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Abstract

Phylogenetic shadowing is a new comparative genomics principle which allows for the discov-
ery of conserved regions in sequences from multiple closely-related organisms. We develop a for-
mal probabilistic framework for combining phylogenetic shadowing with feature-based functional
annotation methods. The resulting model, a generalized hidden Markov phylogeny (GHMP),
applies to a variety of situations where functional regions are to be inferred from evolutionary
constraints. In particular, we show how GHMPs can be used to predict complete shared gene
structures in multiple primate sequences. We also describe shadower, our implementation of
such a prediction system. We �nd that shadower outperforms previously reported ab initio

gene �nders, including comparative human-mouse approaches, on a small sample of diverse ex-
onic regions. Finally, we report on an empirical analysis of shadower's performance which
reveals that as few as �ve well-chosen species may suÆce to attain maximal sensitivity and
speci�city in exon demarcation.
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1 Introduction

The prediction of functional regions in genomic sequences has traditionally been based on the
identi�cation of features associated with genes or regulatory regions (Zhang, 2002). Comparison
of homologous genomic sequences facilitates such identi�cation, because functional regions tend to
be conserved in sequences which have evolved from a common ancestor, whereas non-functional
regions are more likely to mutate. Information about the degree of conservation between pairs of
sequences is known to help in the identi�cation of genes (Alexandersson et al., 2003, Korf et al.,
2001, Parra et al., 2003, Meyer and Durbin, 2002).

One drawback of pairwise comparative approaches to gene prediction is that non-functional
regions are required to have diverged to a degree that enables statistical procedures to distin-
guish them from biologically active regions; typically, organisms such as human and mouse are
used. These methods are therefore not applicable to discovering features present only at close
evolutionary proximity, such as primate-speci�c genes. The phylogenetic shadowing principle of
Bo�elli et al. (2003) circumvents this problem by seeking to identify conserved regions among mul-
tiple closely-related organisms. This has numerous advantages: the alignment of the sequences is
straightforward, the phylogenetic tree relating the sequences is easy to infer, and the identi�cation
of conserved regions among the sequences is possible using standard evolutionary models. The
principle has been illustrated by Bo�elli et al. (2003) in the identi�cation of transcription factor
binding sites in the primate-speci�c apo(a) gene.

To provide a systematic computational methodology for annotating genomic sequences based
on the principle of phylogenetic shadowing, we have developed the generalized hidden Markov

phylogeny (GHMP). The GHMP is a formal probabilistic model that combines conservation-based
constraints deriving from multiple genomic sequences with algorithmic ideas that have proven
useful in single-organism gene annotation systems. Our approach synthesizes generalized hidden
Markov model gene �nders, evolutionary models of nucleotide substitution, and phylogenetic trees.
Similar ideas have been presented by Pedersen and Hein (2003) and Siepel and Haussler (2003); our
extensions and contributions are described in Section 2. We have also implemented shadower,
a gene prediction system based on these ideas. We show that shadower outperforms existing ab

initio methods, including those taking comparative-genomics approaches, on a multiple-primate
dataset of single exons from �ve separate gene regions. Furthermore, we present an empirical
analysis of shadower's performance on various subsets of our primates which reveals that just
�ve species, selected according to a formal optimality criterion, suÆce to deliver the best results
shadower can obtain for these data.

The remainder of the paper proceeds as follows. Section 2 presents theoretical and compu-
tational details of the GHMP, placing the GHMP within the general formalism of probabilistic
graphical models. We report and discuss the data, parameter estimation procedure, and subset-
selection optimization underlying our full empirical analysis in Section 3. Finally, Section 4 o�ers
concluding remarks and outlook.
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2 Methods and approach

2.1 The generalized hidden Markov phylogeny

Graphical models combine ideas from probability theory and graph theory to facilitate the use of
sophisticated joint dependency structures in data analysis (Cowell et al., 1999, Jordan, 1999). The
nodes of a graphical model correspond to random variables which relate to the problem and data at
hand. The edges in the model encode marginal and conditional independencies among these random
variables, according to a well-de�ned formal semantics. The generalized hidden Markov phylogeny
(GHMP) is a directed graphical model|a model in which the underlying graph is directed and
acyclic. In such models, there is a local conditional probability distribution associated with each
node in the graph, conditional on its parents. The joint distribution over all random variables is
de�ned to be the product of these local conditional distributions.

