i=1

ψ

(
x−Xi

σ

)
,

where ψ is the density of a (not necessarily positive) distribution function Ψ, and

σ is a bandwidth that depends on n. The kernel and the bandwidth are usually

selected depending on how many derivatives (to α terms) p0 is assumed to have.

Thus, if p0 is assumed to have a Taylor expansion of order α, then ψ is selected

such that its first α−1 moments are 0, and σ = n−1/(2α+1) to balance the bias and

the standard error of the estimator. (This achieves minimaxity over Hölder balls for

integrated square error and other global loss functions.) Consider now estimation
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of the cdf of P0. The estimator which is based on integrating p̂ is:

P̂n(y) =
1
n

n∑

i=1

Ψ
(

y −Xi

σ

)
.

It is immediate that n Var(P̂ (y) − Pn(y)) → 0 (where, with some natural abuse

of notation we use P (y) to denote P ((−∞, y])). Moreover, denote the empirical

process by En =
√

n(Pn − P ). Then,

sup
y

√
n

∣∣∣P̂n(y)− Pn(y)− E Pn(y) + P (y)
∣∣∣

= sup
y

∣∣∣
∫

ψ
(
(y − x)/σn

)
En(x) dx− En(y)

∣∣∣ = op(1),

(2.3)

since the empirical process converges to a uniformly bounded and continuous ran-

dom process. Now,

E P̂n(y)− P0(y) =
∫

ψ(x)(P0(y + σx)− P0(y))dx.

If Ψ is selected as above, this term is of order σα = n−α/(2α+1), an order larger than

n−1/2, and P̂n has no conceivable plug-in property for this problem. On the other

hand if p0 has a Taylor expansion of order α, then Po, which is one order smoother,

has an expansion of order α + 1. Hence if one starts with a kernel which has one

more zero moment than needed for density estimation the bias will be of order

σα+1 = n−(α+1)/(2α+1) = o
(
n−1/2

)
.

If this holds uniformly for P ∈ P, then P̂ is efficient. If P is the ball in a Sobolev

space of order α,
{
p :

∫ |Dαp|2 ≤ M
}

and the loss is integrated squared error, then

we can plug-in for the distribution function and hence also for all functions h(x) =
∫ x

−∞ dµ(y) where µ is a finite signed measure. In this context we define PIP as

minimaxity of p̂n for integrated squared error loss and efficiency for τh(p̂n).

If d > 1 this argument fails for P as above, since the cdf does not necessarily

have one derivative more than the density. However, it is still true that use of a
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kernel with more zero moments than needed for density estimation will enable the

type of PIP just defined for some P and H.

Assume that p has α derivatives, or more precisely, suppose

P ⊆ {
p :

∫ |ω|2α|Fp(ω)|2dω < A
}

where F is the Fourier transform operator. Now

if H ⊆ {h : supω |w|γ |Fh(ω)| < C} for some γ > d/2, then PIP holds if we use a

kernel ψ such that |Fψ(ω)− 1| ≤ B(1
∧ |ω|α+γ).

To see this we argue again to establish (2.3) and consider

(2.4) EP

(∫
hp̂n −

∫
hp

)
=

∫
Fh Fp(Fψσ − 1) = OP(σα+γ)

where ψσ(x) ≡ σ−1ψ(σ−1).

We should remark that the strong smoothness requirement imposed on H is

needed only for having a kernel estimator with PIP. It is not needed in general, as

we show in Section 4.

3. Feasibility of “plug-in” In this section we investigate different perspec-

tives on the plug-in property. We start by reminding the reader that this problem

is nonparametric and frequentist in nature: if Θ is Euclidean, the parameterization

is regular and T includes only smooth functions, then the strongest possible PIP’s

hold. Then we consider the Bayesian situation. If we define PIP in this context to

require Bayes optimality rather than minimaxity we argue that for “quadratic” loss

functions and τ which are linear functionals, PIP holds trivially. Then we turn to

PIP’s in frequentist nonparametric models. The main result of the section is that

unless the class T of functionals is restricted, PIP defined in various ways is not

possible. Even the class of all bounded linear functionals, as in (1.2),may be to big

for PIP.
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3.1. Regular parametric families If P is regular parametric, P = {pϑ : ϑ ∈

Θ ⊆ Rd}, pϑ the density of X ∈ X , ϑ → pϑ is 1-1, continuously Hellinger

differentiable and the Fisher information matrix I(ϑ) is non-singular for all ϑ

then an efficient estimate ϑ̂, often the maximum likelihood estimator, exists and

Lϑ{
√

n(ϑ̂ − ϑ)} → N (0, I−1(ϑ)) uniformly on compacts. For any differentiable τ ,

Lϑ{
√

n(τ(ϑ̂)− τ(ϑ))} → N (0, I−1(X; τ(ϑ))), where I(X; τ(ϑ)) is the Fisher infor-

mation bound for estimating τ(ϑ) when observing X. The efficient estimate of the

density pϑ is the PIE pϑ̂(·) which converges (e.g., in the Hellinger distance) at rate

n−1/2, and if

(3.5) T ⇐⇒ H = {h : X → R, sup
ϑ∈Θ

Eϑh2(X) < ∞}

with correspondence given by (1.1), then plug-in also works again in the sense that
∫

h pϑ̂ is efficient and so

∫
hpϑ̂ −

∫
hpϑ = E

(
h(X)l̇T (X; ϑ)

)
I−1(ϑ)n−1

n∑

i=1

l̇(Xi; ϑ) + oP(n−1/2),(3.6)

where l̇(·; ·) is the Hellinger derivative of the log-likelihood function.

