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Abstract

Cloud detection is a crucial step in any climate modelling or prediction. Multi-angle Imaging
SpectroRadiometer (MISR) was launched in 1999 by NASA to provide 9 angle and 4 band data
to retrieve or estimate the cloud height and hence cloud detection. However, cloud detection
even with MISR data has been proven very difficult over ice and snow. In this paper, we bypass
the cloud height estimation step to directly tackle cloud detection by using features of ice and
snow (no cloud) pixels from different MISR angles. We propose the linear correlation matching
classification (LCMC) algorithm based on Fisher linear correlation tests. We compare LCMC
with the Steroscopically-Derived Cloud Mask (SDCM), which is the cloud mask from MISR Level
2 Top-of-the atmosphere Cloud algorithm (known as L2TC), and find that LCMC gives more
coverage and more robust results judged by visual inspection of finer resolution images. LCMC
can also detect the very thin clouds most of the time. Moreover, LCMC is computationally
much faster than L2TC and easier to implement. We hope to combine LCMC with L2TC in
the future to improve the accuracy of the L2TC cloud height retrieval.

Index Terms — Cloud detection, ice and snow, Multi-angle Imaging SpectroRadiometer (MISR),
linear correlation.

1 Introduction

MISR was built for NASA by the Jet Propulsion Laboratory (JPL) in Pasadena, California, and
is one of five instruments launched into polar orbit aboard NASA’s Terra spacecraft in December
1999. MISR is part of NASA’s Earth Observing System (EOS) program, which was conceived to
provide data for in-depth scientific investigations of Earth’s processes as a unified system. These
data facilitate studies of critical processes such as global warming and greenhouse effects.

Clouds play a major role in Earth’s climate by differentially warming and cooling the Earth. It is
widely acknowledged that clouds introduce uncertainties in radiative feedback to the climate system,
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Figure 1: MISR data registration. Only three of the nine angles are shown here (An (nadir), Bf
(45.6◦ forward) and Df (70.5◦ forward)).

and that this poses a most formidable obstacle to climate prediction and weather forecasting. In
particular, in polar regions where scenes are dominated by ice and snow, the net radiative impact
is hard to discern (Diner et al, 1999a; Charlock and Ramanathan, 1985; Li and Leighton, 1991).
Some studies indicate that clouds tend to warm the surface-atmosphere system over highly reflective
surfaces (Stephens et al, 1981; Nakamura and Oort, 1988), but others studies suggest clouds have
a net cooling effect (Li and Leighton, 1991; Schweiger and Key, 1994). Moreover, most aerosols
are bright particles that reflect sunlight back to space. They tend to cool the surface by reducing
the amount of solar radiation absorbed at the surface. Aerosol information cannot be retrieved in
the presence of clouds, so good cloud identification methods are essential for aerosol studies. The
ability to detect clouds in the polar regions is therefore critical to understanding Earth’s radiation
budget, and the role of clouds in the climate system.

The MISR instrument offers a new and promising avenue for cloud detection methods. MISR
has nine cameras looking at the Earth from different angles simultaneously. The nine camera angles
are 70.5◦, 60◦, 45.6◦, 26.1◦ forward, nadir and 26.1◦, 45.6◦, 60◦, 70.5◦ afterward (referred to as Df,
Cf, Bf, Af, An, Aa, Ba, Ca, Da, respectively). Each angle has four observing bands (red, green,
blue, and near-infrared). The spatial resolution is 275m by 275m in red band and in all bands
of the An camera, and 1.1 km by 1.1 km in green, blue, and near-infrared bands of the off-nadir
cameras. The instrument about produces six million measurements per orbit with 16 orbits per day
(Muller et al, 2002). This multi-angle information permits direct retrieval of cloud heights, which
is impossible using single angle views (Diner et al, 1999a). MISR registers each pixel to the Earth’s
surface ellipsoid. The higher an object is, the greater the disparity between its ellipsoid-projected
positions as seen from different angles. Fig. 1 shows the registration for three of nine MISR cameras
(Df, Bf and An). Simple trigonometry allows one to determine cloud height, and height can then
be thresholded to determine whether a cloud is present or not. This is the basis of the the MISR
cloud height retrieval algorithm (L2TC) and the Steroscopically-Derived Cloud Mask (SDCM). It
works well in many cases, but fails to classify a substantial portion of pixels correctly when applied
over ice and snow scenes because it is difficult to identify matching pixels in different views against
the bright background.

