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Abstract

We propose a novel method of dimensionality reduction for supervised learning problems.
Given a regression or classification problem in which we wish to predict a response variable
Y from an explanatory variable X , we treat the problem of dimensionality reduction as
that of finding a low-dimensional “effective subspace” of X which retains the statistical
relationship between X and Y . We show that this problem can be formulated in terms
of conditional independence. To turn this formulation into an optimization problem we
establish a general nonparametric characterization of conditional independence using co-
variance operators on a reproducing kernel Hilbert space. This characterization allows us
to derive a contrast function for estimation of the effective subspace. Unlike many conven-
tional methods for dimensionality reduction in supervised learning, the proposed method
requires neither assumptions on the marginal distribution of X , nor a parametric model of
the conditional distribution of Y . We present experiments that compare the performance
of the method with conventional methods.

1. Introduction

Many statistical learning problems involve some form of dimensionality reduction, either
explicitly or implicitly. The goal may be one of feature selection, in which we aim to find
linear or nonlinear combinations of the original set of variables, or one of variable selection,
in which we wish to select a subset of variables from the original set. The setting may be
unsupervised learning, in which a set of observations of a random vector X are available, or
supervised learning, in which desired responses or labels Y are also available. Developing
methods for dimensionality reduction requires being clear on the goal and the setting, as
methods developed for one combination of goal and setting are not generally appropriate for
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another. There are additional motivations for dimensionality reduction that it is also helpful
to specify, including: providing a simplified explanation of a phenomenon for a human
(possibly as part of a visualization algorithm), suppressing noise so as to make a better
prediction or decision, or reducing the computational burden. These various motivations
are often complementary.

In this paper we study dimensionality reduction in the setting of supervised learning.
Thus, we consider problems in which our data consist of observations of (X,Y ) pairs, where
X is an m-dimensional explanatory variable and where Y is an `-dimensional response. The
variable Y may be either continuous or discrete. We refer to these problems generically as
“regression” problems, which indicates our focus on the conditional probability density
function pY |X(y | x). In particular, our framework includes discriminative approaches to
classification problems, where Y is a discrete label.

We wish to solve a problem of feature selection in which the features are linear combi-
nations of the components of X. In particular, we assume that there is an r-dimensional
subspace S ⊂ R

m such that

pY |X(y | x) = pY |ΠSX(y | ΠSx), (1)

for all x and y, where ΠS is the orthogonal projection of Rm onto S. The subspace S is
called the effective subspace for regression. Based on a set of observations of (X,Y ) pairs,
we wish to recover a matrix whose columns span the effective subspace.

We approach the problem as a semiparametric statistical problem; in particular, we make
no assumptions regarding the conditional distribution pY |ΠSX(y | ΠSx), nor do we make
any assumptions regarding the marginal distribution pX(x). That is, we wish to estimate a
finite-dimensional parameter (a matrix whose columns span the effective subspace), while
treating the distributions pY |ΠSX(y | ΠSx) and pX(x) nonparametrically.

Having found an effective subspace, we may then proceed to build a parametric or
nonparametric regression model on that subspace. Thus our approach is an explicit dimen-
sionality reduction method for supervised learning that does not require any particular form
of regression model, and can be used as a preprocessor for any supervised learner. This
can be compared to the use of methods such as principal components analysis (PCA) in
regression, which also make no assumption regarding the subsequent regression model, but
fail to make use of the response variable Y .

There are a variety of related approaches in the literature, but most of them involve
making specific assumptions regarding the conditional distribution pY |ΠSX(y | ΠSx), the
marginal distribution pX(x), or both. For example, classical two-layer neural networks
involve a linear transformation in the first “layer,” followed by a specific nonlinear function
and a second layer (Bishop, 1995). Thus, neural networks can be seen as attempting to
estimate an effective subspace based on specific assumptions about the regressor pY |ΠSX(y |
ΠSx). Similar comments apply to projection pursuit regression (Friedman and Stuetzle,
1981), ACE (Breiman and Friedman, 1985) and additive models (Hastie and Tibshirani,
1986), all of which provide a methodology for dimensionality reduction in which an additive
model E[Y | X] = g1(βT

1 X) + · · · + gK(βT
KX) is assumed for the regressor.

Canonical correlation analysis (CCA) and partial least squares (PLS, Höskuldsson, 1988,
Helland, 1988) are classical multivariate statistical methods that can be used for dimension-
ality reduction in regression (Fung et al., 2002, Nguyen and Rocke, 2002). These methods
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are based on a linearity assumption for the regressor, however, and thus are quite strongly
parametric.

The line of research that is closest to our work has its origin in a technique known
as sliced inverse regression (SIR, Li, 1991). SIR is a semiparametric method for finding
effective subspaces in regression. The basic idea is that the range of the response variable
Y is partitioned into a set of “slices,” and the sample means of the observations X are
computed within each slice. This can be viewed as a rough approximation to the inverse
regression of X on Y . For univariate Y the method is particularly easy to implement. Noting
that the inverse regression must lie in the effective subspace if the forward regression lies
in such a subspace, principal component analysis is then used on the sample means to find
the effective subspace. Li (1991) has shown that this approach can find effective subspaces,
but only under strong assumptions on the marginal distribution pX(x)—in particular, the
marginal distribution must be elliptically symmetric.

Further developments in the wake of SIR include principal Hessian directions (pHd, Li,
1992), and sliced average variance estimation (SAVE, Cook and Weisberg, 1991, Cook and
Yin, 2001). These are all semiparametric methods in that they make no assumptions about
the regressor (see also Cook, 1998). However, they again place strong restrictions on the
probability distribution of the explanatory variables. If these assumptions do not hold,
there is no guarantee of finding the effective subspace.

There are also related nonparametric approaches that estimate the derivative of the
regressor to achieve dimensionality reduction, based on the fact that the derivative of
the conditional expectation E[y | BT x] with respect to x belongs to the effective sub-
space (Samarov, 1993, Hristache et al., 2001). However, nonparametric estimation of deriva-
tives is quite challenging in high-dimensional spaces.

There are also dimensionality reduction methods with a semiparametric flavor in the area
of classification, notably the work of Torkkola (2003), who has proposed using nonparametric
estimation of the mutual information between X and Y , and subsequent maximization of
this estimate of mutual information with respect to a matrix representing the effective
subspace.