3.2. A Bayesian perspective We briefly discuss now the PIP from a Bayesian

perspective. Suppose Θ belongs to a a bounded convex subset of a Hilbert space L,

then the Bayesian may wish to estimate Θ considering the squared Hilbert norm as

his norm (note that in this sub-section we use Θ to denote the parameter, considered

as a random variable).

Then the no data Bayes estimate is well defined by E(Θ) minimizing E‖Θ− c‖2

for c ∈ L. Similarly, the Bayes estimate is ED(Θ) where ED is expectation with

respect to the posterior. It follows immediately then that

τ
(
ED(Θ)

)
= EDτ(Θ)(3.7)
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for all bounded linear functionals τ . However, as soon as we consider nonlinear

functionals, the situation becomes unclear.

One way of formalizing the notion of robustness against choice of loss functions

for a Bayesian is to postulate that the loss function is selected at random, i.e., have

a prior over potential decision theoretic goals the data is to be put to. If the prior

beliefs on τ are independent of those on Θ, the Bayesian may wish to minimize over

ϑ for some µ and π:

∫ ∫
Eϑ

{∥∥ϑ̂− ϑ
∥∥2

/r2
n + nλ

(
τ(ϑ̂)− τ(ϑ)

)2}
dµ(τ)dπ(ϑ) < ∞.(3.8)

Equivalently, the Bayesian minimizes a weighted average of the loss incurred from

the different aspects of the problem. Implicitly, we assume that the parameter ϑ

and the objective τ are selected independently and that the Bayes risk is uniformly

bounded. The parameters rn and λ define the relative weights the Bayesian gives

to the two components of the problem. In the typical case, where the two aspects

of the problem, estimating ϑ and its functionals, are given equivalent weights, then

rn will be of the same order as the Bayes risk for estimating ϑ. Formally,

Definition 3.1. The independence Bayesian plug-in property is satisfied if

there exists an estimator ϑ̂n satisfying (3.8).

The Bayesian does not lose much by minimizing the average risk by a single

estimator instead of minimizing the different risks by an arsenal of estimators, each

fitted for a specific task. In fact, the independence Bayesian plug-in risk is no more

than twice the weighted average Bayesian risks for the different components. Let
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ϑπ and τπ are the Bayesian estimators of ϑ and τ . Here is the proof:

inf
ϑ̂

ED

(∥∥ϑ̂− ϑ
∥∥2

/r2
n + nλ

∫
(τ(ϑ̂)− τ(ϑ))2 dµ(τ)

)

= ED

(∥∥ϑ̂π − ϑ
∥∥2

/r2
n + nλ

∫
(τ̂π − τ(ϑ))2 dµ(τ)

)

+ inf
ϑ̂

(∥∥ϑ̂− ϑ̂π

∥∥2
/r2

n + nλ

∫
(τ(ϑ̂)− τ̂π)2 dµ(τ)

)

≤ ED

(∥∥ϑ̂π − ϑ
∥∥2

/r2
n + nλ

∫
(τ̂π − τ(ϑ))2 dµ(τ)

)

+ ED

(∥∥ϑ− ϑ̂π

∥∥2
/r2

n + nλ

∫
(τ(ϑ)− τ̂π)2 dµ(τ)

)

3.3. Non-parametric families Here is a first non-Bayesian definition of PIP.

Suppose that the minimax rate for estimating ϑ ∈ Θ is nγ/2. That is,

inf
ϑ̃n

sup
ϑ∈Θ

nγ+ε
∥∥ϑ̃n − ϑ

∥∥2 p−→∞

inf
ϑ̃n

sup
ϑ∈Θ

nγ
∥∥ϑ̃n − ϑ

∥∥2
< Op(1)

for any ε > 0, where the infimum is taken over all possible estimators based on

X1, . . . , Xn.

Definition 3.2. An estimate ϑ̂n of ϑ is a uniform PIE for a set T of functionals

if under any Pϑ, ϑ ∈ Θ:

{
nγ‖ϑ̂n − ϑ‖22 + n sup

τ∈T
(τ(ϑ̂n)− τ(ϑ))2

}
= Op(1).(3.9)

In general no such ϑ̂n exists. For instance, if Θ is a subset of an inner-product space,

and T ↔ {h : ‖h‖2 ≤ 1}, τh(ϑ) ≡< h, ϑ >, then supτ∈T (τ(ϑ̂)− τ(ϑ))2 = ‖ϑ̂− ϑ‖2.

But if T ↔ H for H is not too large (e.g., finite) then a PIE exists.
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Theorem 3.1. Suppose there exists an estimated process χn(τ), such that

n supτ (χn(τ) − τ(ϑ))2 = OP (1), i.e., χn(τ) is a
√

n consistent estimate of τ(·).

Then a uniform PIE exists.

Proof. Define

Sn(ϑ′) ≡ nγ‖ϑ̂− ϑ′‖2 + n sup
τ∈T

(τ(ϑ′)− τ̃n)2

and ϑ̂n such that Sn(ϑ̂n) ≤ infϑ Sn(ϑ)+n−1. Then ϑ̂n is well defined and PIE since

Sn(ϑ) = Op(1) where ϑ is the true value of the parameter.