Fig. 2 displays an RGB image of the An view over the East Siberian Sea, Russia, obtained on
July 24, 2002 (MISR orbit 12986, blocks 22-24). The left panel is at 1.1km by 1.1km resolution,
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while the right panel is at 275m by 275m resolution for the middle sized, boxed region in the left
panel. It is almost impossible to identify clouds in the 1.1km by 1.1km image by visual inspection.
The algorithms do find clouds which can be confirmed looking at the finer resolution in the right
panel.

Recall that when a cloud is present, it is registered at different locations for images taken at
different angles (cf. Fig. 1). The challenge of retrieving cloud height is thus that of matching the
same cloud scene in images representing different angles. After matching at three non-symmetric
angles, we can use angle, flight time, and geometry to solve for cloud motion and height. Matching
over ice and snow is hard since the cloud textures are easily confused with those of ice and snow.
Our LCMC method approaches the problem from another point of view. It is based on matching
the ice and snow pixels when no clouds are present. This provides better speed and accuracy.

In section 2, we review briefly a few stereo matchers used in MISR’s algorithms. We describe
our LCMC algorithm in section 3. The comparision of LCMC with the MISR algorithms and an
example of LCMC thin cloud detection are given in section 4. Section 5 concludes with a discussion
and ideas for future work.

2 Review of Existing Algorithms

Here we review two algorithms that have been used or investigated by the MISR science team. The
algorithm in use now is called MISR level 2 top-of-the atmosphere cloud algorithm (L2TC)(c.f.
Dinner et al, 1999). Pyramidal Gruen-Otto-Chau adaptive least squares correlation matcher (P-
Gotcha matcher) is another matcher that had been considered for MISR cloud height retrieval in
JPL (c.f. Gruen, 1985; Otto and Chau, 1989; Holden et al, 1993).

2.1 L2TC Cloud Height Retrieval Algorithm

L2TC uses Df-Bf-An-Ba-Da cameras for cloud top motion retrieval (estimation) and uses Af-An-Aa
cameras for cloud height retrieval (estimation). First the top cloud motion is estimated or retrieved
and it is used to estimate or retrieve the cloud height. Thresholding the cloud height gives the
cloud mask, Steroscopically-Derived Cloud Mask (SDCM).

Raw MISR measurements are transformed into Bi-directional Reflectance Factors (BRF’s), i.e.
the ratio of observed radiance at a particular illumination and view geometry and the radiance
that would be obtained under the same conditions with a target consisting of a perfect lambertian
reflector (cf. Diner et al, 1999b). The 275m resolution red band is used, because it provides
high resolution data. However, the classification label is given only at 1.1km resolution to reduce
computation. (In this paper, we concentrate mainly on the red band for the same reason, but would
like to investigate the use of other bands for further improvements in the future.)

L2TC estimates cloud motion and height in two separate stages, although they can be solved
with two linear equations simultaneously after a match is found. This choice reflects a compromise
between computational speed and classification accuracy. At the first stage L2TC retrieves the
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cloud-top motion over non-overlapping blocks of size 70.4km × 70.4km for computational speed.
It is not feasible to match every pixel in three angles at high resolution, especially for the most
oblique angle (Df). Cloud movement in a 70.4km block is assumed constant, and in particular
cloud vertical movement is assumed negligible during the 7-minute observation period. L2TC uses
Nested Maxima Stereo-Matcher (NM) to find matching blocks using three cameras (An-Bf-Df).
NM is a feature-based matcher designed to run through large amounts of data at high speed. A
nested maximum is defined as a central pixel within a 5 pixel vertical column such that the BRF
decrease monotonically in value for two pixels on both sides of the maximum pixel. L2TC first
searches for all nested maxima in both the reference (Bf) angle image and the image to be searched
in (An and Df); then it takes one maximum from the reference image and one maximum from the
searched image to test if they match each other. For an 11 by 21 pixel patch (window) around each
target pixel (maximum here), M2 and M3 (defined below) match metrics are calculated (Diner et
al, 1999b) to decide on a match (empirically chosen thresholds 1 for M2 and 0.75 for M3). If there
is no match, then a label “no retrieval” is given for the block and hence no pixels in the block will
have cloud motion retrievals, or cloud height retrievals. Also, if there are too many matches in the
block, cloud motion cannot be retrieved, and “no retrieval” is also given to such blocks.

