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Abstract

The formalism of probabilistic graphical models provides a unifying framework for the de-
velopment of large-scale multivariate statistical models. Graphical models have become a focus
of research in many applied statistical and computational �elds, including bioinformatics, infor-
mation theory, signal and image processing, information retrieval and machine learning. Many
problems that arise in speci�c instances|including the key problems of computing marginals
and modes of probability distributions|are best studied in the general setting. Working with
exponential family representations, and exploiting the conjugate duality between the cumulant
generating function and the entropy for exponential families, we develop general variational
representations of the problems of computing marginal probabilities and modes. We describe
how a wide variety of known computational algorithms|including mean �eld, sum-product,
max-product and cluster variational techniques|can be understood in terms of exact or ap-
proximate forms of these variational representations. We also present novel convex relaxations
based on the variational framework. The variational approach provides a complementary alter-
native to Markov chain Monte Carlo as a general source of approximation methods for inference
in large-scale statistical models.

1 Introduction

Graphical models bring together graph theory and probability theory in a powerful formalism for
multivariate statistical modeling. In various applied �elds including bioinformatics, speech pro-
cessing, image processing and control theory, statistical models have long been formulated in terms
of graphs, and algorithms for computing basic statistical quantities such as likelihoods and score
functions have often been expressed in terms of recursions operating on these graphs; examples
include phylogenies, pedigrees, hidden Markov models, Markov random �elds, and Kalman �lters.
These ideas can be understood, uni�ed and generalized within the formalism of graphical models.
Indeed, graphical models provide a natural tool for formulating variations on these classical archi-
tectures, as well as for exploring entirely new families of statistical models. Accordingly, in �elds
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that involve the study of large numbers of interacting variables, graphical models are increasingly
in evidence.

Graph theory plays an important role in many computationally-oriented �elds, including com-
binatorial optimization, statistical physics and economics. Beyond its use as a language for formu-
lating models, graph theory also plays a fundamental role in assessing computational complexity
and feasibility. In particular, the running time of an algorithm or the magnitude of an error bound
can often be characterized in terms of structural properties of a graph. This statement is also
true in the context of graphical models. Indeed, as we discuss, the computational complexity of a
fundamental method known as the junction tree algorithm|which generalizes many of the recur-
sive algorithms on graphs cited above|can be characterized in terms of a natural graph-theoretic
measure of interaction among variables. For suitably sparse graphs, the junction tree algorithm pro-
vides a systematic solution to the problem of computing likelihoods and other statistical quantities
associated with a graphical model.

Unfortunately, many graphical models of practical interest are not \suitably sparse," so that the
junction tree algorithm no longer provides a viable computational framework. One popular source
of methods for attempting to cope with such cases is the Markov chain Monte Carlo (MCMC)
framework, and indeed there is a signi�cant literature on the application of MCMC methods to
graphical models [e.g., 11, 107]. Our focus in this paper is rather di�erent: we present an alternative
approach to statistical inference that is based on variational methods. These techniques provide
a general class of alternatives to MCMC, and have applications outside of the graphical model
framework. As we will see, however, they are particularly natural in their application to graphical
models, due to their relationships with the structural properties of graphs.

The phrase \variational" itself is an umbrella term that refers to various mathematical tools
for optimization-based formulations of problems, as well as associated techniques for their solution.
The general idea is to express a quantity of interest as the solution of an optimization problem.
The optimization problem can then be \relaxed" in various ways, either by approximating the
function to be optimized or by approximating the set over which the optimization takes place.
Such relaxations, in turn, provide a means of approximating the original quantity of interest.

The roots of both MCMC methods and variational methods lie in statistical physics. Indeed,
the successful deployment of MCMC methods in statistical physics motivated and predated their
entry into statistics. However, the development of MCMC methodology speci�cally designed for
statistical problems has played an important role in sparking widespread application of such meth-
ods in statistics [45]. A similar development in the case of variational methodology would be of
signi�cant interest. In our view, the most promising avenue towards variational methodology tuned
to statistics is to build on existing links between variational analysis and the exponential family of
distributions [3, 5, 17, 35]. Indeed, the notions of convexity that lie at the heart of the statistical the-
ory of the exponential family have immediate implications for the design of variational relaxations.
Moreover, these variational relaxations have particularly interesting algorithmic consequences in
the setting of graphical models, where they again lead to recursions on graphs.

Thus, we present a story with three interrelated themes. We begin in Section 2 with a discus-
sion of graphical models, providing both an overview of the general mathematical framework, and
also presenting several speci�c examples. All of these examples, as well as the majority of cur-
rent applications of graphical models, involve distributions in the exponential family. Accordingly,
Section 3 is devoted to a discussion of exponential families, focusing on the mathematical links to
convex analysis, and thus anticipating our development of variational methods. In particular, the
principal object of interest in our exposition is a certain conjugate dual relation associated with
exponential families. Building on the foundation of conjugate duality, we develop a general varia-
tional representation for computing likelihoods and marginal probabilities in exponential families
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in Section 4. The bulk of the remainder of the paper|Sections 5 through 9|is devoted to the
exploration of various relaxations of this exact variational principle, which in turn yield various
algorithms for computing approximations to marginal probabilities. More speci�cally, we discuss
mean �eld theory in Section 5, the Bethe approximation in Section 6, and general cluster variational
methods based on hypertrees, including the Kikuchi method, in Section 7. All of these methods are
based on non-convex optimization problems, which typically have multiple solutions. Sections 8
and 9 present convex relaxations of the variational principle that are also guaranteed to yield upper
bounds on the log likelihood. Finally, in Section 10, we develop a variational formulation of the
problem of computing modes of distributions, and again describe several relaxations of the exact
principle.

The scope of this paper is limited in the following sense: given a distribution represented as a
graphical model, we are concerned with the problem of computing marginal probabilities (including
likelihoods), as well as the problem of computing modes. We refer to such computational tasks as
problems of \probabilistic inference", or \inference" for short. As with presentations of MCMC
methods, such a limited focus may appear to aim most directly at applications in Bayesian statistics.
While Bayesian statistics is indeed a natural terrain for deploying many of the methods that we
present here, we see these methods as having applications throughout statistics, within both the
frequentist and Bayesian paradigms, and we indicate some of these applications at various junctures
in the paper.

2 Background

2.1 Graphical models

A graphical model consists of a collection of probability distributions1 that factorize according to
the structure of an underlying graph. A graph G = (V;E) is formed by a collection of vertices V ,
and a collection of edges E. An edge consists of a pair of vertices, and may either be directed or
undirected. Associated with each vertex s 2 V is a random variable xs taking values in some set
Xs, which may either be continuous (e.g., Xs = R) or discrete (e.g., Xs = f0; 1; : : : ;m � 1g). For
any subset A of the vertex set V , we de�ne xA := fxs j s 2 Ag.

Directed graphical models: In the directed case, each edge is directed from parent to child.
We let �(s) denote the set of all parents of given node s 2 V . (If s has no parents, then the set
�(s) should be understood to be empty.) With this notation, a directed graphical model consists of
a collection of probability distributions that factorize in the following way:

p(x) =
Y
s2V

p(xs j x�(s)): (1)

It can be veri�ed that our use of notation is consistent, in that p(xs j x�(s)) is, in fact, the conditional
distribution for the global distribution p(x) thus de�ned.

Undirected graphical models: In the undirected case, the probability distribution factorizes
according to functions de�ned on the cliques of the graph (i.e., fully-connected subsets of V ). In
particular, associated with each clique C is a compatibility function  C : X n ! R+ that depends

1Here we are using the terminology \distribution" loosely; our notation p(�) should be understood as a mass
function (density with respect to counting measure) in the discrete case, and a density with respect to Lebesgue
measure in the continuous case.
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only on xC . With this notation, an undirected graphical model (also known as a Markov random

�eld) consists of a collection of distributions that factorize as follows:

p(x) =
1

Z

Y
C

 C(xC); (2)

where the product is taken over all cliques of the graph. The quantity Z is a constant chosen
to ensure that the distribution is normalized. In contrast to the directed case (1), in general
the compatibility functions  C need not have any obvious or direct relation to local marginal
distributions.

2.2 Conditional independence

Families of probability distributions as de�ned as in (1) or (2) also have a characterization in
terms of conditional independencies among subsets of random variables. We only touch upon this
characterization here, as it is not needed in the remainder of the paper; for a full treatment, we
refer the interested reader to Lauritzen [68].

For undirected graphical models, conditional independence is identi�ed with the graph-theoretic
notion of reachability. In particular, let A, B and C be an arbitrary triple of mutually disjoint
subsets of vertices. Let us stipulate that xA be independent of xB given xC if there is no path from
a vertex in A to a vertex in B when we remove the vertices C from the graph. Ranging over all
possible choices of subsets A, B and C gives rise list of conditional independence assertions. It can
be shown that this list is always consistent (i.e., there exist probability distributions that satisfy
all of these assertions); moreover, the set of probability distributions that satisfy these assertions
is exactly the set of distributions de�ned by (2) ranging over all possible choices of compatibility
functions.

Thus, there are two equivalent characterizations of the family of probability distributions asso-
ciated with an undirected graph. This equivalence is a fundamental mathematical result, linking an
algebraic concept (factorization) and a graph-theoretic concept (reachability). This result also has
algorithmic consequences, in that it reduces the problem of assessing conditional independence to
the problem of assessing reachability on a graph, which is readily solved using simple breadth-�rst
search algorithms [22].

An analogous result holds in the case of directed graphical models, with the only alteration
being a di�erent notion of reachability [68]. Once again, it is possible to establish an equivalence
between the set of probability distributions speci�ed by the directed factorization (1), and that
de�ned in terms of a set of conditional independence assertions.

2.3 Inference problems and exact algorithms

Given a probability distribution p(�) de�ned by a graphical model, our focus will be solving one or
more of the following inference problems:

(a) computing the likelihood of observed data.

(b) computing the marginal distribution p(xA) over a particular subset A � V of nodes.

(c) computing the conditional distribution p(xA j xB), for disjoint subsets A and B, where A[B
is in general a proper subset of V .

(d) computing a mode of the density (i.e., an element bx in the set argmaxx2Xn p(x)).
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From a computational perspective, problems (a) and (b) are essentially equivalent, since they both
involve summing or integrating over a subset of random variables. The computation of a conditional
probability in (c) is similar in that it also requires marginalization steps, an initial one to obtain
the numerator p(xA; xB), and a further step to obtain the denominator p(xB). In contrast, the
problem of computing modes stated in (d) is fundamentally di�erent, since it entails maximization
rather than integration. Nonetheless, our variational development in the sequel will highlight some
important connections between the problem of computing marginals and that of computing modes.

To understand the challenges inherent in these inference problems, consider the case of a discrete
random vector x 2 X n, where Xs = f0; 1; : : : ;m � 1g for each vertex s 2 V . A naive approach
to computing a marginal at a single node|say p(xs)|entails summing over all con�gurations
of the form fx0 j x0s = xsg. Since this set has mn�1 elements, it is clear that a brute force
approach will rapidly become intractable. Even with binary variables (m = 2) and a graph with
n � 400 nodes (a modest size for many applications), this summation involves more terms than
atoms in the visible universe. Similarly, in this discrete case, computing a mode entails solving
an integer programming problem over an exponential number of con�gurations. For continuous
random vectors, the problems are no easier2 and typically harder, since they require computing a
large number of integrals.

For graphs without cycles|also known as trees|these inference problems can be solved exactly
by recursive \message-passing" algorithms of a dynamic programming nature, with a computational
complexity that scales only linearly in the number of nodes. In particular, for the case of computing
marginals, the dynamic programming solution takes the form of a general algorithm known as the
sum-product algorithm, whereas for the problem of computing modes it takes the form of an analo-
gous algorithm known as the max-product algorithm. We describe these algorithms in Section 2.5.1.
More generally, as we discuss in Section 2.5.2, the junction tree algorithm provides a solution to in-
ference problems for arbitrary graphs. The junction tree algorithm has a computational complexity
that is exponential in a quantity known as the treewidth of the graph.

Before turning to these algorithmic issues, however, we present some examples of applications
of graphical models.

2.4 Applications

This section illustrates the use of graphical models in various areas, including the general area
of Bayesian hierarchical modeling, as well as speci�c applications in bioinformatics, speech and
language processing, image processing and error-correcting coding.

2.4.1 Hierarchical Bayesian models

The Bayesian framework treats all model quantities |observed data, latent variables, parameters,
nuisance variables|as random variables. Thus, in a graphical model representation of a Bayesian
model, all such variables appear explicitly as vertices in the graph. The general computational
machinery associated with graphical models applies directly to Bayesian computations of quantities
such as marginal likelihoods and posterior probabilities of parameters.

Although Bayesian models can be represented using either directed or undirected graphs, it is
the directed formalism that is most commonly encountered in practice. In particular, in hierarchical
Bayesian models, the speci�cation of prior distributions generally involves additional parameters
(i.e., \hyperparameters"), and the overall model is speci�ed as a set of conditional probabilities
linking hyperparameters, parameters and data. Taking the product of such conditional probability

2The Gaussian case is an important exception to this statement.
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distributions de�nes the joint probability; this factorization is simply a a particular instance of
equation (1).

There are several advantages to treating a hierarchical Bayesian model as a directed graphical
model. First, hierarchical models are often speci�ed by making various assertions of conditional
independence. These assertions imply other conditional independence relationships, and the reach-
ability algorithms (mentioned in Section 2.1) provide a systematic method for investigating all such
relationships. Second, the visualization provided by the graph can be useful both for understand-
ing the model (including the basic step of verifying that the graph is acyclic), as well for exploring
extensions. Finally, general computational methods such as MCMC and variational inference algo-
rithms can be implemented for general graphical models, and hence apply to hierarchical models
in graphical form. These advantages and others have led to the development of general software
programs for specifying and manipulating hierarchical Bayesian models via the directed graphical
model formalism [107].

2.4.2 Bioinformatics and language

Many classical models in the �elds of bioinformatics and language processing are instances of
graphical models, and the associated framework is often exploited in designing new models. In
this section we briey review some instances of graphical models in bioinformatics and language
processing, both classical and recent.

Sequential data obviously play a central role in bioinformatics and language, and the workhorse
underlying the modeling of sequential data is the same in both domains|namely, the hidden Markov

model (HMM) shown in Figure 1(a). The HMM is in essence a dynamical version of a �nite mixture

q q

1 2 3 T

1 2 3 T

X X X X

Y Y Y Y
M

(a) (b)

Figure 1. (a) The graphical model representation of a generic hidden Markov model. The shaded
nodes are the observations and the unshaded nodes are the hidden state variables. The latter form
a Markov chain, in which Xs is independent of Xu conditional on Xt, where s < t < u. (b) The
graphical model representation of a phylogeny on four extant organisms and M sites. The tree
encodes the assumption that there is a �rst speciation event and then two further speciation events
that lead to the four extant organisms. The box around the tree (a \plate") is a graphical model
representation of replication; here representing the assumption that theM sites evolve independently.

model, in which observations are generated conditionally on a underlying latent (\hidden") state
variable. The state variables, which are generally taken to be multinomial random variables,3 form

3The graphical model in Figure 1(a) is also a representation of the state-space model underlying Kalman �ltering
and smoothing, where the state variable is a Gaussian vector. These models thus also have a right to be referred
to as \hidden Markov models," but the terminology is most commonly used to refer to models in which the state
variables are discrete.
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a Markov chain.

Applying the junction tree formalism to the HMM yields an algorithm that passes messages
in both directions along the chain of state variables, and computes the marginal probabilities
p(xt; xt+1 j y) and p(xt j y). In the HMM context, this algorithm is often referred to as the forward-
backward algorithm [88]. These marginal probabilities are often of interest in and of themselves,
but are also important in their role as expected suÆcient statistics in an expectation-maximization
(EM) algorithm for estimating the parameters of the HMM. Similarly, the maximum a posteriori
state sequence can also be computed by the junction tree algorithm (with summation replaced by
maximization)|in the HMM context the resulting algorithm is generally referred to as the Viterbi
algorithm [40].

Gene-�nding provides an important example of the application of the HMM [33]. To a �rst order
of approximation, the genomic sequence of an organism can be segmented into regions containing
genes and intergenic regions (that separate the genes), where a gene is de�ned as a sequence of
nucleotides that can be further segmented into meaningful intragenic structures (exons and introns).
The boundaries between these segments are highly stochastic and hence diÆcult to �nd reliably.
HMMs are currently the methodology of choice for attacking this problem, with designers choosing
states and state transitions to reect biological knowledge concerning gene structure [18].

HMMs are also used to model certain aspects of protein structure. For example, membrane
proteins are speci�c kinds of proteins that embed themselves in the membranes of cells, and play
important roles in the transmission of signals in and out of the cell. These proteins loop in and
out of the membrane many times, alternating between hydrophilic amino acids (which prefer the
environment of the membrane) and hydrophobic amino acids (which prefer the environment inside
or outside the membrane). These and other biological facts are used to design the states and state
transition matrix of the transmembrane hidden Markov model, an HMM for modeling membrane
proteins [62].

In language problems, HMMs also play a fundamental role. An example is the part-of-speech

problem, in which words in sentences are to be labeled as to their part of speech (noun, verb,
adjective, etc). Here the state variables are the parts of speech, and the transition matrix is
estimated from a corpus via the EM algorithm [73]. The result of running the Viterbi algorithm
on a new sentence is a tagging of the sentence according to the hypothesized parts of speech of the
words in the sentence.

Moreover, essentially all modern speech recognition systems are built on the foundation of
HMMs [55]. In this case the observations are generally a sequence of short-range speech spectra,
and the states correspond to longer-range units of speech such as phonemes or pairs of phonemes.
Large-scale systems are built by composing elementary HMMs into larger graphical models.

Tree-structured models also play an important role in bioinformatics and language processing.
For example, phylogenetic trees can be treated as graphical models. As shown in Figure 1(b), a
phylogenetic tree is a tree-structured graphical model in which a set of observed nucleotides (or
other biological characters) are assumed to have evolved from an underlying set of ancestral species.
The conditional probabilities in the tree are obtained from evolutionary substitution models, and
the computation of likelihoods are achieved by a recursion on the tree known as \pruning" [38].
This recursion is a special case of the junction tree algorithm.

Figure 2 gives examples of more complex graphical models that are currently being explored in
bioinformatics and language processing. Figure 2(a) shows a hidden Markov phylogeny, an HMM
in which the observations are sets of nucleotides related by a phylogenetic tree [74, 86, 99]. This
model has proven useful for gene-�nding in the human genome based on data for multiple primate
species [74]. The graphical model shown in Figure 2(b) is a coupled HMM, in which two chains of
state variables are coupled via links between the chains; this model is appropriate for fusing pairs
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of data streams such as audio and lip-reading data in speech recognition [95]. Figure 2(c) shows a

(a) (b)

(c) (d)
Figure 2. Variations on the HMM theme. (a) A phylogenetic HMM. (b) The coupled HHM. (c)
The factorial HMM. (d) An HMM with mixture-model emissions.

factorial HMM, in which multiple chains are coupled by their links to a common set of observed
variables [47]. This model captures the problem ofmulti-locus linkage analysis in genetics, where the
state variables correspond to phase (maternal or paternal) along the chromosomes in meiosis [103].
Finally, in Figure 2(d), we show a variation of the HMM in which the state-dependent observation
distribution is a �nite mixture model. This variant is widely used in speech recognition systems [55].

Another model class that is widely studied in language processing are so-called \bag-of-words"
models, which are of particular interest for modeling large-scale corpora of text documents. The
terminology \bag-of-words" means that the order of words in a document is ignored|i.e., an
assumption of exchangeability is made. The goal of such models is often that of �nding latent
\topics" in the corpus, and using these topics to cluster or classify the documents. An example \bag-
of-words" model is the latent Dirichlet allocation model [12], in which a topic de�nes a probability
distribution on words, and a document de�nes a probability distribution on topics. In particular, as
shown in Figure 3, each document in a corpus is assumed to be generated by sampling a Dirichlet
variable with hyperparameter �, and then repeatedly selecting a topic according to these Dirichlet
probabilities, and choosing a word from the distribution associated with the selected topic.4

2.4.3 Image processing

For several decades, undirected graphical models (also known as Markov random �elds) have played
an important role in image processing [e.g., 120, 51, 24, 10], as well as in spatial statistics more

4This model is discussed in more detail in Example 5 of Section 3.2.
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Figure 3. Graphical illustration of the latent Dirichlet allocation model. The variable u, which
is distributed as Dirichlet with parameter �, speci�es the parameter for the multinomial \topic"
variable z. The \word" variable w is also multinomial conditioned on z, with  specifying the
word probabilities associated with each topic. The rectangles, known as plates, denote conditionally-
independent replications of the random variables inside the rectangle.

generally [90]. The simplest use of a Markov random �eld model is in the pixel domain, where each
pixel in the image is associated with a node in an underlying graph. More structured models are
based on feature vectors at each spatial location, where each feature could be a linear multiscale
�lter (e.g., a wavelet), or a more complicated nonlinear operator.

For image modeling, one very natural choice of graphical structure is a 2D lattice, such as the
4-nearest neighbor variety shown in Figure 4(a). The potential functions on the edges between adja-
cent pixels (or more generally, features) are typically chosen to enforce local smoothness conditions.
Various tasks in image processing, including denoising, segmentation, and super-resolution, require
solving an inference problem on such a Markov random �eld. However, exact inference for large-

(a) (b)

Figure 4. (a) The 4-nearest neighbor lattice model in 2D is often used for image modeling. (b)
A multiscale quadtree approximation to a 2D lattice model. Nodes in the original lattice (drawn in
white) lie at the �nest scale of the tree. The middle and top scales of the tree consist of auxiliary
nodes (drawn in gray), introduced to model the �ne scale behavior.

scale lattice models is intractable, which necessitates the use of approximate methods. Markov
chain Monte Carlo methods are often used [46], but they can be too slow and computationally
intensive for many applications. More recently, the sum-product algorithm has become popular as
an approximate inference method for image processing and computer vision problems [e.g., 41, 42].

An alternative strategy is to sidestep the intractability of the lattice model by replacing it with
a simpler|albeit approximate|model. For instance, multiscale quad trees, such as that illustrated
in Figure 4(b), can be used to approximate lattice models [119]. The advantage of such a multiscale
model is in permitting the application of eÆcient tree algorithms to perform exact inference. The
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trade-o� is that the model is imperfect, and can introduce artifacts into image reconstructions.

2.4.4 Error-correcting coding

A central problem in communication theory is that of transmitting information, represented as
a sequence of bits, from one point to another. Examples include transmission from a personal
computer over a network, or from a satellite to a ground position. If the communication channel
is noisy, then some of the transmitted bits may be corrupted. In order to combat this noisiness,
a natural strategy is to add redundancy to the transmitted bits, thereby de�ning codewords. In
principle, this coding strategy allows the transmission to be decoded perfectly even in the presence
of some number of errors.

Many of the best codes in use today, including turbo codes and low-density parity check
codes [e.g., 44, 75], are based on graphical models. Figure 5 provides an illustration of a very

z134

z256

z135

z246

x1

x2

x3

x4

x5

x6

Figure 5. A directed graphical model representation of a parity check code of length n = 6. Open
circles on the left represent bits in the code, whereas black circles on the right represent parity
variables. This particular code is a (2; 3) code, since each bit is connected to two parity variable, and
each parity relation involves three bits.

small parity check code, represented here as a directed graphical model.5 The six white nodes on
the left represent the bits that comprise the codewords (i.e., binary sequences of length six); each
of the four black nodes on the left corresponds to a binary variable zstu that represents the parity
of the triple fxs; xt; xug. This parity relation, expressed mathematically as xs � xt � xu � zstu in
modulo two arithmetic, is captured in the graphical formalism by a conditional probability table
of the form p(zstu jxs; xt; xu). The directed edges incident on each parity variable zstu correspond
to the relevant bits; in the case shown here, the parity checks range over the set of triples f1; 3; 4g,
f1; 3; 5g, f2; 4; 6g and f2; 5; 6g. The code is de�ned by setting each parity variable zstu to 0, which
then forces the subset fxs; xt; xug to have even parity.

The decoding problem entails estimating which codeword was transmitted on the basis of a
vector y of noisy observations. With the speci�cation of a model for channel noise, this decoding
problem can be cast as an inference problem. Depending on the loss function, optimal decoding is
based either on computing the marginal probability p(xs = 1jy) at each node, or computing the

5It is more standard in the coding community to represent a code via a factor graph [63], in which the black nodes
are not random variables but instead represent functions or \factors" that enforce the parity check relations.
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most likely codeword (i.e., the mode of the posterior). For the simple code of Figure 5, optimal
decoding is easily achievable via the junction tree algorithm. Of interest in many applications,
however, are much larger codes in which the number of bits is easily several thousand. The graphs
underlying these codes are not of low treewidth, so that the junction tree algorithm is not viable.
Moreover, MCMC algorithms have not been deployed successfully in this domain.

For many graphical codes, the most successful decoder is based on applying the sum-product
algorithm, described in Section 2.6. Since the graphical models de�ning good codes invariably have
cycles, the sum-product algorithm is not guaranteed to compute the correct marginals, nor even to
converge. Nonetheless, the behavior of this approximate decoding algorithm is remarkably good for
a large class of codes. The behavior of sum-product algorithm is well-understood in the asymptotic
limit (as the code length n goes to in�nity), where martingale arguments can be used to prove
concentration results [89, 72]. For intermediate code lengths, in contrast, its behavior is not as
well-understood.

2.5 Exact inference algorithms

In this section, we turn to a description of the basic exact inference algorithms for graphical models.
In computing a marginal probability, we must sum or integrate the joint probability distribution over
one or more variables. We can perform this computation as a sequence of operations by choosing
a speci�c ordering of the variables (and making an appeal to Fubini's theorem). Recall that for
either directed or undirected graphical models, the joint probability is a factored expression over
subsets of the variables. Consequently, we can make use of the distributive law to move individual
sums or integrals across factors that do not involve the variables being summed or integrated
over. The phrase \exact inference" refers to the (essentially symbolic) problem of organizing this
sequential computation, including managing the intermediate factors that arise. Assuming that
each individual sum or integral is performed exactly, then the overall algorithm yields an exact
numerical result.

To obtain the marginal probability of a single variable, p(xs), it suÆces to choose a speci�c
ordering of the remaining variables and to \eliminate" (sum or integrate) variables according to that
order. Repeating this operation for each individual variable would yield the full set of marginals;
this approach, however, is wasteful because it neglects to share intermediate terms in the individual
computations. The sum-product and junction tree algorithms are essentially dynamic programming
algorithms based on a calculus for sharing intermediate terms. The algorithms involve \message-
passing" operations on graphs, where the messages are exactly these shared intermediate terms.
Upon convergence of the algorithms, we obtain marginal probabilities for all cliques of the original
graph.

Both directed and undirected graphical models involve factorized expressions for joint probabil-
ities, and it should come as no surprise that exact inference algorithms treat them in an essentially
identical manner. Indeed, to permit a simple uni�ed treatment of inference algorithms, it is conve-
nient to convert directed models to undirected models and to work exclusively within the undirected
formalism. We do this by observing that the factors in (1) are not necessarily de�ned on cliques,
since the parents of a given vertex are not necessarily connected. We thus transform a directed
graph to an undirected moral graph, in which all parents of each child are linked, and all edges are
converted to undirected edges. On the moral graph, the factors in (1) are all de�ned on cliques,
and (1) is a special case of the undirected representation in (2). Throughout the rest of the paper,
we assume that this transformation has been carried out.
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2.5.1 Message-passing on trees

We now turn to a description of message-passing algorithms for exact inference on trees. Our
treatment is brief; further details can be found in various sources [1, 29, 63, 57, 69]. We begin by
observing that the cliques of a tree-structured graph T = (V;E(T )) are simply the individual nodes
and edges. As a consequence, any tree-structured graphical model has the following factorization:

p(x) =
1

Z

Y
s2V

 s(xs)
Y

(s;t)2E(T )

 st(xs; xt): (3)

Here we describe how the sum-product algorithm computes the marginal distribution

�s(xs) :=
X

fx0 j x0s=xsg

p(x) (4)

for every node of a tree-structured graph. We will focus on detail on the case of discrete random
variables, with the understanding that the computations carry over (at least in principle) to the
continuous case by replacing sums with integrals.

