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Abstract. A general technique is given for constructing new Markov processes from
existing ones. The new process and its state space are both projective limits of sequences
built by an iterative scheme. The space at each stage in the scheme is obtained by taking
disjoint copies of the space at the previous stage and quotienting to identify certain
distinguished points. Away from the distinguished points, the process at each stage
evolves like the one constructed at the previous stage on some copy of the previous state
space, but when the process hits a distinguished point it enters at random another of the
copies \pinned" at that point. Special cases of this construction produce di�usions on
fractal-like objects that have been studied recently.

1. Introduction

In this paper we present a procedure for constructing new Markov processes from
existing ones. This procedure can, for example, produce processes on rather ex-
otic fractal-like spaces starting with processes on more familiar spaces such as
Euclidean space.

The state space of the new process is built as a projective limit of an iterative
scheme. The space at each stage of the iterative construction is produced by
taking a disjoint collection of copies of the space coming from the previous stage
and performing a quotient operation that identi�es certain distinguished points.

A particular case of the state space construction, beginning with the real line
in the iterative scheme, is presented in [Laa00] to produce examples of fractals
with interesting analytic properties. A construction of graphs and random walks
on them that is in a similar spirit to the continuous one given here is developed in
[Bar01] to show that the only constraints on the volume growth and the anomalous
di�usion exponent are those already known in the literature.

To give the avour of the construction, we begin with a very simple example
described in somewhat fanciful terms. Consider a \universe" that is a subinterval
F of R and another \parallel" universe that is just a copy of F . At the same
locations in each universe there is a set of \anchor points" B1. Figure 1 shows a
universe with 3 such anchor points.

In the language of innumerable science �ction stories, imagine that the two
universes are connected by \wormholes" at the anchor points. This produces a
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Figure 1: The space F with B1 marked as *'s

Figure 2: The space F1 embedded in the plane

composite structure F1 that, mathematically, is the product space F �f0; 1g with
points of the form (b; 0) and (b; 1), b 2 B1, identi�ed. The space F1 with the usual
quotient topology looks like the subset of the plane drawn in Figure 2. For future
purposes, it will be more convenient to represent F1 schematically as in Figure 3
as two copies of F with the points at either end of an arrow identi�ed.

At an intuitive level, there is an obvious way to \lift" a base Markov process
on F to a Markov process on F1. Namely, the lifted process evolves as the base
process away from the anchor points, but when it hits an anchor point it chooses
at random to either keep evolving in its current universe or to jump through the
attached wormhole into the alternate universe. Of course, if the base process is
something like Brownian motion, then there is some work that needs to be done
to make this idea precise because of the fact that a Brownian motion returns to its
starting point in�nitely often in any neighbourhood of the origin. For Brownian
motion, the technicalities involved in making sense of idea are of the same sort
as those encountered in the construction of Walsh's spider and Brownian motion
on more general graphs (see [Wal78, Var85, BPY89, DJ93, FW93, FW94, Kre95,
Tsi97, BEK+98, Eva00]). A substantial generalisation of the spider construction
that applies to base processes on state spaces more general than the real line is
given in [ES01]. That generalisation is basic to this paper and is reviewed in
Section 2.

The construction that produced F1 from F can be iterated. Suppose that F
now has \�rst order" anchor points B1 and \second order" anchor points B2 as
in Figure 4. An obvious quotient construction on F1 � f0; 1g produces a space
F2 shown schematically in Figure 5 as four copies of F with the points at either
end of an arrow identi�ed. The Markov process that was constructed on F1 can

Figure 3: The space F1 as two copies of F with identi�ed points joined by l
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Figure 4: The space F with B1 as �'s and B2 as +'s

Figure 5: The space F2 as four copies of F with identi�ed points joined by l

be lifted to F2 by once again making suitable random choices whenever a second
order anchor point is encountered.

Continuing in this manner produces a sequence of spaces F1; F2; : : : These
spaces form a projective system and hence converge to a projective limit space F1.
We will refer to the limit spaces produced by a generalisation of this construction
(see Section 3) as vermiculated (that is, riddled with worm holes). Furthermore,
the associated Markov processes have a natural projective structure, and conse-
quently they give rise to a limit process on F1. The details are carried out in
great generality in Section 4.

Properties of the limit Markov process for the case of a Brownian or L�evy
base process will be investigated in a subsequent paper. The potential theory of
such processes is particularly interesting. For example, it is possible that the base
process hits points whereas the limit process does not if the anchor points and the
number of copies at each stage in the iterative scheme are chosen correctly.