A weaker requirement than (3.9) is that plug-in works for any parameter and

functional (chosen a-priori and independently of the data). That is,

Definition 3.3. An estimator ϑ̂n of ϑ is a weak PIE if

lim
M→∞

limn sup
Θ,T

Pϑ

(
nγ‖ϑ̂n − ϑ‖2 + n(τ(ϑ̂)− τ(ϑ))2 ≥ M

)
= 0.(3.10)

The main result of this section suggests that even this PIP does not hold for non-

parametric Θ and T large.

For simplicity we consider the Gaussian white noise model. Here Xi ∈ l2, Xi =

(Xi1, . . . , . . . )

Xij = µj + εij 1 ≤ i ≤ n

where εij are i.i.d. N (0, 1). Our parameter set is given by

Θ = {ϑ :
∑

i2αϑ2
i ≤ 1}.

This model is interesting in its own terms. In view of the work of Nussbaum (1994)

Brown and Low (1996) it is equivalent in the sense of LeCam, for α > 1/2, to more

standard models of nonparametric density and regression estimation when suitably
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described. For simplicity we do not go beyond the white noise model and this Θ,

but some extension is clearly possible.

A linear functional τ on Θ can be identified with h ∈ l2 with τh(ϑ) =
∑

ϑjhj .

Let T = {h : ‖h‖2 ≤ 1}.

Theorem 3.2. If the white noise model holds and Θ and T are given as above,

then there exists ϑ̂n which achieves the minimax rate:

(3.11) sup
ϑ∈Θ

EP ‖ϑ̂n − ϑ‖2 = O(n−α/(2α+1)).

However for any such ϑ̂n, the equivalent of (3.10) fails. In fact,

(3.12) sup
ϑ∈Θ,τ∈T

E
[
n2α/(2α+1)‖ϑ̂n − ϑ‖22 + n(τ(ϑ̂n)− τ(ϑ))2

]
→∞.

The proof is based on the following elementary lemma.

Lemma 3.1. Suppose that X ∼ N(ϑ, 1), ϑ ∈ [−a, a], and let λ > 0. Let T be

any estimator of ϑ. Then

(3.13) max
ϑ∈[−a,a]

{Varϑ(T ) + λ2b2
ϑ(T )} ≥

(
λa

1 + λa

)2

where bϑ(T ) = EϑT − ϑ.

Proof. We can assume wlog that Varϑ(T ) < ∞, as otherwise the result is

trivial. Moreover, the bias function has a well defined derivative by the Hellinger

differentiability of the normal density. Denote maxϑ(1+ ḃϑ(T ))2 = α2, α > 0. Then

maxϑ ḃϑ(T ) ≤ −(1− α). Hence,

ba(T )− b−a(T ) ≤ −2(1− α)a.

Therefore, either b−a(T ) ≤ −(1− α)a or ba(T ) ≥ (1− a)a. It follows that

max
ϑ

b2
ϑ(T ) ≥ max

{
b2
−a(T ), b2

a(T )
} ≥ (1− α)2a2.
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By the information inequality that

max
ϑ

Varϑ(T ) ≥ max
ϑ

(1 + ḃϑ(T ))2 = α2.

Hence

max
ϑ∈[−a,a]

{Varϑ(T ) + λ2b2
ϑ(T )} ≥ minα>0 max{α2, λ2(1− α)2a2}

=
(

λa

1 + λa

)2

.

Proof of Theorem 3.2. The rate stated in the theorem is achieved, for ex-

ample by the estimator ϑ̃n = (ϑ̃n1, ϑ̃n2, . . . ) with ϑ̃ni = n−1
∑n

j=1 Xji for i <

n1/(1+2α) and ϑ̃ni = 0 otherwise.

Suppose there exists an estimator ϑ̂n = (ϑn1, ϑn2, . . . ) such that

∞ > limn sup
ϑ∈Θ,τ∈T

Eϑn(τ(ϑ̂n)− τ(ϑ))2

Let hni = hni(ϑ̂n, ϑ) = Eϑ(ϑ̂ni − ϑi). We obtain that in particular:

∞ > limn sup
ϑ∈Θ

nEϑ

(∑∞
i=1 hni(ϑ̂ni − ϑi)

(
∑∞

i=1 h2
ni)

1/2

)2

≥ limnn

∞∑

i=1

h2
ni(ϑ̂n, ϑ),

(3.14)

by Cauchy-Schwarz.

Let β = 2α + 1. Since ϑ̂n achieves the optimal nonparametric rate:

(3.15) ∞ > limnn1− 1
β sup

ϑ∈Θ

∞∑

i=1

(
Varϑ(ϑ̂ni) + h2

ni(ϑ̂n, ϑ)
)

.

Combining (3.14) and (3.15) we obtain:

∞ > limnn1−1/β sup
Θ

∞∑

i=1

(
Varϑ(ϑ̂ni) + n1/βh2

ni(ϑ̂n, ϑ)
)

.(3.16)
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Consider now the set Θ∗ = {ϑ : |ϑi| ≤ ci−β(1+ε)/2} ⊂ Θ for some small c and

ε ∈ (0, β−1). Using the lemma, with a = ci−β(1+ε)/2n1/2 and λ = n1/β :

n1− 1
β sup

Θ∗

(∑

i

Varϑ(ϑ̂ni) + n
1
β h2

ni(ϑ̂n, ϑ)

)

= n−1/β sup
Θ∗

(∑

i

Varϑ(n1/2ϑ̂ni) + n1/βnh2
ni(ϑ̂n, ϑ)

)

≥ n−1/β
∞∑

i=1

(
cn1/2β+1/2i−β(1+ε)/2

1 + cn1/2β+1/2i−β(1+ε)/2

)2

≥ n−1/β

bn(1/β+1/β2)/(1+ε)c∑

i=1

(
n1/2β+1/2i−β(1+ε)/2

1 + n1/2β+1/2i−β(1+ε)/2

)2

≥
(

c

1 + c

)2

n(1−εβ)/β2(1+ε).