In this paper we present a novel semiparametric method for dimensionality reduction
that we refer to as Kernel Dimensionality Reduction (KDR). KDR is based on the esti-
mation and optimization of a particular class of operators on reproducing kernel Hilbert
spaces (Aronszajn, 1950). Although our use of reproducing kernel Hilbert spaces is related
to their role in algorithms such as the support vector machine and kernel PCA (Boser et al.,
1992, Vapnik et al., 1997, Schölkopf et al., 1998), where the kernel function allows linear op-
erations in function spaces to be performed in a computationally-efficient manner, our work
differs in that it cannot be viewed as a “kernelization” of an underlying linear algorithm.
Rather, we use reproducing kernel Hilbert spaces to provide characterizations of general
notions of independence, and we use these characterizations to design objective functions
to be optimized. We build on earlier work by Bach and Jordan (2002a), who showed how
to use reproducing kernel Hilbert spaces to characterize marginal independence between
pairs of variables, and thereby design an objective function for independent component
analysis. In the current paper, we extend this line of work, showing how to characterize
conditional independence using reproducing kernel Hilbert spaces. We achieve this by ex-
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pressing conditional independence in terms of covariance operators on reproducing kernel
Hilbert spaces.

How does conditional independence relate to our dimensionality reduction problem?
Recall that our problem is to find a projection ΠS of X onto a subspace S such that the
conditional probability of Y given X is equal to the conditional probability of Y given ΠSX.
This is equivalent to finding a projection ΠS which makes Y and (I − ΠS)X conditionally
independent given ΠSX. Thus we can turn the dimensionality reduction problem into an
optimization problem by expressing it in terms of covariance operators.

In a presence of a finite sample, we need to estimate the covariance operator so as to
obtain a sampled-based objective function that we can optimize. We derive a natural plug-
in estimate of the covariance operator, and find that the resulting estimate is identical to
the kernel generalized variance that has been described earlier by Bach and Jordan (2002a)
in the setting of independent component analysis. In that setting, the goal is to measure
departures from independence, and the minimization of the kernel generalized variance can
be viewed as a surrogate for minimizing a certain mutual information. In the dimensionality
reduction setting, on the other hand, the goal is to measure conditional independence, and
minimizing the kernel generalized variance can be viewed as a surrogate for maximizing
a certain mutual information. Not surprisingly, the derivation that leads to the kernel
generalized variance that we present here is quite different from the one presented in the
earlier work on kernel ICA. Moreover, the argument that we present here can be viewed
as providing a rigorous foundation for other, more heuristic, ways in which the kernel
generalized variance has been used, including the model selection algorithms for graphical
models presented by Bach and Jordan (2003).

The paper is organized as follows. In Section 2, we introduce the problem of dimen-
sionality reduction for supervised learning, and describe its relation with conditional inde-
pendence and mutual information. Section 3 derives the objective function for estimation
of the effective subspace for regression, and describes the KDR method. All of the math-
ematical details needed for the results in Section 3 are presented in the Appendix, which
also provides a general introduction to covariance operators in reproducing kernel Hilbert
spaces. In Section 4, we present a series of experiments that test the effectiveness of our
method, comparing it with several conventional methods. Section 5 describes an extension
of KDR to the problem of variable selection. Section 6 presents our conclusions.

2. Dimensionality reduction for regression

We consider a regression problem, in which Y is an `-dimensional random vector, and X is
an m-dimensional explanatory variable. (Note again that we use “regression” in a generic
sense that includes both continuous and discrete Y ). The probability density function of Y
given X is denoted by pY |X(y | x). Assume that there is an r-dimensional subspace S ⊂ R

m

such that
pY |X(y | x) = pY |ΠSX(y | ΠSx), (2)

for all x and y, where ΠS is the orthogonal projection of Rm onto S. The subspace S is
called the effective subspace for regression.

The problem that we treat here is that of finding the subspace S given an i.i.d. sample
{(X1, Y1), . . . , (Xn, Yn)} from pX and pY |X . The crux of the problem is that we assume no a
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priori knowledge of the regressor, and place no assumptions on the conditional probability
pY |X .

As in the simpler setting of principal component analysis, we make the (generally un-
realistic) assumption that the dimensionality r is known and fixed. We discuss various
approaches to the estimation of the dimensionality in Section 6.

The notion of effective subspace can be formulated in terms of conditional independence.
Let (B,C) be the m-dimensional orthogonal matrix such that the column vectors of B span
the subspace S, and define U = BT X and V = CTX. Because (B,C) is an orthogonal
matrix, we have

pX(x) = pU,V (u, v), pX,Y (x, y) = pU,V,Y (u, v, y), (3)

for the probability density functions. From Eq. (3), Eq. (2) is equivalent to

pY |U,V (y | u, v) = pY |U (y | u). (4)

This shows that the effective subspace S is the one which makes Y and V conditionally
independent given U (see Figure 1).

Mutual information provides another point of view on the equivalence between con-
ditional independence and the existence of the effective subspace. From Eq. (3), it is
straightforward to see that

I(Y,X) = I(Y,U) + EU

[
I(Y |U, V |U)

]
, (5)

where I(Z,W ) denotes the mutual information defined by

I(Z,W ) :=
∫ ∫

pZ,W (z, w) log
pZ,W (z, w)

pZ(z)pW (w)
dzdw. (6)

Because Eq. (2) means I(Y,X) = I(Y,U), the effective subspace S is characterized as the
subspace which retains the mutual information of X and Y by the projection onto that
subspace, or equivalently, which gives I(Y |U, V |U) = 0. This is again the conditional
independence of Y and V given U .

The expression in Eq. (5) can be understood in terms of the decomposition of the
mutual information according to a tree-structured graphical model—a quantity that has
been termed the T-mutual information by Bach and Jordan (2002b). Considering the tree
Y − U − V in Figure 1(b), we have that the T-mutual information IT is given by

IT = I(Y,U, V ) − I(Y,U) − I(U, V ). (7)

This is equal to the KL-divergence between a probability distribution on (Y,U, V ) and its
projection onto the family of distributions that factor according to the tree; that is, the set
of distributions that verify Y ⊥⊥V | U . Using Eq. (3), we can easily see that I(Y,U, V ) =
I(Y,X) + I(U, V ), and thus we obtain

IT = I(Y,X) − I(Y,U) = EU [I(Y |U, V |U)]. (8)

Then, dimensionality reduction for regression can be viewed as the problem of minimizing
the T-mutual information for the fixed tree structure in Figure 1(b).
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Figure 1: Graphical representation of dimensionality reduction for regression. The variables
Y and V are conditionally independent given U , where X = (U, V ).

3. Kernel method for dimensionality reduction in regression

In this section we present our kernel-based method for dimensionality reduction. We dis-
cuss the basic definition and properties of cross-covariance operators on reproducing kernel
Hilbert spaces, derive an objective function for characterizing conditional independence us-
ing cross-covariance operators, and finally present a sampled-based objective function based
on this characterization.