Sum-product algorithm: The sum-product algorithm is a form of non-serial dynamic pro-
gramming (DP) that generalizes the usual serial form of deterministic dynamic programming [7]
to arbitrary tree-structured graphs. The essential principle underlying DP is that of divide and
conquer: we solve a large problem by breaking it down into a sequence of simpler problems. In the
context of graphical models, the tree itself provides a natural way to break down the problem.

For an arbitrary s 2 V , consider the set of its neighbors N (s) = fu 2 V j (s; u) 2 Eg. For each
u 2 N (s), let Tu = (Vu; Eu) be the subgraph formed by the set of nodes (and edges joining them)
that can be reached from u by paths that do not pass through node s. The key property of a tree
is that each such subgraph Tu is again a tree, and Tu and Tv are disjoint for u 6= v. In this way,
each vertex u 2 N (s) can be viewed as the root of a subtree Tu, as illustrated in Figure 6.

Tt

Tu

Tv

Tw
t w

u v

s

Figure 6. Decomposition of a tree, rooted at node s, into subtrees. Each neighbor (e.g., u) of node
s is the root of a subtree (e.g., Tu). Subtrees Tu and Tv, for t 6= u, are disconnected when node s is
removed from the graph.

For each subtree Tt, we de�ne xVt := fxu j u 2 Vtg. Now consider the collection of terms in
equation (3) associated with vertices or edges in Tt. We collect all of these terms into the following
product:

p(xVt ;Tt) /
Y
u 2 Vt

 u(xu)
Y

(u;v)2Et

 uv(xu; xv): (5)
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With this notation, the conditional independence properties of a tree allow the computation of the
marginal at node �s to be broken down into a product of subproblems, one for each of the subtrees
in the set fTt; t 2 N (s)g, in the following way:

�s(xs) = �  s(xs)
Y

t2N (s)

M�
ts(xs) (6a)

M�
ts(xs) :=

X
fx0Tt

j x0s=xsg

 st(xs; x
0
t) p(x

0
Tt ;Tt) (6b)

In this equations, � denotes a positive constant chosen to ensure that �s normalizes properly. For
�xed xs, the subproblem de�ning M�

ts(xs) is again a tree-structured summation, albeit involving
a subtree Tt smaller than the original tree T . Therefore, it too can be broken down recursively
in a similar fashion. In this way, the marginal at node s can be computed by a series of recursive
updates.

Rather than applying the procedure described above to each node separately, the sum-product
algorithm computes the marginals for all nodes simultaneously and in parallel. At each iteration,
each node t passes a \message" to each of its neighbors u 2 N (t). This message, which we denote
by Mtu(xu), is a function of the possible states xu 2 Xu (i.e., a vector of length jXuj for discrete
random variables). On the full graph, there are a total of 2jEj messages, one for each direction
of each edge. This full collection of messages is updated, typically in parallel, according to the
following recursion:

Mts(xs)  �
X
x0t

�
 st(xs; x

0
t) t(x

0
t)

Y
u2N (t)=s

Mut(x
0
t)

�
; (7)

where � > 0 is a normalization constant. It can be shown [85] that for tree-structured graphs,
iterates generated by the update (7) will converge to a unique �xed pointM� = fM�

st;M
�
ts; (s; t) 2

Eg after a �nite number of iterations. Moreover, component M�
ts of this �xed point is precisely

equal, up to a normalization constant, to the subproblem de�ned in equation (6b), which justi�es
our abuse of notation post hoc. Since the �xed point M� speci�es the solution to all of the
subproblems, the marginal �s at every node s 2 V can be computed easily via equation (6a).

Max-product algorithm: Suppose that the summation in the update (7) is replaced by a max-
imization. The resulting max-product algorithm solves the problem of �nding a mode of a tree-
structured distribution p(x). In this sense, it represents a generalization of the Viterbi algorithm [40]
from chains to arbitrary tree-structured graphs. More speci�cally, the max-product updates will
converge to another unique �xed point M�|distinct, of course, from the sum-product �xed point.
This �xed point can be used to compute the max-marginal �s(xs) := maxfx0 j x0s=xsg p(x

0) at each
node of the graph, via the analog of equation (5). Given these max-marginals, it is straightforward
to compute a mode bx 2 argmaxx p(x) of the distribution; see the papers [29, 110] for further details.
More generally, updates of this form apply to arbitrary commutative semirings on tree-structured
graphs [106, 97, 29, 1]. The pairs \sum-product" and \max-product" are two particular examples
of such an algebraic structure.

2.5.2 Junction tree representation

We have seen that inference problems on trees can be solved exactly by recursive message-passing
algorithms. Given a graph with cycles, a natural idea is to cluster its nodes so as to form a
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clique tree|that is, an acyclic graph whose nodes are formed by cliques of G. Having done so, it is
tempting to simply apply a standard algorithm for inference on trees. However, the clique tree must
satisfy an additional restriction so as to ensure consistency of these computations. In particular,
since a given vertex s 2 V may appear in multiple cliques (say C1 and C2), what is required is a
mechanism for enforcing consistency among the di�erent appearances of the random variable xs.
It turns out that the following property is necessary and suÆcient to enforce such consistency:

De�nition 1. A clique tree has the running intersection property if for any two clique nodes C1
and C2, all nodes on the unique path joining them contain the intersection C1 \ C2. A clique tree
with this property is known as a junction tree.

For what type of graphs can one build junction trees? An important result in graph theory
asserts that a graph G has a junction tree if and only if it is triangulated.6 (See Lauritzen [68]
for a proof.) This result underlies the junction tree algorithm [69] for exact inference on arbitrary
graphs:

1. Given a graph with cycles G, triangulate it by adding edges as necessary.

2. Form a junction tree associated with the triangulated graph eG.
3. Run a tree inference algorithm on the junction tree.

Example 1. To illustrate the junction tree construction, consider the 3 � 3 grid shown in Fig-
ure 7(a). The �rst step is to form a triangulated version eG, as shown in Figure 7(b). Note that

1 2

65
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7 8

1 2
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7 8
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4  8 6  8

2  4

2  5  8

1  2  4

4  7  8

2
4  5

8

6  8  9

2
5  6

8

2  3  6

(a) (b) (c)

Figure 7. Illustration of junction tree construction. (a) Original graph is a 3 � 3 grid. (b) Trian-
gulated version of original graph. Note the two 4-cliques in the middle. (c) Corresponding junction
tree for triangulated graph in (b), with maximal cliques depicted within ellipses, and separator sets
within rectangles.

the graph would not be triangulated if the additional edge joining nodes 2 and 8 were not present.
Without this edge, the 4-cycle (2� 4� 8� 6� 2) would lack a chord. As a result of this additional
edge, the junction tree has two 4-cliques in the middle, as shown in Figure 7(c). These cliques only
grow larger as the grid size is increased. }

In principle, the inference in the third step of the junction tree algorithm can be performed
over an arbitrary commutative semiring (as mentioned in our earlier discussion of tree algorithms).
We refer the reader to Dawid [29] for an extensive discussion of the max-product version of the

6A graph is triangulated means that every cycle of length four or longer has a chord.
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�S
�B �C

CB S

Figure 8: A message-passing operation between cliques B and C via the separator set S.

junction tree algorithm. For concreteness, we limit our discussion here to the sum-product version
of junction tree updates. There is an elegant way to express the basic algebraic operations in
a junction tree inference algorithm that involves introducing potential functions not only on the
cliques in the junction tree, but also on the separators in the junction tree|the intersections of
cliques that are adjacent in the junction tree (the rectangles in Figure 7). Let �C(xC) denote a
potential on a clique C, and let �S(xS) denote a potential on a separator S. We initialize the clique
potentials by assigning each compatibility function in the original graph to (exactly) one clique
potential and taking the product over these compatibility functions. The separator potentials are
initialized to unity. Given this set-up, the basic message-passing step of the junction tree algorithm
can be written in the following form:

��S(xS) =
X
xBnC

�B(xB) (8a)

��C(xC) =
��S(xS)

�S(xS)
�C(xC); (8b)

where in the continuous case the summation is replaced by a suitable integral. We refer to this pair
of operations as \passing a message from clique B to clique C" (see Figure 8). It can be veri�ed
that if a message is passed from B to C, and subsequently from C to B, then the resulting clique
potentials are consistent with each other; that is, they agree with respect to the vertices S.

After a round of message passing on the junction tree, it can be shown that the clique potentials
are proportional to marginal probabilities throughout the junction tree. Speci�cally, letting �C(xC)
denote the marginal probability of xC , we have �C(xC) / �C(xC) for all cliques C. This equivalence
can be established by a suitable generalization of the proof of correctness of the sum-product algo-
rithm presented previously (see also Lauritzen [68]). Note that achieving local consistency between
pairs of cliques is obviously a necessary condition if the clique potentials are to be proportional
to marginal probabilities. Moreover, the signi�cance of the running intersection property is now
apparent; namely, it ensures that local consistency implies global consistency.

An important by-product of the junction tree algorithm is an alternative representation of a
distribution p(�). Let C denote the set of all maximal cliques in eG (i.e., nodes in the junction tree),
and let S represent the set of all separator sets (i.e., intersections between cliques that are adjacent
in the junction tree). For each separator set S 2 S, let d(S) denote the number of maximal cliques
to which it is adjacent. The junction tree framework guarantees that the distribution p(�) factorizes
in the form

p(x) =

Q
C2C �C(xC)Q

S2S [�S(xS)]
d(S)�1

; (9)

where �C and �S are the marginal distributions over the cliques and separator sets respectively.
Observe that unlike the representation of equation (2), the decomposition of equation (9) is directly
in terms of marginal distributions, and does not require a normalization constant (i.e., Z = 1).
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Example 2 (Markov chain). Consider the Markov chain p(x1; x2; x3) = p(x1) p(x2 jx1) p(x3 jx2).
The cliques in a graphical model representation are f1; 2g and f2; 3g, with separator f2g. Clearly
the distribution cannot be written as the product of marginals involving only the cliques. It can,
however, be written in terms of marginals if we include the separator:

p(x1; x2; x3) =
p(x1; x2)p(x2; x3)

p(x2)
:

Moreover, it can be easily veri�ed that these marginals result from a single application of equa-
tion (8), given the initialization �f1;2g(x1; x2) = p(x1)p(x2 jx1) and �f2;3g(x2; x3) = p(x3 jx2). }

To anticipate part of our development in the sequel, it is helpful to consider the following
\inverse" perspective on the junction tree representation. Suppose that we are given a set of func-
tions �C(xC) and �S(xS) associated with the cliques and separator sets in the junction tree. What
conditions are necessary to ensure that these functions are valid marginals for some distribution?
Suppose that the functions f�S ; �Cg are locally consistent in the following sense:X

xS

�S(xS) = 1 normalization (10a)X
fx0C j x0S=xSg

�C(x
0
C) = �S(xS) marginalization (10b)

The essence of the junction tree theory described above is that such local consistency is both
necessary and suÆcient to ensure that these functions are valid marginals for some distribution.
For the sake of future reference, we state this result in the following:

Proposition 1. A candidate set of local marginals f�S ; �Cg on the separator sets and cliques of a

junction tree is globally consistent if and only if it is locally consistent in the sense of equation (10).
Moreover, any such locally consistent quantities are the marginals of the probability distribution

de�ned by equation (9).

This particular consequence of the junction tree representation will play a fundamental role in our
development in the sequel.

Finally, let us turn to the key issue of the computational complexity of the junction tree al-
gorithm. Inspection of equation (8) reveals that the computational costs grow exponentially in
the size of the maximal clique in the junction tree. Clearly then, it is of interest to control the
size of this clique. The size of the maximal clique over all possible triangulations of a graph is an
important graph-theoretic quantity known as the treewidth of the graph.7 Thus, the complexity of
the junction tree algorithm is exponential in the treewidth.

For certain classes of graphs, including chains and trees, the treewidth is small and the junc-
tion tree algorithm provides an e�ective solution to inference problems. Such families include
many well-known graphical model architectures, and the junction tree algorithm subsumes the
classical recursive algorithms, including the pruning and peeling algorithms from computational
genetics [38], the forward-backward algorithms for hidden Markov models [88], and the Kalman
�ltering-smoothing algorithms for state-space models [58]. On the other hand, there are many
graphical models, including several of the examples treated in Section 2.4, for which the treewidth
is infeasibly large. Coping with such models requires leaving behind the junction tree framework,
and turning to approximate inference algorithms.

7To be more precise, the treewidth is one less than the size of this largest clique [see 13].
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2.6 Message-passing algorithms for approximate inference

It is the goal of the remainder of the paper to develop a general theoretical framework for under-
standing and analyzing a class of techniques known as variational inference algorithms. Doing so
requires mathematical background on convex analysis and exponential families, which we provide
starting in Section 3. Historically, many of these algorithms have been developed without this back-
ground, but rather via intuition or on the basis of analogies to exact or Monte Carlo algorithms. In
this section, we give a high-level description of two variational inference algorithms, with the goal
of highlighting their simple and intuitive nature.

The �rst variational algorithm that we consider is a so-called \loopy" form of the sum-product
algorithm (also referred to as the belief propagation algorithm). Recall that the sum-product
algorithm is an exact inference algorithm for trees. From an algorithmic point of view, however,
there is nothing to prevent one from running the procedure on a graph with cycles. More speci�cally,
the message updates (7) can be applied at a given node while ignoring the presence of cycles|
essentially pretending that any given node is embedded in a tree. Intuitively, such an algorithm
might be expected to work well if the graph is sparse, such that the e�ect of messages propagating
around cycles is appropriately diminished, or if suitable symmetries are present. As discussed in
Section 2.4, this algorithm is in fact successfully used in various applications. Also, an analogous
form of the max-product algorithm is used for computing approximate modes in graphical models
with cycles.

A second variational algorithm is the so-called naive mean �eld algorithm. For concreteness,
here we describe this algorithm in application to the Ising model of statistical physics. The Ising
model is a Markov random �eld involving a binary random vector x 2 f0; 1gn, in which pairs of
adjacent nodes are coupled with a weight �st, and each node has an observation weight �s. (See
Example 3 of Section 3.2 for a more detailed description of this model.) Consider now the Gibbs
sampler for such a model. The basic step of a Gibbs sampler is to choose a node s 2 V randomly, and
then to update the state of the associated random variable according to the conditional probability
with neighboring states �xed. More precisely, denoting by N (s) the neighbors of a node s 2 V , and

letting x
(p)
N (s) denote the state of the neighbors of s at iteration p, the Gibbs update for xs takes

the following form:

x(p+1)s =

(
1 if u � f1 + exp[�(�s +

P
t2N (s) �stx

(p)
t )]g�1

0 otherwise
; (11)

where u is a sample from a uniform distribution U(0; 1).

In a dense graph, such that the cardinality of N (s) is large, we might attempt to invoke a law

of large numbers or some other concentration result for
P

t2N (s) �stx
(p)
t . To the extent that such

sums are concentrated, it might make sense to replace sample values with expectations. That is,
letting �s denote an estimate of the marginal probability p(xs = 1) at each vertex s 2 V , we might
consider the following averaged version of equation (11):

�s  

�
1 + exp

�
� (�s +

X
t2N (s)

�st�t)
���1

: (12)

Thus, rather than ipping the random variable xs with a probability that depends on the state
of its neighbors, we update a parameter �s deterministically that depends on the corresponding
parameters at its neighbors. Equation (12) de�nes the naive mean �eld algorithm for the Ising
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model. As with the sum-product algorithm, the mean �eld algorithm can be viewed as a message-
passing algorithm, in which the right-hand-side of (12) represents the \message" arriving at vertex
s.

At �rst sight, message-passing algorithms of this nature might seem rather mysterious, and do
raise some questions. Do the updates have �xed points? Do the updates converge? What is the
relation between the �xed points and the exact quantities? The goal of the remainder of this paper
is to shed some light on such issues. Ultimately, we will see that a broad class of message-passing
algorithms, including the mean �eld updates, the sum-product and max-product algorithms, as well
as various extensions of these methods can all be understood as solving either exact or approximate
versions of variational problems. Exponential families and convex analysis, which are the subject
are the following section, provide the appropriate framework in which to develop these variational
principles in an uni�ed manner.

3 Exponential families and convex analysis

In this section, we introduce exponential families of distributions, focusing on the links with convex
analysis and speci�cally with the theory of conjugate duality. Further details on exponential families
and their properties can be found in various sources [4, 5, 17, 35]. For further background on convex
analysis, we refer the reader to [14, 53, 92].

3.1 Basics of exponential families

For the sake of readability, we begin by restating our basic notation for random vectors and sample
spaces, originally given in Section 2.1. For each s = 1; : : : ; n, let xs be a random variable taking
values in some sample space Xs, which may be continuous (e.g., Xs = R), or a discrete alphabet
(e.g., Xs = f0; 1; : : : ;m � 1g). The random vector x = fxs j s = 1; : : : ng then takes values in the
Cartesian product space X1 �X2 � � � � � Xn, which we denote by X n. Given some arbitrary func-
tion8 h : X n ! R+ , we endow X n with the measure � de�ned via d� = h(x) dx, where component
dxs in the product dx =

Qn
s=1 dxs is usually (a suitably restricted version of) Lebesgue measure

when Xs is a continuous space, or the counting measure when Xs is discrete.
An exponential family consists of a particular class of densities taken with respect to the domi-

nating measure �. Let � = f�� j � 2 Ig be a collection of Borel measurable functions �� : X n ! R.
These functions are known either as potentials or suÆcient statistics. Here I is an index set with
d = jIj elements to be speci�ed, so that � itself can be viewed as a vector-valued mapping from
X n to Rd . Associated with � is a vector � = f �� j � 2 I g of exponential or canonical parameters.
For each �xed x 2 X n, we use h�; �(x)i to denote the (Euclidean) inner product in Rd of the two
vectors � and �(x). With this notation, the exponential family associated with � consists of the
following parameterized collection of density functions (taken with respect to d�):

p(x; �) = exp
�
h�; �(x)i � A(�)

	
: (13)

The quantity A, known as the log partition function, is de�ned by the integral:

A(�) = log

Z
Xn

exph�; �(x)i�(dx): (14)

Presuming that the integral is �nite, this de�nition ensures that p(x; �) is properly normalized (i.e.,R
Xn p(x; �)�(dx) = 1).
8Here R+ = fy 2 R j y � 0g.
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With the set of potentials � is �xed, each parameter vector � indexes a particular member
p(x; �) of the family. The exponential parameters � of interest belong to the set

� := f� 2 Rd j A(�) <1g: (15)

We will see shortly that A is a convex function of �, which in turn implies that � must be a convex
set. The log partition function A plays a prominent role in this paper.
The following notions will be important in subsequent development:

Regular families: An exponential family for which the domain � of equation (15) is an open set
is known as a regular family. Although there do exist exponential families for which � is closed [see,
e.g., 17], herein we restrict our attention to regular exponential families.

Minimal: It is typical to de�ne an exponential family with a collection of functions � = f��g for
which there is no linear combination ha; �(x)i =

P
�2I a���(x) equal to a constant (�-a.e). This

condition gives rise to a so-called minimal representation, in which there is a unique parameter
vector � associated with each distribution.

Overcomplete: Instead of a minimal representation, it can be convenient to use an overcomplete

representation, which is non-minimal (so that some linear combination of � is equal to a constant
�-a.e.). In this case, there exists an entire aÆne subset of parameter vectors �, each associated
with the same distribution.

The reader might question the utility of an overcomplete representation. Indeed, it seems
highly undesirable in a statistical setting because identi�ability of the parameter vector � is lost.
However, this notion of overcompleteness will play a key role in our later analysis of the sum-product
algorithm and its generalizations (Sections 6 and 7).

Table 1 provides some examples of well-known scalar exponential families. Observe that all of
these families are both regular (since � is open), and minimal (since the collection of suÆcient
statistics � do not satisfy any linear relations).

Family X � log p(x; �) A(�) �

Bernoulli f0; 1g Counting �x�A(�) log[1 + exp(�)] R

Gaussian R Lebesgue �1x+ �2x
2 �A(�) 1

2
[�1 + log 2�e

��2
] f� 2 R2 j �2 < 0g

Exponential (0;+1) Lebesgue � (�x)�A(�) � log � (0;+1)

Poisson f0; 1; 2 : : :g Counting �x�A(�) exp(�) R

h(x) = 1=x!

Beta (0; 1) Lebesgue �1 log x+ �2 log(1� x)
2P

i=1

log �(�i + 1) (�1;+1)2

�A(�) � log �(
2P

i=1

(�i + 1))

Table 1. Several well-known classes of scalar random variables as exponential families. In all cases,
the base measure � is either Lebesgue or counting measure, suitably restricted to the sample space
X . All of these examples are both minimal and regular.
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3.2 Graphical models and exponential families

The scalar examples in Table 1 serve as building blocks for the construction of more complex
exponential families for which graphical structure does play a role. Earlier, we described graphical
models in terms of products of functions, as in equations (1) and (2). In the context of exponential
families, these products become additive decompositions within the exponent.

Example 3 (Ising model). We begin with the Ising model from statistical physics [6, 20, 83],
which is a particular kind of Markov random �eld. Consider a graph G = (V;E) and suppose that
the random variable xs associated with node s 2 V is Bernoulli. Components xs and xt of the full
random vector x are allowed to interact directly only if s and t are joined by an edge in the graph.
This set-up leads to an exponential family of the form

p(x; �) = exp
�X
s2V

�sxs +
X

(s;t)2E

�stxsxt �A(�)
	
; (16)

taken with respect to counting measure restricted to f0; 1gn. Here �st is the strength of edge (s; t),
and �s is the node parameter for node s. (Strictly speaking, this model is more general than the
classical Ising model, in which �st is constant for all edges.) The index set I consists of the union
V [ E, and the dimension of the family is d = n + jEj. The domain � is the full space Rd , since
the sum that de�nes the log partition function A(�) is �nite for all � 2 Rd . Hence, the family
is regular. Moreover, it is a minimal representation, since there is no linear combination of the
potentials equal to a constant �-a.e. }

The standard Ising model can be generalized in a number of di�erent ways. Although equa-
tion (16) includes only pairwise interactions, higher-order interactions among the random variables
can also be included. For example, in order to include coupling within the 3-clique fs; t; ug, we add
a monomial of the form xsxtxu, with corresponding exponential parameter �stu, to equation (16).
More generally, to incorporate coupling in k-cliques, we can add monomials up to order k. At the
upper extreme, taking k = n amounts to connecting all nodes in the graphical model, which allows
one to represent any distribution over a binary random vector x 2 f0; 1gn. It is also straightfor-
ward to extend these models to the multinomial case, in which each xs takes values in the space
Xs = f0; 1; : : : ;m� 1g.

We now turn to another important class of graphical models:

Example 4 (Gaussian MRF). A Gaussian Markov random �eld [e.g., 100] consists of a multi-
variate Gaussian random vector that respects the Markov properties of a graph G = (V;E). It can
be represented in exponential form using the potentials fxs; x2s j s 2 V g [ fxsxt j (s; t) 2 Eg, with
associated parameters f�s; s 2 V g [ f�st j (s; t) 2 Eg. Note that there are a total of d = 2n+ jEj
potential functions. It is convenient to represent the potentials and parameters compactly as
(n+ 1)� (n+ 1) symmetric matrices:

X :=

�
1
x

� �
1 x

�
; U(�) :=

2666664
0 �1 �2 : : : �n
�1 �11 �12 : : : �1n
�2 �21 �22 : : : �2n
...

...
...

...
...

�n �n1 �n2 : : : �nn

3777775 =

�
0 zT (�)

z(�) Z(�)

�
(17)

Here z(�) denotes the n-vector [�1 : : : �n]
T , while Z(�) denotes the n� n matrix of the f�stg. It

should be understood that �st = 0 whenever (s; t) =2 E, which reects the Markov structure of the
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underlying graph. For any two symmetric matrices C and D, we let hhC; Dii denote the inner
product de�ned by trace(C D). Using this notation, a Gaussian MRF can be represented as an
exponential family of the form

p(x; �) = exp
�
hhU(�); Xii �A(�)

	
: (18)

The integral de�ning A(�) is �nite only if Z(�) � 0, so that � = f� 2 Rd j Z(�) � 0g. }

Graphical models are not limited to cases in which the random variables at each node belong
to the same exponential family. More generally, we can consider heterogeneous combinations of
exponential family members, as illustrated in the following example.

Example 5 (LDA). The Latent Dirichlet allocation model [12], illustrated earlier as a graphical
model in Figure 3, involves three di�erent types of random variables: \words" w, \documents"
z, and Dirichlet variables u. The vector of exponential parameters � can be partitioned as � =
(�; ). The quantity � is an exponential parameter for the Dirichlet variable u, which has a
density with respect to Lebesgue measure of the form p(u;�) / expf

Pn
i=1 �i log uig. The Dirichlet

variable u, in turn, serves as the parameter for the multinomial variable z 2 f1; 2; : : : ; kg, so that
p(z;u) = exp

�Pk
i=1 Ii[z] log ui

	
, where Ii[z] is the indicator for the event fz = ig. Finally, the

conditional distribution of w given z is parameterized by  as follows:

p(w = j j z = i; ) = exp(ij); 8 i = 1; : : : ; k; j = 1; : : : ; l:

This set of equations can be written more compactly as p(w j z; ) = exp
�Pk

i=1

Pl
j=1 ijIi[z]Ij [w]

	
.

Overall then, for a single triplet x := (u; z; w), the LDA model is an exponential family with
parameter vector � := (�; ), with a density of the following form:

p(u;�)p(z;u)p(w j z; ) / exp
� nX
i=1

�i log ui +
kX
i=1

Ii[z] log ui +
kX
i=1

lX
j=1

ijIi[z]Ij [w]
	
: (19)

The suÆcient statistics � consist of the collections flog ui; i = 1; : : : ; kg, fIi[z] log ui; i = 1; : : : kg,
and fIi[z]Ij[w]; i = 1; : : : ; k; j = 1; : : : lg. As illustrated in Figure 3, the full LDA model entails
replicating these types of local structures many times. }

3.3 Properties of A

In this section, we �rst develop some basic properties of the log partition function, which we then
build on by drawing connections to convex analysis. Of particular importance is the idea that
the expectations of �(x) under p(x; �) de�ne an alternative parameterization of the exponential
family, known as the mean parameterization. For the sake of readability, the proofs of the majority
of those results given in the remainder of Section 3 as well as in Section 4 have been deferred to
Appendix A.

3.3.1 Derivatives and convexity

We begin by establishing that the log partition function is both smooth and convex in terms of �.
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Proposition 2. The log partition function is lower semi-continuous on Rd , and C1 on �. Its

derivatives are the cumulants of the random vector �(x)|in particular:

@A

@��
(�) = E � [��(x)] :=

Z
��(x) p(x; �)�(dx): (20a)

@2A

@�� @��
(�) = E � [��(x)��(x)]� E � [��(x)]E � [��(x)]: (20b)

Moreover, krA(�t)k ! +1 for any sequence f�tg � � approaching the boundary.

The conditions in Proposition 2 ensure that A is essentially smooth [92], also referred to as
steep in statistical settings [17]. This property plays an important role in subsequent development.
Moreover, Proposition 2 identi�esA as the cumulant generating function of the random vector �(x).
In particular, equation (20b) shows that the Hessian r2A(�) can be interpreted as a particular type
of Gram matrix, which leads to the following:

Corollary 1. The log partition function A is a convex function of �, and strictly so if the repre-

sentation is minimal.