Note that we have converted estimation of ϑi with error variance 1/n to estimation

of
√

nϑi with error variance 1.

But (3.3) contradicts (3.16) and hence ϑ̂n does not exist.

4. Minimaxity and efficient plug-in

4.1. Main results We will now define the statistically most interesting and

strongest version of a PIP which in fact is the one regular parametric families

possess.

Definition 4.1. Let ‖ϑ̃n − ϑ‖2 = Op(rn), rn be the minimax estimation rate,

and for each τ ∈ T , let τ̃n be an efficient estimator of τ (i.e., an estimator that

achieves the semiparametric information bound for estimation of τ(ϑ)). An estima-

tor ϑ̂n is called an efficient PIE if ‖ϑ̂n−ϑ‖2 = Op(rn) and
√

n supτ∈T |τ(ϑ̂n)− τ̃ | =

op(1).



14 BICKEL AND RITOV

Note that if T is a Donsker class being an efficient PIE implies that τ(ϑ̂n) achieves

the semiparametric information bound in the strong sense of Bickel, Klaassen, Ritov

and Wellner (1998) Definition 5.2.7 (page. 182).

We will now discuss the possibility of the efficient PIP in the special context

of linear functionals. We consider Θ to be a subspace of some Hilbert space S,

and consider T = {ρ(·; h) : h ∈ H}, where H ⊂ H, H some linear space, and

ρ : Θ×H→ R is a bilinear function.

Let {ΘM}, M ≥ 1, be a sequence of finite dimensional linear subspaces of Θ,

where M is the dimension of {ΘM}. Let ΠM : H → H be a projection operator,

defined by ρ(ϑ; h − ΠMh) = 0, for all ϑ ∈ ΘM and h ∈ H, and let gM1, . . . , gMM

be an orthonormal basis of ΘM . Let hM1, . . . , hMM span ΠMH, ρ(gMi;hMj) = δij ,

i, j = 1, . . . ,M . All of these may depend on unknown parameters. Let ϑ0 be the

true value of the parameter. We make the following assumptions:

A1: Let ρ̂(h) be an efficient estimator of ρ(ϑ;h), h ∈ H. We assume that ρ̂(h) is

linear, ρ̂(h1 +h2) = ρ̂(h1)+ ρ̂(h2), and can be approximated uniformly by ρ̂(ΠMnh)

in the sense that for any Mn →∞

(4.17) sup
H

n1/2|ρ̂(h−ΠMnh)− ρ(ϑ0; h−ΠMnh)| = op(1).

A2: There exists an estimator ϑ̃n such that ‖ϑ̃n − ϑ‖2 = Op(rn).

A3: For all M < ∞,

C(M) ≡ sup
ϑ,n,j

nEϑ

(
ρ̂(hMj)− ρ(ϑ0;hMj)

)2
< ∞.

Theorem 4.1. Under A1–A3 there exists an estimate ϑ̂n which is an efficient

PIE for Θ, T . That is,
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‖ϑ̂n − ϑ0‖2 = Op(rn)

sup
H
|ρ(ϑ̂n; h)− ρ̂(h)| = oP(n−1/2).

Proof. Note that A1 implies that if Mn → ∞, then there exists a sequence

bn → 0 (depending on Mn) such that

(4.18) sup
H

b−1
n n1/2|ρ̂(h)− ρ̂(ΠMn

h)− ρ(ϑ0;h−ΠMn
h)| = oP(1).

Let Mn → ∞ but C(Mn)Mn/nr2
n → 0, and let bn be the sequence of (4.18). To

simplify notation we occasionally drop the subscripts n and Mn. Next we consider

the following problem:

(4.19) Minimize
{

r−1
n ‖ϑ− ϑ̃n‖2 + b−1

n n1/2 sup
H
|ρ(ϑ;h)− ρ̂(h)|, ϑ ∈ Θ

}

and let ϑ̂n be an (approximate) minimizer. Define

(4.20) ϑ∗ = ϑ0 +
Mn∑

j=1

(ρ̂(hj)− ρ(ϑ0;hj)) gj .

We claim that,

(4.21) r−1
n ‖ϑ∗ − ϑ̃n‖ = Op(1)

and

(4.22) b−1
n n1/2 sup

H
|ρ(ϑ∗;h)− ρ̂(h)| = op(1).

To see this compute first,

(4.23) r−1
n ‖ϑ∗ − ϑ̃n‖ ≤ r−1

n ‖ϑ0 − ϑ̃n‖+ Op

(
r−1
n

(
C(Mn)Mn

n

)1/2
)

since

EP ‖ϑ∗ − ϑ0‖22 = EP




Mn∑

j=1

(
ρ̂(gj)− ρ(ϑ0; gj)

)2


 ≤ C(Mn)Mn

n
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by A3. By definition of Mn, (4.21) follows. On the other hand, since ρ̂(h) is linear

by assumption A1, and

ρ(ϑ∗; hj) = ρ(ϑ0;hj) + ρ̂(hj)− ρ(ϑ0; hj) = ρ̂(hj).