2. The pinching and twisting construction

In this section we review quickly a construction from [ES01] that produces one
Markov process from another by means of a partial collapse of the state space
and the introduction of appropriate extra randomisation. As we noted in the
Introduction, this construction can be seen as a generalisation of the construction
that produces Walsh's spider from Brownian motion on the line.

We begin with some topological ingredients. Let E and Ê be two Hausdor�,
locally compact, second countable topological spaces. Thus E and Ê are, in par-
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ticular, Polish (that is, metrisable as complete, separable metric spaces). Fix a
continuous surjection  : E ! Ê such that  �1(K) is compact for any compact
subset K of Ê and a closed set A � E such that  �1( (A)) = A.

Set

~E := (E nA) [  (A);

this being a disjoint union. De�ne the map � : E ! ~E by

�(x) :=

(
x; if x 2 E nA,

 (x); if x 2 A,

and give ~E the topology induced by �. That is, U � ~E is open in the topology
of ~E if and only if ��1(U ) is open in the topology of E. (Equivalenty, we can
think of ~E as the quotient topological space of the topological space E under the
equivalence relation that declares two points x0 and x00 equivalent if and only if
�(x0) = �(x00).) Assume that ~E with this topology is Hausdor�, locally compact,
and second countable (and hence Polish).

De�ne a continuous map ' : ~E ! Ê by

'(x) :=

(
 (x); if x 2 E nA;

x; if x 2  (A).

Then,  = ' � �, or, equivalently, we have the commutative diagram

E
� //

 ��?
??

??
??

?
~E

'

��
Ê:

Notation 2.1. Given a Hausdor�, locally compact, second countable topological
space S, write B(S) be the Banach space of bounded real-valued functions on S
and let B+(S) be the collection of nonnegative elements of B(S). Let C0(S) be
the Banach space of real-valued continuous functions on S that vanish at in�nity
(if S is compact, then of course C0(S) = C(S), the Banach space of continuous
functions on S). For any subset R of S, de�ne B(S;R) :=

�
f 2 B(S) : f

��
R
� 0

	
and C0(S;R) := C0(S)\B(S;R). If S0 is a second locally compact space and � is
a measurable map from S to S0, we de�ne �� : B(S0) ! B(S) as ��f := f � �. If
� is continuous and ��1(K) is a compact subset of S for all compact subsets K of
S0, then �� : C0(S

0)! C0(S).

Thus,

B(E) B( ~E)
��oo

B(Ê):

 
�

ccGGGGGGGGG
'�

OO
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Moreover, '� : C0(Ê) ! C0( ~E), �
� : C0( ~E) ! C0(E), and  

� : C0(Ê) ! C0(E).
De�ne ��� : B(E;A)! B( ~E; (A)) by

(���f)(x) :=

(
f(x); if x 2 E nA,

0; if x 2  (A).

Note that ��� : C0(E;A)! C0( ~E; (A))
We now introduce the probabilistic ingredients of the construction. Let X =

(
;F ;Ft; Xt; �t;Px) (resp. X̂ = (
̂; F̂; F̂t; X̂t; �̂t; P̂x)) be a quasi-left-continuous
Borel right process with state space E (resp. Ê) and resolvent (U�)�>0 (resp.
(Û�)�>0). Write (V �)�>0 (resp. (V̂ �)�>0) for the the resolvent of X stopped on
hitting A (resp. for X̂ stopped on hitting  (A)). Assume that V �C0(E) � C0(E)
and Û�C0(Ê) � C0(Ê) for all � > 0.

Let k : Ê � B(E) ! R be a probability kernel. De�ne a linear operator
K : B(E) ! B(Ê) by Kf(x) :=

R
y2E

f(y)k(x; dy). The appropriate diagram is
thus

B(E)

K ##G
GG

GG
GG

GG

B(Ê):

We assume that

k(x;  �1fxg) = 1

for all x 2 Ê and that KC0(Ê) � C0(E).
Assume that the resolvents (U�), (Û�) and (V �), (V̂ �) and the kernelK satisfy

the Dynkin intertwining relation

U� � =  �Û�:

(which implies V � � =  �V̂ �) and the Carmona{Petit{Yor intertwining relation

KU� = Û�K and KV � = V̂ �K:

The following result is proved in [ES01]. Intuitively, it describes the construc-
tion of a process on ~E that evolves asX on EnA and as X̂ �  �X on  (A). When
this process passes from  (A) into E nA it undergoes a random twist according to
the kernel k. We refer the reader to [ES01] for more details and several examples.