This section details the variables, independence structure, and local distributions peculiar to
the GHMP. The graphical model perspective allows us to focus our attention on capturing, in
the model de�nition, the essential ingredients of the multi-sequence functional annotation problem.
Then, parameter estimation and probabilistic inference are handled using general-purpose graphical
modeling algorithms (Jordan, 1999).

Many biologists are already acquainted with special cases of graphical model methods which
preceded the recognition and elaboration of the general framework. Phylogenetic trees can be
treated as graphical models, and the likelihood computation of Felsenstein (1981) is an instance of
the general-purpose junction tree algorithm for graphical models (Cowell et al., 1999). Similarly,
the forward, backward, and Viterbi algorithms for inference in hidden Markov models (HMMs) are
also special cases of the junction tree algorithm. The GHMP synthesizes the ideas of HMMs and
phylogenetic trees. The corresponding algorithms can be seen on the one hand as a synthesis of
the HMM and tree inference algorithms, or on the other hand as simply another instantiation of
the universal graphical model procedures.

Combinations of HMMs and evolutionary models have been previously described by Pedersen
and Hein (2003) and Siepel and Haussler (2003), and our methods build on this earlier work. The
GHMP and shadower introduce:

� generalized hidden Markov dynamics (non-geometric exon length distributions)

� a dual-strand hidden state space

� GC isochore-speci�c parameters

� deterministic constraints on repeats, gaps, and in-frame stop codons inside aligned exons

� more complete splice site modeling

� an automated iterative procedure for alignment and tree building

� an analysis methodology for optimal species subset selection.

The principle behind our treatment of gaps also di�ers, as described below. The reader will recognize
several ideas from the currently best-performing gene �nders (Alexandersson et al., 2003, Korf et al.,
2001, Burge and Karlin, 1997, Parra et al., 2003); indeed, our work represents an attempt to bring
these ideas into a phylogenetic framework. Most important of all, we adhere to the phylogenetic
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Figure 1: Two alternative representations of the same rooted phylogenetic tree. Panel A shows
a diagram familiar to biologists, with annotated edge lengths. Panel B depicts the corresponding
directed graphical model.

shadowing principle in our exclusive use of closely-related species. This motivates and justi�es
the seemingly stringent requirements we impose; for example, we rely on exactness of the multiple
alignment and so consider only perfectly aligned splice signals and start/stop codons, with no gaps
permitted. This approach should be contrasted with comparison-based gene �nders using distantly-
related organisms, which generally must search in the enormous space of possible alignments1.

We begin by recasting familiar phylogenetic tree representations within the graphical model
framework. Consider the rooted �ve-primate phylogenetic tree presented in Figure 1, Panel A,
and the corresponding graphical model shown in Panel B. Both diagrams indicate the presence of
a speci�c set of nucleotides at homologous sites in the �ve primates, and also indicate putative
ancestral nucleotides. The distinction between observed nucleotides and ancestral nucleotides is
captured in the graphical model by shading; in general, observed random variables are shaded,
whereas unobserved (hidden) random variables are left unshaded. In Panel A, edge lengths are
proportional to evolutionary distance. In the graphical model, on the other hand, edge lengths

1For example, there are approximately 1018 distinct alignments of �ve sequences, when each sequence is only �ve

bases long.

4



Intron IntronIntron

A A

C CC

Figure 2: An excerpt of the GHMP graphical model corresponding to an aligned intronic column.

are uninformative. Instead, the pattern of edges formally encodes the following probabilistic as-
sumption: given the nucleotide of an organism's immediate ancestor, that organism's nucleotide is
conditionally independent of all other ancestral nucleotides.