Then ρ(ϑ∗; h) = ρ̂(h) for all h ∈ ΠMnH. Therefore, for h ∈ H

ρ(ϑ∗; h)− ρ̂(h) = ρ(ϑ∗; h−ΠMnh)− ρ̂(h) + ρ̂(ΠMnh)

= ρ(ϑ0; h−ΠMn
h)− ρ̂(h) + ρ̂(ΠMn

h).

Hence, (4.22) follows from (4.17). But (4.21) and (4.22) imply that

min
{

r−1
n ‖ϑ̃− ϑ‖2 + b−1

n n1/2 sup
H
|ρ(ϑ;h)− ρ̂(h)| , ϑ =∈ Θ

}
= Op(1).

Hence

‖ϑ̂n − ϑ̃n‖2 = Op(rn)

sup
H

∣∣∣ρ(ϑ̂n;h)− ρ̂(h)
∣∣∣ = op(n−1/2)

and the theorem follows.

Note that although ϑ∗ in the proof depends on the true ϑ0, ϑ̂n doesn’t.

We now give some simple conditions on the model for existence of efficient PIE.

Suppose X = Rd.

Let BM = {BM1, . . . , BMM} be a partition of Rd, for instance, into rectangles.

Let SM = span{gM1, . . . , gMM}, gMj(x) ≡ cMjp0(x)1I(x ∈ BMj), where cMj =

(
∫

BMj
p2
0)
−1/2 is a normalizing constant and 1I denotes an indicator. The projection

operator is given by ΠMh = Π(h | BM ), where

Π(h | BM ) ≡ p0(x)
M∑

j=1

P0(BMj)∫
BMj

p2
0

E0(h | BMj)1I(x ∈ BMj).

Assumption A1 has two aspects. The first is that the members of H can be

approximated uniformly by their projections on SM , and the second is that the
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empirical process results can be applied to this projection. We deal with the two

aspects separately.

A4: Suppose {Bi} is a sequence of a nested partitions and that for α ≤ 2 and all

M

E(pα
0 (X) | BM )(

E(p0(X) | BM )
)α ≤ C < ∞

and

E(pα
0 (X) | BM )(

E(p0(X) | BM )
)α

a.s.−→ 1, , as M →∞

This condition is natural when p0 is bounded and continuous (in particular, if the

non-compact members of BM are excluded).

Typically one proves tightness or weak convergence of an empirical process in-

dexed by a set of function by proving some bound on the a covering number for

this set. We define the covering number N(ε,H, D) to be the smallest number of

functions h1, . . . , hN such that

sup
h∈H

min
1≤i≤N

∥∥h− hi

∥∥
D
≤ ε.

We define the covering number with bracketing, N[ ](ε,H, D) as the minimal number

of pairs (h1i, h2i), i = 1, 2, . . . , N , such that
∥∥h21 − h1i

∥∥
D
≤ ε, and for every h ∈ H

there is 1 ≤ i ≤ N such that h1i ≤ h ≤ h2i. The metric D is typically either Lα(P0)

(or an equivalent measure like the uniform) or Lα(Pn), where Pn is the empirical

distribution function.

We now argue that if ρ̂(h) = Pn(h), i.e., the model is nonparametric the usual

conditions for H to be a P Donsker class carry over under A4 so that assumption

A1 is satisfied and hence efficient PIE’s can be constructed for broad classes of

examples. Note that assumption A3 is automatically satisfied for this choice of ρ̂.
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Theorem 4.2. Suppose that H satisfies a slight strengthening of the condition

of Theorem 2.5.6 of van der Vaart and Wellner (1996),
∫ ∞

0

√
log N[ ](ε,H, L2(P ))dε < ∞

and has an envelope function H for H ∈ L2(P ). Then, under A1–A4 an efficient

PIE can be constructed.

The proof uses two lemmas which are of independent use in semiparametric

models where ρ̂ is more complicated.

The following lemma describes some of the properties of the projection:

Lemma 4.1.

1. If h1 ≤ h2 then Π(h1 | B) ≤ Π(h2 | B).

2. Suppose A4 holds. Then E|Π(h | B)|α ≤ Cα−2E|h|α for any h ∈ Lα(P0).

Proof. The first part of the Lemma is trivial. We proceed to prove the second

part. For any h ∈ lα(P0):

E|Π(h | B)|α =
∑

B∈B

Pα
0 (B)

∫
B

pα+1
0(∫

B
p2
0

)α |E(h | B)|α

≤
∑

B∈B

Pα−1
0 (B)

∫
B

pα+1
0(∫

B
p2
0

)α

∫

B

|h|αp0

=
∑

B∈B

E(pα
0 (X) | B)

Eα(p0(X) | B)

∫

B

|h|αp0

≤
∑

B∈B
C

∫

B

|h|αp0 = CE|h|α.

We now prove that H can be approximated by its projections.

Lemma 4.2. Suppose A4 holds, that H has an L2(P0) envelope, uniform in P0,

and that the empirical process indexed by H is uniformly pre-Gaussian uniformly
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in P (see van der Vaart and Wellner, 1996, page 169 for the definition). Then

suph∈H
∥∥h−Π(h|B))M

∥∥
P0
→ 0.

Proof. First note that since H has an L2(P0) envelope,

∥∥h− E(h | B)
∥∥

P0
→ 0(4.24)

for any h ∈ H.