Theorem 2.2. Under the above assumptions, the following hold.

a) There is a quasi{left{continuous Borel right process ~X = (~
; ~F ; ~Ft; ~Xt; ~�t; ~Px)
with resolvent ( ~U�)�>0 given by

~U� = ���V
��� (I ~E � '�K��) + '�Û�K��:

Moreover, ~U�C0( ~E) � C0( ~E).
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b) For each x 2 ~E, the law of ' � ~X under ~Px coincides with that of X̂ under

P̂
'(x).

c) De�ne a stopping times by

T := infft � 0 : Xt 2 Ag;

~T := inf
n
t � 0 : ~Xt 2  (A)

o
:

For each x 2 E, the law of f ~Xt; 0 � t < ~Tg under ~P�(x) is equal to the law
of f�(Xt); 0 � t < Tg under Px.

The following stopped version of Theorem 2.2 is not proved in [ES01], but
follows using the same ideas.

Corollary 2.3. Suppose that the above assumptions hold. Let B � E be a closed
set such that  �1( (B)) = B. Write (V �)�>0 for the resolvent of X stopped on

hitting A [ B. Denote by ( ~U
�
)�>0 (resp. (Û

�
)�>0) for the resolvent of ~X (resp.

X̂) stopped on hitting �(B) (resp.  (B)). Suppose that V �C0(E) � C0(E) and

Û
�
C0(Ê) � C0(Ê) for all � > 0. Then

~U
�
= ���V

��� (I ~E � '�K��) + '�Û
�
K��;

and ~U
�
C0( ~E) � C0( ~E) for all � > 0.

3. Vermiculated spaces

We begin with a generalisation of the iterative state space construction outlined
in the Introduction.

Let F be a Hausdor�, locally compact, second countable topological space.
Suppose that B1; B2; : : : are closed subsets of F . Let G1; G2; : : : be Hausdor�,
compact, second countable topological spaces. The space Gn will index the col-
lection of \alternate universes" at stage n of the construction. In the example
described in the Introduction, G1 = G2 = f0; 1g.

Put F0 := F and

E1 := F0 � G1

Ê1 := F0;

and

A1 := B1 �G1 � E1:

De�ne  1 : E1 ! Ê1 by

 1(y; z) = y:
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Now apply the general state space construction of Section 2 with the ingredients
E = E1, Ê = Ê1, A = A1, and  =  1. It is clear that the conditions of the
construction hold.

Write ~E1 for the resulting space denoted by ~E in the general construction, and
�1, '1 for the maps denoted by �, ' in the general construction. Thus

~E1 = (E1 nA1) [  1(A1) = ((F0 nB1)� G1) [B1

and �1 : E1 ! ~E1 is given by

�1(y; z) =

(
(y; z); if y 2 F0 nB1,

y; if y 2 B1;

and ~E1 is equipped with the topology induced by �1. Set F1 := ~E1 and write
'1 : F1 ! F0 for the map denoted by ' in the general construction. Thus

'1(y; z) = y; (y; z) 2 E1 nA1 = (F0 nB1) �G1;

'1(y) = y; y 2  1(A1) = B1:

Suppose now that Hausdor�, locally compact, second countable topological
spaces Fm, 0 � m � n, and continuous surjections 'm : Fm ! Fm�1, 1 � m � n,
have already been constructed. De�ne Fn+1 and a continuous surjection 'n+1 :
Fn+1 ! Fn as follows.

Put

En+1 := Fn �Gn+1;

Ên+1 := Fn;

and

An+1 := '�1n;0(Bn+1)� Gn+1 � En+1;

where

'j;i := 'i+1 � 'i+2 � � � � � 'j ; 0 � i < j � n:

De�ne  n+1 : En+1 ! Ên+1 by

 n+1(y; z) = y:

Now apply the general state space construction of Section 2 with the ingredients
E = En+1, Ê = Ên+1, A = An+1, and  =  n+1. Once again, it is clear that
the conditions of the construction hold. Set Fn+1 := ~En+1 and write 'n+1 for the
map denoted by ' in the general construction; that is,

'n+1(y; z) = y; (y; z) 2 En+1 nAn+1 = (Fn n '
�1
n;0(Bn+1)) �Gn+1;

'n+1(y) = y; y 2  n+1(An+1) = '�1n;0(Bn+1):
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The salient points of the construction are summarised as follows:

Êm ~Em

Fm�1 Fm
'moo

Fm�1 �Gm

 m

OO

�m

99ssssssssss

Em

The sequence of spaces (Fn)1n=0 equipped with the maps ('j;i)0�i<j<1 is a
projective system of topological spaces (sometimes also called an inverse system).
Therefore this system has a projective limit topological space F1 := lim Fn
(also called an inverse limit) equipped with a family of continuous surjections
�n : F1 ! Fn, 0 � n � 1 satisfying 'j;i � �j = �i, 0 � i < j < 1. By
general facts about projective limits, the space F1 is Hausdor�, locally compact
and second countable (see Section 2-14 of [HY61]).