To complete the speci�cation of the graphical model, we require a local conditional distribution
for each node v. At nodes other than the root, this distribution is simply given by an evolutionary
nucleotide substitution model: for each possible initial parent nucleotide, the distribution speci�es
the probability that v evolved to a terminal nucleotide A, C, G, or T in time b at some evolutionary
substitution rate. In the GHMP, the branch-length parameter b is speci�c to each node, while one
substitution rate is shared by all non-root nodes. Finally, the distribution � of the root can be any
probability distribution over the four bases, e.g., equilibrium base frequencies in a region.

In our implementation, we use the Felsenstein substitution model for the conditional distribu-
tions (Felsenstein and Churchill, 1996). This model requires both a transition-transversion ratio
and an equilibrium base distribution; we take the latter to be the same as the root distribution �.

The GHMP uses this phylogenetic model to de�ne a probability distribution on a single column
of a multiple alignment. To de�ne a probability distribution on a full alignment, the GHMP
includes additional nodes that represent functional states. In the implementation of the GHMP
that we consider in this paper, the functional states include intergenic regions, introns, coding exons,
and coding exon boundaries (the last includes splice sites, start codons, and stop codons). State
variables are unobserved (hidden) variables and thus are left unshaded. The nodes representing
these variables are arranged as a chain in the graphical model, with the edges between these nodes
representing the probability of transitioning between speci�c values of functional states; this is
the graphical model representation of a Markov chain. The space of allowed functional states is
structured so as to enforce frame and phase consistency across exons, with genes on either strand,
as in Burge and Karlin (1997).

Let us refer to the collection of adjacent columns generated by a functional state as a slice.
Consider �rst the simplest case, that of the intron state, in which a slice containing only a single
column is associated with the state (see Figure 2). In the �gure, the chain of functional state nodes
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Figure 3: An excerpt of the GHMP graphical model corresponding to an aligned internal exon on
the forward strand.

proceeds from left to right; for concreteness, the three nodes of the chain depicted here have all
taken on the intron state. Below each hidden state node appears the phylogenetic tree of Figure 1,
Panel B (for clarity, only the tree associated with the middle node is depicted). The same tree
topology and parameters are used in every instance of the tree.

Observe that every node in the tree has the functional state node as a parent. This allows the
nucleotide substitution models to depend on the functional role of the slice being generated. In
particular, the evolutionary substitution rate from ancestor to descendant varies with function. The
version of the GHMP we implemented uses two substitution rates, functional (exons, exon bound-
aries) and nonfunctional (introns, intergenic regions). Since the substitution model we consider
allows us to establish evolutionary rates only up to a positive scaling factor, we take the functional
rate to be 1.0 with no loss of generality, leaving the nonfunctional rate as a free parameter r > 1:0.

While intronic states generate only a single-column slice, implying a geometric distribution for
the lengths of aligned introns (Burge and Karlin, 1997), exonic states are associated with multiple-
column slices. Consider the GHMP fragment shown in Figure 3, where the middle node has taken
on the state of a shared exon. This hidden exon state is associated with a left exon boundary slice
(here, a 3' splice site), an internal exonic slice, and a right exon boundary slice (here, a 5' splice
site). The square containing the phylogenetic tree is a piece of graphical model notation called
a plate. The plate indicates that the entire tree structure inside the plate is repeated D times,
corresponding to an aligned exon spanning a D-column slice. Of course, di�erent exons must be
allowed di�erent lengths, so D itself is a random variable, making the overall structure a generalized
plate (whence generalized hidden Markov phylogeny). The conditional distribution of D given exon
type is arbitrary, so that aligned exon length distributions appropriate to the species at hand may
be modeled. Each tree in the �gure, including those of the boundary slices we now describe, evolves
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Figure 4: Detail of the 5' donor splice site submodel omitted from Figure 3.