The M2 metric is defined as:

SM2 =

∑
i,j |[ R(xi,yj)−R̄

Rmax−Rmin
]− [ C(xi,yj)−C̄

Cmax−Cmin
]|

σM2
(1)

with

σM2 =
∑

i,j

|[R(xi, yj)− R̄

Rmax −Rmin
]| (2)

where R(xi, yj) is the reference pixel BRF at (i, j); C(xi, yj) is the corresponding value in the
comparison image; Rmax, Rmin are the maximum and minimum values within the reference patch,
respectively; Cmax, Cmin are the maximum and minimum values within the comparison patch,
respectively; R̄ is the average value within the reference patch; C̄ is average value within the
comparison patch. M3 uses medians rather than means to define a metric in a similar way (cf.
Diner et al, 1999b).

After a match is found, L2TC uses the following equations to determine cloud motion, even
though cloud height is obtained at the same time by solving these equations:

vc(tAn − tBf )− h(tan(θBf )− tan(θAn)) = (xAn − xBf ) (3)
vc(tDf − tBf )− h(tan(θBf )− tan(θDf )) = (xDf − xBf ) (4)

where vc is the along-track cloud movement speed (cloud motion); h is the cloud-top height; t is
the time when the given camera looks at that location; θ is the angle of view direction and the
zenith; xAn − xBf and xDf − xBf are the along-track location shifts of the best matched patch in
An vs. Bf and Df vs. Bf.

At the second stage of L2TC, cloud-top motion, vc, for the block is assumed known, and the
An and Af images are used to obtain cloud height on a pixel-by-pixel basis. L2TC finds the match
in An/Af angles and solves just one linear equation (3) to get cloud height, if we replace Bf by Af

and use the cloud movement speed vc got from the first stage.
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M2 and M3 are also used to retrieve the cloud height pixel by pixel. L2TC calculates the M2
metric of a small pixel patch (e.g. 6 by 10) extracted around the target pixel chosen for matching,
and a patch around each comparison pixel in the search window. The pair of patches with the
lowest metric value is chosen. The match must pass both the threshold test (e.g. M2 metric less
than threshold) and ambiguity tests (e.g. metrics at other locations in the search window are larger
than 110% of the metric at the best match) to be accepted. For a successful M2 match, M3 is
applied to this best matching location to determine whether M3 verifies the point as valid match. If
a match can not be found, cloud height for that pixel is labelled as “no retrieval”. (The thresholds
for M2 and M3 are derived empirically by studying match quality versus metric value for a number
of different scenes. The relationship does not vary with scene type, and are specific to all MISR
scenes, irrespective of the types of clouds present in the scene.) L2TC detects cloud by thresholding
the difference of cloud height estimation and terrain height, so there is no cloud detection result
for the cloud height “no retrieval” pixel.

The main drawback of L2TC over is that cloud height retrieval fails for an entire block when
the NM matcher fails. This happens particularly over ice and snow, because the local maxima of
the BRF’s from cloud and ice/snow are mixed up. When the cloud motion for a block are retrieved
successfully, M2 and M3 sometimes also fail to find matches in the second step. The right panel of
Fig. 3 shows the “no retrieval” pixels from L2TC, in which cloud motion is retrieved successfully for
all the blocks. It fails on 18% of pixels. The blockiness (70.4 × 70.4 km2) in the motion retrievals
leads to blockiness in the height retrievals as well.

2.2 P-Gotcha Matcher

The P-Gotcha matcher is based on a parametric regression model, refitted at candidate matching
pixels sequentially. It assumes smooth reflectance and terrain surfaces. Hence, a linear Taylor
approximation can be made locally and gives a local, linear regression model. The fitted parameters
give the location coordinates of the next candidate matching pixel relative to the location of the
current candidate. The process stops when parameters fall below a threshold, or the candidate
matching pixel becomes stable.