Suppose now that
∥∥hi −E(hi | Bi)

∥∥
P0
→ 0 for some sequence hi ∈ H. Then:

lim
i→∞

∥∥hi −Π(hi | Bi)
∥∥2

P0

≤ lim
i→∞

∥∥E(hi | Bi)−Π(hi | Bi)
∥∥2

P0

= lim
i→∞

∑

B∈Bi

∫

B

(
E(hi | B)

(
1− P0(B)p0(x)∫

B
p2
0

))2

p0(x)dx

≤ lim
i→∞

∑

B∈Bi

P0(B)E(h2
i | B)

(
P0(B)

∫
B

p3
0(∫

B
p2
0

)2 − 1
)

= 0

(4.25)

by assumption A4 and bounded convergence.

If the conclusion of the proposition is not true, then there is ε > 0 and a se-

quence hi ∈ H such that
∥∥hi − Π(hi|Bi)

∥∥
P0

> 2ε. By (4.25) this implies that
∥∥hi − E(hi|Bi)

∥∥
P0

> 2ε as well. the Let i1 = 1 and define

ij = min
{
i : max

k<j

∥∥hik
−Π(hik

|Bi)
∥∥

P0

}
< ε.

Note that ij is finite by (4.24). Then

min
k<j

∥∥hij − hik

∥∥
P0
≥ min

k<j

(∥∥hij − E(hik
|Bij )

∥∥
P0
−

∥∥hik
− E(hik

|Bij )
∥∥

P0

)

≥ min
k<j

(∥∥hij − E(hij |Bij )
∥∥

P0
−

∥∥hik
− E(hik

|Bij )
∥∥

P0

)

≥ ε.

Hence there is no ε-net covering H, contradicting the uniform pre-Gaussianity as-

sumption, cf. van der Vaart and Wellner, Theorem 2,8.2).
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Proof of the theorem. We need only establish A1. Since Π(· | B) is a con-

ditional expectation it preserves order (Lemma 4.1) and also reduces Lα(P0) norm,

α ≥ 1, E|Π(h | B)|α ≤ E|h|α. Therefore,

N[ ](ε, Π(H | B0), Lα(P0)) ≤ N[ ](ε,H, Lα(P0)).

(In fact only the usual E(Π(h | B))2 ≤ Eh2 is needed.) Moreover if the envelope

function H possesses a second moment so does the envelope to Π(H | B) since

E(supH |h(·)| | B) ≥ supH(E(h | B))2. The result follows.

Similar arguments can be applied to the uniform entropy Theorem 2.5.1 of van

der Vaart and Wellner (1996). Recall that B is not related to the estimator but

only to the proof of its existence, hence the number of sets in the partition B

and minBi∈B P0(Bi) can converge to infinity and 0 as slowly as needed. Therefore,

we can have that maxB∈Bi

∫
B

p2
0 dPn/

∫
B

p3
0 ≤ 2 with probability converging to 1.

Hence

∥∥Π(h|B)
∥∥2

Pn
=

∑

B∈B

(
P0(B)∫

B
p2
0

)2

E2(h | B)
∫

B

p2
0 dPn

≤ 2
∑

B∈B

P0(B)
∫

B
p3
0(∫

B
p2
0

)2

∫

B

h2p0 + oP(1)

≤ 2CE(h2) + oP(1),

by A4. Hence establishing a bound on N(ε, Π(H|B), L2(Pn)) will be relatively

straightforward (if one has it for N(ε,H, L2(Pn)).

4.2. Examples Nonparametric: (i) Linear T . In view of Theorem 4.1 exis-

tence of an efficient PIE for a number of important examples of linear T is immedi-

ate. We mention the empirical d.f.H = Indicators of rectangles≡ {ai ≤ xi ≤ bi, 1 ≤

i ≤ d, a,b ∈ Rd}, H = Indicators of half spaces ≡ {aT x ≤ c : |a| = 1, c ∈ R}
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where | · | is the Euclidean norm, H = Fourier transforms restricted to a compact

≡ {ht : ht(x) = exp(itT x), t ∈ K a compact}, all sets of inferential interest. Here

is a more surprising example.

PIE for all moments and cumulants

Suppose X = Id, the unit cube. Let H = {exp{sT x} : |s| ≤ ε}. Let p̂n be a PIE

for H which is evidently a Donsker class. We claim that p̂n is a simultaneous PIE

for all moments and hence all cumulants. To see this, note that

sup
|s|≤1

∣∣∣∣n1/2

(∫
exp{sT x}p̂n(x)dx−

∫
exp{sT x}dpn(x)

)∣∣∣∣
P→ 0.

The expression within | | is an analytic function of s. Since it converges uniformly

to 0 on a compact with nonempty interior all its derivatives which are also analytic

must similarly converge to 0 and our claim follows.

Nonlinear functionals: In the usual way we can get results for nonlinear T from

linear ones. Suppose T , P are such that for suitable τ̃n,

(i) For all τ, P0 there exist functions hτ (·, p0) such that

τ̃n = τ(p0) +
∫

hτ (x, p0)dPn(x) + op0(n
−1/2).

This is just the statement that τ(p0) is efficiently estimable over a nonparametric

model P.

(ii) Let T̃ = {τh(p) =
∫

hp : h = hτ (·, p0) for some τ ∈ T , p0 ∈ P}. T̃ satisfies

the conditions of Theorem 4.1.