at the functional rate 1.0.
Note that Figure 3 depicts a shared forward-strand internal exon. Other possibilities are an

initial or terminal exon in a multi-exon gene, a single-exon gene, or any of these on the reverse
strand. The splice-site ovals of Figure 3 are not part of the graphical model nomenclature; we utilize
them only to simplify the diagram. We now consider the exon boundary models, i.e., splice site,
start codon, and stop codon slices, that are substituted in the place of these ovals. In particular,
Figure 4 shows the donor splice site model the reader should envision in place of the right oval
in Figure 3. It is a plate denoting nine independent copies of the phylogenetic tree, numbered
k = �3 to 6, with no zero index. Each copy generates one column of the full donor slice, that is,
the window in the alignment surrounding the shared GT signal at columns 1 and 2. The columns
are not identically distributed, but rather have position-dependent equilibrium base distributions
�k. These are explicitly depicted as the dotted node in the plate. (The dot indicates that the �k
are to be construed as �xed parameters, rather than in a Bayesian fashion as random variables.)
The position-speci�c distributions allow us to exploit varying nucleotide usage in the splice signal's

anking region. This phenomenon has been studied in human genomic sequence by Zhang (1998)
and others.

Treatment of the 5' acceptor site's window is exactly analogous to the case of the donor slice.
Since the start codon ATG is non-stochastic, it requires no model. Finally, a stop codon slice is
generated using a phylogenetic tree of stop codons (not pictured), as follows. A progenitor stop
codon TAA, TAG, or TGA is chosen at the root of the tree according to a stop codon equilibrium
distribution. This codon is evolved towards the leaves; they then constitute a three-column slice of
the multiple alignment (each row of which is some valid stop codon). The stop-codon substitution
model is de�ned by �rst independently evolving each of an ancestor's three nucleotides using a
nucleotide substitution model. This evolution is then normalized by removing outcomes which
are not stop codons and scaling the remaining outcomes by their total probability mass. In this
manner, with probability one, a valid stop codon is produced at every node in the tree.

We remark now on the simplicity of the exon model employed. Conditional on being in an exonic
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hidden state, the columns of the aligned exon interior are independent and identically distributed.
The concepts of codon and peptide are not incorporated, nor is sequential dependence along the exon
a part of the setup. This is in some sense the most na��ve possible model of a shared exon: only a non-
geometric length distribution and lower substitution rate, together with the boundary structures,
distinguish exons from intronic and intergenic regions of the multiple alignment. Biologically,
this exon representation does not stand up to the more sophisticated methods of Burge and Karlin
(1997), Korf et al. (2001), Alexandersson et al. (2003) and others. On the other hand, our approach
has scienti�c virtue: by comparing the performance of a simple model on multiple closely-related
species to a complex model on a single organism, or distant paired organisms, we learn something
about the relative advantages of these gene-�nding strategies. The results of Section 3 speak for
themselves in this regard.

Our discussion of the GHMP model closes with the issue of gaps in the multiple alignment.
We have not attempted to include nucleotide insertion and deletion events in our model. Other
authors (Pedersen and Hein, 2003, Siepel and Haussler, 2003) treat gaps as missing data, marginal-
izing gapped leaves out of aligned columns. This approach can be accommodated readily within
the probabilistic inference mechanism of the GHMP, but it has practical drawbacks. A gap is not
a nucleotide we failed to observe; instead, it is more like a nucleotide which evolved out of the
phylogenetic tree at a given homologous position. As such, for purposes of functionally annotating
the alignment, it evidences lack of conservation and should not just be integrated away during the
probability computations. To incorporate this consideration into the model, we replace all gaps
in an aligned column with that column's least-occurring base2, as a heuristic penalization. How-
ever, before this is done, deterministic constraints involving gaps are enforced (see below). Note
that, due to our use of closely-related species, the importance of any particular gap heuristic is
greatly diminished: the aligned exons in our dataset were entirely gapless, so any approach which
preferentially assigns gaps outside exons is likely to perform comparably.

