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Abstract. The (n � 1)-dimensional simplex is the collection of probability
measures on a set with n points. Many applied situations result in simplex-
valued data or in stochastic processes that have the simplex as their state
space. In this paper we study a large class of simplex-valued di�usion processes
that are constructed by �rst \coordinatising" the simplex with the points of
a smooth hypersurface in such a way that several points on the hypersurface
may correspond to a given point on the simplex, and then mapping forward
the canonical Brownian motion on the hypersurface. For example, a particular
instance of the Fleming-Viot process on n points arises from Brownian motion
on the (n� 1)-dimensional sphere. The Brownian motion on the hypersurface
has the normalised Riemannian volume as its equilibrium distribution. It is
straightforward to compute the corresponding distributionon the simplex, and
this provides a large class of interesting probability measures on the simplex.

1. Introduction

Many data sets come in the form of proportions that add to unity (that is,
as points in a simplex with dimension one less than the number of proportions).
For example, there is the breakdown of the composition of an ore sample into
component minerals or the division of a family's expenditures into housing, food,
clothing, leisure, etc. This type of data is often referred to as compositional and a
standard reference for models and inference in this area is [Ait86].

Such data can also have a temporal component. For example, there are the
proportions of the population at any time having each of the possible combinations
of alleles of a given set of genes (see, for example, [Gil91]). There appears to be
something of a dearth of exible, tractable models for such stochastic processes.

Of course, stochastic processes on the simplex are an elementary instance of
processes taking values in the set of probabilitymeasures on an arbitrary measurable
space. However, the literature in this more general area is primarily concerned with
models such as the Fleming-Viot process that arise as continuum limits of particle
systems with relatively simple dynamics (see, for example, [Daw93]).

There is a substantial literature on di�usions on manifolds and particularly Brow-
nian motion on manifolds (see, for example, [RW87, �Eme89, Str00, Dri95]). The
approach we follow here for building di�usions on the simplex is to �rst take a
simplicial decomposition of some compact manifold. This gives a typically many-
to-one mapping of the manifold onto the simplex. We then take Brownian motion
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on the manifold and map it forward to obtain a continuous stochastic process on the
simplex. If the manifold and the associated simplicial decomposition have suitable
symmetry properties, then the resulting process on the simplex will be Markovian.

The simplest example of our construction is when the manifold is the (n � 1)-
dimensional sphere

f(x1; x2; : : : ; xn) : (x1)2 + (x2)2 + � � �+ (xn)2 = 1g:
We map the sphere onto the (n � 1)-dimensional simplex via

(x1; x2; : : : ; xn) 7! ((x1)2; (x2)2; : : : ; (xn)2):

If (Xt;P
x) is the Brownian motion on the sphere, then the distribution of the process

X = (X1; X2; : : : ; Xn) under P(�x
1;�x2;:::;�xn) is the same as the distribution of

(�X1;�X2; : : : ;�Xn) under Px for any x and any of the 2n possible choices of
sign. In particular, for any point y = (y1; y2; : : : ; yn) in the simplex the distribution
of ((X1)2; (X2)2; : : : ; (Xn)2) is the same under any of the measures Px for which
((x1)2; (x2)2; : : : ; (xn)2) = (y1; y2; : : : ; yn). Dynkin's criterion for a function of a
Markov process to be Markovian (see Theorem 13.5 of [Sha88]) then gives that
((X1)2; (X2)2; : : : ; (Xn)2) is Markovian.

It turns out that Brownian motion on the sphere is mapped to a particular
Fleming-Viot process on the set f1; 2; : : : ; ng. The underlying mutation process
for the Fleming-Viot process is a Markov chain that jumps at a constant rate
and chooses a new state uniformly from the (n � 1) possibilities. The Brownian
motion on the sphere has the normalised surface area measure on the sphere as
its equilibrium distribution. The corresponding process on the simplex (that is,
the Fleming-Viot process) has the push-forward of this measure as its equilibrium
distribution and, as is well-known, this latter probability measure is the Dirichlet
distribution with parameters (12 ;

1
2 ; : : : ;

1
2 ),

The plan of the paper is the following. We construct a particular class of hy-
persurfaces and Brownian motions on them in Section 2. We show that the Brow-
nian motion mapped to the simplex is Markovian in Section 3, and exhibit the
semimartingale decomposition of this di�usion on the simplex in Section 4. The
push-forward of the normalised Riemannian volume measure is the equilibrium dis-
tribution of the di�usion on the simplex, and an explicit formula is given for this
distribution in Section 5. We illustrate the general results with the special cases
where the hypersurface is an ellipsoid in Rn or the unit sphere in Rn equipped with
the `p norm for p an even positive integer.