3.3.2 Mapping to mean parameters

Given a potential function vector � : X n ! Rd , it is of interest to consider the set of vectors � 2 Rd

that are formed by taking expectations of � under an arbitrary distribution that is absolutely
continuous with respect to �. Accordingly, we de�ne the following set:

M :=

�
� 2 Rd

�� 9 p(�) s: t: Z
�(x) p(x)�(dx) = �

�
: (21)

Note thatM is a convex set.
Given an arbitrary member of the exponential family de�ned by �, we can de�ne a mapping

� : �!M as follows:

�(�) := E � [�(x)] =

Z
Xn

�(x) p(x; �)�(dx): (22)

Note that � is a particular case of a gradient mapping, since �(�) = rA(�) by equation (20a). The
mapping � associates to each � 2 � a vector of mean parameters � := �(�) belonging to the setM.
The goal of this section is to obtain a precise characterization of the nature of this correspondence
between � and �. Of particular interest are the following two issues:

1. determining when � to one-to-one and hence invertible on its image, and

2. characterizing the image of � under the mapping �.

The answer to the �rst question turns out to be straightforward, hinging essentially on the mini-
mality of the representation. Although the answer to the second question is also straightforward|
namely, � is onto the (relative) interior ofM|the proof is more involved. To be clear, this question
is not trivial, because the de�nition (21) allows the density p(�) to be arbitrary, whereas the map-
ping � uses only members of the exponential family. We begin with a result addressing the �rst
question:

Proposition 3. The mapping � is one-to-one if and only if the exponential representation is

minimal.
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Proposition 3 asserts that the mean parameter mapping is not invertible for an overcomplete
representation. More speci�cally, the inverse image ��1(�) := f� 2 � j �(�) = �g|rather than
being a singleton (as it would be for an invertible mapping)|is a (non-trivial) aÆne subset of �.

Example 6. To illustrate, consider a Bernoulli random variable x 2 f0; 1g. Suppose that we use
the overcomplete exponential representation p(x; �) / expf�0(1 � x) + �1xg, so that � = R2 . In
this case, the mean parameters (�0; �1) are simply marginal probabilities|viz. �i = p(x = i) for
i = 0; 1. The set M of realizable mean parameters is the simplex f� � 0 j �0 + �1 = 1g. For a
�xed mean parameter � > 0 in the simplex, it is easy to show that the inverse image consists of
the aÆne set ��1(�) := f(�0; �1) 2 R

2 j �1 � �0 = log �1
�0
g. }

In general, although there is no longer a bijection between � and �(�) in an overcomplete
representation, there is still a bijection between each element of �(�) and an aÆne subset of �.
For either a minimal or an overcomplete representation, we say that a pair (�; �) is dually coupled

if � = �(�), and hence � 2 ��1(�). This notion of dual coupling plays an important role in the
sequel.

We now turn to the second question regarding the range of �.

Theorem 1. The mean parameter mapping � is onto the (relative) interior ofM (i.e., �(�) = riM).

Remarks: The relative interior of a convex set is the interior taken with respect to its aÆne hull.
A key fact is that any non-empty convex set is guaranteed to have a non-empty relative interior.
See Appendix B for more details.

Typically, the exponential family fp(x; �) j � 2 �g describes only a strict subset of all possible
densities, whereas the de�nition (21) ofM allows the density p(�) to be arbitrary. The signi�cance
of Theorem 1, then, lies in the fact that for any mean parameter � 2 riM, it suÆces to restrict
the expectations in de�nition (21) to members of the exponential family. Moreover, for a minimal
exponential family, Proposition 3 guarantees that there is a unique exponential parameter �(�) such
that �(�(�)) = �. However, if the exponential family describes a strict subset of all densities, then
there exists at least some other density p(�)|albeit not a member of the exponential family|that
also realizes � (i.e., for which

R
�(x)p(x)�(dx) = �). As discussed in the following section, the

distinguishing property of p(x; �(�)) lies in the notion of maximum entropy.

3.3.3 Fenchel-Legendre conjugate

We now turn to consideration of the Fenchel-Legendre conjugate of the log partition function A.
In particular, this conjugate dual function, which we denote by A�, is de�ned as follows:

A�(�) := sup
�2�
fh�; �i �A(�)g: (23)

Here � 2 Rd is a vector of so-called dual variables of the same dimension as �. Our choice of
notation|i.e., using � again|is deliberately suggestive, in that these dual variables turn out to
have a natural interpretation as mean parameters.

The (Boltzmann-Shannon) entropy of the density p(x; �) with respect to � is de�ned as follows:

H(p(x; �)) = �

Z
Xn

p(x; �) log [p(x; �)]�(dx) = �E � [log p(x; �)]: (24)

The main result of Theorem 2 is that when � 2 riM, then the value of the dual function A�(�) is
precisely the negative entropy of p(x; �(�)), where �(�) is an element of the inverse image ��1(�).
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Of course, it is also important to consider � =2 riM, in which case ��1(�) is empty. In this case,
the behavior of the supremum de�ning A�(�) requires a more delicate analysis. As we show in the
following theorem, it turns out that when � =2 clM, then A�(�) = +1.

More formally, we state the following:

Theorem 2.

(a) For any � 2 riM, let �(�) denote a member of ��1(�). The Fenchel-Legendre dual of A has

the following form:

A�(�) =

(
�H(p(x; �(�))) if � 2 riM

+1 if � =2 clM:
(25)

For any boundary point � 2 bdM := clMn riM, we have A�(�) = lim
n!+1

[�H(p(x; �(�n)))], taken

over a sequence f�ng � riM converging to �.

(b) In terms of this dual, the log partition function has the following variational representation:

A(�) = sup
�2M

�
h�; �i �A�(�)

	
: (26)

The fact that A�(�) = +1 for � =2 clM is essential for our approach to variational inference.
In particular, it implies that the variational representation of the log partition function reduces to
an optimization over M, as we see in equation (26). Consequently, M is the domain over which
our key optimization problem takes place, and we will be interested in various approximations of
this set.

Table 2 provides the conjugate dual pair (A;A�) for several well-known exponential families of
scalar random variables. For each family, the table also lists � � domA, as well as the set M,
which contains the e�ective domain of A� (by Theorem 2(a)). On the basis of these examples, it

Family � A(�) M A�(�)

Bernoulli R log[1 + exp(�)] [0; 1] � log�+ (1� �) log(1� �)

Gaussian f(�1; �2) j �2 < 0g 1

2
[�1 + log 2�e

��2
] f(�1; �2) j �2 � (�1)

2 > 0g � 1

2
log[2�e(�2 � �21)]

Exponential (0;+1) � log � (�1; 0) �1� log(��)

Poisson R exp(�) (0;+1) � log�� �

Table 2. Conjugate dual relations of Theorem 2 for several well-known exponential families of scalar
variables.

can be seen that the speci�c behavior of A� on the boundary bdM := clMn riM varies depending
on the exponential family. For example, for the Bernoulli family, the boundary of M = [0; 1]
consists of the points 0 and 1. As � approaches either of these points, the dual function A�(�) =
� log � + (1 � �) log(1 � �) tends to zero. This limiting behavior corresponds to the fact that
the underlying distribution p(x; �(�)) is tending to a delta function, which has a discrete entropy
of zero. Therefore, we conclude that domA� = [0; 1] � M in the Bernoulli case. This type of
reasoning can be generalized to the multinomial case.
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On the other hand, in the scalar Gaussian case, the setM is de�ned by the quadratic constraint
�2 � (�1)

2 > 0, corresponding to the fact that the variance of a (non-degenerate) Gaussian must
be (strictly) positive. Note that (0; 0) is a boundary point of M. We can compute the value
of A�(0; 0) by taking the limit A�(�n) for a sequence f�ng ! (0; 0) contained within intM�M.
Considering, in particular, the sequence �n = (0; 1=n) and using the form of A� given in Table 2, we
obtain limn!+1A�(�n) = +1. This result is consistent with the limiting behavior of (di�erential)
entropy for densities with a delta component.

3.3.4 Kullback-Leibler divergence

The conjugate duality between A and A�, as characterized in Theorem 2, leads to several alternative
forms of the Kullback-Leibler (KL) divergence for exponential family members, which we summarize
here for the sake of subsequent developments. The standard de�nition [23] of the KL divergence
between two distributions with densities q and p with respect to � is as follows:

D(q k p) :=

Z
Xn

q(x) log
q(x)

p(x)
�(dx): (27)

The key result that underlies alternative representations for exponential families is Fenchel's in-

equality which, as applied to (A;A�), asserts that for any pair (�; �) 2 Rd � Rd :

A(�) +A�(�) � h�; �i: (28)

Moreover, equality holds in this equation if and only if � and � are dually coupled, meaning that
� = �(�) and � 2 ��1(�).

Consider two exponential parameter vectors �1; �2 2 �; with a slight abuse of notation, we use
D(�1 k �2) to refer to the KL divergence between p(x; �1) and p(x; �2). We use �1 and �2 to denote
the respective mean parameters (i.e., �i = �(�i) for i = 1; 2). A �rst alternative form of the KL
divergence is obtained by substituting the exponential representations of p(x; �i) into equation (27)
and then expanding and simplifying as follows:

D(�1 k �2) = E �1

�
log

p(x; �1)

p(x; �2)

�
= A(�2)�A(�1)� h�1; �2 � �1i: (29)

We refer to this representation as the primal form of the KL divergence. As illustrated in Figure 9,

�

�1

�2

A(�)

A(�1) + hrA(�1); � � �1i

D(�1 k �2)

Figure 9. The hyperplane A(�1)+hrA(�1); ���1i supports the epigraph of A at �1. The Kullback-
Leibler divergence D(� k �2) is equal to the di�erence between A(�2) and this hyperplane.
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this form of the KL divergence can be interpreted as the di�erence between A(�2) and the hy-
perplane tangent to A at �1 with normal rA(�1) = �1. This interpretation shows that the KL
divergence is a particular example of a Bregman distance [16, 19].

A second form of the KL divergence can be obtained by using the fact that Fenchel's inequal-
ity (28) holds with equality for the dually coupled pair (�1; �1). In this way, we can transform
equation (29) into the following mixed form of the KL divergence:

D(�1 k �2) � D(�1 k �2) = A(�2) +A�(�1)� h�1; �2i: (30)

Note that this mixed form of the divergence corresponds to the slack in Fenchel's inequality (28).
It also provides an alternative view of the variational representation given in Theorem 2(b). In
particular, equation (26) can be rewritten as follows:

inf
�2M

�
A(�) +A�(�)� h�; �i

	
= 0

Using equation (30), the variational representation in Theorem 2(b) is seen to be equivalent to the
assertion that inf�2MD(� k �) = 0.

Finally, by applying equation (28) as an equality once again, this time for the coupled pair
(�2; �2), the mixed form (30) can be transformed into a purely dual form of the KL divergence:

D(�1 k �2) � D(�1 k �2) = A�(�1)�A�(�2)� h�2; �1 � �2i: (31)

Note the symmetry between representations (29) and (31). In particular, to move from one to
the other, we simply exchange the log partition function A for the negative entropy A�, and we
interchange the roles of �1 and �2 (as well as �1 and �2). This form of the KL divergence has an
interpretation analogous to that of Figure 9, but with A replaced by the dual A�.

4 Variational methods for computing mean parameters

For the next several sections, we focus on the �rst two inference problems described in Section 2.3.
Restated in the language of exponential families, these problems correspond to computing the log
partition function A(�), and the mean parameters � = E � [�(x)] for a given distribution p(x; �).
The current section is devoted to consideration of the ingredients in the variational approach.

Of central importance to the computation of the log partition function and the mean parameters
is Theorem 2(b), which we restate here for convenient reference:

A(�) = sup
�2M

�
h�; �i �A�(�)

	
: (32)

It should be emphasized that equation (32) is a variational representation in two senses. First, it
speci�es A(�) as the solution of a particular optimization problem in which � plays the role of a
parameter. Second, equation (32) provides a variational procedure for computing mean parameters,
as stated formally in the following:

Proposition 4. For all � 2 �, the supremum in equation (32) is attained uniquely at the vector

� 2 riM speci�ed by:

� = E � [�(x)] =

Z
Xn

�(x)p(x; �)�(dx):
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The essence of Proposition 4 is the following: an additional by-product of solving problem (32),
apart from computing the log partition function, is the set of the mean parameters � = E � [�(x)]
associated with p(x; �). It is tempting, then, to assert that the problem of computing mean param-
eters is now solved, since we have \reduced" it to a convex optimization problem. In this context,
the simple scalar examples of Table 2, for which problem (32) had an explicit form and could be
solved easily, are very misleading. For general multivariate exponential families, in contrast, there
are two primary challenges associated with the variational representation:

(a) in many cases, the constraint set M of realizable mean parameters is extremely diÆcult to
characterize in an explicit manner.

(b) the negative entropy function A� is de�ned indirectly|in a variational manner|so that it
too typically lacks an explicit form.

These diÆculties motivate the use of approximations to M and A�. Indeed, as shown in later
sections, a broad class of methods for approximate inference are based on this strategy. The
remainder of this section is devoted a more in-depth consideration of the nature of the set M of
realizable mean parameters, as well as the dual function A�. We also investigate particular large-
scale exponential families for which the variational principle (32) is tractable; such cases provide
building blocks for our later development of approximate variational principles.

4.1 Sets of realizable mean parameters

Recall that for a given set of suÆcient statistics �, the set M consists of all mean parameters �
that are realizable|viz:

M :=
�
� 2 Rd

�� 9 p(�) s: t:

Z
�(x)p(x)�(dx) = �

	
: (33)

Despite the apparent simplicity of this representation of M, even assessing whether a single �
belongs to M poses a serious challenge. The diÆculty stems from the fact that there can exist
global|and often rather subtle|dependencies among the mean parameters associated with the
vector of suÆcient statistics �.

We begin by discussing some general properties of the setsM. We then discuss two important
classes of exponential families for which M is straightforward to characterize|namely, arbitrary
Gaussian distributions, and multinomial distributions on junction trees. Before proceeding, a
remark on notation: since much of our discussion involves graphs, it is convenient to introduce the
notation M(G), which indicates explicitly that M arises from a vector of suÆcient statistics �
associated with a graph G.

4.1.1 General properties of M

From its de�nition, it is clear thatM is always a convex set. Other more speci�c properties ofM
turn out to be determined by the properties of the exponential family. A convex set M � Rd is
full-dimensional if its aÆne hull is equal to Rd . With this notion, we have the following:

Proposition 5. The set M has the following properties:

(a) M is full-dimensional if and only if the exponential family is minimal.

(b) M is bounded if and only if � = Rd and A is globally Lipschitz on Rd .
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Remark: The necessity of the condition � = Rd for M to be bounded (part (b) is clear from
the boundary behavior of rA given in Proposition 2. However, the additional global Lipschitz
condition is also necessary, as demonstrated by the Poisson family (see Table 2). In this case, we
have � = R yet the set of mean parameters M = (0;+1) is unbounded. This unboundedness
occurs because the function A(�) = exp(�), while �nite on R, is not globally Lipschitz.

We now turn to some speci�c cases for which we can give explicit characterizations ofM.

4.1.2 Gaussian distributions

The exponential parameterization of a Gaussian Markov random �eld was described in Example 4.
In this example, we consider the structure of M for such a model, focusing for simplicity on the
case where G = Kn, the complete graph on n nodes. The case with arbitrary G can be dealt with
by considering suitable projections of the setMGauss �MGauss(Kn) characterized here.

Associated with the exponential parameterization (17) of a multivariate Gaussian is a mean
parameter vector � 2 Rd . It is convenient to represent � in terms of (n + 1) � (n + 1) matrix,
denoted by W (�), de�ned in the following way:

W (�) := E �

n�1
x

� �
1 x

� o
=

�
1 zT (�)

z(�) Z(�)

�
: (34)

In this de�nition, z(�) := E � [x] is a column vector of means, whereas Z(�) := E � [xx
T ] is the n�n

matrix of second order moments.

An attractive feature of the Gaussian case is that the validity of the mean parameter vector
� = f�s; �st j s; t = 1; : : : ; ng can be assessed very easily:

Proposition 6. In the Gaussian case, the setM has the form

MGauss = f� 2 Rd jW (�) � 0g: (35)

The geometry of the set MGauss can be understood as follows. Let Sn+1+ denote the cone
of symmetric positive de�nite matrices. Then MGauss is the intersection of Sn+1+ with a single
hyperplane, corresponding to the constraint [W (�)]11 = 1. As a consequence, MGauss is not itself
a cone. For instance, in the scalar case n = 1, it is a parabolic set of the form f� 2 R2 j �11��21 > 0g.

4.1.3 Multinomial distributions

Now suppose that X n = X1 � X2 � � � � Xn is a Cartesian product of �nite discrete sets (i.e.,
Xs = f0; 1; : : : ;ms � 1g for each s = 1; : : : ; n), so that x 2 X n is a multinomial random vector. In
this case, the boundary ofM is no longer curved, but rather formed of straight lines.

Proposition 7. In the multinomial case, the setM is a polytope, meaning that it has a represen-
tation of the form

M = f � 2 Rd j haj ; �i � bj 8 j 2 J g; (36)

where the index set J is �nite. Moreover, any extreme point is of the form �e := �(e).
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Remark: Since any convex set can be represented as the intersection of half-spaces containing
it [92], the crucial part of Proposition 7, then, is that the index set J in equation (36) has �nite
cardinality.

Motivated by Proposition 7, we use MARG(G) to denote the marginal polytope associated with
the graph G. Figure 10 provides a geometrical illustration of such an object. The extreme points
(i.e., those that cannot be expressed as convex combinations of other points) are all of the form
�e := �(e). Such a point is realized by the distribution Æe(x), which is equal to one if x = e and 0

aj

MARG(G)

haj ; �i = bj

�e

Figure 10. Geometrical illustration of a marginal polytope. Each vertex corresponds to the mean
parameter �e := �(e) realized by the distribution Æe(x) that puts all of its mass on the con�guration
e 2 Xn. The faces of the marginal polytope are speci�ed by hyperplane constraints haj ; �i � bj .

otherwise. The faces of the marginal polytope are speci�ed by hyperplane constraints of the form
haj ; �i � bj. The maximal faces (i.e., those that are not contained in any other face) are known as
facets.

As one might expect, it turns out that the nature of a marginal polytope depends crucially
on the underlying graph structure. Although the number of constraints jJ j de�ning MARG(G) is
always �nite, the number can grow very quickly with increasing graph size. In this sense, Figure 10
is not at all faithful, since marginal polytopes may have an exceedingly large number of facets. The
book by Deza and Laurent [32] provides a wealth of information on the binary case; as a concrete
example, for a binary random vector on the complete graph with n = 7 nodes, the associated
marginal polytope is known to have in excess of 2� 108 facets. In contrast, tree-structured graphs
are dramatically di�erent: the number of facets grows only linearly in the number of nodes n, as
shown via the following example.

Example 7 (Minimal representation of tree marginal polytope). The case of a binary
random vector x 2 f0; 1gn suÆces to illustrate the nature of the marginal polytope MARG(T ) for
a tree-structured graph T = (V;E(T )). We use the minimal (Ising) representation of Example 3,
with the singleton xs for each s 2 V , and the pairwise product xsxt for each edge (s; t) 2 E(T ).
The relevant mean parameters in this representation, then, are as follows:

�s = E � [xs] = p(xs = 1; �); �st = E � [xs xt] = p(xs = 1; xt = 1; �):

(The fact that these mean parameters are equal to particular values of marginal probabilities
justi�es our terminology.) For each edge (s; t), the triplet f�s; �t; �stg uniquely determines a joint
marginal p(xs; xt;�) as follows:

p(xs; xt;�) =

�
(1 + �st � �s � �t) (�t � �st)

(�s � �st) �st

�
:
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Note that for any choice of f�s; �t; �stg, this joint marginal satis�es the normalization constraintP
xs;xt

p(xs; xt;�) = 1. Therefore, to ensure that it is a joint marginal, it is necessary and suÆcient
to impose non-negativity constraints on all four entries, as follows:

1 + �st � �s � �t � 0 (37a)

�st � 0 (37b)

�v � �st � 0 for v = s; t (37c)

We are now set up to apply the junction tree theorem; in particular, by Proposition 1, the full
collection � = f�s; s 2 V g [ f�st; (s; t) 2 E(T )g determines a globally-consistent distribution if and
only if the four inequalities (37) are satis�ed for every edge. Since any tree on n nodes has n� 1
edges, the marginal polytope for a tree-structured graph in the binary case can be characterized
by 4 (n� 1) constraints. }

Remarks: (a) Example 7 can be extended to minimal exponential families for multinomials (i.e.,
Xs = f0; 1; : : : ;m� 1g) as well. In particular, given a minimal representation, we simply determine
the inequality constraints that guarantee the existence of a pairwise marginal, and then invoke
Proposition 1.

(b) Similarly, this development can be extended to junction tree models, of which ordinary trees
are a particular case. See Section 2.5.2 for a description of junction trees.

Canonical overcomplete representation: One unpleasant feature of describing marginal poly-
topes in minimal representations is that the interpretation of constraints can be far from trans-
parent. Consider, for instance, equation (37a): with a bit of thought and an application of the
inclusion-exclusion principle, one can see that (1 + �st � �s � �t) is equal to the marginal prob-
ability p(xs = 0; xt = 0), from which the non-negativity constraint follows. This interpretation,
however, may not be obvious at a glance. This lack of transparency only becomes worse in the
general case, where individual mean parameters need not correspond to individual marginal values.

In contrast, a judicious choice of an overcomplete exponential representation leads to easily
interpretable constraints. Here we describe a particular overcomplete representation, applicable to
the multinomial space Xs = f0; 1; : : : ;ms � 1g, that plays an important role in the sequel. For
each j 2 Xs, let Ij(xs) be an indicator function for the event fxs = jg. Similarly, for each pair
(j; k) 2 Xs � Xt, let Ijk(xs; xt) be an indicator for the event f(xs; xt) = (j; k)g. These indicator
functions de�ne the statistics for the following overcomplete representation:

Ij(xs) for s = 1; : : : n; j 2 Xs (38a)

Ijk(xs; xt) for (s; t) 2 E; (j; k) 2 Xs �Xt: (38b)

The overcompleteness is clear in various linear relations satis�ed by the indicator functions (e.g.,P
j2Xs

Ij(xs) = 1). More generally, we can de�ne indicators on higher order cliques; for instance,
to treat a graph with a 3-clique fs; t; ug, we incorporate a term of the form Istu(xs; xt; xu). We
refer to the representation de�ned by (38a) and (38b) as the canonical overcomplete representation

for multinomial distributions.

An attractive feature of this representation is that mean parameters are simply local marginal
probabilities|viz.:

�s;j := p(xs = j; �) 8 s 2 V; �st;jk := p((xs; xt) = (j; k); �) 8 (s; t) 2 E (39)
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For calculations in the sequel, it is convenient to use these marginals to de�ne functional forms of
the single node and joint marginal parameters as follows:

�s(xs) :=
X
j2Xs

�s;jIj(xs); �st(xs; xt) :=
X

(j;k)2Xs�Xt

�st;jkIjk(xs; xt) (40)

More generally, marginal functions over higher-order cliques are de�ned in an analogous manner.

Example 8 (Tree marginals in overcomplete form). To illustrate the use of the canonical
overcomplete representation, we show that the tree-structured MARG(T ) has a simple and easily
interpretable characterization. Consider the single node �s and joint pairwise marginal functions
�st. As marginal distributions, they must of course be non-negative. In addition, they must satisfy
normalization conditions (i.e.,

P
xs
�s(xs) = 1), and the pairwise marginalization conditions (i.e.,P

xt
�st(xs; xt) = �s(xs)). Accordingly, we de�ne for an arbitrary graph G the following constraint

set:

LOCAL(G) := f � � 0 j
X
xs

�s(xs) = 1;
X
xt

�st(xs; xt) = �s(xs) g; (41)

for (s; t) 2 E. Note that the normalization of the single node marginal, in conjunction with the
marginalization constraint, imply that each joint marginal �st is also properly normalized. Since
any set of local marginals (regardless of the underlying graph structure) must satisfy these local
consistency constraints, we are guaranteed that MARG(G) � LOCAL(G) for any graph G. When
the graph is actually tree-structured, then the junction tree theorem, in the form of Proposition 1,
guarantees that the local consistency constraints in equation (41) imply global consistency, so that
in fact MARG(T ) = LOCAL(T ). }

Remark: It is worthwhile understanding the link between the tree marginal polytope MARG(T )
in the canonical overcomplete representation, and its analogue in a minimal representation. In the
overcomplete representation,9 there are a total of d0 = mn +m2 jEj mean parameters; therefore,
the marginal polytope lies in Rd

0
. However, the presence of equality constraints in equation (41)

indicates the polytope actually lies strictly within an aÆne subset of Rd
0
. Therefore, consistent

with Proposition 5(a), it is not a full-dimensional set. Eliminating the equality constraints leads a
reduced but equivalent description in a lower-dimensional space Rd , wherein all of the constraints are
one-sided inequalities. It is not diÆcult to show that the dimension of the reduced representation
is d = (m � 1)n + (m � 1)2 jEj. In the binary case (m = 2), Example 7 provides an explicit
representation of this reduced representation.

4.2 Nature of the dual function

We now turn to a more in-depth consideration of the nature of the dual function A�. Its variational
de�nition in equation (23) is both a blessing and a curse. On one hand, it guarantees that A� is a
convex and well-behaved function; however, the absence of a closed form expression for A� presents
substantial computational challenges. As with our earlier discussion of M, important exceptions
include the Gaussian and tree-structured cases.

9For simplicity, we are assuming that ms = m for all nodes.
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4.2.1 General properties of A�

As noted earlier, the examples given in Table 2, in which the dual A� had a closed form, are
the exception rather than the rule. In general, the dual function is de�ned implicitly via the
composition of two functions: (i) �rst compute an exponential parameter �(�) in the inverse image
��1(�); and then (ii) compute the negative entropy of the distribution p(x; �(�)). The block
diagram in Figure 11 illustrates this decomposition of the function A�.

� ��1
�(�)

�H(p(x; �(�))) A�(�)

Figure 11. A block diagram decomposition of A� as the composition of two functions. Given a
marginal vector �, �rst compute an exponential parameter �(�) in the inverse image image ��1, then
compute the negative entropy of p(x; �(�)).

Despite the fact that A� is not given in closed form, a number of properties can be inferred from
its variational de�nition (23). For instance, an immediate consequence is that A� is always convex.
More speci�c properties of A� depend on the nature of the exponential family, as summarized in
the following:

Proposition 8. The dual function A� is always convex and lower semi-continuous. Moreover, in

a minimal representation:

(a) A� is di�erentiable on intM, and rA�(�) = ��1(�).

(b) A� is strictly convex.

(c) For any sequence f�ng contained in intM and approaching the boundary bdM, we have

limn!+1 krA�(�n)k = +1.

Remarks: This result is analogous to the earlier Proposition 2, in that the conditions stated
ensure the essential smoothness of the dual function A� in a minimal representation. The bound-
ary behavior of rA� can be veri�ed explicitly for the examples shown in Table 2, for which we
have closed form expressions for A�. For instance, in the Bernoulli case, we have M = [0; 1] and
jrA�(�)j = j log[(1��)=�]j, which tends to in�nity as �! 0+ or �! 1�. Similarly, in the Poisson
case, we have M = (0;+1) and jrA�(�)j = j log �j, which tends to in�nity as � tends to the
boundary point 0.

Despite the desirable properties guaranteed by Proposition 8, the function A� presents sub-
stantial computational challenges. Indeed, both operations in the decomposition of A� given in
Figure 11 are troublesome. First of all, the inverse image ��1(�) of the mean parameter mapping,
while well-de�ned mathematically, does not usually have a closed form expression. It is typically
necessary to resort to iterative methods, such as iterative proportional �tting or generalized it-
erative scaling [e.g., 28, 27], in order to compute this mapping. In any case, these algorithms
presuppose that it is possible to perform exact inference, which is the problem that we are trying
to solve in the �rst place. Second, even if we were able to compute a parameter �(�) 2 ��1(�),
there remains the task of computing the entropy H(p(x; �(�)), which is not possible in general for
a large problem.