2.2 Estimation and inference

We now discuss the parameter estimation methods used in our implementation. Starting with
raw homologous sequence data from multiple organisms, we �rst obtain a multiple alignment and
phylogenetic tree by repeated alternation between tree-based alignment and maximum-likelihood
tree estimation over the aligned sequences. We use mavid (Bray and Pachter, 2003) for the former
and fastdnaml (Olsen et al., 1994, Felsenstein, 1981) for the latter. The corresponding nucleotide
substitution model is described in Felsenstein and Churchill (1996), with equilibrium base frequen-
cies estimated by maximum likelihood from the raw sequence data. The transition-transversion
ratio is �xed at 2.0, except where this is incompatible with the estimated equilibrium base distri-
bution, in which case the smallest admissible value is utilized. Once the alignment and tree have
been estimated, they are �xed during all subsequent inference on the GHMP, and the same tree
topology and branch lengths are used for every column of the alignment.

The hidden Markov chain of functional states requires an initial probability distribution over the
functional state space, as well as a matrix of transition probabilities. While these parameters can be
estimated using expectation-maximization or other likelihood-based approaches, given appropriate
data (Pedersen and Hein, 2003, Siepel and Haussler, 2003), the phylogenetic shadowing principle
lets us �nesse the issue. Since we work only with immediate primate neighbors of the human, a

2Ties are broken according to the equilibrium base distribution.
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satisfactory approximation to the model's Markov chain parameters is obtained simply by using
widely-available maximum-likelihood estimates from annotated human genomic sequence. Indeed,
we transferred the reported GC isochore-speci�c H. sapiens parameters of Alexandersson et al.
(2003) directly to the GHMP.

The same rationale applies to GC isochore-speci�c aligned length distributions for exons (by
type), introns, and intergenic regions, as well as the equilibrium stop codon distribution: previously
reported maximum-likelihood estimates on human genomic sequence are employed. However, since
observed intron and intergene lengths in human sequence do not re
ect the increased length in a
multiple alignment due to gaps, the geometric distribution mean parameters are scaled up by a
factor involving the fraction of gapped columns in the given alignment. This is not necessary for
exonic lengths, because of the extreme rarity of gaps, as previously described. Furthermore, the
position-dependent equilibrium nucleotide distributions of our donor and acceptor models are �xed
at the human occurrence frequencies reported by Zhang (1998). This leaves only one parameter,
the nonfunctional evolutionary substitution rate r. Its treatment as a model selection parameter is
discussed in Section 3.

Having described the estimation of all free parameters in the GHMP, we turn now to the
inference procedure. First we enforce a set of deterministic constraints: start codons, stop codons,
and splice signals must be exactly aligned and gapless. Gaps are allowed only in codon-sized runs
within exon slices. Additionally, in-frame stop codons are disallowed for every species inside an
exon slice. Taken together, these constraints lead to the identi�cation of all candidate aligned
exons. These then underlie a generalized Viterbi algorithm, which computes the most probable
trajectory through the hidden functional state chain, conditional on the observed alignment data.
This version of the Viterbi algorithm supports non-geometric durations in exonic states, as well
as the computation of phylogenetic-tree emission probabilities. We emphasize again that this
algorithm, which involves conditioning on the alignment data and marginalizing out all ancestor
branch nodes in the GHMP, is a special case of the general-purpose machinery for graphical model
inference.

3 Results and discussion

3.1 All-species analysis

We have implemented shadower, a system for automated functional annotation based on the ideas
described in the previous section. Here we report on a re-examination of �ve exonic regions across
a number of primates varying, by region, from 13 to 18. The datasets are described in Bo�elli
et al. (2003). Each region spans roughly 2 kb and contains a single exon from one of the �ve genes
apolipoprotein(a), apolipoprotein(b), cholesteryl ester transfer protein (cetp), liver x-receptor �

(lxr �), and plasminogen (plg). Human sequence was used in every region; beyond that, there is
modest overlap among the sets of primates sequenced for each dataset.