P-Gotcha was originally selected as the stereo-matcher for MISR because it provides sub-pixel
acuity by interpolation in the parametric model (typically to 0.3 pixels), and can provide a precision
matrix for estimating accuracy. However, P-Gotcha is exceedingly slow since it performs least-
squares fitting at every candidate matching pixel (about 105 floating-point operations per match,
Muller et al, 2002). Empirically it was found that searches started more than 3 pixels away from
the best match do not converge, so the coverage is also promising. The MISR team decided not
to proceed with this algorithm as the operational matcher even using a parallel implementation.
However, when it does converge, P-Gotcha provides a benchmark by which to judge the performance
of other algorithms.

In summary, over ice and snow neither L2TC nor P-Gotcha provide good coverage. Cloud de-
tection in polar regions remains an impediment to making full use of MISR multi-angle capabilities
in this area.
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3 Linear Correlation Matching Classification (LCMC)

We propose a new algorithm, the Linear Correlation Matching classification (LCMC) algorithm.
This algorithm can be used for classification of clear pixels over ice (hence also cloud pixels by
exclusion).

3.1 Rational Behind LCMC

The rationale behind LCMC is as follows. Since the radiances into different cameras (angles) at a
particular band from the same scenery are approximately proportional to the intensity of the light
source (sun), they should be strongly correlated. Over ice and snow, the radiances are relatively
high and this correlation is obvious. (In contrast, the radiances of clear sea pixels are very low, so
the correlation is masked by random noise.)

Preliminary data analysis via scatter plots on the MISR data confirms the strong correlation.
Examples of such scatter plots are displayed in Fig. 4 for the smallest windows in the left image of
Fig. 2 with the 1.1km by 1.1km resolution. The upper left plots correspond to the upper smallest
window in Fig. 2 and show a strong linear correlation of radiances between Bf and Df in red band.
When there is no cloud or the cloud does not change too much in the 7 minutes observation period,
the best match corresponds to a very high linear correlation over a small search area. Next we
describe our LCMC algorithm.

3.2 LCMC Algorithm

We use the earth surface ellipsoid projected data. The proposed method works for any three non-
symmetric angles. To be concrete, we will describe it using the An, Bf and Df angles. This angle
combination also provides the best cloud height separation among all forward angles (Diner et al,
1999b). (An, Ba and Da angles are reserved to validate the result.)

A small patch (9 by 9 pixels) is chosen centered at the pixel to be classified, using Bf angle as
the reference angle, An and DF angle as comparison angles. If there is no cloud over that location
from all three angle we used, and the terrain height is not too high from the earth surface ellipsoid,
the linear correlation coefficient r between radiances in the An patch and the Bf patch at same
location should be very strong. If we move the center of the Bf patch one pixel forward or backward
along the flying direction, the strong linear correlation will be destroyed. This observation holds
also between Bf and Df, see the upper two panels in Fig. 4. From equation (3) and(4), the camera
angles, flying time, and geometry show that the cloud can not be registered at the same location
in An, Bf and Df angles at the same time (cf. Diner et al, 1999b). So if there is cloud over the
window, the An/Bf and Bf/Df linear correlations at the same location will not be much stronger
than one pixel forward or backward, see the lower two panels in Fig. 4.

We build the LCMC classification rule based on this observation. We calculate the linear
correlation coefficients of the Bf (reference angle) patch with An (comparison angle) patches one
pixel forward (rBf

), same location (rBs), and one pixel backward (rBb
) respectively. We test if the
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same location correlation coefficient rBs is greater than other two significantly. The test is Fisher’s
linear correlation test (Fisher, 1925). We transform all three r to z = 1

2 log((1 + r)/(1− r)). If the
data vectors are i.i.d. and follow jointly a Gaussian distribution with correlation ρ, z approximately
follows normal distribution with mean 1

2 log((1+ ρ)/(1− ρ)), variance 1/(n− 3) (here n = 81). The
scatter plots show that this joint Gaussian assumption holds approximately for our data. (We
ignore the dependence between the pixels in the same small patch as a first approximation.)