2. Brownian motion on a hypersurface

Fix functions gi : R! R+, 1 � i � n, with the following properties:

i) gi is C1;
ii) gi(0) = 0;
iii) gi(�u) = gi(u);
iv) g0i(u) > 0, u > 0;
v) fu 2 R : gi(u) = 1g 6= ;.

De�ne g : Rn! Rn
+ by

g(x1; x2; : : : ; xn) := (g1(x
1); g2(x

2); : : : ; gn(x
n))
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and G : Rn! R+ by

G(x1; x2; : : : ; xn) :=
nX

i=1

gi(x
i):

The set M := fx 2 Rn : G(x) = 1g is a compact, connected, (n�1)-dimensional
embedded submanifold of Rn and the range of g restricted to M is the simplex

S := fy 2 Rn :
nX

i=1

yi = 1; yi � 0g:

Each y 2 S is the image of 2#f1�i�n : y
i>0g points of M.

We will construct a di�usion process Y = (Yt;Q
y) or S by letting (Yt)t�0 under

Qy have the law of (g � Xt)t�0 under Px, where X = (Xt;P
x) is the canonical

Brownian motion on M and x is any pre-image of y for g. The in�nitesimal
generator of X is a multiple of the Laplace-Beltrami operator on M, but the most
convenient way for us to describe X is as the solution of a stochastic di�erential
equation (SDE).

Let

n(x) :=
grad G(x)

kgrad G(x)k
=

(g01(x1); g02(x2); : : : ; g0n(xn))

(
Pn

i=1 g
0
i(x

i)2)
1

2

be the unit normal to M at x, and write

P (x) := (I � n(x)n(x)>)

for the corresponding orthogonal projection onto the tangent plane toM at x. The
mean curvature at x is given by

c(x) := �1

2
div n(x)

= �1

2

( P
i g
00
i (x

i)

(
P

i g
0
i(x

i)2)
1

2

�
P

i g
0
i(x

i)2g00i (xi)

(
P

i g
0
i(x

i)2)
3

2

)

= �1

2

P
i6=j g

0
i(x

i)2g00j (x
j)

(
P

i gi(x
i)2)

3

2

:

By [vdBL85], Brownian motion on M starting at x 2M solves the SDE

dXt = P (Xt) dBt + c(Xt)n(Xt) dt

X0 = x;

where B is a standard n-dimensional Brownian motion. Write Px for the distribu-
tion of the solution of this SDE.

3. Diffusion on the simplex

Set Y := g �X. That is, Yt = g(Xt) 2 S. We claim that Y is Markovian. As
with the example on the sphere in the Introduction, this will follow from Dynkin's
criterion for a function of a Markov process to be Markovian if we can show that
the law of Y is the same under Px

0

and Px
00

for any two points x0; x00 2 M such
that g(x0) = g(x00) (see Theorem 13.5 of [Sha88]).
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For any x 2M, let X(x) denote the solution of the SDE

dX
(x)
t = P

�
X
(x)
t

�
dBt + c

�
X
(x)
t

�
n
�
X
(x)
t

�
dt

X
(x)
0 = x:

Fix � 2 f�1gn and write E for the diagonal matrix diag (�1; �2; : : : ; �n) so that
for z 2 Rn, Ez = (�1z1; �2z2; : : : ; �nzn). Note that if x0; x00 2 M are such that
g(x0) = g(x00), then x00 = Ex0 for some such E. Observe by our assumptions on the
gi that

g0i(�u) = �g0i(u);
g00i (�u) = g00i (u);

and so
n(Ex) = En(x);

P (Ex) = EP (x)E;

c(Ex) = c(x):

Thus,

d
h
EX

(x)
t

i
= EP

�
X
(x)
t

�
dBt + c

�
X
(x)
t

�
En
�
X
(x)
t

�
dt

= EP
�
X
(x)
t

�
E d[EBt] + c

�
X
(x)
t

�
En
�
X
(x)
t

�
dt

= P
�
EX

(x)
t

�
d ~Bt + c

�
EX

(x)
t

�
n
�
EX

(x)
t

�
dt;

where ~B = EB is a standard n-dimensional Brownian motion. Moreover,

EX
(x)
0 = Ex;

and so we conclude that EX(x) has the same distribution as X(Ex). That is, the
law of EX under Px is the same as that of X under PEx, and Dynkin's criterion
holds. Write Qy for the distribution of Y starting at y 2 S. Because X is a Feller
process and g is continuous, it follows that Y is also a Feller process.