In Table 1 we show the accuracy of shadower's exon predictions as the nonfunctional rate r is
varied from 1.0 (the functional evolutionary rate) to 2.5. For these datasets, predicted exon count
increases monotonically with r. We estimate performance using cross validation, leaving out one
dataset at a time. At each step, r is chosen on four of the datasets to maximize sensitivity, and
accuracy is assessed on the remaining dataset. Total nucleotide-level sensitivity and partial-match
exon-level sensitivity (which forgives inexact boundary demarcations) are both 100%|all coding
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Nonfunctional evolutionary rate r

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
apo(a) � � ! ! ! ! 1| 1| 1| 1| 1| 1| 1| 4| 4| 4|
apo(b) � X X X X X X X X X X X 2X 2X 4X 4X
cetp 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 2X 2X
lxr � � X X X X X X X X X X X X X X X

plg | | X X X X X X 1X 1X 1X 1X 1X 1X 1X 3X

Table 1: Each row shows the prediction results on a single-exon dataset as the nonfunctional rate
parameter r varies from 1:0 to 2:5. X means the exon is predicted exactly; � means the exon is
completely missed; | means the exon is predicted but both boundaries are incorrect; ! means
the exon is predicted but only the downstream boundary is correct; the number n means there are
additionally n false positive exons.

bases in all �ve exons are detected. Exact exon sensitivity is 80%, because of a single boundary
failure|the upstream start codon boundary of the apo(a) exon is incorrectly localized at a nearby
splice site. This is the unique initial exon in our data; we conjecture that this incorrect localization
is partly due to the lacking observation of the remaining downstream apo(a) exons, whose presence
would interact with the hidden Markov dynamics to create a stronger preference for an initial exon
at this location.

Turning to false positive exon predictions using the cross-validated choice of r, we �nd a speci-
�city of 89.6% at the nucleotide level, 83.3% at the partial-match exon level, and 66.7% at the exact
exon level. The failure here is a single false positive terminal exon in the cetp region. It is interesting
that this false positive appears at every value of r shown in Table 1, including even the functional
rate 1.0. A look at the alignment reveals a highly-probable acceptor site slice and stop codon
slice 
anking an exon of typical length; taken together, these are the likely determinants of this
prediction. It is less clear that additional upstream exons would ameliorate this problem, as they
would in the case of apo(a). Instead, the situation calls for enhancement of our site-independent
exon slice model. In Section 4 we expand on this point.

To contrast shadower with state-of-the-art gene-�nding methods, we ran genscan, at default
settings (Burge and Karlin, 1997), on the human sequence data from each of the �ve regions.
Its nucleotide sensitivity came out at 44.7%, versus 100% using shadower, and its nucleotide
speci�city was 34.0%, versus 89.6% with shadower. genscan entirely missed three of the �ve
exons, partially matched one (lxr �), and demarcated one exactly (cetp), while producing one false
positive exon in the apo(b) region.

We also compared shadower to slam (Alexandersson et al., 2003) using human-mouse homol-
ogy. No homologous mouse sequence was found for the apo(a) and cetp exons; the remaining three
exons were demarcated exactly. This gives slam a nucleotide sensitivity of 80.2% with 100% speci-
�city on these exons. The important point of this comparison is that the evolutionary distance
of human and mouse prevents slam from competing on functional annotation of some genomic
regions under study.
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3.2 Species-subset analysis and maximal Steiner subtrees

In the context of functional annotation using multi-species sequence datasets, the relationship
between the set of species chosen and the consequent annotation quality has enormous practical
signi�cance. Given the expense and resources required for large-scale sequencing of an organism, we
particularly need to determine how few species suÆce to deliver adequate prediction of biological
function. Of course, there are many available species sets of a given size, so one arrives naturally
at a sequence of optimization problems: for every size, which collection of that size yields the
highest-quality functional annotation?

To �x ideas, focus now on the 18 primates sequenced in the apo(a) region. There are 261,972
subsets of these primates having size at least two; we want to avoid producing a shadower analysis
for all of them. So instead we take the following approach. The results in the previous section
show that the total evolutionary divergence among these primates is large enough to distinguish
conserved from non-conserved regions but still small enough to enable exact alignments of exon
boundaries. Now, we can measure divergence using the maximum-likelihood phylogenetic tree
grown on the full apo(a) dataset, construing branch lengths as expected nucleotide substitution
counts. In this tree, each available primate belongs to one leaf. From this viewpoint, the total
divergence of all the apo(a) primates corresponds to the total weight of the phylogenetic tree, i.e.,
the sum of all branch lengths.