For the Bf and An angles testes, we use the 5% level to test the null hypotheses ρBs ≤ ρBf

and ρBs ≤ ρBb
. They are rejected when data fall into rejection regions, i.e., {zBs − zBf

>

1.645
√

2/(81− 3)} and {zBs − zBb
> 1.645

√
2/(81− 3)}. We carry out the same testes for Bf

and Df angles. A clear (no cloud) pixel is declared if all four null hypotheses are rejected, otherwise
cloudy.

3.3 Computational Order of LCMC

The computation of LCMC is much simpler than L2TC and P-gotcha, since LCMC only calculates
six correlation coefficients to classify each pixel. It is linear in the number of pixels processed. We
need not go through a search window to find the best match, which is the most expensive part of
the other algorithms. Matching the ground, instead of the cloud, provides us such advantages. By
design it also has a 100% coverage.

3.4 Angle and Cut-off Points Selection

Since there are more angles to be used for this testing, in the future we plan to explore approaches
to combine the tests (e.g. multiple testing) to set the cut-off values for cloud detection. The cut-off
value might vary according to the pair of angles used in the test since the angles near An provide
more reliable information than those away from An because they incur smaller time differences
when observing the same scene. In addition, we would also like to explore the possibility of using
the other three bands to improve cloud detection based on the red band.

By introducing the statistical testing idea into the model, we want to investigate the confidence
levels associated with the matching result. We hope to find a way to access the confidence levels
of the classification results along this direction. We need “ground truth” from other resources to
work with.

4 Experimental Results of LCMC

A case study is carried out to compare LCMC with SDCM. The East Siberian Sea data (An angle
RGB image in Figure 2) is used. Since the Df angle does not cover the area outside of the big
window in the image, we constrain our comparisons inside of the window. The second example
shows the ability of LCMC to detect the very thin cloud over ice and snow.
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4.1 Comparisons Between LCMC and SDCM

As described in L2TC review section, the SDCM classification algorithm takes as input the 275m by
275m resolution data (red band) and outputs classification labels at the 1.1km by 1.1km resolution.
Because of time constraint, we applied the LCMC classification algorithm only to the 1.1km by
1.1km resolution data (red band as well), and obtained classification labels also for the 1.1km by
1.1km resolution. A 288 by 361 pixel sub-image in Fig. 2 (indicated by the largest box in the left
panel) was chosen so that L2TC gave cloud motion retrievals for all pixels to simplify the matter.
But the matching in the height retrieval of L2TC failed at 18% of the pixels. LCMC classified all
pixels by design. Table 1 contains the comparisons. For LCMC no cloud or clear pixels, LCMC
and SDCM agree 86.5% of the time, disagree 0.65% of the time, and 12.8% of the time, L2TC has
no retrieval.

SDCM No Cloud SDCM Cloudy SDCM Not Retrieved Total
LCMC No Cloud 27.86% 0.21% 4.12% 32.2%
LCMC Cloudy 35.22% 18.4% 14.18% 67.8%

Total 63.08% 18.61% 18.31% 100%

Table 1: Comparing the LCMC result with SDCM.

We investigated the pixels not classified by L2TC (18%) in the small boxed windows in the left
image of Fig. 2 – we zoomed in to the 275m by 275m resolution to get the right image of Fig.
2. Cloud and ice can now be distinguished by eye at this resolution, but not very easily. The left
panel of Fig. 3 shows the LCMC classification result of the data in Fig. 2 (“No cloud” pixels are
coded as white points in the picture, and “cloud” pixels are left in the true color). The white points
in the right panel of Fig. 3 are the pixels Where L2TC failed. For the L2TC unclassified pixels,
LCMC seems to give reasonable results. Future validation has to be made based on other sources.

The scatter plots of radiances of the 9 by 9 windows in Bf/Df angles are shown in Fig. 4. The
upper two plots are from the upper smallest window in Fig. 2, which is classified as “no cloud” by
LCMC. The linear correlation coefficient drops sharply when we moved the Df window one pixel
forward. The lower two plots are from the lower smallest window in Fig.2, which is labelled as
“cloudy” by LCMC classification. The linear correlation gets stronger when we move Df window
one pixel forward. So the evidence is strong for LCMC to classify a pixel as “no cloud”.