3.1 Cross-covariance operators on reproducing kernel Hilbert spaces

We use cross-covariance operators on reproducing kernel Hilbert spaces to derive an objec-
tive function for dimensionality reduction. While cross-covariance operators are generally
defined for random variables in Banach spaces (Vakhania et al., 1987, Baker, 1973), the
theory is much simpler for reproducing kernel Hilbert spaces. We summarize only basic
mathematical facts in this subsection, and defer the details to the Appendix. Let (H, k) be
a reproducing kernel Hilbert space of functions on a set Ω with a positive definite kernel
k : Ω×Ω → R. The inner product of H is denoted by 〈·, ·〉H. We consider only real Hilbert
spaces for simplicity. The most important aspect of reproducing kernel Hilbert spaces is
the reproducing property:

〈f, k(·, x)〉H = f(x) for all x ∈ Ω and f ∈ H. (9)

Throughout this paper we use the Gaussian kernel

k(x1, x2) = exp
(−‖x1 − x2‖2/σ2

)
, (10)

which corresponds to a Hilbert space of smooth functions.
Let (H1, k1) and (H2, k2) be reproducing kernel Hilbert spaces over measurable spaces

(Ω1,B1) and (Ω2,B2), respectively, with k1 and k2 measurable. For a random vector (X,Y )
on Ω1 × Ω2, the cross-covariance operator from H1 to H2 is defined by the relation

〈g,ΣY Xf〉H2 = EXY [f(X)g(Y )] − EX [f(X)]EY [g(Y )] (11)
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for all f ∈ H1 and g ∈ H2. Eq. (11) implies that the covariance of f(X) and g(Y ) is given
by the action of the linear operator ΣY X and the inner product. (See the Appendix for a
basic exposition of cross-covariance operators.)

Covariance operators provide a useful framework for discussing conditional probability
and conditional independence. As we show in Corollary 3 of the Appendix, the following
relation holds between the conditional expectation and the cross-covariance operator, given
that ΣXX is invertible:1

EY |X [g(Y ) | X] = Σ−1
XXΣXY g for all g ∈ H2, (12)

Eq. (12) can be understood by analogy to the conditional expectation of Gaussian random
variables. If X and Y are Gaussian random variables, it is well known that the conditional
expectation is given by

EY |X [aT Y | X = x] = xT Σ−1
XXΣXY a, (13)

for an arbitrary vector a, where ΣXX and ΣXY are the variance-covariance matrices in the
ordinary sense.

3.2 Conditional covariance operators and conditional independence

We derive an objective function for characterizing conditional independence using cross-
covariance operators. Suppose we have random variables X and Y on R

m and R
` , respec-

tively. The variable X is decomposed into U ∈ R
r and V ∈ R

m−r so that X = (U, V ).
For the function spaces corresponding to Y , U and V , we consider the reproducing kernel
Hilbert spaces (H1, k1), (H2, k2), and (H3, k3) on R

` , Rr , and R
m−r , respectively, each en-

dowed with Gaussian kernels. We define the conditional covariance operator ΣY Y |U on H1

by
ΣY Y |U := ΣY Y − ΣY UΣ−1

UUΣUY , (14)

where ΣY Y , ΣUU , ΣY U are the corresponding covariance operators. As shown by Proposi-
tion 5 in the Appendix, the operator ΣY Y |U captures the conditional variance of a random
variable in the following way

〈g,ΣY Y |Ug〉H1 = EU

[
VarY |U [g(Y ) | U ]

]
, (15)

where g is an arbitrary function in H1. As in the case of Eq. (13), we can make an analogy
to Gaussian variables. In particular, Eqs. (14) and (15) can be viewed as the analogs of the
following well-known equality for the conditional variance of Gaussian variables:

Var[aT Y | U ] = aT (ΣY Y − ΣY UΣ−1
UUΣUY )a. (16)

It is natural to use minimization of ΣY Y |U as a basis of a method for finding the most
informative direction U . This intuition is justified theoretically by Theorem 7 in Appendix.
That theorem shows that

ΣY Y |U ≥ ΣY Y |X for any U, (17)

1. Even if ΣXX is not invertible, a similar fact holds. See Corollary 3.
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and
ΣY Y |U − ΣY Y |X = O ⇐⇒ Y ⊥⊥V |U, (18)

where, in Eq. (17), the inequality should be understood as the partial order of self-adjoint
operators. From these relations, the effective subspace S can be characterized in terms of
the solution to the following minimization problem:

min
S

ΣY Y |U , subject to U = ΠSX. (19)

In the following section we show how to turn this population-based criterion into a sampled-
based criterion that can be optimized in the presence of a finite sample.

3.3 Kernel generalized variance for dimensionality reduction

To derive a sampled-based objective function from Eq. (19), we have to estimate the con-
ditional covariance operator with given data, and choose a specific way to evaluate the size
of self-adjoint operators.

For the estimation of the operator, we follow the procedure described by Bach and Jor-
dan (2002a) in their derivation of kernel ICA. Let K̂Y be the centralized Gram matrix (Bach
and Jordan, 2002a, Schölkopf et al., 1998), defined by

K̂Y =
(
In − 1

n1n1T
n

)
GY

(
In − 1

n1n1T
n

)
, (20)

where (GY )ij = k1(Yi, Yj) is the Gram matrix and 1n = (1, . . . , 1)T is the vector with all
elements equal to 1. The matrices K̂U and K̂V are defined similarly, using {Ui}n

i=1 and
{Vi}n

i=1, respectively. The empirical conditional covariance matrix Σ̂Y Y |U is then defined
by

Σ̂Y Y |U := Σ̂Y Y − Σ̂Y U Σ̂−1
UU Σ̂UY = (K̂Y + εIn)2 − K̂Y K̂U (K̂U + εIn)−2K̂UK̂Y , (21)

where ε > 0 is a regularization constant.
The size of Σ̂Y Y |U in the ordered set of positive definite matrices can be evaluated by

its determinant. Although there are other choices for measuring the size of Σ̂Y Y |U , such
as the trace and the largest eigenvalue, we focus on the determinant in this paper. Using
the Schur decomposition det(A−BC−1BT ) = det

(
A B

BT C

)
/detC, the determinant of Σ̂Y Y |U

can be written as follows:

det Σ̂Y Y |U =
det Σ̂[Y U ][Y U ]

det Σ̂UU

, (22)

where Σ̂[Y U ][Y U ] is defined by

Σ̂[Y U ][Y U ] =
(

Σ̂Y Y Σ̂Y U

Σ̂UY Σ̂UU

)
=

(
(K̂Y + εIn)2 K̂Y K̂U

K̂UK̂Y (K̂U + εIn)2

)
. (23)

We symmetrize the objective function by dividing by the constant det Σ̂Y Y , which yields
the following objective function

det Σ̂[Y U ][Y U ]

det Σ̂Y Y det Σ̂UU

. (24)
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We refer to the problem of minimizing this function with respect to the choice of subspace
S as Kernel Dimensionality Reduction (KDR).