(iii) Let p̂n be an efficient PIE for T̃ . Then,

sup{|τ(p̂n)− τ(p0)−
∫

hτ (·, p0)(p̂n − p0)| : τ ∈ T } = op(n−1/2) ∀ P0 ∈ P0.
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Then, p̂n is an efficient PIE for τ . As an example of a nonlinear process satisfying

these conditions consider, d = 1,

τ(p) = P−1(s) : ε ≤ s ≤ 1− ε, ε > 0

where P (x) =
∫ x

−∞ p(u)du, P is the set of all p in a compact subset of an L2 Sobolev

ball with inf p > 0. Then, the PIE for the d.f. is a PIE for T . To see ¿this note that,

(i) if immediate with

hτ (x, p) = −(1(−∞, P−1(s))− s)/p(P−1(s))

and (ii) is easy to check since the Sobolev metric is stronger than L2. Finally, write

P̂−1
n (s)− P−1(s) =

−(P̂−1
n (s)− P−1(s))

(P (P̂−1
n (s))− s)

(P̂n(P̂−1
n (s))− P (P̂−1

n (s)))

in a form first proposed by Shorack (1969). We define P̂−1
n (s) as the smallest x such

that P̂n(x) = s. Since

sup
x
|P̂n − P |(x) P→ 0

such an x exists for all ε ≤ s ≤ 1−ε for n sufficiently large. Now uniform convergence

of P̂n and strict monotonicity of P implies

sup
x
{|P̂−1

n (t)− P−1(t)| : ε ≤ t ≤ 1− ε} P→ 0.

and tightness of n1/2(P̂n(·)−P (·)) inherited from PIE can be used to complete the

proof in a standard fashion.

4.3. Semiparametric examples We give now a brief description of three further

examples where our result can be used.

4.3.1. The density and cdf in the biased sample model We consider the prob-

lem of density estimation with the cdf as our collection of functionals but we

have a biased sample model (Vardi, 1985). In this model we observe (X, ∆)
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where ∆ ∈ {d1, . . . , dk}, and the conditional density of X given ∆ = δ is

w(x; δ)f(x)/
∫

w(x′; δ)f(x′)dx′ with w known and f completely unknown. We want

to estimate f and its cumulative integral. See Gill, Vardi, and Wellner (1988) and

Bickel et al. (1998) for a description of the efficient estimator of the cdf and its

linear functionals. Suppose that 0 < inf w < supw < ∞. Suppose, for simplicity,

that
∑k

i=1 w(·; di) is at least as smooth as the density f . Then

f̃ =
g̃n∑k

i=1 p̃i

∫
w(x′; di)dF̃n(x′)

is a rate optimal density estimator, where g̃n is a rate optimal estimator of the

density estimator of the marginal density of X (based only on the marginal empirical

distribution of X), p̃i, i = 1, . . . , k are the empirical probabilities of the strata, and

F̃n is an efficient estimator of the distribution of F . Note that the estimator in

the denominator is bounded away from 0 and infinity, and is efficient. Hence A2 is

satisfied. It is easy to check A1 and A3 directly. We conclude that there is a PIE

of the density f .

4.3.2. The hazard rate and the hazard function of the Cox model Consider the

Cox model with hazard function λ(t) exp(β′z), where t is the time and z is a vector

of covariates. We may consider estimating the nonparametric λ(·) (Csörgő and

Mielniczuk, 1988 and Ghorai and Pattanaik, 1993) and its cummulative integral,
∫ ·
0
λ(t) dt, both on a fixed interval (0, a), such that with positive probability we

observed uncensored values larger than a. Efficient estimation of the hazard function

was discussed e.g. by Andersen and Gill (1982) and Tsiatis (1981). See Begun, Hall,

Huang, and Wellner (1983) for discussion of the information bound. Note that

verifying the conditions A1–A3 is not much different in this example than it is in

density-cdf example, since the functionals are of the same type, and their efficient

estimators are linear. This is so, even though in this case the efficient estimator
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(Nelson=Aalen) is not linear in the observations, as the cdf is. An extension of this

example which is only partially covered by Theorem 4.1 is to the time-dependent

covariate case, and to functionals of the form:
∫ t

0
exp(β′z(s))λ(s) ds. Extending the

result to cover this case seems to be straightforward.

4.3.3. Functionals of a nonparametric regression function Suppose Y = ϑ(X)+

ε, where X and ε are independent, ε ∼ N(0, 1) and ϑ belongs to some smoothness

set Θ. We can consider now a set of functionals T of the form τh =
∫

hfϑ, h ∈ H.

These functionals can be estimated efficiently by n−1
∑n

i=1 h(Xi)Yi, and this can

be done uniformly if H is some VC class with an envelope H, EH2(X) < ∞. For

ΘM we can consider any increasing sieve whose limit is Θ. Verifying the conditions

is simple (note that conditions A2 and A3 are impose hardly any difficulty). Our

main result shows that there exists an estimator of the regression function, achieving

the minimax rate, that yields efficient estimators of all members of T at the same

time.

5. Construction of estimates The method underlying the proof of Theorem

5.1 can be implemented by solving the optimization problem (4.19). We shall pursue

this at the end of this section. A direct approach of modifying the kernel density

estimator was already discussed. We next consider another example in which a

“standard” estimator can be modified to obtain broad strong plug-in properties.

Again, we concentrate on density estimators whose cdf are asymptotically equivalent

to the empirical distribution function.