To parallel our earlier discussion of M, we now turn to two important cases where A� can be
characterized in closed form, even for large problems.
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4.2.2 Gaussian distributions

Consider the case of a multivariate Gaussian random vector x, discussed previously in Section 4.1.2.
It is well-known [23] that the Gaussian entropy is 1

2 log det cov(x) +
n
2 log 2�e, where cov(x) is the

n � n covariance matrix of x. As originally de�ned in equation (34), let W (�) be the matrix of
mean parameters associated with x:

W (�) =

�
1 zT (�)

z(�) Z(�)

�
: (42)

Applying the Schur complement formula [54] yields detW (�) = det[Z(�)�z(�)zT (�)] = det(cov(x)),
from which we conclude that

A�Gauss(�) = �
1

2
log detW (�)�

n

2
log 2�e; (43)

valid for all � 2 MGauss. (To understand the negative signs, recall from Theorem 2 that A� is
equal to negative entropy for � 2 MGauss.) Combining this exact expression for A�Gauss with our
characterization ofMGauss from Proposition 6 leads to

AGauss(�) = sup
W (�)�0; [W (�)]11=1

�
hhU(�); W (�)ii+

1

2
log detW (�) +

1

2
log 2�e

	
; (44)

which corresponds to the variational principle (32) specialized to the Gaussian case.
IfW (�) � 0 were the only constraint, then, using the fact that r log detW =W�1 for any sym-

metric positive matrixW , the optimal solution to problem (44) would simply beW (�) = �2[U(�)]�1.
Accordingly, if we enforce the constraint [W (�)]11 = 1 using a Lagrange multiplier �, then it fol-
lows from the Karush-Kuhn-Tucker conditions [8] that the optimal solution will assume the form
W (�) = �2[U(�) + ��E11]

�1, where �� is the optimal setting of the Lagrange multiplier and E11

is an (n + 1) � (n + 1) matrix with a one in the upper left hand corner, and zero in all other
entries. Finally, using the standard formula for the inverse of a block-partitioned matrix [54], it is
straightforward to verify that the blocks in the optimal W (�) are related to the blocks of U(�) by
the relations:

Z(�)� z(�)zT (�) = �2[Z(�)]�1 (45a)

z(�) = �[Z(�)]�1 z(�) (45b)

(The multiplier �� turns out not to be involved in these particular blocks.) In order to interpret
these relations, it is helpful to return to the de�nition of U(�) given in equation (17), and the
Gaussian density of equation (18). In this way, we see that equation (45a) corresponds to the
fact10 that the covariance matrix is the inverse of the precision matrix, whereas equation (45b)
corresponds to the normal equations for the mean z(�) of a Gaussian. Thus, as a special case
of the general variational principle (32), we have re-derived the familiar equations for Gaussian
inference.

4.2.3 Tree-structured problems

We now return to the case of tree-structured multinomial distributions, discussed previously in
Section 4.1.3. Another consequence of the junction tree representation is that A� has a closed-
form expression for any distribution de�ned by a junction tree. The case of an ordinary tree

10The factor of negative two in equation (45a) arises due to the exponential parameterization of the multivariate
Gaussian used in equation (18).
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T = (V;E(T )) suÆces to illustrate. In the canonical overcomplete representation of equation (38),
the mean parameters � = f�s; �stg correspond to local marginals associated with single nodes and
edges. In particular, we make use of the local marginal functions �s(xs) and �st(xs; xt) de�ned in
equation (40).

By a special case of the junction tree decomposition (9), any tree-structured distribution fac-
torizes in terms of the local marginal distributions as follows:

p(x) =
Y
s2V

�s(xs)
Y

(s;t)2E(T )

�st(xs; xt)

�s(xs)�t(xt)
: (46)

Using the de�nition of Boltzmann-Shannon entropy (24) and Theorem 2(a), this factorization leads
immediately to an explicit form for the dual function, valid for all � 2 MARG(T ):

A�tree(�) = �
X
s2V

Hs(�s) +
X

(s;t)2E(T )

Ist(�st): (47)

Here Hs and Ist are, respectively, single node entropy and mutual information terms:

Hs(�s) := �
X
xs

�s(xs) log �s(xs); Ist(�st) :=
X
xs;xt

�st(xs; xt) log
�st(xs; xt)

�s(xs)�t(xt)
: (48)

Again, it is worth combining this expression with our characterization of the marginal polytope
MARG(T ) from Example 8. In this way, we obtain the following tree-structured form of the general
variational principle (32):

max
�2MARG(T )

�
h�; �i+

X
s2V

Hs(�s)�
X

(s;t)2E(T )

Ist(�st)
	
: (49)

Note that this problem has a simple structure: the cost function is concave and di�erentiable, and
the constraint set MARG(T ) is a polytope speci�ed by a small (O(n)) number of constraints. In
fact, we will establish, as a corollary of our analysis of the Bethe approximation in Section 6, that
the sum-product updates (7) are a Lagrangian-based method for solving problem (49).

In overview, we have seen how the general variational principle (32) takes explicit and sim-
ple forms for multivariate Gaussians on arbitrary graphs, and discrete random vectors on tree-
structured graphs. The perspective given here clari�es that inference in such models is relatively
easy because the underlying variational problem has simple structure. In the following sections,
we demonstrate how the Gaussian and tree-structured characterizations ofM and A�, though pre-
sented as exact representations in the preceding sections, also play an important role in approximate
inference.

5 Mean �eld theory

This section is devoted to a discussion of mean �eld methods, which are classical techniques in
statistical physics [e.g., 83, 6, 20]. From the perspective of this paper, mean �eld theory is based
on the variational principle of equation (32), but entails imposing limitations on the optimization.
More speci�cally, as discussed in Section 4, there are two fundamental diÆculties associated with
the variational principle (32): the nature of the constraint set M, and the lack of an explicit
form for the dual function A�. Mean �eld theory entails limiting the optimization to a subset of
distributions for which A� is relatively easy to characterize. Throughout this section, we will refer
to a distribution with this property as a tractable distribution.
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5.1 Tractable families

Let H represent a subgraph of G over which it feasible to perform exact calculations (e.g., a graph
with small treewidth). We refer to H as a tractable subgraph. In an exponential formulation, the
set of all distributions that respect the structure of H can be represented by a linear subspace of
exponential parameters. More speci�cally, letting I(H) be the subset of indices associated with
cliques in H, the set of exponential parameters corresponding to distributions structured according
to H is given by:

E(H) := f� 2 � j �� = 0 8 � 2 InI(H)g: (50)

Note that E(H) is an aÆne subset, or an e-at manifold in the sense of information geometry [4].
We consider some examples to illustrate:

Example 9 (Tractable subgraphs). The simplest (non-trivial) instance of a tractable sub-
graph is the completely disconnected graph H0 = (V; ;). Permissible parameters belong to the
subspace E(H0) := f� 2 � j �st = 0 8 (s; t) 2 Eg, where �st refers to the collection of exponen-
tial parameters associated with edge (s; t). The associated distributions are of the product form
p(x; �) =

Q
s2V p(xs; �s), where �s refers to the collection of exponential parameters associated with

vertex s.
To obtain a more structured approximation, one could choose a spanning tree T = (V;E(T )).

In this case, we are free to choose the exponential parameters corresponding to vertices and edges
in T , but we must set to zero any exponential parameters corresponding to edges not in the tree.
Accordingly, the subspace of tree-structured distributions is given by E(T ) = f� j �st = 0 8 (s; t) =2
E(T )g. }

For a given subgraph H, consider the set of all possible mean parameters that are realizable by
tractable distributions:

Mtract(G;H) := f� 2 Rd j � = E � [�(x)] for some � 2 E(H)g: (51)

The notationMtract(G;H) indicates that mean parameters in this set correspond to potentials on
the graph G, but that they must be realizable by a tractable distribution|i.e., one that respects
the structure of H. Since any � that arises from a tractable distribution is certainly a valid mean
parameter, the inclusion Mtract(G;H) �M(G) always holds. In this sense, Mtract is an inner

approximation to the setM of realizable mean parameters.

5.2 Optimization and lower bounds

We now have the necessary ingredients to develop the mean �eld approach to approximate inference.
Let p(x; �) denote the target distribution that we are interested in approximating. The basis of the
mean �eld method is the following fact: any valid mean parameter speci�es a lower bound on the
log partition function.

Proposition 9 (Mean �eld lower bound). For any � 2 riM, we have the following lower

bound:

A(�) � h�; �i �A�(�): (52)

Proof. In the context of our exposition, the validity of this lower bound is an immediate consequence
of the variational principle (32). Alternatively, it can be established via Jensen's inequality. For
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any mean parameter � 2 riM, Theorem 1 guarantees the existence of some �(�) 2 ��1(�). Using
the distribution p(x; �(�)), we write:

A(�) = log

Z
Xn

p(x; �(�))
exp

�
h�; �(x)i

	
p(x; �(�))

�(dx)

(a)

�

Z
Xn

p(x; �(�))
h
h�; �(x)i � log p(x; �(�))

i
�(dx)

(b)
= h�; �i �A�(�):

In this argument, step (a) follows from Jensen's inequality [e.g., 53], whereas step (b) follows from
the relations E �(�) [�(x)] = �, and A�(�) = �H(p(x; �(�))) from Theorem 2(a).

Since the dual function A� typically lacks an explicit form, it is not possible, at least in general,
to compute the lower bound (52). The mean �eld approach circumvents this diÆculty by restricting
the choice of � to a tractable subsetMtract(G;H), for which the dual function has an explicit form
A�H . As long as � belongs toMtract(G;H), then the lower bound (52) will be computable.

Of course, for a non-trivial class of tractable distributions, there are many such bounds. The
goal of the mean �eld method is the natural one: �nd the best approximation �MF, as measured
in terms of the tightness of the bound. This optimal approximation is speci�ed as the solution of
the optimization problem

sup
�2Mtract(G;H)

�
h�; �i �A�H(�)

	
: (53)

The optimal value speci�es a lower bound on A(�), and it is (by de�nition) the best one that can
be obtained by using a distribution from the tractable class.

An important alternative interpretation of the mean �eld solution (53) is as minimizing the
Kullback-Leibler divergence between the approximating (tractable) distribution and the target
distribution. In particular, for a given mean parameter � 2 Mtract(G;H), the di�erence between
the log partition function A(�) and the quantity h�; �i �A�H(�) to be maximized is equivalent to

D(� k �) = A(�) +A�H(�)� h�; �i;

corresponding to the mixed form of the Kullback-Leibler divergence de�ned in equation (30). On
the basis of this relation, it can be seen that solving the variational problem (53) is equivalent to
minimizing the KL divergence D(� k �) subject to the constraint that � 2 Mtract(G;H). Note
that this problem entails a minimization over mean parameters with respect to the �rst argument
of the Kullback-Leibler divergence. As a consequence, the mean �eld procedure is an operation
that di�ers in fundamental ways from the I-projection with KL divergences [3, 26].

5.2.1 Naive mean �eld updates

The naive mean �eld approach corresponds to choosing a fully factorized or product distribution
in order to approximate the original distribution. The naive mean �eld updates are a particular
set of recursions for �nding a stationary point of the resulting optimization problem.

Example 10. As an illustration, we derive the naive mean �eld updates for the Ising model
introduced in Example 3. Letting H0 denote the fully disconnected graph (i.e., no edges), the
tractable set Mtract(G;H0) consists of all mean parameters f�s; �stg that arise from a product
distribution. Explicitly, in this binary case, we have

Mtract(G;H0) := f(�s; �st) j 0 � �s � 1; �st = �s �t g:
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Moreover, the negative entropy of a product distribution over binary random variables decomposes
into the sum A�H0

(�) =
P

s2V

�
�s log�s + (1 � �s) log(1 � �s)

�
. Accordingly, the associated naive

mean �eld problem takes the form max�2Mtract(G;H0)

�
h�; �i �A�H0

(�)
	
. In this particular case, it

is straightforward to eliminate �st by replacing it by the product �s�t. Doing so leads to a reduced
form of the problem:

max
f�sg2[0;1]n

�X
s2V

�s�s +
X

(s;t)2E

�st�s�t �
X
s2V

�
�s log�s + (1� �s) log(1� �s)

��
(54)

Let F denote the function of � within curly braces in equation (54). It can be seen that for any
s 2 V , it is strictly concave in �s when all the other coordinates are held �xed. Moreover, it is
straightforward to show that the maximum over �s with �t; t 6= s �xed is attained in the interior
(0; 1), and can be found by taking the gradient and setting it equal to zero. Doing so yields the
following update for �s:

�s  �
�
�s +

X
t2N (s)

�st�t
�
; (55)

where �(z) := [1 + exp(�z)]�1 is the logistic function. Applying equation (55) iteratively to
each node in succession amounts to performing coordinate ascent of the mean �eld variational
problem (54). Thus, we have derived the update equation presented earlier in equation (12). }

Similarly, it is straightforward to apply the naive mean �eld approximation to other types of
graphical models, as we illustrate for a multivariate Gaussian.

Example 11 (Gaussian mean �eld). The mean parameters for a multivariate Gaussian are of
the form �s = E [xs ], �ss = E [x2s ] and �st = E [xsxt] for s 6= t. Using only Gaussians in product
form, the set of tractable mean parameters takes the form

Mtract(G;H0) = f� 2 Rd j �st = �s�t 8s 6= t; �ss � �
2
s > 0 g:

As with naive mean �eld on the Ising model, the constraints �st = �s�t for s 6= t can be imposed
directly, thereby leaving only the inequality �ss � �2s > 0 for each node. The negative entropy
of a Gaussian in product form can be written as A�Gauss(�) = �

Pn
s=1

1
2 log(�ss � �

2
s)�

n
2 log 2�e.

Combining A�Gauss with the constraints leads to the naive MF problem for a multivariate Gaussian:

sup
f(�s;�ss) j �ss��2s>0g

�
hhU(�); W (�)ii+

nX
s=1

1

2
log(�ss � �

2
s) +

n

2
log 2�e

	
:

Here it should be understood that any terms �st; s 6= t contained in W (�) are replaced with the
product �s�t.

Taking derivatives with respect to �ss and �s and re-arranging yields the stationary conditions
1

2(�ss��2s)
= ��ss and

�s
2(�ss��2s)

= �s+
P

t2N (s) �st�t. Since �ss < 0, we can combine both equations

into the update �s  �
1
�ss

�
�s +

P
t2N (s) �st�t

	
. The resulting algorithm is equivalent, in fact, to

the Gauss-Jacobi method for solving the quadratic system associated with the Gaussian problem.
Therefore, under suitable conditions the algorithm will converge [30], in which case the algorithm
computes the correct mean vector [�1 : : : �n]. }
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5.2.2 Structured mean �eld

Of course, the essential principles underlying the mean �eld approach are not limited to fully
factorized distributions. More generally, we can consider classes of tractable distributions that
incorporate additional structure. This structured mean �eld approach was �rst proposed by Saul
and Jordan [94], and further developed by various researchers [e.g., 117].

Here we discuss a general form of the updates for an approximation based on an arbitrary
subgraph H of the original graph G. We make no claims as to the practical advantages of these
updates; rather, the main goal here is the conceptual one of understanding the structure of the
solution. Depending on the particular context, other types of updates [117, 56] or techniques from
nonlinear programming may be more suitable for solving the mean �eld problem (53).

Let I(H) be the subset of indices corresponding to suÆcient statistics associated with H, and
let �(H) := f�� j � 2 I(H)g be the associated set of mean parameters. The mean �eld problem
has the following key properties:

(a) the subvector �(H) can be an arbitrary member ofM(H), the set of realizable mean param-
eters de�ned by the subgraph H.

(b) the dual function A�H actually depends only on �(H), and not on mean parameters �� for
indices � in the complement Ic(H) := I(G)nI(H).

Of course, mean parameters �� with � 2 Ic(H) do play a role in the problem; in particular, they
arise within the linear term h�; �i. Moreover, each mean parameter �� is constrained in a nonlinear
way by the choice of �(H). Accordingly, for each � 2 Ic(H), we write �� = g�(�(H)) for some
nonlinear function g� , of which particular examples are given below. Based on these observations,
the optimization problem (53) can be rewritten in the form

sup
�2Mtract(G;H)

�
h�; �i �A�H(�)

	
=

sup
�(H)2M(H)

� X
�2I(H)

���� +
X

�2Ic(H)

��g�(�(H)) �A�H(�(H))
	
: (56)

On the LHS, the optimization takes place over vector � 2 Mtract(G;H), which is of the same
dimension as � 2 � � Rd . The optimization on the RHS, in contrast, takes place over a lower-
dimensional vector �(H) 2M(H).

To illustrate this transformation, consider the case of naive mean �eld for the Ising model,
where H � H0 is the completely disconnected graph. In this case, each edge (s; t) 2 E corresponds
to an index in the set Ic(H0); moreover, for any such edge, we have gst(�(H0)) = �s�t. Since H0

is the completely disconnected graph, M(H0) is simply the hypercube [0; 1]n. Therefore, for this
particular example, the RHS of equation (56) is equivalent to equation (54).

Returning to the general case, let F (�(H)) denote the cost function on the RHS of equation (56).
Taking derivatives with respect to some �� with � 2 I(H) yields:

@F

@��
(�(H)) = �� +

X
�2I(G)nI(H)

��
@g�
@��

(�(H))�
@A�H
@��

(�(H)): (57)

From Proposition 8, the derivative
@A�

H

@��
de�nes the inverse moment mapping (i.e., from mean

parameters to exponential parameters). Consequently, this derivative term is equal to the expo-
nential parameter associated with ��(H), which we denote by �(H). We then set @F

@��
to zero and
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re-arrange to obtain a generalized MF update:

�(H)  �� +
X

�2I(G)nI(H)

��
@g�
@��

(�(H)): (58)

After any such update, it is then necessary to adjust all of the mean parameters �Æ(H) that depend
on �(H) (e.g., via junction tree updates), so that global consistency is maintained.

Let us check that equation (58) reduces appropriately to the naive mean �eld updates (55),
when H = H0 is the completely disconnected graph. In particular, for product distributions on the
Ising model, we have gst(�(H0)) = �s�t for all edges (s; t), so that

@gst
@��

=

8><>:
�t if � = s

�s if � = t

0 otherwise:

Thus, equation (58) is equivalent to s(H0)  �s +
P

t2N (s) �st�t. In the product distribution
de�ned on H0, only the mean parameter �s depends on s(H0) (and vice versa); more concretely,
s(H0) and �s are linked by the logistic transform. Consequently, �s is updated by applying the
logistic function �(�), which recovers equation (55).

Example 12 (Structured MF for factorial HMMs). To provide a more interesting example
of the updates (58), consider a factorial hidden Markov model, as described in Ghahramani and
Jordan [47]. Figure 12(a) shows the original model, which consists of a set of M Markov chains
(M = 3 in this diagram), which share at each time a common observation (shaded nodes). Although
the separate chains are a priori independent, the common observation induces an e�ective coupling
between all nodes at each time. Thus, an equivalent model is shown in panel (b), where the dotted
ellipses represent the induced coupling of each observation. A natural choice of approximating

g�

�� �Æ

(a) (b) (c)

Figure 12. Structured mean �eld approximation for a factorial HMM. (a) Original model consists of
a set of hidden Markov models (de�ned on chains), coupled at each time by a common observation.
(b) An equivalent model, where the ellipses represent interactions among all nodes at a �xed time,
induced by the common observation. (c) Approximating distribution formed by a product of chain-
structured models. Here �� and �Æ are the sets of mean parameters associated with the indicated
vertex and edge respectively.

distribution in this case is based on the subgraph H consisting of the decoupled set of M chains,
as illustrated in panel (c).

Now consider the nature of the quantities g�(�(H)), which arise in the cost function (56).
In this case, any function g� will be de�ned on some subset of M nodes that are coupled at a
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given time slice (e.g., see ellipse in panel (c)). Note that this subset of nodes is independent with
respect to the approximating distribution. Therefore, the function g�(�(H)) will decouple into a
product of terms of the form fi(f�i(H)g), where each fi is some function of the mean parameters
f�ig � f�i(H)g associated with node i = 1; : : : ;M in the relevant cluster. For instance, if the
factorial HMM involved binary variables and M = 3 and � = (stu), then gstu(�) = �s�t�u.

The decoupled nature of the approximation yields valuable savings on the computational side.
In particular, all intermediate quantities necessary for the updates can be calculated by applying
the forward-backward algorithm (i.e., the sum-product updates as an exact method) to each chain
separately. This decoupling also has important consequences for the structure of any mean �eld
�xed point. In particular, it can be seen that no term g�(�(H)) will ever depend on mean parameters
associated with edges in any of the chains (e.g., �Æ in panel (c)). Otherwise stated, the partial

derivative
@g�
@�Æ

is equal to 0 for all � 2 I(G)nI(H). As an immediate consequence of these derivatives
vanishing, the mean �eld exponential parameter Æ(H) remains equal to to �Æ for all iterations of
the updates (58). Any intermediate junction tree steps to maintain consistency will not a�ect
Æ(H) either. We conclude that it is, in fact, optimal to simply copy the edge potentials �Æ from
the original distribution onto each of the edges in the structured mean �eld approximation. In this
particular form of structured mean �eld, only the single node potentials will be altered from their
original setting. This conclusion is sensible, since the structured approximation (c) is a factorized
approximation on a set of M chains, the internal structure of which is fully preserved in the
approximation. }

In addition to structured mean �eld, there are various other extensions to naive mean �eld,
which we mention only in passing here. A large class of techniques, including linear response
theory and the TAP method [e.g., 87, 59, 81], seek to improve the mean �eld approximation by
introducing higher-order correction terms. Typically, the lower bound on the log partition function
is not usually preserved by these higher-order methods. Leisinck and Kappen [70] demonstrated
how to generate tighter lower bounds based on higher-order expansions.

5.3 Non-convexity of mean �eld

An important fact about the mean �eld approach is that the variational problem (53) may be non-
convex, so that there may be local minima, and the mean �eld updates can have multiple solutions.
Here we explore the source of the non-convexity, which can be understood in several di�erent ways.

Consider �rst the representation of the mean �eld problem on the RHS of equation (56). The
constraint set in this formulation|namely,M(H)|is certainly convex. The cost function consists
of a (concave) entropy term �A�H(�) and a set of terms

P
�2I(H) ���� that are linear in �. In

contrast, the terms
P

�=2I(H) ��g�(�) involve the nonlinear functions g�, so that they may introduce
non-convexity. For example, in the case of naive mean �eld on the Ising model, these functions are
monomials of the form �s�t. Consequently, the overall cost function in equation (54) includes a
quadratic form in f�vg, so that it need not be convex in general.

In these simple cases, it can be seen explicitly how the nonlinear functions g�(�) lead to non-
convexity in the MF problem. In order to gain a more general and geometric understanding of this
non-convexity, let us return to the form of mean �eld variational problem given in equation (53).
In this formulation, observe that the function to be maximized|namely, h�; �i�A�H(�)|is always
a concave function of �. Consequently, the source of any non-convexity (in the formulation (53))
must lie in the nature of the constraint setMtract(G;H). To provide some geometric intuition for
this set, let us return again to naive mean �eld on the Ising model.
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Example 13 (Non-convexity of Mtract). Consider a pair of binary variables on the (trivial)
graph G consisting of a single edge. In the standard minimal representation, there are three
mean parameters|�1, �2 and �12. From the development of Example 7, the marginal polytope
M(G) � MARG(G) is fully characterized by the four inequalities 1 + �12 � �1 � �2 � 0, �12 � 0,
and �s � �12 � 0 for s = 1; 2. So as to facilitate visualization, consider a particular projection of
this polytope|namely, that corresponding to intersection with the hyperplane �1 = �2. In this
case, the four inequalities reduce to three simpler ones|namely:

�12 � 2�1 � 1; �12 � 0; �1 � �12: (59)

Figure 13 shows the resulting two-dimensional polytope, shaded in gray. Let us now consider the

(0; 0)

(1; 1)

(12 ; 0)

�1 = �12

�12 = 2�1 � 1

�12

�1

�12 = �21

Figure 13. Non-convexity of the set of fully factorized marginals for a pair of binary variables.
The gray area shows the polytope de�ned by equation (59), corresponding to the intersection of
M(G) with the hyperplane �1 = �2. The (non-convex) quadratic curve �12 = �21 corresponds to the
intersection of �1 = �2 with the set Mtract(G;H0) of fully factorized marginals.

intersection between �1 = �2 and the set of factorized marginals Mtract(G;H0). It is easy to
see that this intersection is given by the equation �12 = �21. This quadratic curve lies within the
two-dimensional polytope described by the equations (59), as illustrated in Figure 13. Since this
quadratic set is not convex, this establishes thatMtract is not convex either. (IfMtract were convex,
then its intersection with any hyperplane would also be convex.) }

Equipped with intuition from this example, we can formulate a result that characterizes the
non-convexity of mean �eld approximations more generally:

Proposition 10 (Non-convexity). Suppose that clM(G) contains no full lines. Consider a

set of tractable mean parameters clMtract(G;H) ( clM(G) that contains all extreme points and

directions of clM(G). Then Mtract(G;H) is a non-convex set.

Proof. The assumption that clM(G) contains no full lines guarantees that it can be represented as
the convex hull of its extreme points and directions (Thm. 18.5, [92]). Since clMtract(G;H) con-
tains these extreme points and directions by assumption, its convex hull must be equal to clM(G).
Therefore, clMtract(G;H) cannot be convex, since it is properly contained within clM(G). (If it
were convex, then clMtract(G;H) = conv clMtract(G;H) = clM(G), which is a contradiction.)

The assumptions underlying Proposition 10 hold in most applications of mean �eld. Certainly,
the set of tractable mean parameters is invariably a subset of clM(G), since we are trying to ap-
proximate a model assumed to be intractable. Moreover, the set clMtract(G;H) typically contains
the extreme points and directions of clM(G). Let us consider some examples to illustrate:
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Multinomial: In this case, Proposition 7 ensures that clM(G) = clMARG(G) is bounded, and
so contains no full lines or extreme directions. Its extreme points are simply the vertices �e, as
illustrated below in Figure 14. Whether clM(G;H) is realized by product distributions (as in

�e

MARG(G)

Mtract(G;H)

Figure 14. The setMtract(G;H) of mean parameters that arise from tractable distributions is a non-
convex inner bound on M(G). Illustrated here is the multinomial case where M(G) � MARG(G)
is a polytope. The circles correspond to mean parameters that arise from delta distributions, and
belong to both M(G) and Mtract(G;H).

naive mean �eld) or by more structured distributions, it will contain these vertices (since delta
distributions are certainly product distributions). Therefore, the setMtract(G;H) is a non-convex

inner approximation to the polytope MARG(G).

Gaussian case: In this case, it is clear that clMGauss contains no full lines (since, e.g., �ss =
E [x2s ] is always non-negative). It can also be veri�ed that although clMGauss contains half-lines,
none of them are extreme directions. Lastly, it can be shown that the extreme points of clMGauss

correspond to the mean parameters �e such that the matrix W (�e) is rank one. Such mean pa-
rameters are realized by delta distributions (i.e., the limit of a Gaussian as the covariance shrinks
to zero), so that they will also be realized by typical sets of tractable distributions.

It should be noted that the non-convexity of the mean �eld approximation has important con-
sequences. First, there are often multiple local minima, so that in practical terms, the result of
applying mean �eld updates can be sensitive to the initial conditions. Second, the mean �eld
method can exhibit \spontaneous symmetry breaking", wherein the mean �eld approximation is
asymmetric even though the original problem is perfectly symmetric; see Jaakkola [56] for an il-
lustration of this phenomenon. Despite this non-convexity, the mean �eld approximation becomes
exact for certain types of models as the number of nodes n grows to in�nity (i.e., in the \thermo-
dynamic" limit) [6, 121]. Such exact cases include the ferromagnetic Ising model (i.e., �st > 0 for
all (s; t) 2 E), de�ned either on the complete graph Kn, or on the in�nite-dimensional lattice (i.e.,
Zd as d! +1).

5.4 Parameter estimation and variational EM

In this section, we consider the problem of parameter estimation, focusing speci�cally on the case in
which a subset of variables are observed whereas others are unobserved (i.e., \latent" or \hidden").
It is this setting in which the expectation-maximization (EM) algorithm provides a general approach
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to maximum likelihood parameter estimation [31]. Although the EM algorithm is often presented
as an alternation between an expectation step (E step) and a maximization step (M step), it is also
possible to take a variational perspective on EM, and view both steps as maximization steps [25, 78].
Such a perspective illustrates how variational inference algorithms can be used in place of exact
inference algorithms in the E step within the EM framework, and clari�es how the mean �eld
approach is particularly appropriate for this task.