4. Semimartingale description

By Itô's formula we have

dY i
t = g0i(X

i
t )dX

i
t +

1

2
g00i (X

i
t )dhXiit

= g0i(X
i
t )
X
j

Pij(Xt)dB
j
t

+g0i(X
i
t)c(Xt)n

i(Xt)dt+
1

2
g00i (X

i
t )
X
j

Pij(Xt)
2dt:

By our assumptions on gi, for 0 � v � 1 there exists a unique u � 0 such that
gi(u) = v. Write u = hi(v). Observe that gi(�hi(v)) = v, g0i(�hi(v)) = �g0i(hi(v)),
and g00i (�hi(v)) = g00i (hi(v)). Put

�i(y) := g0i(hi(y
i))2 =

1

h0i(yi)2
;

��i(y) :=
�i(y)P
j �j(y)

;
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and

�i(y) := g00i (hi(y
i)) = � h00i (y

i)

h0i(yi)3
:

Note that because P (x) is a projection matrix,X
j

Pij(x)
2 =

X
j

Pij(x)Pji(x)

= Pii(x)

= 1� ni(x)2:

Thus for y = g(x) we have

g0i(x
i)c(x)ni(x) +

1

2
g00i (x

i)
X
j

Pij(x)
2

= �1

2
�i(y)

8><
>:

P
j �j(y)�P
j �j(y)

� 1

2

�
P

j �j(y)�j (y)�P
j �j(y)

� 3

2

9>=
>;

1�P
j �j(y)

� 1

2

+
1

2
�i(y)

(
1� �i(y)P

j �j(y)

)

=
1

2

2
4�i(y)f1 � ��i(y)g � ��i(y)

X
j

�j(y)f1 � ��j(y)g
3
5 :

Note also thatX
k

g0i(x
i)Pik(x)g

0
j(x

j)Pjk(x) = g0i(x
i)Pij(x)g

0
j(x

j)

= �i(y)f�ij � ��j(y)g:
Putting this all together,

dY i
t = dM i

t +
1

2

2
4�i(Yt)f1� ��i(Yt)g � ��i(Yt)

X
j

�j(Yt)f1� ��j(Yt)g
3
5 dt

where Mt = (M1
t ; : : : ;M

n
t ) is a continuous martingale with

dhM i;M jit = �i(Yt)f�ij � ��j(Yt)gdt:
Example 4.1. Suppose that gi(u) = ciu

2 for constants ci > 0, 1 � i � n, so that
M is the ellipsoid f(x1; x2; : : : ; xn) : c1(x1)2 + c2(x

2)2 + � � �+ cn(x
n)2 = 1g. Then

�i(y) = 4ciyi;

�i(y) = 2ci;

and hence

dY i
t = dM i

t +

2
4ci

(
1� ciY

i
tP

j cjY
j
t

)
� ciY

i
tP

j cjY
j
t

X
j

cj

(
1� cjY

j
tP

k ckY
k
t

)3
5 dt;

where M is a continuous martingale with

dhM i;M jit = 4ciY
i
t

(
�ij � cjY

j
tP

k ckY
k
t

)
dt:
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When c1 = c2 = � � � = cn = c (so that M is the sphere with radius 1p
c
), we have

dY i
t = dM i

t + c

2
41� Y i

t � Y i
t

X
j

f1� Y j
t g
3
5 dt

= dM i
t + c[1� nY i

t ]dt

= dM i
t + cn

X
j

�
1

n
� �ij

�
Y j
t dt;

where M is a continuous martingale with

dhM i;M jit = 4cY i
t f�ij � Y j

t gdt:
If we associate Yt with the probability measure on f1; 2; : : : ; ng that assigns mass
Y i
t to i, then (Yt;Qy) is a particular case of a Fleming{Viot process (see [Daw93])

in which the underlying mutation process jumps from each state at rate c(n � 1)
and chooses a new state uniformly from the (n� 1) possibilities.

When n = 2, the process Z := Y 1 is a one-dimensional di�usion that solves the
SDE

dZt = �(Zt) dt+ �(Zt) dBt;

where

�(z) := c1

�
1� c1z

c1z + c2(1� z)

�

� c1z

c1z + c2(1� z)

�
c1

�
1� c1z

c1z + c2(1� z)

�
+ c2

�
1� c2(1� z)

c1z + c2(1� z)

��
;

and

�2(z) := 4c1z

�
1� c1z

c1z + c2(1� z)

�
:

An interesting feature of these coe�cients is that the unique zero of � and the unique
maximum of �2 both occur at the point z =

p
c2=(

p
c1 +

p
c2). The in�nitesimal

drift � is graphed in Figures 4.1 and 4.2 for the parameter values (c1; c2) = (1; 1)
and (c1; c2) = (4; 1), respectively. The in�nitesimal variance �2 is graphed in
Figures 4.3 and 4.4 for the parameter values (c1; c2) = (1; 1) and (c1; c2) = (4; 1),
respectively.