Example 5.1. Orthonormal and Log orthonormal series density estima-

tors. Another general class of density estimators is based on orthonormal bases

ψ1, ψ2, . . . . There are two main variants. The first is the sieve MLE based on the

exponential family c exp
(∑M

j=1 βjψj(a·)
)
. The second is the density estimator
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given by

(5.26)
Mn∑

j=1

Pn(ψj)ψj(·).

If the ψj are splines the first is the log spline estimate (Kooperberg and Stone,

1992). Note that for both estimators:
∫

ψj(x)p̂(x)dx = Pn(ψj), j = 1, 2, . . . , Mn.

We proceed for estimates of type (5.26). Suppose that the “natural” density esti-

mator is based on Mn base functions, so that if 0 ≤ c ≤ p ≤ C, rn = Mn/n. Add

to them Mn functions, h1, . . . , hMn that approximate H and proceed as above. The

resultant estimator, call it p̂n, will have twice the variance and less bias so it will

achieve the same convergence rate as the original density estimator and it will yield

an efficient estimator of h1, . . . , hMn . Now, for a general function h ∈ H:
∫

h(x)p̂(x)dx− Pn(h)

=
∫

(h(x)− h∗(x))p̂(x)dx− Pn(h− h∗),

=
∫

(h(x)− h∗(x))(p̂(x)− p0(x))dx− (Pn(h− h∗)− P0(h− h∗),

(5.27)

where h∗ is some function approximating h in the span SMn of h1, . . . , hMn and

ψ1, . . . , ψM , say h∗ = ΠMnh or ΠP
Mn

h, the projection in L2(P ). Suppose that the

second term on the RHS is op

(
n−1/2

)
. If so we need consider only the first term.

Note that for the estimator given by (5.26), the first term is simply:

(5.28)
∫

h⊥(x)p⊥(x)

where the ⊥ denotes the projection on the orthocomplement of SM .

Now, in the common cases, the estimator has bias and random error of the same

order. That is,

(5.29)
∫

p⊥2(x)dx < CMn/n
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for some finite C. Hence we obtain the strong plug-in property for p̂n if,

(5.30) sup
h∈H

∫
h⊥2(x)dx = o(M−1

n ).

We proceed to a general theorem.

B1: The estimate p̃n of form (5.26) based on ψ1, . . . , ψMn
satisfies (4.17).

B2: Let SMn
be the linear span of ψ1, . . . , ψMn

and an additional set h1, . . . , hLn

of orthonormal functions where Ln = Ω(Mn) and ΠMn
is a projection on SMn

.

Suppose,

(5.31) sup
H
‖h−ΠMnh‖2 = oP

(
n−1/2

)
.

B3: p ≤ C < ∞.

B4: supP ‖p−ΠMnp‖22 = O
(

Mn

n

)
.

Our discussion has established,

Theorem 5.1. If P,H are such that B1–B4 and A2 hold then p̂n is a strong

plug-in estimate.

Remark. The conditions are easily seen to hold if, for instance, P = Qα

where Qα = {p on Id : ‖Dβp‖2 ≤ C all β ≤ α} and α > d
2 and the

{ψ1, . . . , ψM , h1, . . . , hLn} are a spline basis on the unit d-cube Id.

Using the results and techniques of Stone(1991) one can show with some more

labor that the log spline estimate also has this property if we also require that

p ≥ c > 0 on Id. In fact, it is possible for d = 1 as was conjectured by Stone(1990)

by taking Mn = n1/2+ε to obtain the strong PIP for the distribution function as

well.



PLUG-IN ESTIMATORS 27

For d > 1 we have the same difficulties with Qα as we do for kernel density

estimates.

We finally study the method implicitly suggested by the existence theorems.

We consider p̃n of the form (5.26).

B5: There exists Kn such that if SKn is the linear span of ψ1, . . . , ψKn then

(5.32) sup
P
‖p−ΠKnp‖2 = O

(
bnn−1/2

)

where bn is given in (4.19).

B6: Let Π∗Mh be defined by

min−1

∣∣∣∣
∫

h∗ dPn −
∫

h dPn : h∗ ∈ SM

∣∣∣∣ .

Then, if Kn is as above,

(5.33) sup
H
|Pn(h)− Pn(h∗)| = oP

(
bnn−1/2

)
.

Define,

(5.34) p̂n =
Kn∑

j=1

ĉjψj

where ĉj = Pn(ψj), 1 ≤ j ≤ Mn and ĉMn+1, . . . , ĉKn is obtained as the solution of

the quadratic programming problem:

Minimize
Mn∑

j=1

(ĉj − cj)2 +
Kn∑

j=Mn+1

c2
j

subject to

∣∣∣∣∣∣

Kn∑

j=1

djcj − Pn(h)

∣∣∣∣∣∣
≤ n−1/2bn

for all d such that Πα
Kn

(h) =
∑Kn

j=1 djψj for some h ∈ H. If the conditions of

Theorem 4.1 are satisfied and B5 and B6 hold, then p̂n clearly will have the efficient

PIP. Thus to obtain an estimate which has the strong PIP for P = Sobolev ball and
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H = Indicators of cubes in Rd we can take (ψ1, . . . , ψKn
) to be say, an orthogonal

basis for the space generated by all splines of order 1 ≤ β ≤ α with knots at
(

i1
Kn

, . . . , id

Kn

)
and 0 ≤ ij ≤ Kn, 1 ≤ j ≤ d and Kn = n1/2+ε.

This formulation makes it clear that efficient plug-in is achieved by only approx-

imately matching
∫

h dPn for all h ∈ H rather than exactly as we have done up to

now.
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