A brief outline of our presentation in this section is as follows. In the exponential family setting,
the E step reduces to the computation of expected suÆcient statistics|i.e., mean parameters.
As we have seen, the variational framework provides a general class of methods for computing
approximations of mean parameters. This observation suggests a general class of variational EM
algorithms, in which the approximation provided by a variational inference algorithm is substituted
for the mean parameters in the E step. In general, as a consequence of making such a substitution,
one loses the guarantees that are associated with the EM algorithm. In the speci�c case of mean
�eld algorithms, however, a convergence guarantee is retained: in particular, the algorithm will
converge to a stationary point of a lower bound for the likelihood function.

More precisely, suppose that the set of random variables is partitioned into observed variables y
and unobserved variables x, and that the probability model is a joint exponential family distribution
for (y;x):

p(y;x; �) = exp
�
h�; �(y;x)i � A(�)

	
: (60)

Given an observation y, we can also form the conditional distribution

p(x j y; �) =
expfh�; �(y;x)igR

Xn expfh�; �(y;x)ig�(dx)
:= expfh�; �(y;x)i � Ay(�)

	
; (61)

where the second equality de�nes the log partition function Ay associated with the conditional.
Thus, we see the conditional is also an exponential family distribution, so that Theorem 2 provides
the variational representation

Ay(�) = sup
�2My

�
h�; �i �A�y(�)

	
; (62)

where the conjugate dual is also de�ned variationally:

A�y(�) := sup
�2�
fh�; �i �Ay(�)g: (63)

In equation (62), My is de�ned as the set of possible expectations of �(y;x), where x is random
and y is held �xed.

The incomplete log likelihood is the log probability of the observed data y. From equation (60)
and the de�nition of Ay, it is easy to verify that this log likelihood can be written as a di�erence
of log partition functions:

log p(y; �) = Ay(�)�A(�): (64)

From the variational representation (62) (i.e., from Fenchel's inequality), we obtain the lower bound
Ay(�) � h�; �i �A�y(�), valid for any � 2 My, and hence a lower bound for the incomplete log
likelihood:

log p(y; �) � h�; �i �A�y(�)�A(�) (65a)

:= L(�; �); (65b)
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where the �nal line de�nes L(�; �).
With this set-up, the EM algorithm is coordinate ascent in L:

(E step) �(t+1) = argmax�2My
L(�; �(t)) (66a)

(M step) �(t+1) = argmax�2� L(�
(t+1); �): (66b)

To see the correspondence with the traditional presentation of the EM algorithm, note �rst that
the maximization underlying the E step reduces to

max
�2My

fh�; �(t))i �A�y(�)g; (67)

which by (62) is equal to Ay(�
(t)), with the maximizing argument equal to the mean parameter

that is dually coupled with �(t). Thus the vector �(t+1) that is computed by maximization in the
�rst argument of L(�; �) is exactly the expectation of the suÆcient statistics given the current
parameter value �(t), a computation that is traditionally referred to as the E step. Moreover, the
maximization underlying the M step reduces to

max
�2�

fh�(t+1); �i �A(�)g; (68)

which is simply a maximum likelihood problem based on the expected suÆcient statistics �(t+1)|
traditionally referred to as the M step.

Moreover, given that the value achieved by the E step on the right-hand-side of (67) is equal
to Ay(�

(t)), the inequality in (65a) becomes an equality by (64). Thus, after the E step, the lower
bound L(�; �(t)) is actually equal to the incomplete log likelihood log p(y; �(t)), and the subsequent
maximization of L with respect to � in the M step is guaranteed to increase the log likelihood as
well.

What if it is infeasible to compute the expected suÆcient statistics? One possible response to
this problem is to make use of a variational relaxation for the E step. In particular, we compute

(Variational E step) �(t+1) = argmax�2Mtract(G;H) L(�; �
(t)); (69)

where Mtract(G;H) is the set of dual parameters associated with a tractable subgraph. The
variational E step thus reduces to

max
�2Mtract(G;H)

�
h�; �(t)i �A�x;H(�)

	
; (70)

which is exactly the mean �eld approximation. The variational E step thus involves replacing
expected suÆcient statistics with the approximate expected suÆcient statistics obtained by a mean
�eld algorithm. The resulting variational EM algorithm is a still coordinate ascent algorithm for
L. However, given that the E step no longer closes the gap between L and the incomplete log
likelihood, it is no longer the case that the algorithm necessarily goes uphill in the latter quantity.

In the following sections of the paper, we present a number of variational relaxations that
can be viewed as extensions of mean �eld methods. It is tempting, and common in practice, to
substitute the approximate expected suÆcient statistics obtained from these relaxations in the place
of the expected suÆcient statistics in de�ning a \variational EM algorithm." Such a substitution is
particularly tempting given that these methods can yield better approximations to mean parameters
than the mean �eld approach. Care must be taken in working with these algorithms, however,
because the underlying relaxations do not generally involve lower bounds on the log partition
function. Consequently, the connection to EM is thus less clear than in the mean �eld case, and
the algorithm is not guaranteed to maximize a lower bound.
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6 Bethe entropy approximation and sum-product algorithm

In this section, we turn to another important message-passing algorithm for approximate inference,
known either as belief propagation, or the sum-product algorithm. In Section 2.5.1, we described
the use of the sum-product algorithm for trees, in which context it is guaranteed to converge and
perform exact inference. When applied to graphs with cycles, there are no such guarantees, but it
is nonetheless widely used to compute approximate marginals. In this section, we will describe the
variational interpretation of the sum-product updates, �rst elucidated by Yedidia, Freeman and
Weiss [122]. While mean �eld and sum-product are similar as message-passing algorithms, their
respective variational interpretations are fundamentally di�erent. In particular, whereas the essence
of mean �eld is to restrict optimization to a limited class of distributions for which the negative
entropy and mean parameters can be characterized exactly, the the sum-product algorithm, in
contrast, is based on enlarging the constraint set and approximating the entropy function.

6.1 Basic ingredients

The standard Bethe approximation applies to an undirected graphical model with potential func-
tions involving at most pairs of variables; we refer to any such model as a pairwise Markov random

�eld. In principle, by selectively introducing auxiliary variables, any undirected graphical model
can be converted into an equivalent pairwise form to which the Bethe approximation can be applied;
see Appendix C for details of this procedure. It can also be useful to treat higher order interactions
directly, which can be done using the approximations discussed in Section 7.

For the current section, let us assume that the given model is a pairwise Markov random �eld
de�ned by a graphG = (V;E). Although the Bethe approximation can be developed more generally,
we also limit our discussion to multinomial random vectors, for which each xs takes values in the
space Xs = f0; 1; : : : ;ms�1g. In this section, we will use the canonical overcomplete representation
which, as previously described in equation (38), is based on the indicator functions fIj(xs); j 2 Xsg
for s 2 V and fIjk(xs; xt); (j; k) 2 Xs � Xtg for (s; t) 2 E. In this representation, any pairwise
Markov random �eld has the form:

p(x; �) / exp
�X
s2V

�s(xs) +
X

(s;t)2E

�st(xs; xt)
	
; (71)

where we have used the convenient shorthand

�s(xs) :=
X
j2Xs

�s;jIj(xs); �st(xs; xt) :=
X

(j;k)2Xs�Xt

�st;jkIjk(xs; xt): (72)

The associated marginal functions �s(xs) and �st(xs; xt) are de�ned analogously to �s(xs) and
�st(xs; xt), as in equation (40). Finally, we denote the marginal polytope associated with this
exponential representation by MARG(G).

6.1.1 Bethe entropy approximation

As discussed at length in Section (40), the negative entropy A�, as a function of only the mean
parameters �, typically lacks a closed form expression. We observed, moreover, that junction tree
theorem provides an important class of exceptions to this general rule. As a special case, for tree-
structured distributions, the function A� has a closed-form expression that is straightforward to
compute (see Section 4.2.3).
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In the tree case, the negative entropy A� decomposes into a sum of single node entropy and
edgewise mutual information terms, de�ned as follows:

Hs(�s) := �
X
xs

�s(xs) log �s(xs); (73a)

Ist(�st) :=
X
xs;xt

�st(xs; xt) log
�st(xs; xt)

�s(xs)�t(xt)
= Hs(�s) +Ht(�t)�Hst(�st): (73b)

Of course, the entropy of a distribution de�ned by a graph with cycles will not, in general,
decompose additively like a tree. Nonetheless, one can imagine using the sum of local terms as an
approximation to the entropy. Doing so yields the following Bethe approximation to the entropy
on a graph with cycles:

HBethe(�) :=
X
s2V

Hs(�s)�
X

(s;t)2E

Ist(�st): (74)

To be clear, HBethe(�) is an approximation to �A�(�). From our development in Section 4.2.3, we
know if that if the graph is tree-structured, then HBethe(�) = �A

�(�), so that the approximation
is exact.

Remark: An alternative form of the Bethe entropy approximation can be derived by using the
relation between mutual information and entropy given in equation (73b). In particular, expanding
the mutual information terms in this way, and then collecting all the single node entropy terms yields
HBethe(�) =

P
s2V (1 � ds)Hs(�s) +

P
(s;t)2E Hst(�st), where ds denotes the number of neighbors

of node s. This representation is the form of the Bethe entropy introduced by Yedidia et al. [122];
however, the form given in equation (74) turns out to be more convenient for our purposes.

6.1.2 Tree-based outer bound

Note that the Bethe entropy approximation HBethe is certainly well-de�ned for any � 2 MARG(G).
However, as discussed in Section 4.1.3, characterizing this polytope of realizable marginals is a very
challenging problem. Accordingly, a natural approach is to specify a subset of necessary constraints,
which leads to an outer bound on MARG(G).

Let �s(xs) and �st(xs; xt) be a set of candidate marginal distributions. In Example 8, we
considered the following constraint set:

LOCAL(G) = f � � 0 j
X
xs

�s(xs) = 1;
X
xs

�st(xs; xt) = �t(xt) g:

Although LOCAL(G) is an exact description of the marginal polytope for a tree-structured graph,
it is only an outer bound for graphs with cycles. (See Example 14 for a vector � 2 LOCAL(G)
that does not belong to MARG(G)). For this reason, our change in notation|i.e., from � to
�|is quite deliberate, with the goal of emphasizing that members � of LOCAL(G) need not be
realizable. We refer to members of LOCAL(G) as pseudomarginals. Note that the Bethe entropy
is also well-de�ned for any pseudomarginal in LOCAL(G).

Figure 15 provides an idealized illustration of the constraint set LOCAL(G), and its relation
to the exact marginal polytope MARG(G). By construction, LOCAL(G) is another polytope that
is a convex outer approximation to MARG(G). It is worthwhile contrasting with the non-convex
inner approximation used by a mean �eld approximation, as illustrated in Figure 14.
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LOCAL(G)

MARG(G)

Figure 15. An idealized illustration of the tree-based constraint set LOCAL(G) as an outer bound
on the marginal polytope MARG(G).

6.2 Bethe variational problem and sum-product

Combining the entropy approximation HBethe with the tree-based constraint set LOCAL(G) leads
to the Bethe variational problem:

max
�2LOCAL(G)

�
h�; �i+

X
s2V

Hs(�s)�
X

(s;t)2E

Ist(�st)
	
: (75)

Although ostensibly similar to a (structured) mean �eld approach, the Bethe variational problem
(BVP) is fundamentally di�erent in a number of ways. First, as discussed in Section 5, a mean
�eld method is based on an exact representation of the entropy, albeit over a limited class of
distributions. In contrast, with the exception of tree-structured graphs, the Bethe entropy is a
bona �de approximation to the entropy. For instance, it is not diÆcult to see that it can be
negative, which of course can never happen for an exact entropy. Second, the mean �eld approach
entails optimizing over an inner bound on the marginal polytope, which ensures that any mean �eld
solution is always globally consistent with respect to at least one distribution, and that it yields a
lower bound on the log partition function. In contrast, since LOCAL(G) is a strict outer bound on
the set of realizable marginals MARG(G), the optimizing pseudomarginals �� of the BVP may not
be globally consistent with any distribution.

6.2.1 Solving the Bethe variational problem

We now consider methods for solving the BVP. Observe that the set LOCAL(G) is a polytope
de�ned by O(n + jEj) constraints. A natural approach to solving the BVP, then, is to attach
Lagrange multipliers to these constraints, and �nd stationary points of the Lagrangian. The key
insight of Yedidia et al. [122] is that the sum-product updates (7) are a particular technique for
trying to �nd such Lagrangian stationary points.

Proposition 11 (Message-passing). For each xs 2 Xs, let �st(xs) be a Lagrange multiplier

associated with the constraint Cts(xs) = 0, where Cts(xs) := �s(xs)�
P

xt
�st(xs; xt). Consider the

partial Lagrangian corresponding to the Bethe variational problem (75):

L(� ;�) := h�; �i+
X
s2V

Hs(�s)�
X

(s;t)2E

Ist(�st) +
X

(s;t)2E

�X
xs

�ts(xs)Cts(xs) +
X
xt

�st(xt)Cst(xt)
�
:
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Then any �xed point of the sum-product updates speci�es a pair (��; ��) such that:

r�L(�
�;��) = 0; r�L(�

�;��) = 0 (76)

Proof. Note that this Lagrangian formulation is a partial one, because it assigns Lagrange multipli-
ers to the constraints Cts(xs) = 0, and deals with the normalization and non-negativity constraints
explicitly. Computing r�L(� ;�) and setting it to zero yields the relations:

log �s(xs) = c+ �s(xs) +
X

t2N (s)

�ts(xs) (77a)

log
�st(xs; xt)�P

xs
�st(xs; xt)

��P
xt
�st(xs; xt)

� = c0 + �st(xs; xt)� �ts(xs)� �st(xt): (77b)

Here c; c0 are constants that we are free to adjust in order to satisfy normalization conditions.11

The condition r�L(� ;�) is equivalent to Cts(xs) = 0. Using this consistency condition and
equation (77a), we can re-arrange equation (77b) to obtain:

log �st(xs; xt) = c+ �st(xs; xt) + �s(xs) + �t(xt) +
X

u2N (s)nt

�us(xs) +
X

u2N (t)ns

�ut(xt): (78)

So as to make explicit the connection to the sum-product algorithm, we de�ne messages in terms
of the Lagrange multipliers via Mts(xs) = exp(�ts(xs)). With this notation, we can then write
equivalent forms of equations (77a) and (78):

�s(xs) = � exp(�s(xs))
Y

t2N (s)

Mts(xs) (79a)

�st(xs; xt) = �0 exp
�
�st(xs; xt) + �s(xs) + �t(xt)

� Y
u2N (s)nt

Mus(xs)
Y

u2N (t)ns

Mut(xt) (79b)

Here �; �0 are positive constants chosen so that the pseudomarginals satisfy normalization condi-
tions. Note that �s and �st so de�ned are clearly non-negative.

To conclude, we need to adjust the Lagrange multipliers or messages so that the constraintP
xs
�st(xs; xt) = �s(xs) is satis�ed for every edge. Using equations (79a) and (79b) and performing

some algebra, the end result is

Mts(xs) = �
X
xt

exp
�
�st(xs; xt) + �t(xt)

	 Y
u2N (t)ns

Mut(xt); (80)

which is equivalent to the familiar sum-product update (7). By construction, any �xed point M�

of these updates speci�es a pair (��; ��) that satis�es the stationary conditions (76).

Remarks: (a) An important consequence of Proposition 11 is to guarantee the existence of sum-
product �xed points. Observe that the cost function in the Bethe variational problem (75) is
continuous and bounded above, and the constraint set LOCAL(G) is non-empty and compact;
therefore, at least some (possibly local) maximum is attained. Moreover, since the constraints are
linear, there will always be a set of Lagrange multipliers associated with any local maximum [8].
For any optimum in the relative interior of LOCAL(G), these Lagrange multipliers can be used to
construct a �xed point of the sum-product updates, as in the proof of Proposition 11.

11The value of arbitrary constants like c can change from line to line.
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(b) For graphs with cycles, Proposition 11 provides no guarantees on the convergence of the sum-
product updates; indeed, whether or not the algorithm converges depends both on the potential
strengths and the topology of the graph. In the standard scheduling of the messages, each node
applies equation (80) in parallel. Other more global schemes for message-passing are possible, and
commonly used in certain applications like turbo-decoding [e.g., 75]. Tatikonda and Jordan [102]
have shown that the convergence of parallel updates is related to the structure of Gibbs measures
on the computation tree. Other researchers [e.g., 124, 115, 52] have proposed alternatives to sum-
product that are guaranteed to converge, albeit at the price of increased computational cost.
(c) With the exception of trees and other special cases [82, 76], the BVP is usually a non-convex
problem, in that HBethe fails to be concave. As a consequence, there may be multiple local optima
to the BVP, and there are no guarantees that sum-product (or other iterative algorithms) will �nd
a global optimum.

6.2.2 Nature of �xed points

This section explores an alternative characterization of sum-product �xed points [112], one which
makes connections to the junction tree algorithm for exact inference described in Section 2.5.2.
One view of the junction tree algorithm is as follows: taking as input a set of potential functions on
the cliques of some graph, it returns as output an alternative factorization of the same distribution
in terms of local marginal distributions on the cliques and separator sets of a junction tree. In
the special case of an ordinary tree, the alternative factorization is a product of local marginals at
single nodes and edges of the tree, as in equation (46). Indeed, the sum-product algorithm for trees
can be understood as an eÆcient method for computing this alternative parameterization.

The following result [112] shows that the sum-product algorithm, when applied to a graph with
cycles, can still be interpreted as performing a type of reparameterization:

Proposition 12. Consider the Bethe variational problem and sum-product algorithm applied to the

distribution p(x; �). Then any �xed point �� = f��s ; �
�
stg of the sum-product algorithm, and more

generally any local optimum of the Bethe variational problem in the relative interior of LOCAL(G),
speci�es a reparameterization p(x; ��) � p(x; �) of the original distribution of the following form:

p(x; ��) :=
1

Z(��)

Y
s2V

��s (xs)
Y

(s;t)2E

��st(xs; xt)

��s (xs)�
�
t (xt)

: (81)

Remark: Equation (81) is the analog of the tree-structured factorization (46), but as applied to
a graph with cycles. By de�nition of the sum-product algorithm, the pseudomarginals f��s ; �

�
stg

are elements of LOCAL(G), and hence locally consistent. However, they need not belong to the
marginal polytope MARG(G), and hence may fail global consistency (as illustrated in Example 14
to follow). Moreover, in contrast to the tree factorization (46), the normalization constant Z(��)
in equation (81) will not be unity in general.

Proof: By remark (a) following Proposition 11, any local optimum of the BVP can be associated
with a sum-product �xed point. By de�nition of the pseudomarginals in equations (79a) and (79b),
we have the equivalence ��st(xs; xt)=[�

�
s (xs)�

�
t (xt)] / expf�st(xs; xt)g [M�

st(xt)M
�
ts(xs)]. Using this

relation, we rewrite the product on the RHS of equation (81) as follows:Y
s2V

��s (xs)
Y

(s;t)2E

��st(xs; xt)

��s (xs)�
�
t (xt)

= �
Y
s2V

�
expf�s(xs)g

Y
u2N (s)

M�
us(xs)

� Y
(s;t)2E

exp(�st(xs; xt))

M�
st(xt)M

�
ts(xs)

:
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Consider a particular message M�
vw associated with the edge in the direction v to w. Observe that

it appears once in the numerator (in the term for node w in the product over vertices) and once
in the denominator (in the term for edge (v; w) in the product over edges). Consequently, all the
messages cancel out in the full product, thereby establishing thatY

s2V

��s (xs)
Y

(s;t)2E

��st(xs; xt)

��s (xs)�
�
t (xt)

/ exp
�X
s2V

�s(xs) +
X

(s;t)2E

�st(xs; xt)
	
;

which is the reparameterization claim.

Proposition 12 provides some insight into the geometry of the Bethe variational problem (BVP)
and the nature of its local optima [112]. It should be noted that the reparameterization state-
ment (81) is possible only because the BVP is formulated in an overcomplete representation. A
key consequence of this overcompleteness is that given distribution p(x; �) can be associated with
an aÆne subset C(�) of exponential parameters, known as an e-at manifold in information ge-
ometry [4], such that p(x; ) = p(x; �) for all  2 C(�). Using this notion, equation (81) can be
re-stated in the following way: for any local optimum �� of the BVP lying in the relative interior
of LOCAL(G), the parameter � with components de�ned as follows

�s (xs) :=

(
log ��s (xs) for s 2 V; xs 2 Xs

log[��st(xs; xt)=�
�
s (xs)�

�
t (xt)] for (s; t) 2 E; (xs; xt) 2 Xs �Xt

is a member of the e-at manifold C(�). The proof of Proposition 12 shows that the sum-product
algorithm has a stronger property|namely, that all its iterates are con�ned to C(�). Although
alternative algorithms [e.g., 124, 115, 52] for solving the BVP may evolve outside of this aÆne set,
Proposition 12 shows that they must eventually converge to it.

This result can also be exploited to gain insight into the nature of the approximation error : that
is, the di�erence between the exact marginals �s of p(x; �) and the approximations ��s computed
by the sum-product algorithm. Given any spanning tree T = (V;E(T )) contained within G, let
��(T ) denote the pseudomarginals associated with nodes and edges in T . This reduced set of
pseudomarginals de�nes a tree-structured distribution as follows:

p(x; ��(T )) :=
Y
s2V

��s (xs)
Y

(s;t)2E(T )

��st(xs; xt)

��s (xs) �
�
t (xt)

: (82)

By the local consistency guaranteed by membership in LOCAL(G) and the junction tree theorem
(see Proposition 1), we are guaranteed that ��(T ) are the exact marginals for the tree-structured
distribution p(x; ��(T )). Consequently, each tree of the graph can be used to assess the error in the
BVP approximation. In particular, the di�erence between ��s and �s stems from the perturbation
of removing from the original distribution p(x; �) � p(x; ��) a set of reparameterized compatibility
functions so as to obtain the tree-structured distribution p(x; ��(T )). On this basis, it is possible
to derive an exact expression for the error in the sum-product algorithm, as well as computable
error bounds, as described in more detail in Wainwright et al. [112].

As illustrated in Figure 15, the constraint set LOCAL(G) of the Bethe variational problem is
a strict outer bound on MARG(G), in which the exact marginals of p(x; �) must lie. A natural
question, then, is whether solutions to the Bethe variational problem ever fall into the region
LOCAL(G)nMARG(G). Proposition 12 provides a straightforward answer to this question: it
enables us to specify, for any pseudomarginal � in the relative interior of LOCAL(G), a distribution
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p(x; �) for which � is a �xed point of the sum-product algorithm. The following example illustrates
this construction.

Example 14 (Globally inconsistent �xed point). We illustrate using a binary random vector
on the simplest possible graph for which sum-product is not exact|namely, a single cycle with
three nodes. Consider candidate marginal distributions f�s; �stg of the form illustrated in Fig-
ure 16(a), where �st 2 [0; 0:5] is a parameter to be speci�ed independently for each edge (s; t). It

�s :=
�
0:5 0:5

�
�st :=

�
�st 0:5� �st

0:5� �st �st

�
3

2

1 �
0:4 0:1

0:1 0:4

�

�
0:4 0:1

0:1 0:4

�

�
0:5

0:5

��
0:5

0:5

�

�
0:5

0:5

�

�
0:4 0:1

0:1 0:4

�

3

2

1 �
0:1 0:4

0:4 0:1

�

�
0:4 0:1

0:1 0:4

�

�
0:5

0:5

��
0:5

0:5

�

�
0:5

0:5

�

�
0:4 0:1

0:1 0:4

�

(a) (b) (c)

Figure 16. Illustration of the marginal polytope for a single cycle graph on three nodes. (a) Form
of single node and joint pairwise marginals. The parameter �st takes values in [0; 0:5]. (b) Setting
�st = 0:4 for all three edges gives a globally consistent set of marginals. (c) With �13 perturbed to
0:1, the marginals (though locally consistent) are no longer globally so.

is straightforward to verify that f�s; �stg belong to LOCAL(G) for any choice of �st 2 [0; 0:5].
First, consider the setting �st = 0:4 for all edges (s; t), as illustrated in panel (b). It is not

diÆcult to show that the resulting marginals thus de�ned are realizable; in fact, they can be
obtained from the distribution that places probability 0:35 on each of the con�gurations [0 0 0]
and [1 1 1], and probability 0:05 on each of the remaining six con�gurations. Now suppose that
we perturb one of the pairwise marginals|say �13|by setting �13 = 0:1. The resulting problem
is illustrated in panel (c). Observe that there are now strong (positive) dependencies between the
pairs of variables (x1; x2) and (x2; x3): both pairs are quite likely to agree (with probability 0.8).
In contrast, the pair (x1; x3) can only share the same value relatively infrequently (with probability
0.2). This arrangement should provoke some doubt. Indeed, it can be shown that � =2 MARG(G)
by attempting but failing to construct a distribution that realizes � . (See Example 24 of Section 9
for a quick proof using semide�nite constraints.)

We now wish to construct a problem p(x; �) for which the pseudomarginals � are a �xed point
of the sum-product algorithm. Proposition 12 enables us to do so easily. In particular, suppose
that we de�ne �s(xs) = log �s(xs) and �st(xs; xt) = log �st(xs; xt)=[�s(xs)�t(xt)]. Now consider the
sum-product algorithm updates of equation (80) with the messagesMst initialized to all ones. With
these uniform messages and � = f�s; �stg de�ned as above, we have:

�
X
xt

exp
�
�st(xs; xt) + �t(xt)

	 Y
u2N (t)ns

Mut(xt) = �
X
xt

�st(xs; xt)

�s(xs)
= 1

Thus, the vector � 2 LOCAL(G)nMARG(G) is a �xed point of sum-product as applied to the
constructed p(x; �). }

More generally, this construction applies to an arbitrary member of ri LOCAL(G). Accordingly,
we conclude that the sum-product algorithm induces a mapping from the space of exponential
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parameters � = Rd that is onto the relative interior of LOCAL(G). In contrast to the mean
parameter mapping of Theorem 1, this mapping is, in general, multi-valued since the sum-product
algorithm may have multiple �xed points.

7 Hypertree-based approximations and generalized sum-product

From our development in the previous section, it is clear that there are two distinct components
to the Bethe variational principle: (a) the entropy approximation HBethe, and (b) the approxi-
mation LOCAL(G) to the set of realizable marginal parameters. In principle, the BVP could be
strengthened by improving either one, or both, of these components.

In this section, we discuss a natural generalization of the BVP, �rst proposed by Yedidia et
al. [123] and further explored by various researchers [e.g., 82, 76, 52, 108, 124], that improves
both components simultaneously. The approximations in the Bethe approach are based on trees,
which represent a special case of the junction trees. A natural strategy, then, is to strengthen the
approximations by exploiting more complex junction trees. These approximations are most easily
understood in terms of hypertrees, which represent an alternative way in which to describe junction
trees. Accordingly, we begin with some necessary background on hypergraphs and hypertrees.

7.1 Hypergraphs

A hypergraph G = (V;E) is a natural generalization of a graph; in particular, it consists of a vertex
set V = f1; : : : ; ng, and a set of hyperedges E, where each hyperedge h is a particular subset of V
(i.e., an element of the power set of V ). The set of hyperedges can be viewed naturally as a partially-
ordered set [101], where the partial ordering is speci�ed by inclusion. Given two hyperedges g and
h, one of three possibilities can hold: (a) the hyperedge g is contained within h, in which case
we write g < h; (b) if h is contained within g, then we write h < g; and (c) �nally, if neither
containment relation holds, then g and h are incomparable. With these de�nitions, we see that an
ordinary graph is a special case of a hypergraph, in which each maximal hyperedge consists of a
pair of vertices (i.e., an ordinary edge of the graph). Note the minor inconsistency in our de�nition
of the hypertree edge set E; for hypergraphs (unlike graphs), the set of hyperedges can include (a
subset of the) individual vertices.