4. Construction of a projective limit process

We continue with the development begun in Section 3.
Let � be a quasi-left-continuous Borel right process with state-space F . The

process � is the base process that we will successively lift up to F1; F2; : : : in the
manner outlined in the Introduction. Let �n be a Borel probability measure on
Gn, n � 1. Recalling that Gn indexes the various alternate universes at the nth

stage of the iterative part of the state space construction, the probability measure
�n describes how an alternate universe is chosen when the nth stage process hits
an anchor point. In the example described in the Introduction, �1 and �2 are both
the uniform measure on f0; 1g.

Assumption 4.1. Write C for the collection consisting of the empty set and �nite
unions of sets drawn from B1; B2; : : : Assume for each C 2 C that the resolvent of
� stopped on hitting C maps C0(E) into itself.

Example 4.2. Assumption 4.1 holds for F = R, � a standard Brownian motion,
and any closed sets B1; B2; : : : � R.

Set X0 to be the Markov process � on F0 = F . Suppose that quasi-left-
continuous Borel right processes Xm = (
m;Fm;Fmt ; X

m
t ; �

m
t P

x
m), 0 � m � n,

have been de�ned. For C 2 C, write (U�C;m)�>0 for the resolvent of X
m stopped
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on hitting '�1m;0(C). Suppose further that U�C;mC0(Fm) � C0(Fm) for all C 2 C,
� > 0, 0 � m � n.

Consider the construction of Section 2 with the ingredients:

� E = Fn �Gn+1,

� Ê = Fn,

� A = '�1n;0(Bn+1)� Gn+1 � E,

�  (y; z) = y, (y; z) 2 Fn �Gn+1,

� X under P(y;z) has the law of f(Xn; z) : t � 0g when Xn is under Pyn,

� X̂ = Xn,

� k(y; �) = �y 
 �n+1.

It is clear that the conditions of Theorem 2.2 hold. Moreover, the conditions of
Corollary 2.3 hold with the set B given by '�1n;0(C) �Gn+1 for any C 2 C.

LetXn+1 = (
n+1;Fn+1;Fn+1t ; Xn+1
t ; �n+1t ;Pxn+1) be the quasi-left-continuous

Borel right processes on ~E = Fn+1 produced by Theorem 2.2. Writing (U�C;n+1)�>0
for the resolvent of Xn+1 stopped on hitting '�1n+1;0(C), C 2 C, Corollary 2.3 guar-
antees that U�C;n+1C0(Fn+1) � C0(Fn+1) for all � > 0.

Denoting by (U�n )�>0 the resolvent of X
n, it follows from Theorem 2.2 that

U�j '
�
j;i = '�j;iU

�
i ; 0 � i < j <1: (4.1)

The subspace
S
n �
�
nC0(Fn) is dense in C0(F1) by construction. By (4.1),

there are well-de�ned linear operators U�1, � > 0, de�ned on
S
n�
�
nC0(Fn) such

that

U�1�
�
n = ��nU

�
n ; for all n: (4.2)

It is clear that each U�1 extends by continuity to a Markov operator on C0(F1),
and this extension still satis�es the Dynkin intertwining relation (4.2). By (4.2)
and the resolvent equation for (U�n )�>0,

U�1�
�
n = ��nU

�
n = ��n

�
U�n + (� � �)U�nU

�
n

�
=
�
U�1 + (� � �)U�1U

�
1

�
��n

and hence, by continuity, (U�1)�>0 obeys the resolvent equation on C0(F1). Again
by continuity,

lim
�!1

U�1f = f pointwise, f 2 C0(F1): (4.3)

Standard arguments (see Theorem 9.26 of [Sha88]) and (4.2) now give the
following.

Theorem 4.3. Under Assumption 4.1 there is a quasi-left-continuous Borel right
process

X1 = (
1;F1;F1t ; X
1
t ; �

1
t ;P

x
1)
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on F1 with resolvent (U�1)�>0. The law of �n � X
1 under Px1 is that of Xn

under P
�n(x)
n .

Remark 4.4. It is worth pointing out what can go wrong if Assumption 4.1
does not hold. For example, consider the �rst stage of the inductive part of the
construction with F = R2, B1 = f0g, G1 = f0; 1g, �(f0g) = �(f1g) = 1

2 , and � a
standard planar Brownian motion. If our construction \worked" in this instance
it would produce a process X1 that, when started at the anchor point 0, picks
at random between the two copies of R2 pinned at 0 and then never leaves this
copy. The identity of the chosen copy of R2 is thus a non-trivial random variable
measurable with respect to the germ �-�eld of X1 at time 0, and so even the
Blumenthal zero{one law fails for X1.
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