The largest disagreement of LCMC and L2TC occurs in the category of LCMC cloudy and
L2TC no cloud. This is due to the fact that the LCMC classifies one pixel as “no cloud” when
there are no clouds over the 9 by 9 window at all the three angles (An, Bf and Df), that is, it does
not classify the pixel as “no cloud” based only on the An/Af pair. However, such pixels are most
likely classified as “no cloud” by L2TC, because it uses only the An/Af pair to do the cloud height
retrieval. So it is possible to improve accuracy of the L2TC by using other angles, but at the price
of a larger searching window. The accurate detection of “no cloud” or clear pixels by LCMC is
important in its own right because the MISR aerosol retrieval algorithm needs to know where the
clear or no cloud pixels are.
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4.2 Comparing LCMC with Expert Labelled Data

We also use 400 expert labelled pixels to test both LCMC and SDCM. They are from MISR orbit
12986, block 22-24 (c.f. Fig. 2). The 400 pixels are labelled by visual inspection on the 275m
resolution data. “No cloud” pixels are chosen from the top middle or middle left area of the image,
while “cloudy” pixels are from the top left and bottom left of the image. 200 clear pixels and 200
cloudy ones are include in the test. All test pixels are from areas where it is easy to separate“cloud”
or “no cloud”. The test results are given in Table 2.

Mis classification Rate No Cloud Cloudy Total
LCMC 47.5% 0% 23.75%
SDCM 42% 28% 35%

Table 2: Mis classification rates of LCMC and SDCM.

We notice that we use 1.1km by 1.1km resolution data in LCMC algorithm, but SDCM is
derived based on the 275m by 275m resolution. Our algorithm still provides 12% improvement
over all. The results show again that the LCMC is very good at picking up high clouds. It
makes very few mistakes when there are really clouds above a certain height. Over the“no cloud”
area, the LCMC gives comparable result as SDCM, and both algorithms have relatively high mis
classification rates. One reason for this mis classification is that we use the ellipsoid projected data
in the LCMC algorithm. The high terrain surface will be registered in different locations, so the
LCMC algorithm fails to pick it up when no cloud presents. We plan to test LCMC on the MISR
terrain projected data to see possible improvement. In the next stage, we also plan to test the
LCMC on the 275m by 275m resolution data and hope it can find the very low cloud (below 1km)
in the finer resolution.

4.3 Detecting High and Thin Cloud over Ice and Snow by LCMC

So far all the stereo matching algorithms assume no shape change of the clouds during the ob-
servation interval. Cloud shape change will make the problem much more difficult for the nested
maximum (NM), M2 and M3 matchers to do their jobs. In contrast, the shape change does not
present anything more difficult for LCMC because it relies on features of clear pixels which remain
the same with or without the cloud shape change. So LCMC should work well in detecting high
and thin cloud over ice and snow.

Fig. 5 displays a RGB image at the An angle of MISR orbit 2461 and block 28-31 and the
LCMC result. The left panel is RGB picture with the 1.1km by 1.1km resolution, and the right
panel is the LCMC result (“No cloud” is coded as bright points). The left upper part of the image
is covered by high and thin cloud, it was detected by the LCMC algorithm very well. L2TC is not
applied to this data, because the data was collected before L2TC started to be used. (The “no
cloud” pixels over sea are not classified by LCMC, but by thresholding the Infrared radiances.)
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5 Discussions and Future Work

In summary, LCMC classifies the pixel as “no cloud” when the evidence is strong. LCMC has
full coverage to pick out the “no cloud” pixels. By design, LCMC algorithm relies mostly on the
surface spatial information of the ice and snow surface. Other MISR bands can be used given
there is enough energy in the bands reflected from the ground. We tested LCMC using green and
blue bands on the MISR data shown in Fig. 2 and Fig. 5, and both bands provide very close
classification results in our tests.