7.1.1 Poset diagrams

A convenient graphical representation of a hypergraph is in terms of a diagram of its hyperedges,
with (directed) edges representing the inclusion relations; such a representation is known as a poset
diagram [101]. Such poset representations have been used in previous work on generalized sum-
product [82, 76], whereas Yedidia et al. [122] make use of closely related structures known as region
graphs. Figure 17 provides some simple graphical illustrations of hypergraphs. Any ordinary graph,
as a special case of a hypergraph, can be drawn as a hypergraph; in particular, panel (a) shows
the hypergraph representation of a single cycle on four nodes. Panel (b) shows a hypergraph that
is not equivalent to an ordinary graph, consisting of two hyperedges of size three joined by their
intersection of size two. Shown in panel (c) is a more complex hypergraph, to which we will return
in the sequel.

Given any hyperedge h, we de�ne the sets of its descendants and ancestors in the following
way:

D(h) := fg 2 E j g < h g; A(h) := fg 2 E j g > h g: (83)
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Figure 17. Graphical representations of hypergraphs. Subsets of nodes corresponding to hyperedges
are shown in rectangles, whereas the arrows represent inclusion relations among hyperedges. (a) An
ordinary single cycle graph represented as a hypergraph. (b) A simple hypergraph. (c) A more
complex hypergraph.

For example, given the hyperedge h = (1245) in the hypergraph in Figure 17(c), we have A(h) = ;
and D(h) = f(25); (45); (5)g. We use the notation D+(h) and A+(h) as shorthand for the sets
D(h) [ h and A(h) [ h respectively.

7.1.2 Hypertrees

Hypertrees or acyclic hypergraphs provide an alternative way to describe the concept of junction
trees, as originally described in Section 2.5.2. In particular, a hypergraph is acyclic if it is possible
to specify a junction tree using its maximal hyperedges and their intersections. The width of an
acyclic hypergraph is the size of the largest hyperedge minus one; we use the term k-hypertree to
mean a singly-connected acyclic hypergraph of width k. Thus, for example, a spanning tree of
an ordinary graph is a 1-hypertree, because its maximal hyperedges (i.e., ordinary edges) all have
size two. As a second example, consider the hypergraph shown in Figure 18(a). It is clear that
this hypergraph is equivalent to the junction tree with maximal cliques f(1245); (4578); (2356)g
and separator sets f(25); (45)g. Therefore, it is a hypertree with width three, since the maximal
hyperedges have size four.

It should be noted that there is not a one-to-one correspondence between poset diagrams without
cycles, and acyclic hypergraphs. In particular, a poset diagram may have cycles, but nonetheless
correspond to a hypertree. This possibility is exempli�ed by Figure 18(b), which shows a set of
hyperedges for which the poset diagram involves cycles. Nonetheless, it can be seen that this
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54 7 8
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52

2 3 5 6

54 5

54 7 8

1 2 4 5
52

2 3 5 6

54 5 5 6
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(a) (b) (c)

Figure 18. Three di�erent graphical representations of the same underlying hypertree. (a) This
diagram clearly corresponds to an acyclic hypergraph. (b) This representation seems di�erent, but
in fact corresponds to the same hypertree. (c) Another representation of the same hypertree. Hence
hypertrees cannot be identi�ed simply by the absence (or presence) of cycles in poset diagrams.
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hypergraph is acyclic. A similar statement holds for the hypergraph in (c), which has even more
cycles in its poset diagram. In fact, the junction tree corresponding to the hypertree in Figure 18(a)
also constitutes a junction tree for the hypergraphs in Figures 18(b) and (c).

7.2 Hypertree factorization and entropy

In this section, we develop an alternative form of the junction tree factorization (9), and show how
it leads to a local decomposition of the entropy. Associated with any poset is a M�obius function
! : E � E ! Z; see Stanley [101] and Appendix D for more details. We use the M�obius function
to de�ne a bijection between the collection of marginals � := f�hg associated with the hyperedges
of a hypergraph, and a new set of functions ' := f'hg, as follows:

log �h(xh) =
X

g2D+(h)

log'g(xg); log'h(xh) =
X

g2D+(h)

!(g; h) log �g(xg): (84)

For a hypertree with an edge set containing all intersections between maximal hyperedges, the
underlying distribution is guaranteed to factorize as follows:

p(x) =
Y
h2E

'h(xh): (85)

Equation (85) is an alternative formulation of the well-known junction tree decomposition (9), for
which some examples provide intuition.

Example 15. (a) First suppose that the hypertree is an ordinary tree, in which case the hyperedge
set consists of the union of the vertex set with the (ordinary) edge set. For any vertex s, we have
's(xs) = �s(xs), whereas for any edge (s; t) we have 'st(xs; xt) = �st(xs; xt)=[�s(xs)�t(xt)]. In
this special case, equation (85) reduces to the tree factorization in equation (46).

(b) Now consider the acyclic hypergraph speci�ed by f(1245); (2356); (4578); (25); (45); (56); (58); (5)g,
as illustrated in Figure 18(c). Omitting explicit dependence on x for notational simplicity, we �rst
calculate '1245 =

�1245
'25'45'5

= �1245
[�25=�5][�45=�5]�5

, with analogous expressions for '2356 and '4578. We

also have '25 = �25=�5, with analogous expressions for the other pairwise terms. Putting the pieces
together yields

p =
�1245

�25
�5

�45
�5
�5

�2356
�25
�5

�56
�5
�5

�4578
�45
�5

�58
�5
�5

�25
�5

�45
�5

�56
�5

�58
�5

�5 =
�1245 �2356 �4578

�25 �45
;

which agrees with the expression from the junction tree formula (9). }

An immediate but important consequence of the factorization (85) is a local decomposition of the
entropy.

Proposition 13 (Hypertree entropy). The entropy of a hypertree-structured distribution de-

composes as

Hhyper(�)
(a)
= �

X
h2E

Ih(�h)
(b)
=

X
h2E

c(h)Hh(�h); (86)

where Ih(�h) :=
P

x
�h(xh) log'h(xh) is a multi-information, Hh(�h) := �

P
x
�h(xh) log �h(xh) is

the entropy associated with hyperedge h 2 E, and c(f) :=
P

e2A+(f)

!(f; e) are overcounting numbers.
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Proof. Equality (a) follows immediately from the hypertree factorization (85) and the de�nition
of Ih. Equality (b) follows by applying the M�obius inversion relation (84) between log'h(x) and
log �h(xh), expanding, and simplifying.

We illustrate by continuing with Example 15:

Example 16. (a) For an ordinary tree, there are two types of multi-information: for an edge (s; t),
Ist is equivalent to the ordinary mutual information, whereas for any vertex s 2 V , the term Is is
equal to the negative entropy �Hs. Consequently, in this special case, equation (86) is equivalent
to the tree entropy given in equation (47). The overcounting numbers for a tree are c((s; t)) = 1
for any edge (s; t), and c(s) = 1� deg(s) for any vertex s, where deg(s) denotes its degree.

(b) Consider again the hypertree in Figure 18(c). On the basis of our previous calculations in
Example 15(c), we calculate I1245 = �

�
H1245�H25�H45+H5

�
. The expressions for the other two

maximal hyperedges (i.e., I2356 and I4578) are analogous. Similarly, we can compute I25 = H5�H25,
with analogous expressions for the other hyperedges of size two. Finally, we have I5 = �H5. Putting
the pieces together and doing some algebra yields Hhyper = H1245 +H2356 +H4578 �H25 �H45. }

7.3 Augmented hypergraphs

Recall that the core of the Bethe approach of Section 6 consists of a particular tree-based (Bethe)
approximation to entropy, and a tree-based outer bound on the marginal polytope. Our ultimate
goal is to extend these tree-based approximations to ones based on (more general) hypertrees.12 In
this section, we take a step towards this goal by describing how to construct, on the basis of the
original graph, an augmented hypergraph that serves as the basis for de�ning these approximations.

Our starting point is a Markov random �eld (MRF) de�ned by some (non-acyclic) hypergraph
G0 = (V;E0), meaning that p(�) has a factorization of the form:

p(x) / exp
� X
h2E0

�h(xh)
	
: (87)

Note that this equation reduces to our earlier representation (71) of a pairwise MRF when the
hypergraph is an ordinary graph.

One strategy is to develop techniques for approximate inference based directly on the structure
of G0. The Bethe approximation is of this form, corresponding to the case when G0 is an ordinary
graph. Rather than basing approximations on the structure of G0, it can be bene�cial to build
them based on an augmented hypergraph G = (V;E). A natural way in which to construct such
augmented hypergraphs is by clustering nodes so as to de�ne new hyperedges; di�erent techniques
of this nature are discussed in the papers [e.g., 123, 82, 76].

For the purposes of this discussion, we focus on a subclass of augmented hypergraphs. In
particular, we require that the original hypergraph G0 is covered by the augmented hypergraph,
meaning that the hyperedge set E of the augmented hypergraph includes all hyperedges in E0 (as
well as the vertices of G0). A desirable feature of this requirement is that any Markov random �eld
de�ned by G0 can also be viewed as an MRF on a covering hypergraph G, simply by setting �h = 0
for all h 2 EnE0.

Example 17 (Covering hypergraph). To illustrate, suppose that the original hypergraph G0 is
simply an ordinary graph|namely, the 3�3 grid shown in Figure 19(a). As illustrated in panel (b),

12An ordinary tree is simply a hypertree of width one.
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Figure 19. Constructing new hypergraphs via clustering and the single counting criterion. (a)
Original (hyper)graph G0 is a 3� 3 grid. Its hyperedge set E0 consists of the union of the vertex set
with the (ordinary) edge set. (b) Nodes are clustered into groups of four. (c) A covering hypergraphG
formed by adjoining these 4-clusters to the original hyperedge set E0. Darkness of the boxes indicates
depth of the hyperedges in the poset representation. (d) An augmented hypergraph constructed by
the Kikuchi method. (e) A third augmented hypergraph that fails the single counting criterion for
(5).

we cluster the nodes into groups of four, which is known as Kikuchi 4-plaque clustering in statistical
physics [123]. We then form the augmented hypergraph G shown in panel (c), with hyperedge set
E := E0 [ f(1245); (2356); (4578); (5689)g. The darkness of the boxes in this diagram reects the
depth of the hyperedges in the poset diagram. This hypergraph covers the original (hyper)graph,
since it includes as hyperedges all edges and vertices of the original 3� 3 grid. }

As emphasized by Yedidia et al. [123], it turns out to be important to ensure that every hyper-
edge (including vertices) in the original hypergraph G0 is counted exactly once in the augmented
hypergraph G. More speci�cally, for a given hyperedge h0 2 E0, consider the set C(h0) := ff 2
E j f � h0g of hyperedges in E that contain h0. For ease of reference, we restate the de�nition of the
overcounting numbers c(�) associated with the hypergraph G, originally de�ned in Proposition 13.
In particular, these overcounting numbers are de�ned in terms of the M�obius function associated
with G, viewed as a poset, in the following way:

c(f) :=
X

e2A+(f)

!(f; e): (88)

The single counting criterion requires that for all h0 2 E0 (including all single vertices), there holdsX
f2C(h0)

c(f) = 1: (89)
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Example 18 (Single counting). To illustrate the single counting criterion, we consider two
additional hypergraphs that can be constructed from the 3 � 3 grid of Figure 19(a). The vertex
set and edge set of the grid form the original hyperedge set E0. The hypergraph in panel (d) is
constructed by the Kikuchi method described by Yedidia et al. [123]. In this construction, we
include the four clusters, all of their pairwise intersections, and all the intersections of intersections
(only (5) in this case). The hypergraph in panel (e) includes only the hyperedges of size four and
two; that is, it omits the hyperedge (5).

Let us focus �rst on the hypergraph (e), and understand why it violates the single counting
criterion for hyperedge (5). Viewed as a poset, all of the maximal hyperedges (of size four) in this
hypergraph have a counting number of c(h) = !(h; h) = 1. Any hyperedge f of size two has two
parents, each with an overcounting number of 1, so that c(f) = 1� (1 + 1) = �1. The hyperedge
(5) is a member of the original hyperedge set E0 (of the 3 � 3 grid), but not of the augmented
hypergraph. It is included in all the hyperedges, so that C(5) = E and

P
h2C(5) c(h) = 0. Thus,

the single criterion condition fails to hold for hypergraph (e). In contrast, it can be veri�ed that
for the hypergraphs in panels (c) and (d), the single counting condition holds for all hyperedges
h0 2 E0.

There is another interesting fact about hypergraphs (c) and (d). If we eliminate from hypergraph
(c) all hyperedges that have zero overcounting numbers, the result is hypergraph (d). To understand
this reduction, consider for instance the hyperedge (14) which appears in (c) but not in (d). Since
it has only one parent (which is a maximal hyperedge), we have c(14) = 0. In a similar fashion,
we see that c(12) = 0. These two equalities together imply that c(1) = 0, so that we can eliminate
hyperedges (12), (14) and (1) from hypergraph (c). By applying a similar argument to the remaining
hyperedges, we can fully reduce hypergraph (c) to hypergraph (d). }

It turns out that if the augmented hypergraph G covers the original hypergraph G0, then
the single counting criterion is always satis�ed. Implicit in this de�nition of covering is that the
hyperedge set E0 of the original hypergraph includes the vertex set, so that equation (89) should
hold for the vertices. The proof is quite straightforward: we begin by observing that under the
covering condition, the set C(h) is equal to A+(h) in the augmented hypergraph G. We then invoke
the following result:

Lemma 1 (Single counting). For any h 2 E, the associated overcounting numbers satisfy the

identity
P

e2A+(h) c(e) = 1, which can be written equivalently as c(h) = 1�
P

e2A(h) c(e).

Proof. From the de�nition of c(h), we have the identity:X
h2A+(g)

c(h) =
X

h2A+(g)

X
f2A+(h)

!(h; f): (90)

Considering the double sum on the RHS, we see that for a �xed d 2 A+(g), there is a term !(d; e)
for each e such that g � e � d. Using this observation, we can writeX

h2A+(g)

X
f2A+(h)

!(h; f) =
X

d2A+(g)

X
fe j g�e�d g

!(e; d)
(a)
=

X
d2A+(g)

Æ(d; g)
(b)
= 1:

Here equality (a) follows from the de�nition of the M�obius function (see Appendix D), and Æ(d; g)
is the Kronecker delta function, from which equality (b) follows.

Thus, the construction that we have described, in which the hyperedges (including all vertices)
of the original hypergraph G0 are covered by G and the partial ordering is set inclusion, ensures
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that the single counting criterion is always satis�ed. We emphasize that there exists a variety of
other valid constructions [e.g., 123, 82, 76]. All subsequent analysis will assume that the augmented
hypergraph satis�es the single counting criterion.

7.4 Hypertree-based approximations

We now have the necessary ingredients to specify hypertree-based approximations to the exact
variational principle of Theorem 2.

7.4.1 Approximate variational principle

Let G be a given augmented hypergraph, and let t + 1 be the size of the largest hyperedge in G.
Moreover, let � = f�hg be a collection of local marginals associated with the hyperedges h 2 E.
Of course, any such quantity must satisfy the obvious normalization condition

P
x0
h
�h(x

0
h) = 1.

Similarly, these local marginals must be consistent with one another whereover they overlap; more
precisely, for any pair of hyperedges g < h, the following marginalization condition must hold:X

fx0h j x
0
g=xgg

�h(x
0
h) = �g(xg):

Imposing these normalization and marginalization conditions leads to the following constraint set:

LOCALt(G) =

�
� � 0 j

X
x0
h

�h(x
0
h) = 1 8 h 2 E;

X
fx0

h
j x0g=xgg

�h(x
0
h) = �g(xg) 8g < h

�
: (91)

Note that this constraint set is a natural generalization of the tree-based constraint set de�ned in
equation (41). In particular, de�nition (91) coincides with de�nition (41) when the hypergraph
G is simply an ordinary graph. As before, we refer to members LOCALt(G) as pseudomarginals.
By the junction tree conditions in Proposition 1, the local constraints de�ning LOCALt(G) are
suÆcient to guarantee global consistency whenever G is a hypertree.

In analogy to the Bethe entropy approximation, Proposition 13 motivates the following hypertree-
based approximation to the entropy:

Happ(�) =
X
g2E

c(g)Hg(�g): (92)

Here c(g) =
P

f2A+(g) !(g; f) are the overcounting numbers de�ned in equation (88). This entropy
approximation and the outer bound LOCALt(G) on the marginal polytope, in conjunction, lead to
the following hypertree-based approximation to the exact variational principle:

max
�2LOCALt(G)

�
h�; �i+Happ(�)

�
: (93)

This problem is the hypertree-based generalization of the Bethe variational problem (75).

Example 19 (Kikuchi method). To illustrate the approximate variational principle (93), con-
sider the augmented hypergraph in Figure 19(d). To determine the form of the entropy approxi-
mation Happ, we �rst calculate the overcounting numbers c(�). By de�nition, c(h) = 1 for each of
the four maximal hyperedges (e.g., h = (1245)). Since each of the 2-hyperedges has two parents,
Lemma 1 yields that c(g) = �1 in this case. Applying Lemma 1 once more yields that c(5) = 1.
Overall, the entropy approximation takes the form

Happ =
�
H1245 +H2356 +H4578 +H5689

�
�
�
H25 +H45 +H56 +H58

�
+H5: (94)

}
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7.4.2 Generalized sum-product

In principle, the variational problem (93) could be solved by a number of methods. Here we describe
an algorithm, referred to as parent-to-child message-passing by Yedidia et al. [123], that is a natural
generalization of the ordinary sum-product updates for the Bethe approximation. As indicated by
its name, the de�ning feature of this scheme is that the only messages passed are from parents to
children|i.e., along directed edges in the poset representation of a hypergraph.

Our �rst task is to specify how to assign the compatibility functions associated with the original
hypergraph G0 = (V;E0) with the hyperedges of the augmented hypergraph G = (V;E). It is
convenient to use the notation  0g(xg) := expf�g(xg)g for the compatibility functions of the original
hypergraph, corresponding to terms in the product (87). We can extend this de�nition to all
hyperedges in E by setting  0h(xh) � 1 for any hyperedge h 2 EnE0. For each hyperedge h 2 E,
we then de�ne a new compatibility function  h as follows:

 h(xh) :=  0h(xh)
Y

g2S(h)

 0g(xg); (95)

where S(h) := fg 2 E0nE j g < hg is the set of hyperedges in E0nE that are subsets of h. To
illustrate this de�nition, consider the Kikuchi construction of Figure 19(d), which is an augmented
hypergraph for the 3 � 3 grid in Figure 19(a). For the hyperedge (25), we have S(25) = f(2)g, so
that  25 =  025 

0
2. On the other hand, for the hyperedge (1245), we have  01245 � 1 (since (1245)

appears in E but not in E0), and S(1245) = f(1); (12); (14)g. Accordingly, equation (95) yields
 1245 =  01 

0
12 

0
14. More generally, using the de�nition (95), it is straightforward to verify that

the equivalence
Q

h2E  h(xh) =
Q

g2E0  0g(xg) holds, so that we have preserved the structure of the
original MRF.

In the hypertree-based variational problem (93), the variables correspond to a pseudomarginal
�h for each hyperedge E 2 E0. As with the earlier derivation of the sum-product algorithm, a
Lagrangian formulation of this optimization problem leads to a speci�cation of the optimizing
pseudomarginals in terms of messages, which represent Lagrange multipliers associated with the
constraints. There are various Lagrangian re-formulations of the original problem [e.g., 122, 76],
which lead to di�erent message-passing algorithms. In the case of parent-to-child form of message-
passing derived by Yedidia et al. [123], the pseudomarginal �h takes the following form:

�h(xh) = �

� Y
g2D+(h)

 g(xg)

� � Y
g2D+(h)

Y
f2Par(g)nD+(h)

Mf!g(xg)

�
: (96)

In this equation, the pseudomarginal �h includes a compatibility function  g for each hyperedge g
in D+(h) := D(h) [ h. It also collects a message from each hyperedge f =2 D+(h) that is a parent
of some hyperedge g 2 D+(h). We illustrate this construction with an example:

Example 20 (Parent-to-child for Kikuchi). In order to illustrate the parent-to-child message-
passing, consider the Kikuchi approximation for a 3� 3 grid, illustrated in Figure 19(d). Focusing
�rst on the hyperedge (1245), the �rst term in equation (96) speci�es a product of compatibility
functions  g as g ranges over D+(1245), which in this case yields the product  1245 25 45 5. We
then use the de�nition (95) to determine the equivalent expression  012 

0
14 

0
25 

0
45 

0
1 

0
2 

0
4 

0
5, now in

terms of compatibility functions from the original hypergraph.

We then take the product over messages from hyperedges that are parents of hyperedges in
D+f(1245)g, excluding hyperedges in D+f(1245)g itself. Figure 20(a) provides an illustration;
the set D+f(1245)g is given by the hyperedges within the dotted ellipses. In this case, the set
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54 5 5 6

54 7 8
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5 6 8 9

1 2 4 5
52

2 3 5 6

54 5 5 6

54 7 8
5 8

5 6 8 9

(a) (b)

Figure 20. Illustration of relevant regions for parent-to-child message-passing in a Kikuchi approxi-
mation. (a) Message-passing for hyperedge (1245). Set of descendants D+f(1245)g is shown within a
dotted ellipse. Relevant parents for �1245 consists of the set f(2356); (4578); (56); (58)g. (b) Message-
passing for hyperedge (45). Dotted ellipse shows descendant set D+f(45)g. In this case, relevant
parent hyperedges are f(1245); (4578); (25); (56); (58)g.

[g Par(g)nD+(h) is given by (2356) and (4578), corresponding to the parents of (25) and (45)
respectively, combined with hyperedges (56) and (58), which are both parents of hyperedge (5).
The overall result is an expression of the following form:

�1245 = �  012  
0
14  

0
25  

0
45  01  

0
2  

0
4  

0
5 M(2356)!(25)M(4578)!(45)M(56)!5M(58)!5:

By symmetry, the expressions for the pseudomarginals on the other 4-hyperedges are analogous.
By similar arguments, it is straightforward to compute the following expression for �45 and �5:

�45 = �  045  
0
4  

0
5 M(1245)!(45)M(4578)!(45) M(25)!5 M(56)!5 M(58)!5

�5 = �  05 M(45)!5 M(25)!5 M(56)!5 M(58)!5:

}

Generalized forms of the sum-product updates follow by updating the messages so as to enforce
the marginalization constraints de�ning membership in LOCAL(G); as in the proof of Proposi-
tion 11, �xed points of these updates satisfy the necessary stationary conditions of the Lagrangian
formulation. Further details on di�erent variants of generalized sum-product updates can be found
in various papers [123, 82, 76]. Moreover, in analogy to our earlier analysis of the ordinary sum-
product algorithm, Proposition 12 can be suitably generalized: any �xed point of such general-
ized sum-product message-passing updates de�nes a hypertree-consistent reparameterization of the
original distribution [112]. Furthermore, as with the Bethe approximation and any sum-product
solution, the error (i.e., di�erence between the true and approximate marginals) stems from the
reparameterized set of potentials that must be removed from the full hypergraph G so as to obtain
a hypertree-structured distribution [112].

We conclude this section by noting that other approximations to the entropy, in addition to
those based on hypertrees given here, are possible. For instance, the general region graph method
of Yedidia et al. [123] includes entropy approximations that need not follow from hypertrees on
the original vertex set. Moreover, Minka [77] proposed the expectation-propagation updates, which
can be understood as a sequential technique for solving approximations to the variational principle
based on other structured choices of entropy approximation.
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8 Upper bounds via convex relaxations

Up to this point, we have considered two broad classes of variational methods: mean �eld methods
(Section 5) and Bethe/Kikuchi approaches (Sections 6 and 7). Mean �eld methods provide not only
approximate mean parameters but also lower bounds on the log partition function. In contrast,
the Bethe/Kikuchi approaches lead to neither upper or lower bounds on this important quantity.
Bounds on the log partition function are useful in a variety of contexts, including parameter es-
timation and large deviations bounds. A feature common to both mean �eld and Bethe/Kikuchi
methods is that the underlying variational methods are usually not convex. As we have discussed,
this lack of convexity can lead to local minima, and may cause substantial algorithmic diÆculties.

The motivation of this section, then, is to describe variational principles that are both convex,
and also provide upper bounds on the log partition function. The basic strategy is straightforward:
so as to obtain upper bounds, we relax the variational representation of A in equation (32) by
modifying it in the following two ways:

(a) by using a convex outer bound on the marginal polytope MARG(G).

(b) by replacing the negative dual function �A� with a concave upper bound.

From the variational principle of Theorem 2, it is clear that the solution of the modi�ed variational
problem so obtained will yield an upper bound on the log partition function. In addition, requiring a
concave upper bound ensures that the modi�ed variational problem has a unique (global) optimum.

The convex relaxation procedure summarized by steps (a) and (b) can be applied quite generally
to obtain upper bounds on A in arbitrary exponential families. In this section, we illustrate this
procedure by developing a class of convex relaxations for multinomial problems that are closely
related to the Bethe/Kikuchi approximations discussed in Sections 6 and 7. Further details on the
results described in this section can be found in the papers [108, 109, 113].

8.1 Combinations of trees

As in Section 6, let us consider again the case of a pairwise Markov random �eld, and use the stan-
dard overcomplete representation based on indicator functions at single nodes and edges. Suppose
that � = f�s; �stg 2 MARG(G) is a valid set of single node and joint pairwise marginals. We
begin by describing how to upper bound the entropy �A�(�) = H(p(x; �(�)) using tree-structured
distributions.

Given an arbitrary spanning tree T = (V;E(T )) of the graph, we let �(T ) represent the set
of all mean parameters associated with vertices s 2 V , and edges (s; t) 2 E(T ). The vector �(T )
de�nes a tree-structured distribution of the following form:

p(x;�(T )) =
Y
s2V

�s(xs)
Y

(s;t)2E(T )

�st(xs; xt)

�s(xs)�t(xt)
:

By construction, the value of the dual functionA�(�(T )) is simply the negative entropy of p(x;�(T )).
We now claim that the tree-structured entropy �A�(�(T )) provides an upper bound on the orig-

inal entropy �A�(�). The intuition is based on the maximum entropy characterization of graphical
models. In particular, the presence of an edge in a graph-structured distribution corresponds to
some constraint that is active in the associated maximum entropy problem. Removing edges, then,
corresponds to dropping constraints from the maximum entropy problem, so that the entropy of
the tree-structured distribution with matched mean parameters must be larger than the entropy of
the original distribution. More formally, we state and prove the following result:
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Lemma 2 (Trees as maximum entropy). For any � 2 riMARG(G), and for any spanning tree

T = (V;E(T )), we have �A�(�) � �A�(�(T )).

Proof. Since T is a subgraph of G, we have MARG(G) � Rd+ and MARG(T ) � Rd , where d < d+.
We use �(T ) 2 Rd to construct an exponential parameter �+(T ) 2 Rd

+
as follows:

�+(T )� :=

8>><>>:
log �s;j if � = (s; j) for s 2 V

log
h
�st;jk

Æ
(�s;j�t;k)

i
if � = (st; jk) for (s; t) 2 E(T )

0 otherwise:

The constraint � 2 riMARG(G) ensures that �� > 0 for all indices �, so that the logarithms
are well-de�ned. Let �(T ) denote the lower-dimensional vector in Rd , obtained by removing the
zeroed-out coordinates in �+(T ). Observe that by construction, �(T ) and �(T ) are dually coupled
with respect to T (i.e., �(T ) = �(�(T ))). We can then write:

A�(�)
(a)
= sup

�2�

�
h�; �i �A(�)

	
� h�+(T ); �i �A(�+(T ))
(b)
= A�(�(T ));

where equality (a) follows from the variational representation of Theorem 2(a), and equality (b)
follows because �(T ) and �(T ) are dually coupled by construction.