Similarly, the total divergence of any subset of the apo(a) primates corresponds to the weight of
that subset's \family tree," that is, the lowest-weight subtree covering all the leaves in the subset
(also known as the Steiner subtree for those leaves). This is the tree that a shadower analysis
restricted to the given subset would utilize. We take the Steiner subtree weight of an apo(a) primate
subset as our surrogate for the annotation \quality" that subset would provide. Finding the subset
of size k having maximal-weight Steiner subtree|the k-mss problem|is a well-de�ned optimization
problem which admits a dynamic programming solution linear in tree size. A complete discussion
of this topic is in preparation.

In Bo�elli et al. (2003) it was shown that the percentage of total divergence attained by the
k-mss primate subsets in these �ve regions increases rapidly for k up to �ve or six, then gradually
for larger values of k. If our postulated connection between total divergence and annotation quality
holds, we expect to see a similar relationship to exon sensitivity and speci�city. To study this, we
�rst solved the k-mss problem in all �ve regions, for each k from two to 13. Then, for each k, we ran
shadower on the k-mss primate subsets, region by region. The nonfunctional rate parameter r was
chosen as described in the previous subsection. The resulting nucleotide-level exon sensitivity and
speci�city are shown as a function of k in Figure 5. As the �gure shows, using just the �ve primates
of each region's 5-mss allows shadower to recover the same level of performance it obtained on
the full primate collections. As expected, annotation quality improves rapidly at values of k up to
�ve. The results are the same for exact and partial-match exon detection (not shown). The top
panel of Figure 1 shows the �ve primates in the apo(a) 5-mss, situated in the phylogenetic tree
grown on just their sequence data for the shadower analysis.

4 Conclusions

We have developed the generalized hidden Markov phylogeny, a graphical model architecture that
provides a rigorous probabilistic underpinning for the phylogenetic shadowing principle. Our results

11



2 4 6 8 10 12

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

# Species in maximal Steiner subtree

Sensitivity
Specificity

Figure 5: The performance of shadower on various-sized primate collections corresponding to
maximal Steiner subtrees.

support the general premise of phylogenetic shadowing, showing that a relatively straightforward
implementation of a GHMP can yield state-of-the-art performance in the identi�cation of primate-
speci�c elements in the human genome.

We have described a relatively simple implementation of the GHMP, in which the elementary
component models (splice sites, exons, introns, intergenic regions) do not attempt to capture prob-
abilistic dependence among the aligned columns. Our success on the available datasets makes a
strong case for the viability of such a simpli�ed model. This success is of course predicated on the
strength of the signal in the data. For basic ab initio annotation of exons, introns and splice sites,
our analysis has suggested this signal is suÆciently strong for accurate annotation when the data
consist of sequences from as few as �ve primates.

The graphical model framework underlying the GHMP readily accommodates architectural
variations and extensions, and several are of immediate interest. First, the GHMP can be extended
to allow for the identi�cation of regulatory elements and binding sites. The known regulatory
similarities of closely-related organisms suggest that such sites may be conserved in position and
number; we already have empirical evidence for this from the apo(a) gene (Bo�elli et al., 2003).
Second, the GHMP model described here does not account for gaps. A model incorporating gapped
slices would be of general interest, and in particular would be useful in the context of the regulatory
element modeling problem, where for instance varying-sized boxes of short repetitive elements are
known to be homologous across species. Finally, a more powerful exon model would not only

12



help in the reduction of false positives (as, for example, in the cetp gene), but could also be used
to incorporate functional annotation methods for proteins (e.g., Simon et al., 2002) into genomic
sequence annotation.

shadower software is available at www.stat.berkeley.edu/users/jon/shadower.
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