Eq. (24) has been termed the “kernel generalized variance” by Bach and Jordan (2002a),
who used it as a contrast function for independent component analysis. In that setting, the
goal is to minimize a mutual information (among a set of recovered “source” variables),
in the attempt to obtain independent components. Bach and Jordan (2002a) showed that
the kernel generalized variance is in fact an approximation of the mutual information of
the recovered sources, when this mutual information is expanded around the manifold of
factorized distributions. In the current setting, on the other hand, our goal is to maximize
the mutual information I(Y,U), and we certainly do not expect to be near a manifold in
which Y and U are independent. Thus the argument for the kernel generalized variance as
an objective function in the ICA setting does not apply here. What we have provided in
the previous section is an entirely distinct argument that shows that the kernel generalized
variance is in fact an appropriate objective function for the dimensionality reduction prob-
lem, and that minimizing the kernel generalized variance in Eq. (24) can be viewed as a
surrogate for maximizing the mutual information I(Y,U).

Given that the numerical task that must be solved in KDR is the same as the numerical
task that must be solved in kernel ICA, however, we can import all of the computational
techniques developed by Bach and Jordan (2002a) for minimizing kernel generalized variance
in the KDR setting. In particular, the optimization routine that we use in our experiments
is gradient descent with a line search, where we exploit incomplete Cholesky decomposition
to reduce the n × n matrices required in Eq. (24) to low-rank approximations. To cope
with local optima, we make use of an annealing technique, in which the scale parameter σ
for the Gaussian kernel is decreased gradually during the iterations of optimization. For
a larger σ, the contrast function has fewer local optima, which makes optimization easier.
The search becomes more accurate as σ is decreased.

4. Experimental results

We study the effectiveness of the new method through experiments, comparing it with
several conventional methods: SIR, pHd, CCA, and PLS. For the experiments with SIR
and pHd, we use an implementation for R due to Weisberg (2002).

4.1 Synthetic data

The first data sets A and B comprise one-dimensional Y and two-dimensional X = (X1,X2).
One hundred i.i.d. data points are generated by

A : Y ∼ 1/(1 + exp(−X1)) + Z,

B : Y ∼ 2 exp(−X2
1 ) + Z,

where Z ∼ N(0, 0.12), and X = (X1,X2) follows a normal distribution and a normal
mixture with two components for A and B, respectively. The effective subspace is spanned
by B0 = (1, 0)T in both cases. The data sets are depicted in Figure 2.

Table 1 shows the angles between B0 and the estimated direction. For Data A, all
the methods except PLS yield a good estimate of B0. Data B is surprisingly difficult for
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Figure 2: Data A and B. One dimensional Y depends only on X1 in X = (X1,X2).

the conventional methods, presumably because the distribution of X is not spherical and
the regressor has a strong nonlinearity. The KDR method succeeds in finding the correct
direction for both data sets.

Data C has 300 samples of 17 dimensional X and one dimensional Y , which are generated
by

C : Y ∼ 0.9X1 + 0.2
1

1 + X17
+ Z, (25)

where Z ∼ N(0, 0.012) and X follows a uniform distribution on [0, 1]17. The effective
subspace is given by b1 = (1, 0, . . . , 0) and b2 = (0, . . . , 0, 1). We compare the KDR method
with SIR and pHd only—CCA and PLS cannot find a 2-dimensional subspace, because Y
is one-dimensional. To evaluate the accuracy of the results, we use the multiple correlation
coefficient

R(b) = max
�∈B

βT ΣXXb√
βT ΣXXβ · bT ΣXXb

, (b ∈ B0), (26)

which is used in Li (1991). As shown in Table 2, the KDR method outperforms the others
in finding the weak contribution of the second direction.

4.2 Real data: classification

In this section we apply the KDR method to classification problems. Many conventional
methods of dimensionality reduction for regression are not suitable for classification. In
particular, in the case of SIR, the dimensionality of the effective subspace must be less than
the number of classes, because SIR uses the average of X in slices along the variable Y .
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SIR pHd CCA PLS Kernel
A: angle (rad.) 0.0087 -0.1971 0.0099 0.2736 -0.0014
B: angle (rad.) -1.5101 -0.9951 -0.1818 0.4554 0.0052

Table 1: Angles between the true and the estimated spaces for Data A and B.

SIR(10) SIR(15) SIR(20) SIR(25) pHd Kernel
R(b1) 0.987 0.993 0.988 0.990 0.110 0.999
R(b2) 0.421 0.705 0.480 0.526 0.859 0.984

Table 2: Correlation coefficients for Data C. SIR(m) indicates the SIR with m slices.

Thus, in binary classification, only a one-dimensional subspace can be found, because at
most two slices are available. The methods CCA and PLS have a similar limitation on the
dimensionality of the effective subspace; they cannot find a subspace of larger dimension-
ality than that of Y . Thus our focus is the comparison between KDR and pHd, which is
applicable to general binary classification problems. Note that Cook and Lee (1999) dis-
cuss dimensionality reduction methods for binary classification, and propose the difference
of covariance (DOC) method. They compare pHd and DOC theoretically, and show that
these methods are the same in binary classification if the population ratio of the classes is
1/2, which is almost the case in our experiments.

In the first experiment, we show the visualization capability of the dimensionality reduc-
tion methods. We use the Wine data set in the UCI machine learning repository (Murphy
and Aha, 1994) to see how the projection onto a low-dimensional space realizes an effective
description of data. The wine data consist of 178 samples with 13 variables and a label of
three classes. We apply the KDR method, CCA, PLS, SIR, and pHd to these data. Figure 3
shows the projection onto the 2-dimensional subspace estimated by each method. The KDR
method separates the data into three classes most completely, while CCA also shows per-
fect separation. We can see that the data are nonlinearly separable in the two-dimensional
space. The other methods do not separate the classes completely.

Next we investigate how much information on Y is preserved in the estimated subspace.
After reducing the dimensionality, we use the support vector machine (SVM) method to
build a classifier in the reduced space, and compare its accuracy with an SVM trained
using the full dimensional vector X2. We use the Heart-disease data set 3, Ionosphere, and
Wisconsin-breast-cancer from the UCI repository. A description of these data is presented
in Table 3.

Figure 4 shows the classification rates for the test set in subspaces of various dimen-
sionality. We can see that KDR yields good separation even in low-dimensional subspaces,

2. In our experiments with the SVM, we used the Matlab Support Vector Toolbox by S. Gunn; see
http://www.isis.ecs.soton.ac.uk/resources/svminfo.

3. We use the Cleveland data set, created by Dr. Robert Detrano of V.A. Medical Center, Long Beach and
Cleveland Clinic Foundation. Although the original data set has five classes, we use only “no presence”
(0) and “presence” (1-4) for the binary class labels. Samples with missing values are removed in our
experiments.
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Data set dim. of X training sample test sample
Heart-disease 13 149 148
Ionosphere 34 151 200

Breast-cancer-Wisconsin 30 200 369

Table 3: Data description for the binary classification problem.

while pHd is much worse in low dimensions. It is noteworthy that in the Ionosphere data set
the classifier in dimensions 5, 10, and 20 outperforms the classifier in the full dimensional
space. This is presumably due to the suppression of noise irrelevant to the prediction of Y .
These results show that the kernel method successfully finds an effective subspace which
preserves the class information even when the dimensionality is reduced significantly.