Since the upper bound of Lemma 2 holds for each spanning tree of the graph, it will also hold for
any convex combination of spanning trees. In particular, let us consider a probability distribution
� over spanning trees:

� =
�
�(T ) j

X
T

�(T ) = 1; �(T ) � 0
	

(97)

In the sequel, it will be necessary to study the probability �st := Pr�f(s; t) 2 Tg that a given edge
(s; t) belongs to a tree chosen randomly under �. By de�nition, the vector �e = f�e j e 2 Eg of
edge appearance probabilities must belong to the so-called spanning tree polytope associated with
G, which we denote by S(G). Let I[e 2 T ] denote an indicator function for the event that edge
e belongs to spanning tree T . The spanning tree polytope is de�ned as the convex hull of these
indicator functions:

S(G) = f�e 2 R
jEj j 8 e 2 E �e = E�fI[e 2 T ]g for some �g: (98)

A simple example should help to provide intuition.

Example 21 (Edge appearance probabilities). Figure 21(a) shows a graph, and panels (b)
through (d) show three of its spanning trees fT 1; T 2; T 3g. Suppose that we form a uniform dis-
tribution � over these trees by assigning probability �(T i) = 1=3 to each T i; i = 1; 2; 3. Consider
the edge with label f ; notice that it appears in T 1, but in neither of T 2 and T 3. Therefore, under
the uniform distribution �, the associated edge appearance probability is �f = 1=3. Since edge e
appears in two of the three spanning trees, similar reasoning establishes that �e = 2=3. Finally,
observe that edge b appears in any spanning tree (i.e., it is a bridge), so that it must have edge
appearance probability �b = 1. }
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Figure 21. Illustration of valid edge appearance probabilities. Original graph is shown in panel
(a). Probability 1=3 is assigned to each of the three spanning trees fTi j i = 1; 2; 3 g shown in panels
(b){(d). Edge b appears in all three trees so that �b = 1. Edges e and f appear in two and one of the
spanning trees respectively, which gives rise to edge appearance probabilities �e = 2=3 and �f = 1=3.

As de�ned in equation (98), the spanning tree polytope is the convex hull of a �nite|albeit
large|number of vectors. Therefore, by the Minkowski-Weyl theorem [92], it has an equivalent
characterization in terms of linear inequalities. The linear inequality description of S(G) is well-
known from combinatorial optimization and matroid theory [e.g., 34, 21].

We begin with some de�nitions: given a subset F � E, let G(F ) denote the induced subgraph.
Let v(F ) be the number of vertices in G(F ), and let c(F ) be the number of connected components
in G(F ). The rank of F is de�ned as r(F ) = v(F ) � c(F ). When G(F ) is connected so that
c(F ) = 1, then the rank function r(F ) corresponds simply to the number of edges in the largest
acyclic subgraph of G(F ). For example, when F = E, then the largest acyclic subgraph is a
spanning tree. Since any spanning tree has n� 1 edges, we have r(E) = n� 1.
The following lemma, based on a result of Edmonds [34], provides a characterization of S(G):

Lemma 3 (Spanning tree polytope). The spanning tree polytope S(G) is characterized com-

pletely by the non-negativity condition �e � 0 combined with the constraints:X
e2F

�e � r(F ) 8 F � E; (99a)X
e2E

�e = n� 1: (99b)

In order to gain some intuition for the constraints in equation (99), we consider some particular
cases. The necessity of the non-negativity constraints �e � 0 is clear, since each �e corresponds to
an edge appearance probability. The corresponding upper bounds �e � 1 are obtained by applying
equation (99a) to the singleton edge set F = feg. In this case, we have v(F ) = 2 and c(F ) = 1, so
that r(F ) = 1 and equation (99a) reduces to �e � 1. Finally, equation (99b) can be established via
the following argument. Letting � = f�(T )g be the distribution giving rise to the edge appearance
probabilities �, we have the sequence of equalities:X

e2E

�e =
X
e2E

X
T2T

�(T )I[e 2 T ] =
X
T2T

�(T )
X
e2E

I[e 2 T ]
(a)
= n� 1:

The �nal equality (a) follows from the fact that any spanning tree T on n nodes has n� 1 edges,
and hence

P
e2E I[e 2 T ] = n� 1.
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8.2 Tree-based upper bound

We now have the necessary ingredients to state and prove an upper bound on A based on a convex
combination of trees. Not surprisingly, the resulting variational problem [108, 109] turns out to be
closely related to the Bethe variational problem.

Proposition 14 (Tree-based upper bounds). For any choice of edge appearance vector �e in

the spanning tree polytope S(G), the log partition function is upper bounded by the solution of the

following variational problem:

A(�) � max
�2LOCAL(G)

�
h�; �i+

X
s2V

Hs(�s)�
X

(s;t)2E

�stIst(�st)
	
: (100)

For any �e 2 S(G), this problem is convex, and the optimum is unique if �e > 0 for all edges e.

Remark: Observe that equation (100) is closely related to the Bethe variational problem of
equation (75). In particular, if we set �st = 1 for all edges (s; t) 2 E, then the two formulations are
equivalent. However note that �st = 1 implies that every edge appears in every spanning tree of the
graph with probability one, which can happen if and only if the graph is actually tree-structured.
(See, in particular, constraint (99b) in the de�nition of the spanning tree polytope.) In the context
of Proposition 14, then, the ordinary Bethe choice �e = 1 is valid only for tree-structured graphs.

Proof: By de�nition, for any �e 2 S(G), there is an underlying distribution � = f�(T )g such
that E� [I[e 2 T ] = �e for all e 2 E. By Lemma 2, for any tree T , we have the upper bound
�A�(�) � �A�(�(T )). Taking averages with respect to � yields

�A�(�) � �E� [A
�(�(T ))] = �E�

hX
s2V

Hs(�s)�
X

(s;t)2E

Ist(�st)
i
; (101)

where we have used the standard decomposition of tree entropy from equation (47). We now
expand the expectation over � by linearity. Since the trees are all spanning, each entropy term Hs

for node s 2 V receives a weight of one. On the other hand, the edge (s; t) receives exactly weight
�st = E�(I[e 2 T ]). Overall, we obtain the following upper bound on the exact entropy:

�A�(�) �
X
s2V

Hs(�s)�
X

(s;t)2E

�stIst(�st):

Applying this upper bound to the variational formulation of equation (32) yields

A(�) � max
�2MARG(G)

�
h�; �i+

X
s2V

Hs(�s)�
X

(s;t)2E

�stIst(�st)
	
: (102)

Finally, using the fact that LOCAL(G) is an outer bound on the marginal polytope leads to the
upper bound (100).

The cost function consists of a linear term h�; �i and a convex combination�E� [A�(�(T ))] of tree
entropies, and hence is concave. Moreover, the constraint set LOCAL(G) is a polytope, and hence
convex. Therefore, the variational problem (100) is always convex. We now establish uniqueness
of the optimum when �e > 0. To simplify details of the proof, we assume without loss of generality
that we are working in a minimal representation. (If the variational problem is formulated in an
overcomplete representation, it can be reduced to an equivalent minimal formulation.) To establish
uniqueness, it suÆces to establish that the function E� [A

�(�(T ))] is strictly convex when �e > 0.
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This function is a convex combination of functions of the form A�(�(T )), each of which is strictly
convex in the (non-zero) components of �(T ), but independent of the other components in the full
vector �. For any vector � 2 Rd , de�ne �T (�)� = �� if � 2 I(T ), and �T (�)� = 0 otherwise. We
then have

h�; r2A�(�(T ))�i = h�T (�); r2A�(�(T ))�T (�)i � 0;

with strict inequality unless �T (�) = 0. Now the condition �e > 0 for all e 2 E ensures that � 6= 0
implies that �T (�) must be di�erent from zero for at least one tree T 0. Therefore, for any � 6= 0,
we have

h�; E� [r
2A�(�(T ))] �i � h�T 0

(�); r2A�(�(T 0))�T 0
(�)i > 0;

which establishes the assertion of strict convexity.

8.3 Tree-reweighted sum-product

Recall that Proposition 11 established that the sum-product algorithm can be understood as an
iterative algorithm for attempting to solve the Bethe variational problem (75). Given the close
link between the variational formulation of Proposition 14 and the Bethe problem, it is natural
to suspect that the sum-product algorithm could be appropriately modi�ed so as to apply to the
tree-reweighted case. Indeed this intuition is correct. We �rst state the form of the tree-reweighted
updates [113], and then establish their link to the unique optimal solution of the variational prob-
lem (100).

Like the ordinary sum-product updates, the algorithm involves passing messages Mts(xs) from
node at node. These messages are initialized with arbitrary positive numbers, and then updated
according to the following recursion:

Mn+1
ts (xs) = �

X
x0t2Xt

exp

�
1

�st
�st(xs; x

0
t) + �t(x

0
t)

��Q
v2N (t)ns

�
Mn

vt(x
0
t)
��vt�

Mn
st(x

0
t)
�(1��ts)

�
: (103)

Note that the update equation (103) reduces to the ordinary sum-product update under the
choice �e = 1. In general, however, equation (103) di�ers from the usual updates in three ways.
First, the messages passed along edge (s; t) are reweighted by �st. Second, the potential function
on edge (s; t) is reweighted by 1=�st. Third, in sharp contrast to ordinary sum-product, the update
for message Mts from node t to node s depends on the message Mst running in the reverse direction
on the same edge. The properties of these updates are summarized in the following:

Proposition 15 (Tree-reweighted sum-product). For any �e 2 S(G) with �e > 0, any �xed

point M� of the updates (103) speci�es the optimal solution of the variational problem (100) as

follows:

��s (xs) = � exp
�
�s(xs)

	 Y
v2N (s)

�
M�

vs(xs)
��vs (104a)

��st(xs; xt) = � 'st(xs; xt; �)

Q
v2N (s)nt

�
M�

vs(xs)
��vs�

M�
ts(xs)

�(1��st)
Q

v2N (t)ns

�
M�

vt(xt)
��vt�

M�
st(xt)

�(1��ts) ; (104b)

where 'st(xs; xt; �) := expf 1
�st
�st(xs; xt) + �s(xs) + �t(xt)g.
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Proof. As in the proof of Proposition 11, we enforce the non-negativity constraints (i.e., �s(xs) � 0
and �st(xs; xt) � 0), as well as the normalization constraints (i.e.,

P
xs
�s(xs) = 1) explicitly, without

Lagrange multipliers. Assigning a Lagrange multiplier �ts(xs) to each marginalization constraint
of the form Cts(xs) := �s(xs)�

P
xt
�st(xs; xt), we then consider the associated Lagrangian:

L(� ;�) := h�; �i+
X
s2V

Hs(�s)�
X

(s;t)2E

�stIst(�st) +
X

(s;t)2E

�st
�
�ts(xs)Cts(xs) + �st(xt)Cst(xt)

�
:

(105)
(The factor �st > 0 in front of the Lagrange multiplier term is simply a convenient rescaling.) By
Proposition 14, the original problem is convex and feasible and LOCAL(G) is polyhedral. Therefore,
strong duality holds [8], so that (in contrast to the ordinary Bethe problem), solving the Lagrangian
formulation is equivalent to solving the original problem.

Calculations entirely analogous to the proof of Proposition 11 show that stationary points (�; �)
of the Lagrangian are speci�ed by equations (104a) and (104b), where the messages are de�ned
in terms of Lagrange multipliers as Mst := exp(�st) (with the exponential taken elementwise).
Finally, enforcing the Lagrangian constraint @L

@�ts(xs)
(� ;�) = �stCts(xs) = 0 yields the message

update equation (103).

Remark: Wiegerinck and Heskes [118] have examined the class of reweighted Bethe problems of
the form (100), but without the requirement that the weights �st belong to the spanning tree poly-
tope S(G). Although loosening this requirement does yield a richer family of variational problems,
in general one loses the guarantee of convexity, and (hence) that of a unique global optimum.

8.4 Convex combinations of hypertrees

In analogy to the hypertree-based extensions of the Bethe variational problem described in Section 7,
the de�nitions and analysis leading up to Propositions 14 and 15 can be extended to hypertrees as
well. In this section, we sketch out this extension, and provide a simple example to illustrate.

For a given treewidth t, consider the set of all hypertrees of width less than or equal to t. The
intrinsic assumption is that t is suÆciently small that performing exact computations on hypertrees
of this width is feasible. It is clear that Lemma 2 generalizes naturally: for any hypertree T ,
the exact entropy �A�(�) is upper bounded by �A�(�(T )) of a hypertree-structured distribution
with matched mean parameters. As before, we consider a convex combination of such upper
bounds, where the combination is based on a probability distribution � = f�(T )g over the set of
all hypertrees of width at most t. Overall, we obtain an upper bound on the entropy of the form

A�(�) � �E� [A
�(�(T ))] = �

X
T

�(T )A�(�(T )): (106)

For a �xed �, our strategy is to optimize the RHS of this upper bound over all pseudomarginals that
are consistent on each hypertree. The resulting constraint set is precisely the polytope LOCALt(G)
de�ned in equation (91).

With this set-up, the hypertree analog of Proposition 14 asserts that the log partition function
A is upper bounded as follows:

A(�) � max
�2LOCAL(G)

�
h�; �i � E� [A

�(�(T ))]
	
: (107)

Moreover, the cost function in this variational problem is concave for all choices of distributions �
over the hypertrees. Equation (107) is the hypertree analog of equation (100); in fact, it reduces
to the latter equation in the special case t = 1.
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Figure 22. Hyperforests embedded within augmented hypergraphs. (a) An augmented hypergraph
for the 3� 3 grid with maximal hyperedges of size 4 that satis�es the single counting criterion. (b)
One hyperforest of width three embedded within (a). (c) A second hyperforest of width three.

Example 22 (Convex combinations of hypertrees). Let us derive an explicit form of equa-
tion (107) for a particular hypergraph and choice of hypertrees. The original graph is the 3 � 3
grid, as illustrated in the earlier Figure 19(a). Based on this grid, we construct the augmented
hypergraph shown in Figure 22(a), which has the hyperedge set

E := f (1245); (2356); (4578); (5689); (25); (45); (56); (58); (5); (1); (3); (7); (9)g: (108)

It is straightforward to verify that it satis�es the single counting criterion.
Now consider a convex combination of four hypertrees, each obtained by removing one of the

4-hyperedges from the edge set. For instance, shown in Figure 22(b) is one particular acyclic
substructure T 1 with hyperedge set

E(T 1) = f (1245); (2356); (4578); (25); (45); (56); (58); (5); (1); (3); (7); (9)g;

obtained by removing (5689) from the full hyperedge set E. To be precise, the structure T 1 so
de�ned is a spanning hyperforest, since it consists of two connected components (namely, the
isolated hyperedge (9) along with the larger hypertree). This choice, as opposed to a spanning
hypertree, turns out to be simplify the development to follow. Figure 22(c) shows the analogous
spanning hyperforest T 2 obtained by removing hyperedge (1245); the �nal two hyperforests T 3 and
T 4 are de�ned analogously.

To specify the associated hypertree factorization, we �rst compute the form of 'h for the max-
imal hyperedges (i.e., of size four). For instance, looking at the h = (1245), we see that hyperedges
(25), (45), (5), and (1) are contained within it. Thus, using the de�nition in equation (84), we
write (suppressing the functional dependence on x):

'1245 =
�1245

'25 '45 '5'1
=

�1245
�25
�5

�45
�5
�5�1

=
�1245 �5
�25�45�1

:

Having calculated all the functions 'h, we can combine them, using the hypertree equation (85),
in order to obtain the following factorization for a distribution on T 1:

p(x; �(T 1)) =
h �1245 �5
�25�45�1

ih �2356 �5
�25�56�3

ih �4578 �5
�45�58�7

ih�25
�5

ih�45
�5

ih�56
�5

ih�58
�5

ih
�1

ih
�3

ih
�5

ih
�7

ih
�9

i
:

(109)
Here each term within square brackets corresponds to 'h for some hyperedge h 2 E(T 1); for
instance, the �rst three terms correspond to the three maximal 4-hyperedges in T 1. Although this
factorization could be simpli�ed, leaving it in its current form makes the connection to Kikuchi
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approximations more explicit. As in Proposition 13, the factorization (109) leads immediately to a
decomposition of the entropy. In an analogous manner, it is straightforward to derive factorizations
and entropy decompositions for the remaining three hyperforests fT i; i = 2; 3; 4g.

Now let E4 = f(1245); (2356); (5689); (4578)g denote the set of all 4-hyperedges. We then form
the convex combination of the four (negative) entropies with uniform weight 1=4 on each T i:

4X
i=1

1

4
A�(�(T i)) =

3

4

X
h2E4

X
xh

�h(xh) log'h(xh) +
X

s2f2;4;6;8g

X
xs5

�s5(xs5) log
�s5(xs5)

�5(x5)

+
X

s2f1;3;5;7;9g

X
xs

�s(xs) log �s(xs): (110)

The weight 3=4 arises because each of the maximal hyperedges h 2 E4 appears in three of the four
hypertrees. All of the (non-maximal) hyperedge terms receive a weight of one, because they appear
in all four hypertrees. Overall, then, these weights represent hyperedge appearance probabilities for
this particular example, in analogy to ordinary edge appearance probabilities in the tree case. We
now simplify the expression in equation (110) by expanding and collecting terms; doing so yields
that the sum �

P4
i=1

1
4A

�(�(T i)) is equal to the following weighted combination of entropies:

3

4

h
H1245 +H2356 +H5689 +H4578

i
�
1

2

h
H25 +H45 +H56 +H58

i
+
1

4

h
H1 +H3 +H7 +H9

i
: (111)

If, on the other hand, starting from equation (110) again, suppose that we included each maximal
hyperedge with a weight of 1, instead of 3=4. Then, after some simpli�cation, we would �nd that
the (negative of) equation (110) is equal to the following combination of local entropiesh

H1245 +H2356 +H5689 +H4578

i
�
h
H25 +H45 +H56 +H58

i
+H5;

which is equivalent to the Kikuchi approximation derived in Example 19. However, the choice of
all ones for the hyperedge appearance probabilities is invalid|that is, it could never arise from
taking a convex combination of hypertree entropies. }

More generally, any entropy approximation formed by taking such convex combinations of hy-
pertree entropies will necessarily be convex. In contrast, with the exception of certain special
cases [82, 76], Kikuchi and other hypergraph-based entropy approximations are typically not con-
vex. In analogy to the tree-reweighted sum-product algorithm, it is possible to develop hypertree-
reweighted forms of generalized sum-product updates. With a suitable choice of convex combina-
tion, the underlying variational problem will be strictly convex, so that such hypertree-reweighted
sum-product algorithms will have a unique �xed point.

9 Semide�nite relaxations for inference

Semide�nite constraints have arisen at several points in the preceding sections, particularly in the
context of Gaussian problems. This section is devoted to a more in-depth development of semidef-
inite constraints for characterizing valid mean parameters. The use of semide�nite constraints for
this purpose has a rich history [2, 61], particularly in the context of scalar random variables. The

68



basis of our presentation is more recent work [e.g., 65, 64, 66, 84] that applies to multivariate
moment problems. Much of this work applies to a fairly general class of problems, and is based
on results from real algebraic geometry, which we do not discuss here. Here we limit ourselves
to considering marginal polytopes, and we adopt the statistical perspective of imposing positive
semide�niteness on covariance and other moment matrices. In the course of our development, we
establish various results relating the tightness of semide�nite constraints to the underlying graph
structure.

We begin with some background on linear matrix inequalities, and then describe how such con-
straints can be applied to moment matrices. Although semide�nite constraints are more generally
applicable, much of our development focuses on the multinomial case. More speci�cally, we describe
a nested sequence of semide�nite outer bounds on the marginal polytopes, the last of which provides
an exact characterization for any graph. We also address the role of graphical structure in semidef-
inite constraints, establishing in particular the link between treewidth and tightness of semide�nite
outer bounds. We compare these sequences of semide�nite outer bounds to the hypertree-based
outer bounds discussed in Section 7. Finally, to illustrate the use of semide�nite constraints, we
combine semide�nite outer bounds with a Gaussian-based entropy approximation to derive a novel
log-determinant relaxation for approximate inference [114].

9.1 Moment matrices and semide�nite constraints

Let Sn+ denote the cone of n � n symmetric positive semide�nite matrices. For two symmetric
matrices A and B, we de�ne the inner product hhA; Bii := trace(AB). Given a vector � 2 Rd ,
consider a linear matrix-valued function F (�) = F0+

Pd
i=1 �iFi, where the matrices Fi; i = 0; : : : ; d

are n � n and symmetric. Requiring that F (�) be positive semide�nite, which we denote by
F (�) � 0, is a linear matrix inequality (LMI). The class of constraints that can be expressed in this
manner is fairly broad, including as special cases both linear and quadratic constraints [see 104].
For instance, the linear constraint A� � b is equivalent to the LMI diagfA� � bg � 0, where the
diag operator places the elements of a vector on the diagonal of a matrix. In general, the constraint
set carved out by a linear matrix inequality is formed of a mixture of polyhedral (i.e., linear) and
curved constraints.

Given a random vector y with n components, let �st = E [ysyt] denote its second-order moments.
Using these moments, we can form the following symmetric n� n matrix:

M [�] = E [yyT ] =

26664
�11 �12 � � � �1n
�21 �22 � � � �2n
...

... � � �
...

�n1 �n2 � � � �nn

37775 (112)

At �rst sight, this de�nition might seem limiting, because the matrix involves only second-order
moments. However, given some random vector x of interest, we can expose any of its moments by
de�ning y = f(x) for a suitable choice of function f , and then considering the associated second-
order moment matrix (112) for y. For instance, by setting y = [1 x], the moment matrix (112)
will include both �rst and second-order moments of x. Similarly, by including terms of the form
xsxt in the de�nition of y, we can expose third moments of x.

The signi�cance of the moment matrix (112) lies in the following simple result:

Lemma 4 (Moment matrices). Any valid moment matrix M [�] is positive semide�nite.
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Proof. We must show that aTM [�]a � 0 for an arbitrary vector a 2 Rn . If � is a valid moment
vector, then it arises by taking expectations under some distribution p. Accordingly, we can write
aTM [�]a = Ep [a

TyyT a] = E p [ka
Ty]k2], which is clearly non-negative.

Remarks: Lemma 4 provides a necessary condition for a collection f�stg to be a valid set of
second-order moments. Such a condition is both necessary and suÆcient for certain classical mo-
ment problems involving scalar random variables [e.g., 61, 54]. This condition is of course also
necessary and suÆcient for a Gaussian random vector, as stated in Proposition 6.

9.2 Semide�nite outer bounds on marginal polytopes

We now turn to the use of semide�nite constraints in providing outer bounds on marginal polytopes
associated with multinomial random vectors.

9.2.1 Multi-index notation

Recall the exponential representation of the Ising model in Example 3, which was based on suÆcient
statistics of the form xs and xsxt. The natural generalization of this representation to non-binary
discrete variables is based on monomials of the form x� :=

Qn
s=1 x

�s
s , where � := (�1; �2; : : : ; �n) is

a vector of non-negative indices �s. We refer to � as a multi-index. Our convention for the all-zeros
multi-index 0 is that x0 = 1. Given two multi-indices � and �, it will be useful to specify their
component-wise sum �+ � = (�1 + �1; : : : ; �n + �n).

Consider a multinomial random vector x, where each xs takes values in X := f0; 1; : : : ;m� 1g.
(A bit more generally, we could allow the cardinality of Xs to vary for each vertex.) A convenient
exponential representation, based on the monomials x�, is as follows:

p(x; �) = exp
�X

�

��x
� �A(�)

	
: (113)

Without loss of generality, the range of the sum over � in equation (113) can be restricted. In
particular, observe that for any multinomial variable x 2 X = f0; 1; : : : ;m� 1g, there always holds

m�1Y
j=0

(x� j) = 0: (114)

A minor re-arrangement of this relation yields an expression for xm as a polynomial of degree
m� 1, which implies that any monomial xi with i � m can be expressed as a linear combination of
lower-order monomials. Therefore, we can always assume without loss of generality that the sum is
taken only over multi-indices for which the maximum degree k�k1 := maxs �s is less than or equal
to m� 1. Herein all multi-indices should be understood to satisfy this restriction.

Particular classes of models are obtained by imposing constraints on the set of �. For instance,
restricting � to be non-zero in at most two positions corresponds to a pairwise Markov random
�eld. We can write this constraint compactly using the `0 norm k�k0 := #fs j �s > 0g, which
counts the number of non-zero entries. With this notation, the set of monomials x� associated
with a pairwise Markov random �eld are those with multi-indices in the set I2 = f� j k�k0 � 2g.
More generally, for each integer k = 1; : : : ; n, we de�ne the multi-index set Ik = f� j k�k0 � k g.
This nested set of multi-index sets describes a hierarchy of Markov random �eld models, de�ned
on hypergraphs with increasing sizes of hyperedges.
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To calculate the cardinality of Ik, observe that for each i = 0; : : : ; k, there are
�n
i

�
possible

subsets of size i. Moreover, for each member of each such subset, there are (m� 1) possible choices
of the index value, so that Ik has

Pk
i=0

�n
i

�
(m � 1)i elements in total. The total number of all

possible multi-indices (with k�k1 � m� 1) is given by jInj =
Pn

i=0

�
n
i

�
(m� 1)i = mn.

9.2.2 First-order semide�nite outer bound

For any multi-index �, let �� = E [x� ] denote the associated mean parameter or moment. For each
k = 1; : : : ; n, let us introduce Kk;n to denote the hypergraph that includes all hyperedges of size
up to k on a set of n nodes. For instance, K1;n is simply a disconnected graph, whereas K2;n � Kn

is the usual complete graph on n nodes. We can then consider the associated marginal polytope

MARG(Kk;n) := f�� 2 R
jIk j j � 2 Ik g; (115)

which corresponds to all valid moments �� of order k�k0 � k. More generally, for any hypergraph
G, we use MARG(G) to denote the associated marginal polytope.

We now show how to use moment matrices to develop semide�nite outer bounds on marginal
polytopes. For concreteness, we focus on a pairwise Markov random �eld, so that the relevant
singleton and pairwise moments belong to the set MARG(K2;n) � MARG(Kn). Given a random
vector, we denote by M1[�] the moment matrix corresponding to the choice y = f x� j � 2 I1g in
equation (112). Explicitly, the rows and columns of M1[�] are indexed by multi-indices �; � 2 I1,
where entry (�; �) is given by �

M1[�]
�
��

= ��+�: (116)

Since k�k0 � 1 for each � 2 I1, there always holds k�+ �k0 � 2.

Example 23 (Binary case). We illustrate M1[�] explicitly for the binary case x 2 f0; 1gn, for
which fx� j � 2 I1g = (1; x1; : : : ; xn). On this basis, we calculate:

M1[�] :=

2666666664

1 �1 �2 � � � �n�1 �n
�1 �1 �12 � � � � � � �1n
�2 �12 �2 � � � � � � �2n
...

...
...

...
...

...

�n�1
...

...
...

... �(n�1);n
�n �n1 �n2 � � � �(n�1);n �n

3777777775
: (117)

An important point to note is that in formingM1[�], we use the fact that x
2
s = xs for any xs 2 f0; 1g

in order to simplify the moment calculations. In particular, for each of the diagonal terms (other
than the 1 in the (1; 1) entry), we use the fact that E [x2s ] = E [xs ] = �s. In the general multinomial
case, similar simpli�cations follow from equation (114). }

We now use the matrix M1[�] to de�ne the following semide�nite constraint set:

SDEF1 := f��; � 2 I2 jM1[�] � 0 g: (118)

The de�nition of M1[�] and Lemma 4 guarantee the following inclusion:

Lemma 5 (First-order outer bound). The marginal polytope MARG(Kn) is contained within

the semide�nite constraint set SDEF1.
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Example 24. To illustrate Lemma 5, recall the (hitherto unproven) claim of Example 14: for the
fully connected graph K3 on three nodes, the following pseudomarginal � lies outside MARG(K3):

�s = 0:5 for s = 1; 2; 3; �12 = �23 = 0:4; �13 = 0:1:

(Note that we have translated the overcomplete canonical representation of Example 14 to a minimal
representation.) We now construct the matrix M1 for this trial set of mean parameters:

M1[� ] =

2664
1 0:5 0:5 0:5
0:5 0:5 0:4 0:1
0:5 0:4 0:5 0:4
0:5 0:1 0:4 0:5

3775 :
A simple calculation shows that it is not positive de�nite, whence � =2 SDEF1. Applying Lemma 5
yields that � =2 MARG(K3). }

9.2.3 Projections and exactness

Lemma 5 shows that the semide�nite constraint set SDEF1 provides an outer bound on the set
MARG(Kn) of valid second-order marginals. This same constraint set also induces an outer bound
on MARG(G), where G is any subgraph of the complete graph Kn, in the following way. Let
I(G) � I(Kn) be the multi-index sets associated with G and Kn respectively. Given any outer
bound OUT(Kn) on MARG(Kn), we de�ne its projection onto the coordinates of I(G) as follows:

�G(OUT(Kn)) =
�
��; � 2 I(G) j �� = �� for some � 2 OUT(Kn)

	
: (119)

With this de�nition, an immediate corollary of Lemma 5 is that �G(SDEF1) is an outer bound on
MARG(G) for any graph.