Remark 4.2. If we formally send n!1 in the martingale problem for Y , then the
resulting martingale problem on the in�nite simplex f(y1; y2; : : :) :

P
i y

i = 1; yi �
0g makes sense when X

i

sup
0�v�1

���� h00i (v)h0i(v)3

���� <1

(in Example 4.1 this is condition becomes
P

i ci < 1). It would be interesting to
know if this in�nite-dimensional martingale problem is well-posed.

5. Equilibrium distribution

The Brownian motionX is reversible with respect to the normalised Riemannian
volume measure on M and Xt converges in distribution to this measure as t!1
under any Px. Therefore, if we let � denote the push-forward of the normalised
Riemannian volume measure by g, then the di�usion Y is reversible with respect
to � and Yt converges in distribution to � as t!1 under any Qy.
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Figure 4.1
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Figure 4.2

We can calculate the Riemannian volume measure as follows. The set

f(x1; x2; : : : ; xn) 2M : xn 6= 0g
is the union of the two open sets( 

x1; x2; : : : ; xn�1;�hn
 
1�

n�1X
i=1

gi(x
i)

!!
:
n�1X
i=1

gi(x
i) < 1

)

and (x1; x2; : : : ; xn�1) can be used as local coordinates forM in these two patches.
The Riemannian metric in each patch is given by the matrix I + J(x)J(x)>, where
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Figure 4.3
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Figure 4.4

J(x) is the (n� 1)-dimensional column vector0
@ @

@xi
hn

0
@1�

n�1X
j=1

gj(x
j)

1
A
1
A

n�1

i=1

:

The corresponding Riemannian volume measure is

[det(I + J(x)J(x)>)]
1

2 dx1dx2 � � �dxn�1 = [1 + J(x)>J(x)]
1

2 dx1dx2 � � �dxn�1;
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where we have used the familiar matrix fact that

det(A + bb>) = det(A)(1 + b>A�1b):

The Jacobian matrix for the transformation

(x1; x2; : : : ; xn�1) 7! (g1(x
1); g2(x2); : : : ; gn�1(xn�1))

is the diagonal matrix

diag(g01(x
1); g02(x

2); : : : ; g0n�1(x
n�1)):

Therefore, if we coordinatise S with
n
(y1; y2; : : : ; yn�1) :

Pn�1
i=1 yi � 1; yi � 0

o
,

then � is the measure

C

2
641 + n�1X

i=1

8<
:h0n

0
@1� n�1X

j=1

yj

1
A g0i(hi(y

i))

9=
;
2
3
75

1

2

n�1Y
i=1

g0i(hi(y
i))�1 dy1dy2 : : :dyn�1

= C

"
nX
i=1

g0i(hi(y
i))2

# 1

2 nY
i=1

g0i(hi(y
i))�1 dy1dy2 � � �dyn�1;

for a suitable normalisation constant C.

Example 5.1. Suppose that gi(u) = ciu
2 for constants ci > 0, 1 � i � n. Then

g0i(hi(u)) = 2c
1

2

i u
1

2

so that � is

C

"
nX

i=1

ciy
i

# 1

2 nY
i=1

(yi)�
1

2 dy1dy2 � � �dyn�1

for a suitable constant C. In particular, if c1 = c2 = � � � = cn, then � is the Dirichlet
distribution with parameters

�
1
2 ;

1
2 ; : : : ;

1
2

�
.

For n = 2, the equilbrium density is graphed in Figures 5.1 and 5.2 for (c1; c2) =
(1; 1) and (c1; c2) = (4; 1), respectively. The equilibrium density has its unique
minimumat

p
c2=(

p
c1+

p
c2). Recall from Example 4.1 that the in�nitesimal drift

coe�cient vanishes and the in�nitesimal variance coe�cient has its maximum at
this same point.

6. Another example

Suppose that gi(u) = up, 1 � i � n, where p is an even positive integer. Then

�i(y) = p2(yi)2(1�
1

p )

and

�i(y) = p2(p� 1)(yi)(1�
2

p ):

Hence, setting r = 2
�
1� 1

p

�
and s =

�
1� 2

p

�
,

dY i
t = dM i

t +
p2(p� 1)

2

�
(Y i

t )
s

�
1� (Y i

t )
rP

k(Y
k
t )

r

�

� (Y i
t )

rP
k(Y

k
t )

r

X
j

(Y j
t )

s

(
1� (Y j

t )
rP

k(Y
k
t )

r

)35 ;
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Figure 5.1
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Figure 5.2

where M is a continuous martingale with

dhM i;M jit = p2(Y i
t )

r

(
�ij � (Y j

t )
rP

k(Y
k
t )

r

)
dt:
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The equilibrium measure � is

C

"
nX

i=1

(yi)r

# 1

2 nY
i=1

(yi)�
r
2 dy1dy2 � � �dyn�1

for some constant C.
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