5. Extension to variable selection

In this section, we describe an extension of the KDR method to the problem of variable
selection. Variable selection is different from dimensionality reduction; the former involves
selecting a subset of the explanatory variables {X1, . . . ,Xm} in order to obtain a simplified
prediction of Y from X, while the latter involves finding linear combinations of the variables.
However, the objective function that we have presented for dimensionality reduction can
be extended straightforwardly to variable selection. In particular, given a fixed number of
variables to be selected, we can compare the KGV for subspaces spanned by combinations of
this number of selected variables. This gives a reasonable way to select variables, because for
a subset W = {Xj1 , . . . ,Xjr} ⊂ {X1, . . . ,Xm}, the variables Y and WC are conditionally
independent given W if and only if Y and ΠW cX are conditionally independent given ΠW X,
where ΠW and ΠW C are the orthogonal projections onto the subspaces spanned by W and
W C , respectively. If we try to select r variables from among m explanatory variables, the
total number of evaluations is

(m
r

)
.

When
(m

r

)
is large, we must address the computational cost that arises in comparing

large numbers of subsets. As in most other approaches to variable selection (see, e.g., Guyon
and Elisseeff, 2003), we propose the use of a greedy algorithm and random search for this
combinatorial aspect of the problem. (In the experiments presented in the current paper,
however, we confine ourselves to small problems in which all combinations are tractably
evaluated).

We apply this kernel-based method of variable selection to the Boston Housing data
(Harrison and Rubinfeld, 1978) and the Ozone data (Breiman and Friedman, 1985), which
have been often used as testbed examples for variable selection. Tables 4 and 5 give the
detailed description of the data sets. There are 506 samples in the Boston Housing data, for
which the variable MV, the median value of house prices in a tract, is estimated by using
the 13 other variables. We use the corrected version of the data set given by Gilley and
Pace (1996). In the Ozone data in which there are 330 samples, the variable UPO3 (the
ozone concentration) is to be predicted by 9 other variables.

Table 6 shows the best three sets of four variables that attain the smallest values of the
kernel generalized variance. For the Boston Housing data, RM and LSTAT are included
in all the three of the result sets in Table 6, and PTRATIO and TAX are included in two

12
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Figure 3: Wine data. Projections onto the estimated two-dimensional space. The symbols
‘+’, ‘2’, and gray ‘©’ represent the three classes.
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Figure 4: Classification accuracy of the SVM for test data after dimensionality reduction.
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Variable Description
MV median value of owner-occupied home

CRIM crime rate by town
ZN proportion of town’s residential land zoned for lots

greater than 25,000 square feet
INDUS proportion of nonretail business acres per town
CHAS Charles River dummy

(= 1 if tract bounds the Charles River, 0 otherwise)
NOX nitrogen oxide concentration in pphm
RM average number of rooms in owner units
AGE proportion of owner units build prior to 1940
DIS weighted distances to five employment centers

in the Boston region
RAD index of accessibility to radial highways
TAX full property tax rate ($/$10,000)

PTRATIO pupil-teacher ratio by town school district
B black proportion of population

LSTAT proportion of population that is lower status

Table 4: Boston Housing Data

of them. This observation agrees well with the analysis using alternating conditional ex-
pectation (ACE) by Breiman and Friedman (1985), which gives RM, LSTAT, PTRATIO,
and TAX as the four major contributors. The original motivation in the study was to in-
vestigate the influence of nitrogen oxide concentration (NOX) on the house price (Harrison
and Rubinfeld, 1978). In accordance with the previous studies, our analysis shows a rel-
atively small contribution of NOX. For the Ozone data, all three of the result sets in the
variable selection method include HMDT, SBTP, and IBHT. The variables IBTP, DGPG,
and VDHT are chosen in one of the sets. This shows a fair accordance with earlier results
by Breiman and Friedman (1985) and Li et al. (2000); the former concludes by ACE that
SBTP, IBHT, DGPG, and VSTY are the most influential, and the latter selects HMDT,
IBHT, and DGPG using a pHd-based method.

6. Conclusion

We have presented KDR, a new kernel-based approach to dimensionality reduction for re-
gression and classification. One of the most notable aspects of this method is its generality—
we do not impose any strong assumptions on either the conditional or the marginal distri-
bution. This allows the method to be applicable to a wide range of problems, and gives it
a significant practical advantage over existing methods such as CCA, PPR, SIR, pHd, and
so on. These methods all impose significant restrictions on the conditional probability, the
marginal distribution, or the dimensionality of the effective subspaces.

Our experiments have shown that the KDR method can provide many of the desired
effects of dimensionality reduction: it provides data visualization capabilities, it can suc-
cessfully select important explanatory variables in regression, and it can yield classification

15



Fukumizu, Bach & Jordan

Variable Description
UPO3 upland ozone concentratin (ppm)
VDHT Vandenburg 500 millibar height (m)
HMDT himidity (percent)
IBHT inversion base height (ft.)
DGPG Daggett pressure gradient (mmhg)
IBTP inversion base temperature (◦F)
SBTP Sandburg Air Force Base temperature (◦C)
VSTY visibility (miles)
WDSP wind speed (mph)
DAY day of the year

Table 5: Ozone data

Boston 1st 2nd 3rd
CRIM X

ZN
INDUS
CHAS
NOX
RM X X X
AGE
DIS X
RAD
TAX X X

PTRATIO X X
B

LSTAT X X X
KGV .1768 .1770 .1815

Ozone 1st 2nd 3rd
VDHT X
HMDT X X X
IBHT X X X
DGPG X
IBTP X
SBTP X X X
VSTY
WDSP
DAY
KGV .2727 .2736 .2758

Table 6: Variable selection using the proposed kernel method.
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performance that is better than the performance achieved with the full-dimensional covari-
ate space. We have also discussed the extension of the KDR method to variable selection.
Experiments with classical data sets has shown an accordance with the previous results on
these data sets and suggest that further study of this application of KDR is warranted.

The theoretical basis of KDR lies in the nonparametric characterization of conditional
independence that we have presented in this paper. Extending earlier work on the kernel-
based characterization of independence in ICA (Bach and Jordan, 2002a), we have shown
that conditional independence can be characterized in terms of covariance operators on a
reproducing kernel Hilbert space. While our focus has been on the problem of dimensionality
reduction, it is also worth noting that there are many other possible applications of this
characterization. In particular, conditional independence plays an important role in the
structural definition of probabilistic graphical models, and our results may have applications
to model selection and inference in graphical models.