LCMC does not work over ocean because the linear correlation is masked by random noises,
since radiance is very low. In this case, MISR’s Level-1 cloud detection algorithm easily detects
clear pixels over deep ocean, by thresholding the near infrared radiance. So we can simply threshold
the near infrared band to exclude carrying out LCMC for that pixel.

LCMC can be used to preprocess data for L2TC cloud height retrievals. After we get high
confidence “no cloud” pixels from LCMC, we could run L2TC only for the “cloud” pixels. In the
L2TC cloud motion retrieval, we will then be more confident that we are matching clouds, not ice
and snow surface features. Accuracy and speed are both improved in this step. For the L2TC
cloud height retrieval, we do not need to search matching patches for the “no cloud” pixels. This
reduces the computational burden and improves coverage.

High topography poses difficulties for LCMC because high altitude terrain will be registered at
different locations for different view angles. We need to incorporate terrain height information into
the LCMC algorithm. Since terrain height is provided by an external source, and MISR provides
the terrain projected data, we are going to test the LCMC algorithm on terrain projected data in
the next stage.

In the next step, we want to implement LCMC on the 275m by 275m resolution data. At this
finer resolution we expect LCMC to provide better results, because high resolution provides more
data for a much smaller window. Matching tests are carried out even more locally. When a pixel
and its neighborhood are not coved by clouds, and there are clouds somewhere in the 9.9km by
9.9km window, the 275m by 275m resolution LCMC will pick this out while the 1.1km algorithm
misses it. We also expect the finer resolution data will help us to find the low clouds. We would
also like to experiment with selecting angles for use in the finer resolution scenario.

We will validate the LCMC result with the cloud classifications over snow and ice from other
sources Reliable data from other source could also be used to improve selection of angles, bands,
and window sizes. One source of validation data is the North Slope of Alaska Surface-Satellite
Cloud Comparison Data Site [15]. It provides cloud microphysics data from a surface observation
site (latitude=71.17 longitude=203.22) in Barrow, Alaska. It is operated by the Department of
Energy, and its main purpose is to provide validation data for satellite cloud sensors, particularly
those on the TERRA satellite. Clouds observed with sensors operating at this ARM North Slope
of Alaska CART site have been classified based on subjective (human) examination of data from
radar, microwave and infrared radiometers, and radiosondes.

10



Summary

As cited in Diner et al (2002), the 20th Century writer Zora Neale Hurston wrote: ”There is no
single face in nature, because every eye that looks upon it, sees it from its own angles.” MISR looks
at the Earth from nine different angles and provides us new ways to understand the changes taking
place on our home planet. In this paper, we considered the problem of detecting clouds over ice
and snow from a different point of view: matching the ground rather than the clouds. MISR’s data
collection method makes it possible to derive a fast algorithm for distinguishing clear ice and snow
pixels from cloud-covered pixels. The algorithm also holds potential for detecting the thin cloud,
even when the cloud shape changes. In the future, we hope to extend the method to work over
other land scenes, and combine it with L2TC for further improvements.
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Figure 2: RGB true color image of the East Siberian Sea, Russia (obtained July 24, 2002). MISR
orbit 12986, block 22-24, An angle. Left image: RGB in 1.1km by 1.1km resolution image; Right
image: RGB 275m by 275m resolution image in the middle size window of the left image.

Figure 3: MISR Orbit 12986, block 22-24. The left panel is the LCMC result, with “no cloud”
pixels coded as white points. The right panel highlights the L2TC failed pixels, coded as white
points (The cloud motions are retrieved successfully for all 70.4km by 70.4km blocks.)
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Figure 4: Scatter plots of the radiances from Fig. 2. The upper two plots are from the upper
smallest window in Fig. 2: the left one plot is from BF and DF angles without moving the DF
angle patch, and the right one with DF angle patch moved one pixel forward. The lower two plots
are from the lower smallest window in Fig. 2: the left is the plot of radiances in the BF and DF
angles without moving the DF angle patch, and and the right one with the DF angle patch moved
one pixel forward.

Figure 5: MISR Orbit 2461, block 28-31, AN angle. The left panel is the RGB true color picture,
1.1km by 1.1km resolution. The right panel is the LCMC cloud detection result, with “no cloud”
coded as white points. The high thin cloud is detected by the algorithm.
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