There are several statistical problems which need to be addressed in further research on
KDR. First, a basic analysis of the statistical consistency of the KDR-based estimator—the
convergence of the estimator to the true subspace when such a space really exists—is needed.
Second, and most significantly, we need rigorous methods for choosing the dimensionality
of the effective subspace. If the goal is that of achieving high predictive performance after
dimensionality reduction, we can use one of many existing methods (e.g., cross-validation,
penalty-based methods) to assess the expected generalization as a function of dimensionality.
Note in particular that by using KDR as a method to select an estimator given a fixed
dimensionality, we have substantially reduced the number of hypotheses being considered,
and expect to find ourselves in a regime in which methods such as cross-validation are
likely to be effective. It is also worth noting, however, that the goals of dimensionality
reduction are not always simply that of prediction; in particular, the search for small sets
of explanatory variables will need to be guided by other principles. Finally, asymptotic
analysis may provide useful guidance for selecting the dimensionality; an example of such
an analysis that we believe can be adopted for KDR has been presented by Li (1991) for
the SIR method.
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Appendix A. Cross-covariance operators on reproducing kernel Hilbert
spaces and independence of random variables

A.1 Cross-covariance operators

While cross-covariance operators are generally defined for random variables on Banach
spaces Vakhania et al. (1987), Baker (1973), they are more easily defined on reproducing
kernel Hilbert spaces (RKHS). In this subsection, we summarize some of the basic math-
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ematical facts used in Sections 3.1 and 3.3. While we discuss only real Hilbert spaces,
extension to the complex case is straightforward.

Theorem 1 Let (Ω1,B1) and (Ω2,B2) be measurable spaces, and let (H1, k1) and (H2, k2)
be reproducing kernel Hilbert spaces on Ω1 and Ω2, respectively, with k1 and k2 measur-
able. Suppose we have a random vector (X,Y ) on Ω1 × Ω2 such that EX [k1(X,X)] and
EY [k2(Y, Y )] are finite. Then, there exists a unique operator ΣY X from H1 to H2 such that

〈g,ΣY Xf〉H2 = EXY [f(X)g(Y )] − EX [f(X)]EY [g(Y )] (27)

holds for all f ∈ H1 and g ∈ H2. This is called the cross-covariance operator.

Proof Obviously, the operator is unique, if it exists. From Riesz’s representation theo-
rem (see Reed and Simon, 1980, Theorem II.4, for example), the existence of ΣY Xf ∈ H2

for a fixed f can be proved by showing that the right hand side of Eq. (27) is a bounded
linear functional on H2. The linearity is obvious, and the boundedness is shown by∣∣EXY [f(X)g(Y )] − EX [f(X)]EY [g(Y )]

∣∣
/leqEXY

∣∣〈k1(·,X), f〉H1〈k2(·, Y ), g〉H2

∣∣ + EX

∣∣〈k1(·,X), f〉H1

∣∣ · EY

∣∣〈k2(·, Y ), g〉H2

∣∣
≤ EXY

[‖k1(·,X)‖H1‖f‖H1‖k2(·, Y )‖H2‖g‖H2

]
+ EX

[‖k1(·,X)‖H1‖f‖H1

]
EY

[‖k2(·, Y )‖H2‖g‖H2

]
≤ {

EX [k1(X,X)]1/2EY [k2(Y, Y )]1/2 + EX [k1(X,X)1/2]EY [k2(Y, Y )1/2]
}‖f‖H1‖g‖H2 .

(28)

For the last inequality, ‖k(·, x)‖2H = k(x, x) is used. The linearity of the map ΣY X is given
by the uniqueness part of Riesz’s representation theorem.

From Eq. (28), ΣY X is bounded, and by definition, we see Σ∗
Y X = ΣXY , where A∗ denotes

the adjoint of A. If the two RKHS are the same, the operator ΣXX is called the covariance
operator. A covariance operator ΣXX is bounded, self-adjoint, and trace-class.

In an RKHS, conditional expectations can be expressed by cross-covariance operators,
in a manner analogous to finite-dimensional Gaussian random variables.

Theorem 2 Let (H1, k1) and (H2, k2) be RKHS on measurable spaces Ω1 and Ω2, respec-
tively, with k1 and k2 measurable, and (X,Y ) be a random vector on Ω1 ×Ω2. Assume that
EX [k1(X,X)] and EY [k2(Y, Y )] are finite, and for all g ∈ H2 the conditional expectation
EY |X [g(Y ) | X = ·] is an element of H1. Then, we have for all g ∈ H2

ΣXXEY |X [g(Y ) | X] = ΣXY g, (29)

where ΣXX and ΣXY are the covariance and cross-covariance operator.

Proof For any f ∈ H1, we have

〈f,ΣXXEY |X [g(Y ) | X]〉H1

= EX

[
f(X)EY |X [g(Y ) | X]

] − EX [f(X)]EX

[
EY |X [g(Y ) | X]

]
= EXY [f(X)g(Y )] − EX [f(X)]EY [g(Y )] = 〈f,ΣXY g〉H1 .
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This completes the proof.

Corollary 3 Let Σ̃−1
XX be the right inverse of ΣXX on (KerΣXX)⊥. Under the same as-

sumptions as Theorem 2, we have

〈f, Σ̃−1
XXΣXY g〉 = 〈f,EY |X [g(Y ) | X]〉 (30)

for all f ∈ (KerΣXX)⊥ and g ∈ H2. In particular, if KerΣXX = 0, we have

Σ−1
XXΣXY g = EY |X [g(Y ) | X]. (31)

Proof Note that the product Σ̃−1
XXΣXY is well-defined, because RangeΣXY ⊂ RangeΣXX =

(KerΣXX)⊥. The first inclusion is shown from the expression ΣXY = Σ1/2
XXV Σ1/2

Y Y with a
bounded operator V (Baker, 1973, Theorem 1), and the second equation holds for any
self-adjoint operator. Take f = ΣXXh ∈ RangeΣXX . Then, Theorem 2 yields

〈f, Σ̃−1
XXΣXY g〉 = 〈h,ΣXX Σ̃−1

XXΣXXEY |X [g(Y ) | X]〉
= 〈h,ΣXXEY |X [g(Y ) | X]〉 = 〈f,EY |X [g(Y ) | X]〉.

This completes the proof.

The assumption EY |X [g(Y ) | X = ·] ∈ H1 in Theorem 2 can be simplified so that it can
be checked without reference to a specific g.

Proposition 4 Under the condition of Theorem 2, if there exists C > 0 such that

EY |X [k2(y1, Y ) | X = x1]EY |X [k2(y2, Y ) | X = x2] ≤ Ck1(x1, x2)k2(y1, y2) (32)

for all x1, x2 ∈ Ω1 and y1, y2 ∈ Ω2, then for all g ∈ H2 the conditional expectation
EY |X [g(Y ) | X = ·] is an element of H1.

Proof See Theorem 2.3.13 in Alpay (2001).

For a function f in an RKHS, the expectation of f(X) can be formulated as the inner
product of f and a fixed element. Let (Ω,B) be a measurable space, and (H, k) be an RKHS
on Ω with k measurable. Note that for a random variable X on Ω, the linear functional
f 7→ EX [f(X)] is bounded if EX [k(X,X)] exists. By Riesz’s theorem, there is u ∈ H such
that 〈u, f〉H = EX [f(X)] for all f ∈ H. If we define EX [k(·,X)] ∈ H by this element u, we
formally obtain the equality

〈EX [k(·,X)], f〉H = EX [〈k(·,X), f〉H], (33)

which looks like the interchangeability of the expectation by X and the inner product.
While the expectation EX [k(·,X)] can be defined, in general, as an integral with respect to
the distribution on H induced by k(·,X), the element EX [k(·,X)] is formally obtained as
above in a reproducing kernel Hilbert space.
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A.2 Conditional covariance operator and conditional independence

We define the conditional (cross-)covariance operator, and derive its relation with the con-
ditional covariance of random variables. Let (H1, k1), (H2, k2), let (H3, k3) be RKHS on
measurable spaces Ω1, Ω2, and Ω3, respectively, and let (X,Y,Z) be a random vector on
Ω1 × Ω2 × Ω3. The conditional cross-covariance operator of (X,Y ) given Z is defined by

ΣY X|Z := ΣY X − ΣY ZΣ̃−1
ZZΣZX . (34)

Because KerΣZZ ⊂ KerΣY Z from the fact ΣY Z = Σ1/2
Y Y V Σ1/2

ZZ for some bounded operator
V (Baker, 1973, Theorem 1), the operator ΣY ZΣ−1

ZZΣY X can be uniquely defined, even if
Σ−1

ZZ is not unique. By abuse of notation, we write ΣY ZΣ−1
ZZΣZX , when cross-covariance

operators are discussed.
The conditional cross-covariance operator is related to the conditional covariance of the

random variables.

Proposition 5 Let (H1, k1), (H2, k2), and (H3, k3) be reproducing kernel Hilbert spaces on
measurable spaces Ω1, Ω2, and Ω3, respectively, with ki measurable, and let (X,Y,Z) be
a measurable random vector on Ω1 × Ω2 × Ω3 such that EX [k1(X,X)], EY [k2(Y, Y )], and
EZ [k3(Z,Z)] are finite. It is assumed that EX|Z [f(X) | Z] and EY |Z [g(Y ) | Z] are elements
of H3 for all f ∈ H1 and g ∈ H2. Then, for all f ∈ H1 and g ∈ H2, we have

〈g,ΣY X|Zf〉H2 = EXY [f(X)g(Y )] − EZ

[
EX|Z [f(X) | Z]EY |Z [g(Y ) | Z]

]
= EZ

[
CovXY |Z

(
f(X), g(Y ) | Z

)]
. (35)

Proof From the decomposition ΣY Z = Σ1/2
Y Y V Σ1/2

ZZ , we have ΣZY g ∈ (KerΣZZ)⊥. Then,
by Corollary 3, we obtain

〈g,ΣY ZΣ̃−1
ZZΣZXf〉 = 〈ΣZY g, Σ̃−1

ZZΣZXf〉 = 〈ΣZY g,EX|Z [f(X) | Z]〉
= EY Z

[
g(Y )EX|Z [f(X) | Z]

] − EX [f(X)]EY [g(Y )].

From this equation, the theorem is proved by

〈g,ΣY X|Zf〉 = EXY [f(X)g(Y )] − EX [f(X)]EY [g(Y )]

− EY Z

[
g(Y )EX|Z [f(X) | Z]

]
+ EX [f(X)]EY [g(Y )]

= EXY [f(X)g(Y )] − EZ

[
EX|Z [f(X) | Z]EY |Z [g(Y ) | Z]

]
. (36)

The following definition is important to describe our main theorem. Let (Ω,B) be a
measurable space, let (H, k) be a RKHS over Ω with k measurable and bounded, and let
S be the set of all the probability measures on (Ω,B). The RKHS H is called probability-
determining, if the map

S 3 P 7→ (f 7→ EX∼P [f(X)]) ∈ H∗ (37)
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is one-to-one, where H∗ is the dual space of H. From Riesz’s theorem, H is probability-
determining if and only if the map

S 3 P 7→ EX∼P [k(·,X)] ∈ H

is one-to-one. Theorem 2 in (Bach and Jordan, 2002a) shows the following fact:

Theorem 6 (Bach and Jordan 2002a) For an arbitrary σ > 0, the reproducing ker-
nel Hilbert space with Gaussian kernel k(x, y) = exp(−‖x − y‖2/σ) on R

m is probability-
determining.

Recall that for two RKHS H1 and H2 on Ω1 and Ω2, respectively, the direct product
H1⊗H2 is the RKHS on Ω1×Ω2 with the positive definite kernel k1k2 (see Aronszajn, 1950).
The relation between conditional independence and the conditional covariance operator is
given by the following theorem:

Theorem 7 Let (H11, k11), (H12, k12), and (H2, k2) be reproducing kernel Hilbert spaces
on measurable spaces Ω11, Ω12, and Ω2, respectively, with continuous and bounded kernels.
Let (X,Y ) = (Z,W, Y ) be a random vector on Ω11 × Ω12 × Ω2, where X = (Z,W ), and
let H1 = H11 ⊗ H12 be the direct product. It is assumed that EY |Z [g(Y ) | Z] ∈ H11 and
EY |X [g(Y ) | X] ∈ H1 for all g ∈ H2. Then, we have

ΣY Y |Z ≥ ΣY Y |X , (38)

where the inequality refers to the order of self-adjoint operators, and if further H2 is
probability-determining, the following equivalence holds

ΣY Y |X = ΣY Y |Z ⇐⇒ Y ⊥⊥W | Z. (39)

Proof The right hand side of Eq. (39) is equivalent to PY |X = PY |Z , where PY |X and
PY |Z are the conditional probability of Y given X and given Z, respectively. Taking the
expectation of the well-known equality

VY |Z [g(Y ) | Z] = EW |Z
[
VY |Z,W [g(Y ) | Z,W ]

]
+ VW |Z

[
EY |Z,W [g(Y ) | Z,W ]

]
(40)

with respect to Z, we derive

EZ

[
VY |Z [g(Y ) | Z]

]
= EX

[
VY |X [g(Y ) | X]

]
+ EZ

[
VW |Z [EY |X [g(Y ) | X]]

]
. (41)

Since the last term of Eq. (41) is nonnegative, we obtain Eq. (38) from Proposition 5.
Equality holds if and only if VW |Z [EY |X [g(Y ) | X]] = 0 for almost every Z, which means

EY |X [g(Y ) | X] does not depend on W almost surely. This is equivalent to

EY |X [g(Y ) | X] = EY |Z [g(Y ) | Z] (42)

for almost every Z and W . Because H2 is probability-determining, this means PY |X = PY |Z .
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A.3 Conditional cross-covariance operator and conditional independence

Theorem 7 characterizes conditional independence using the conditional covariance opera-
tor. Another formulation is possible with a conditional cross-covariance operator.

Let (Ω1,B1), (Ω2,B2), and (Ω3,B3) be measurable spaces, and let (X,Y,Z) be a random
vector on Ω1 ×Ω2 ×Ω3 with law PXY Z . We define a probability measure EZ [PX|Z ⊗ PY |Z ]
on Ω1 × Ω2 by

EZ [PX|Z ⊗ PY |Z ](A × B) = EZ

[
EX|Z [χA|Z]EY |Z [χB | Z]

]
, (43)

where χA is the characteristic function of a measurable set A. It is canonically extended to
any product-measurable sets in Ω1 × Ω2.

Theorem 8 Let (Ωi,Bi) (i = 1, 2, 3) be a measurable space, let (Hi, ki) be a RKHS on Ωi

with kernel measurable and bounded, and let (X,Y,Z) be a random vector on Ω1 ×Ω2 ×Ω3.
It is assumed that EX|Z [f(X) | Z] and EY |Z [g(Y ) | Z] belong to H3 for all f ∈ H1 and
g ∈ H2, and that H1 ⊗H2 is probability-determining. Then, we have

ΣY X|Z = O ⇐⇒ PXY = EZ [PX|Z ⊗ PY |Z ]. (44)

Proof The right-to-left direction is trivial from Theorem 5 and the definition of EZ [PX|Z ⊗
PY |Z ]. The left-hand side yields EZ [EX|Z [f(X) | Z]EY |Z [g(Y ) | Z]] = EXY [f(X)g(Y )] for
all f ∈ H1 and g ∈ H2. By the definition of H1 ⊗ H2, we have E(X′,Y ′)∼Q[h(X′, Y ′)] =
EXY [h(X,Y )] for all h ∈ H1⊗H2, where Q = EZ [PX|Z ⊗PY |Z ]. This implies the right-hand
side, because H1 ⊗H2 is probability-determining.

The right-hand side of Eq. (44) is weaker than the conditional independence of X and
Y given Z. However, if Z is a part of X, we obtain conditional independence.

Corollary 9 Let (H11, k11), (H12, k12), and (H2, k2) be reproducing kernel Hilbert spaces
on measurable spaces Ω11, Ω12, and Ω2, respectively, with kernels measurable and bounded.
Let (X,Y ) = (Z,W, Y ) be a random vector on Ω11 × Ω12 × Ω2, where X = (Z,W ), and let
H1 = H11⊗H12 be the direct product. It is assumed that EX|Z [f(X) | Z] and EY |Z [g(Y ) | Z]
belong to H11 for all f ∈ H1 and g ∈ H2, and H1 ⊗H2 is probability-determining. Then,
we have

ΣY X|Z = O ⇐⇒ Y ⊥⊥W |Z. (45)

Proof For any measurable sets A ⊂ Ω11, B ⊂ Ω12, and C ⊂ Ω2, we have, in general,

EZ

[
EX|Z [χA×B(Z,W ) | Z]EY |Z [χC(Y ) | Z]

] − EXY [χA×B(Z,W )χC(Y )]

= EZ

[
EW |Z [χB(W ) | Z]χA(Z)EY |Z [χC(Y ) | Z]

] − EZ

[
EWY |Z [χB(W )χC(Y ) | Z]χA(Z)

]
=

∫
A

{
PW |Z(B | z)PY |Z(C | z) − PWY |Z(B × C | z)

}
dPZ(z). (46)

From Theorem 8, the left-hand side of Eq. (45) is equivalent to EZ [PX|Z ⊗ PY |Z ] = PXY ,
which implies that the last integral in Eq. (46) is zero for all A. This means PW |Z(B |
z)PY |Z(C | z) − PWY |Z(B × C | z) = 0 for almost every z-PZ . Thus, Y and W are
conditional independent given Z. The converse is trivial.

Note that the left-hand side of Eq. (45) is not ΣY W |Z but ΣY X|Z , which is defined on the
direct product H11 ⊗H12.

22



Kernel Dimensionality Reduction

References

Daniel Alpay. The Schur Algorithm, Reproducing Kernel Spaces and System Theory. Amer-
ican Mathematical Society, 2001.

Nachman Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 69(3):
337–404, 1950.

Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. Journal
of Machine Learning Research, 3:1–48, 2002a.

Francis R. Bach and Michael I. Jordan. Tree-dependent component analysis. In D. Mozer
and N. Friedman, editors, Uncertainty in Artificial Intelligence: Proceedings of the Eigh-
teenth Conference), San Mateo, CA, 2002b. Morgan Kaufmann.

Francis R. Bach and Michael I. Jordan. Learning graphical models with Mercer kernels.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15. MIT Press, Cambridge, MA, 2003.

Charles R. Baker. Joint measures and cross-covariance operators. Trans. Amer. Math. Soc.,
186:273–289, 1973.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, 1995.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm
for optimal margin classifiers. In D. Haussler, editor, Fifth Annual ACM Workshop on
Computational Learning Theory, pages 144–152, Pittsburgh, PA, 1992. ACM Press.

Leo Breiman and Jerome H. Friedman. Estimating optimal transformations for multiple
regression and correlation. Journal of the American Statistical Association, 80:580–598,
1985.

R. Dennis Cook. Regression Graphics. Wiley Inter-Science, 1998.

R. Dennis Cook and Hakbae Lee. Dimension reduction in regression with a binary response.
Journal of the American Statistical Association, 94:1187–1200, 1999.

R. Dennis Cook and S. Weisberg. Discussion of Li (1991). Journal of the American Statistical
Association, 86:328–332, 1991.

R. Dennis Cook and Xiangrong Yin. Dimension reduction and visualization in discriminant
analysis (with discussion). Australian & New Zealand Journal of Statistics, 43(2):147–199,
2001.

Jerome H. Friedman and Werner Stuetzle. Projection pursuit regression. Journal of the
American Statistical Association, 76:817–823, 1981.

Wing Kam Fung, Xuming He, Li Liu, and Peide Shi. Dimension reduction based on canon-
ical correlation. Statistica Sinica, 12(4):1093–1114, 2002.

23



Fukumizu, Bach & Jordan

Otis W. Gilley and R. Kelly Pace. On the Harrison and Rubingeld data. Journal of
Environmental Economics Management, 31:403–405, 1996.
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