We now turn to a natural question: in which cases does SDEF1 (or a suitable projection thereof)
provide an exact description of a marginal polytope? To gain intuition, let us return to the binary
case of Example 23. It can be seen that for any moment �s, the matrix M1[�] of equation (116)
contains a 2� 2 principal submatrix of the form�

1 �s
�s �s

�
:

The positive semide�niteness of this submatrix enforces the constraint �s (1 � �s) � 0, which is
equivalent to the interval constraint �s 2 [0; 1]. Note that the marginal polytope MARG(K1;n),
which consists only of the �rst-order moments �s, is completely characterized by these interval
constraints. Therefore, we conclude that �K1;n(SDEF1) = MARG(K1;n). This equivalence can be
extended easily to the general multinomial case (i.e., m > 2).

This exactness breaks down for more interesting examples. For instance, SDEF1 is a strict
outer bound on the marginal polytope MARG(K2;n) � MARG(Kn), as illustrated in the following
example.

Example 25 (Strict inclusion for binary pair). Let us demonstrate the strict inclusion
SDEF1 � MARG(Kn) for a pair (x1; x2) of binary random variables (i.e., n = 2). In this case,
MARG(K2) consists of three moments f�1; �2; �12g. So as to facilitate visualization, we focus on
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the intersection of both the marginal polytope and the constraint set SDEF1 with the hyperplane
�1 = �2. The semide�nite constraint set is de�ned by the LMI constraint:

M1[�] =

24 1 �1 �2
�1 �1 �12
�2 �12 �2

35 � 0: (120)

In order to deduce the implied constraints, we apply Sylvester's criterion, making the substitution
�1 = �2 throughout. Positivity of the (1; 1) subminor is trivial (1 > 0), and the (1; 2) subminor
yields the interval constraint �1 2 [0; 1]. After some simpli�cation, non-negativity of the full
determinant leads to the constraint �212 � (2�21)�12 + (2�31 � �22) � 0. Viewing the LHS as a
quadratic in �12, we can factor it into the product [�12 � �1] [�12 � �1 (2�1 � 1)]. For �1 2 [0; 1],
this quadratic inequality is equivalent to the pair of constraints

�12 � �1; �12 � �1 (2�1 � 1): (121)

The gray area in Figure 23 shows the intersection of the marginal polytope MARG(K2) with

(0; 0)

(1; 1)

(12 ; 0)

�1 = �12

�12 = 2�21 � �1

�12

�1

Figure 23. Nature of the semide�nite outer bound SDEF1 on the marginal polytope MARG(K2)
for a pair (x1; x2) 2 f0; 1g

2. The gray area shows the cross-section of the binary marginal polytope
MARG(K2) corresponding to intersection with the hyperplane �1 = �2. The intersection of SDEF1
with this same hyperplane is de�ned by the inclusion �1 2 [0; 1], the linear constraint �12 � �1, and
the quadratic constraint �12 � 2�21 � �1. Consequently, there are points belonging to SDEF1 that
lie strictly outside MARG(K2).

the hyperplane �1 = �2. The intersection of the semide�nite constraint set SDEF1 with this
same hyperplane is characterized by the interval inclusion �1 2 [0; 1] and the two inequalities in
equation (121). Note that the semide�nite constraint set is an outer bound on MARG(K2), but
that it includes points that are clearly not valid marginals. For instance, it can be veri�ed that
(�1; �2; �12) = (14 ;

1
4 ;�

1
8) corresponds to a positive semide�nite M1[�], but this vector certainly

does not belong to MARG(K2). }

9.2.4 Higher-order semide�nite constraints

The previous construction of M1[�] was based only on �rst and second-order moments of the
random vector x. Of course, we can also consider moments �� for higher-order multi-indices � as
well; doing so leads a special case of what is known as the Lasserre sequence of relaxations [64, 66].

If the given model has higher than pairwise interactions, then considering such higher-order
moments is absolutely necessary. However, it may also be useful even when considering a pairwise
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Markov random �eld on an ordinary graph G (i.e., for which MARG(G) involves only pairwise
moments). Indeed, suppose that we have an outer bound on MARG(Kk;n) for some k � 3. For
any graph G, this outer bound can be projected, as in equation (119), to obtain an outer bound
on MARG(G).

Accordingly, for each t = 2; : : : ; n, we form an jItj � jItj matrix Mt[�] where each row and
column is associated with some multi-index � 2 It. The entries of Mt[�] are speci�ed as follows:�

Mt[�]
�
��

= ��+�: (122)

When t = 1, this de�nition reduces to our previous de�nition of M1[�] in equation (116). Note any
moment ��+� involved in Mt[�] has order k�+ �k0 � minf2t; ng.

Example 26 (Higher-order semide�nite constraint). To provide a simple illustration, con-
sider a triplet (x1; x2; x3) of binary variables, so that

fx� j � 2 I2g = f1; x1; x2; x3; x1x2; x1x3; x2x3g

In this case, the matrix M2[�] is 7� 7, and takes the following form:

M2[�] =

2666666664

1 �1 �2 �3 �12 �13 �23
�1 �1 �12 �13 �12 �13 �123
�2 �12 �2 �23 �12 �123 �23
�3 �13 �23 �3 �123 �13 �23
�12 �12 �12 �123 �12 �123 �123
�13 �13 �123 �13 �123 �13 �123
�23 �123 �23 �23 �123 �123 �23

3777777775
(123)

In calculating the form of M2[�], we use the fact that x
2
s = xs whenever xs 2 f0; 1g in order to

simplify the moment calculations. For example, in calculating the (5; 7) entry, we use the reduction
E [(x1x2) (x2x3)] = E [x1x2x3] = �123. }

As with the argument preceding Lemma 5, for each t = 1; : : : ; n, the matrix Mt[�] can be used
to specify an outer bound13 on the marginal polytope MARG(K2t;n). In particular, we use Mt[�]
to de�ne the following semide�nite constraint set:

SDEFt := f��; � 2 I2t jMt[�] � 0 g: (124)

Note that when t = 1, de�nition (124) is equivalent to the earlier de�nition of SDEF1 in equa-
tion (118). In analogy to Lemma 5, these semide�nite constraints generate outer bounds on
marginal polytopes:

Lemma 6. For each t = 1; : : : ; n, the set SDEFt is an outer bound on MARG(K2t;n). Moreover,

for any hypergraph G contained within K2t;n, the projection �G(SDEFt) is an outer bound on

MARG(G).

An important property of this sequence of outer bounds is that they are nested. Considering in
particular MARG(Kn) � MARG(K2;n), we have the set of inclusions

SDEF1 = �Kn(SDEF1) � �Kn(SDEF2) � : : : � �Kn(SDEFn): (125)
13Strictly speaking, it de�nes an outer bound on MARG(Kr(t);n) where r(t) := minf2t; ng, but we suppress the

subtlety in the interests of readability.
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This nesting relation holds because for t0 < t, the matrix Mt0 [�] is a principal minor of the larger
matrix Mt[�]. For instance, observe that for the binary case, the matrix M1[�] of equation (120) is
equivalent to the top 3� 3 block of M2[�] de�ned in equation (123).

We have terminated the nested sequence in equation (125) at SDEFn. The validity of this �nite
termination in a general setting was proved by Lasserre [64], and also by Laurent [66, 67] using
di�erent methods. Here we provide an alternative proof of �nite termination for characterizing a
multinomial marginal polytope:

Proposition 16 (Tightness of semide�nite constraints). For any multinomial random vector

x 2 f0; 1; : : : ;m� 1gn, the semide�nite constraint set SDEFn and its projections provide an exact

characterization of the marginal polytope MARG(G) for any hypergraph G.

Proof. For each J = (j1; : : : ; jn) 2 X
n, de�ne the indicator function IJ(x) :=

Qn
s=1 Ijs(xs). First

consider the following identities between the scalar indicator functions Ij(u) and monomials uj :

Ij(u) =
Y
k 6=j

u� k

j � k
; uj =

m�1X
k=0

kjIk(u): (126)

For each � 2 In, the monomial x� decomposes as the product
Qn

s=1 x
�s
s , so that it is a linear

combination of the indicators IJ(x) :=
Qn

s=1 Ijs(xs). Conversely, for each J 2 X n, the indicator
function IJ(x) is also equal to a linear combination of the monomials fx�; � 2 Ing. Thus, there is an
invertible linear transformation (with matrix B) between the indicator functions fIJ(x); J 2 X ng
and the monomials fx�; � 2 Ing.

Consider themn�mn moment matrix de�ned by the functions fIJ(x); J 2 X ng. Its form is very
simple: since the product IJ(x)IJ 0(x) vanishes for all J 6= J 0, it is a diagonal matrix D = diag(�J),
where �J is the probability of the con�guration J 2 X n. Given the constraint

P
J IJ(x) = 1, the

positive semide�nite constraint D � 0 is necessary and suÆcient to ensure that f�J ; J 2 X ng
speci�es a valid probability distribution. Moreover, by the linear bijection established above, we
have Mn[�] = BDBT with B invertible, so that D � 0 if and only if Mn[�] � 0.

Remarks: This result shows that imposing a semide�nite constraint on the largest possible mo-
ment matrix Mn[�] is suÆcient to fully characterize all marginal polytopes. From a practical point
of view, however, the consequences of this result are limited, because Mn[�] is a jInj � jInj matrix,
where jInj = jX nj = mn is exponentially large.

To illustrate Proposition 16, we consider a very simple example.

Example 27. Consider the marginal polytope MARG(K2) for a binary pair (x1; x2) 2 f0; 1g2. In
this case, the full moment matrix M2[�] is 4� 4, corresponding to the set f1; x1; x2; x1x2g. It takes
the form

M2[�] =

2664
1 �1 �2 �12
�1 �1 �12 �12
�2 �12 �2 �12
�12 �12 �12 �12

3775 : (127)

Positivity of the diagonal element (4; 4) gives the constraint �12 � 0. Positivity of the (3; 4)
subminor, combined with the constraint �12 � 0, leads to �2 � �12 � 0. By symmetry, the (2; 4)
subminor gives �1 � �12 � 0. Finally, the determinant of M2[�] can be calculated

detM2[�] = �12
�
�1 � �12

� �
�1 � �12

� �
1 + �12 � �1 � �2

�
: (128)
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The constraint detM2[�] � 0, in conjunction with the previous constraints, implies the inequality
1 + �12 � �1 � �2 � 0. (In fact, the quantities f�12; �1 � �12; �2 � �12; 1 + �12 � �1 � �2g are the
eigenvalues of M2[�], so positive semide�niteness of M2[�] is equivalent to non-negativity of these
four quantities.) These four inequalities provide a complete description of the marginal polytope
in this simple case, as can be seen by comparison to Example 7. It is also worthwhile comparing
to Example 25, where we showed that positive semide�niteness of the 3� 3 moment matrix M1[�],
which is simply the (1; 2; 3) principal submatrix of M2[�], provides only a partial characterization
of MARG(K2).

}

9.3 Link to graphical structure

Recall from our discussion in Section 4.1.3 that the complexity of a given marginal polytope
MARG(G) depends very strongly on the structure of the (hyper)graph G. We now turn to a
more detailed consideration of the role of graphical structure in semide�nite constraints. One
consequence of the junction tree theorem, as stated in Proposition 1, is that marginal polytopes
associated with hypertrees are straightforward to characterize. This simplicity is also apparent in
the context of semide�nite characterizations.

9.3.1 Notation for graph-structured semide�nite constraints

Before turning to results, we require some additional notation. Given a hypergraph H, let I(H) be
the set of multi-indices associated with all possible monomials x� de�ned on its hyperedges. For
example, if H is simply the complete graph Kn, then the set I(Kn) consists of all multi-indices
satisfying k�k0 � 2. Let MH [�] be the jI(H)j � jI(H)j moment matrix de�ned by fx�+� ; �; � 2
I(H)g. Note that MH [�] generalizes the previously de�ned moment matrix Mt[�] � MKt;n [�],
where Kt;n is the complete hypergraph including all hyperedges of size less than or equal to t.

Using these moment matrices, we de�ne the semide�nite constraint sets

SDEFH := f��+� ; �; � 2 I(H) jMH [�] � 0g: (129)

Observe that the set SDEFH is a generalization of the semide�nite constraint sets SDEFt de�ned
in equation (124); more speci�cally, SDEFt is equivalent to SDEFKt;n . Finally, we use SDEF(G) as
short-hand for the projected set �G[SDEFG], where the projection is de�ned as in equation (119).

9.3.2 Semide�nite characterization of hypertrees

When the hypergraph G is a hypertree, then its marginal polytope is characterized by a relatively
small set of semide�nite constraints:

Proposition 17 (Hypertrees). For any hypertree G, there holds

SDEF(G) = MARG(G): (130)

Proof. For any hyperedge h of G, let I(h) denote the associated multi-indices (including � = 0 for
the empty subset), and de�ne k := jI(h)j. By de�nition, for every hyperedge h of the hypertree G,
the moment matrix MG[�] includes an k� k principal submatrix, corresponding to all of moments
of the form ��+� for pairs �; � 2 I(h). For the subset of random variables xh := fxs j s 2 hg, this
principal submatrix is equivalent to the matrix MKk;k

[�]. By Sylvester's criterion [54], the positive
semide�niteness of MG[�] implies that all principal submatrices must be positive semide�nite.
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By Proposition 16, the positive semide�niteness of MKk;k
[�] implies that the mean parameters

f�� j � 2 I(h)g are locally consistent over the hyperedge h. The junction tree characterization of
Proposition 1 then guarantees global consistency.

Remarks: (a) This result is of an analogous nature to the junction tree suÆciency condition
of Proposition 1. It is worthwhile contrasting with the earlier Proposition 16, which guarantees
tightness of semide�nite constraints involving the full moment matrix (of size mn). The essence of
Proposition 17 is that if, in addition, G is a hypertree, a much lower order of semide�nite constraints
provides a complete characterization of the marginal polytope. In particular, for a hypergraph G
with maximal hyperedges of size t+ 1, the moment matrix MG[�] is only of size O(mt+1jEj).

(b) As a particular example, consider the case of an ordinary tree T , which has treewidth t = 1.
Proposition 17 then asserts that SDEF(T ), which is de�ned by a moment matrix with only O(m2n)
elements, is an exact characterization of the tree marginal polytope MARG(T ).

9.3.3 Comparison to junction tree

In Section 7, we described outer bounds on the marginal polytope of an arbitrary hypergraph
based on hypertree consistency. It is worthwhile understanding the connection between such outer
bounds LOCALt(G), as de�ned

14 in equation (91), and the constraint sets SDEF(G) de�ned in the
previous section.

First of all, whenever G is a hypertree, there holds

LOCAL(G)
(a)
= MARG(G)

(b)
= SDEF(G); (131)

where equality (a) is a consequence of Proposition 1, and equality (b) is the assertion of Proposi-
tion 17. More generally, the following relation holds:

Proposition 18. For any hypergraph G, we have SDEF(G) � LOCAL(G).

Proof. The proof is similar to the proof of Proposition 17. In particular, for any hyperedge h in
the hypergraph, set k := jI(h)j, and observe that the moment matrix MG[�] contains a principal
submatrix of the form MKk;k

[�], where Kk;k is the complete k-hypergraph on the vertices in the
hyperedge h. The positive semide�niteness of this principal submatrix enforces the constraint that
f��; � 2 I(h)g de�nes a valid local marginal. Therefore, the constraints de�ning SDEF(G) imply
those de�ning LOCAL(G), thereby establishing containment.

Remarks: (a) The sequences SDEF(Kt;n) and LOCAL(Kt;n) de�ned by the complete hyper-
graphs Kt;n (for t = 1; : : : ; n) correspond to particular cases of the Lasserre [64] and Sherali-
Adams [98] sequences of relaxations respectively. See Laurent [66, 67] for comparison of these
sequences in a more general setting.
(b) An interesting by-product of Propositions 17 and 18, or rather of their proofs, is showing that
the linear constraint set LOCAL(G) can be viewed as an intersection of locally-de�ned semide�nite
constraint sets. In particular, for any hyperedge g of E, let Hg be the subhypergraph with vertex
set equal to g, and hyperedge set given by the power set of g (i.e., all subsets of g are hyperedges).

14For simplicity in notation, we omit the subscript t from hereon, understanding that it can be inferred from the
underlying hypergraph G.
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With this de�nition, the semide�nite constraint set SDEF(Hg) is de�ned by the moment matrix
MKk;k

[�], where k = jI(g)j. With this notation, we have the following equivalence:

LOCAL(G) =
\
g2E

SDEF(Hg); (132)

where g ranges over the hyperedge set of G. (In fact, it suÆces to restrict g to maximal hyperedges.)

Example 28. Consider the case of a pairwise Markov random �eld, so that LOCAL(G) corresponds
to the constraint set used in the Bethe variational problem. In this case, the maximal hyperedges
of G are simply pairs (st) of nodes connected by edges. Each subhypergraph Hst consists of the
nodes s and t joined by an edge. The semide�nite constraint set SDEF(Hst) enforces the pairwise
consistency of the mean parameters associated with (xs; xt). For instance, in the binary case, this
semide�nite constraint set is enforced by a 4� 4 matrix, de�ned in equation (127) of Example 27.
The intersection of all of these constraint sets, one for each edge (s; t), is equivalent to LOCAL(G).
}

9.4 Log-determinant relaxation

In this section, we illustrate one possible use of semide�nite constraints in approximate inference.
Recall from Section 8 that a convex relaxation of the exact variational principle requires both a
convex outer bound on the set of realizable mean parameters, and a concave upper bound on the
entropy. The main result of this section is to show how combining a semide�nite outer bound
with a Gaussian-based entropy approximation leads to a log-determinant relaxation of the exact
variational principle [114].

Although the techniques described in this section can be applied more generally, for concreteness
we focus on the case of a binary random vector x 2 f0; 1gn, with a distribution in the Ising form

p(x; �) = exp
�X
s2V

�sxs +
X
(s;t)

�stxsxt �A(�)
	
: (133)

Without loss of generality, we assume that the underlying graph is the complete graph Kn, so that
the marginal polytope of interest is MARG(Kn). Of course, a problem de�ned on an arbitrary
G = (V;E) can be embedded into the complete graph by setting �st = 0 for all (s; t) =2 E.

9.4.1 Gaussian entropy bound

In order to upper bound the entropy, we return to the familiar interpretation of the Gaussian as
the maximum entropy distribution subject to covariance constraints [see 23]. In particular, the
di�erential entropy h(ex) of any continuous random vector ex is upper bounded by the entropy of a
Gaussian with matched covariance, or in analytical terms

h(ex) � 1

2
log det cov(ex) + n

2
log(2�e); (134)

where cov(ex) is the covariance matrix of ex.
The upper bound (134) is not directly applicable to a random vector taking values in a discrete

space (since di�erential entropy in this case diverges to minus in�nity). Therefore, in order to
exploit this bound for the random vector x 2 f0; 1gn, it is necessary to construct a suitably matched
continuous version of x. One method to do so is by the addition of an independent random vector
u, such that the delta functions in the density of x are smoothed out.

78



0 +1 0 +1

(a) (b)

Figure 24. Illustration of the smoothing procedure. (a) Original probability mass function with
impulses at f0; 1g. (b) Transformed version, where the impulses are spread out with a uniform
random variable on [� 1

2
; 1
2
]. By construction, the (di�erential) entropy of the continuous random

variable in (b) is equivalent to the discrete entropy of the original one in (a).

In order to do so, we use x to de�ne a continuous random vector ex := x+ u, where u is
independent of x, with independent components distributed uniformly as us � U [�

1
2 ;

1
2 ]. This

construction is illustrated for the scalar case in Figure 24. A key property of this construction is
that it matches the discrete entropy of x with the di�erential entropy of ex.
Lemma 7. Let h and H denote the di�erential and discrete entropies of ex and x respectively.

Then h(ex) = H(x).

Proof. Let p(�) denote the density of ex (with respect to Lebesgue measure), and let P (�) de-
note the mass function of x (i.e., density with respect to counting measure on f0; 1gn). Let-
ting D := fex 2 Rn j p(ex) > 0 g denote the support of p, the di�erential entropy is given by
h(ex) = � RD p(ex) log p(ex)dex. By construction, D can be decomposed into a disjoint union of hy-
perboxes [eB(e) of unit volume, one for each con�guration e 2 f0; 1gn. Using this decomposition,
h can be decomposed as

h(ex) = �
X

e2f0;1gn

Z
B(e)

p(ex) log p(ex)dex (a)
= �

X
e2f0;1gn

P (e) logP (e);

where equality (a) follows from the fact that p(ex) log p(ex) is equal to the constant P (e) logP (e)
over each hyperbox.

9.4.2 Log-determinant relaxation

Equipped with these building blocks, we are now ready to state a log-determinant relaxation for
the log partition function. Recall the de�nition of SDEF1 from equation (118).

Theorem 3. Let x 2 f0; 1gn, and let OUT(Kn) be any convex outer bound on MARG(Kn) that is
contained within SDEF1 � SDEF1(Kn). Then the log partition function A(�) is upper bounded as

follows:

A(�) � max
�2OUT(Kn)

�
h�; �i+

1

2
log det

�
M1(�) +

1

12
blkdiag[0; In]

��
+
n

2
log(2�e) (135)

where blkdiag[0; In] is a (n+ 1)� (n+ 1) block-diagonal matrix.
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Remarks: The inclusion OUT(Kn) � SDEF1(Kn) guarantees that the matrix M1(�) (and hence
M1(�)+

1
12 blkdiag[0; In]) will always be positive semide�nite. Importantly, the optimization prob-

lem in equation (135) is a determinant maximization problem, for which eÆcient interior point
methods have been developed [e.g., 105].

Proof of Theorem 3:

The proof is based on the variational representation of A from equation (26) of Theorem 2(b).
By Theorem 1, any vector � 2 riMARG(Kn) is realized by some distribution p(x; �(�))). Let
x 2 f0; 1gn be distributed according to p(x; �(�)). Consider the continuous-valued random vectorex = x + u. From Lemma 7, we have H(x) = h(ex); combining this equality with equation (134)
yields the upper bound

�A�(�) = H(x) �
1

2
log det cov(ex) + n

2
log(2�e): (136)

Using the independence of x and u, we can write cov(ex) = cov(x)+ cov(u) = cov(x)+ 1
12In, where

we have used the fact that cov(u) = 1
12In for the IID uniform random vector u on [�1=2; 1=2]n.

Combining this decomposition with equation (136) yields the upper bound

�A�(�) �
1

2
log det

�
cov(x) +

1

12
In
�
+
n

2
log(2�e)

=
1

2
log det

�
M1[�] +

1

12
blkdiag(0; In)

�
+
n

2
log(2�e); (137)

where the �nal equality follows by the Schur complement formula [54]. Finally, substituting the
upper bound (137) equation (26) yields

A(�) � max
�2MARG(Kn)

�
h�; �i+

1

2
log det

�
M1(�) +

1

12
blkdiag[0; In]

�
+
n

2
log(2�e)

�
� max

�2OUT(Kn)

�
h�; �i+

1

2
log det

�
M1(�) +

1

12
blkdiag[0; In]

��
+
n

2
log(2�e);

where the �nal inequality follows because OUT(Kn) is an outer bound on the marginal polytope
by assumption.

Remark: Just as the Bethe variational principle (75) is a tree-based approximation, the log-
determinant relaxation (135) is a Gaussian-based approximation. In particular, it is worthwhile
comparing the structure of the log-determinant relaxation (135) of Theorem 3 to the exact vari-
ational principle for a multivariate Gaussian, as described in Section 4.2.2. More details on the
log-determinant relaxation and its performance for approximate inference can be found in the
technical report [114].

10 Approximate computation of modes

The preceding sections have focused exclusively on variational methods for approximate compu-
tation of the log partition function A(�) and mean parameters � = E � [�(x)] associated with a
given density p(x; �). In this section, we turn our attention to a related but distinct problem|
namely, that of computing a mode of p(x; �). It turns out that the mode problem has a variational
formulation in which the setM once again plays a central role.
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10.1 Variational formulation of computing modes

The problem of mode computation corresponds to �nding a con�guration x� 2 X n that maximizes
p(x; �). Note that we are assuming that at least one mode exists, so that the maximum is attained.
Given the exponential form of p(x; �) and the fact that the log partition function A(�) does not
depend on x, it is equivalent to �nd a con�guration x� 2 argmaxxh�; �(x)i.

We begin by providing intuition for the more formal result to follow. Recall that the log partition
function is de�ned as

A(�) := log

Z
exp

�
h�; �(x)i

	
�(dx); (138)

presuming that the integral exists (i.e., � 2 �). Now suppose that we rescale the exponential
parameter � by some scalar � > 0. For the sake of this argument, let us assume that �� 2 � for
all � > 0. Such a rescaling will put more weight, in a relative sense, on regions of the sample space
X n for which h�; �(x)i is large. Ultimately, as � ! +1, probability mass should remain only on
con�gurations x� in the set argmaxxh�; �(x)i. This type of rescaling is equivalent to the so-called
\zero-temperature limit" of statistical physics.

This intuition suggests that the behavior of the function A(��) should have a close connection
to the problem of computing maxxh�; �(x)i. Since A(��) may diverge as � ! +1, it is most
natural to consider the limiting behavior of the scaled quantity A(��)=�. More formally, we state
and prove the following:

Theorem 4. For all � 2 �, the problem of mode computation has the following alternative repre-

sentations:

max
x2Xn

h�; �(x)i
(a)
= sup

�2clM
h�; �i

(b)
= lim

�!+1

A(��)

�
: (139)

Moreover, ifM contains no lines, then the supremum is attained at an extreme point of M.

Proof. As pointed out earlier, the problem maxx2Xnh�; �(x)i is equivalent to computing a mode
for the exponential family member p(x; �).
Equality (a): Let P be the space of all densities p(�), taken with respect to �. On one hand, for

any p 2 P, we have
R
h�; �(x)ip(x)�(dx) � maxx2Xnh�; �(x)i, whence

sup
p2P

Z
h�; �(x)ip(x)�(dx) � max

x2Xn
h�; �(x)i: (140)

Since the support of � is X n, equality is achieved in (140) by taking a sequence pn converging to a
delta function Æx�(x), where x

� 2 argmaxxh�; �(x)i. Finally, by linearity of expectation and the
de�nition of M, we have supp2P

R
h�; �(x)ip(x)�(dx) = sup�2Mh�; �i, which establishes equality

(a).

Equality (b): By Proposition 2, the function A is lower semi-continuous. Therefore, for all � 2 �,
the quantity lim�!+1A(��)=� is equivalent to the recession function of A, which we denote by
A1 (Corollary 8.5.2, [92]). Hence, it suÆces to establish that A1(�) is equal to sup�2Mh�; �i.
Using the lower semi-continuity of A and Theorem 13.3 of Rockafellar [92], the recession function
of A corresponds to the support function of the e�ective domain of its dual. By Theorem 2, we
have cl domA� = clM, whence A1(�) = supclMh�; �i. Finally, the supremum is not a�ected by
taking the closure.

81



To establish the last assertion, for a �xed � 6= 0, the function h�; �i is non-constant, linear and
(hence) convex in �. If the convex set M contains no lines, then the supremum must be attained
at an extreme point (Cor. 32.3.2, [92]).

Remarks: (a) Theorem 4 shows that the problem of mode computation is equivalent to max-
imizing a linear function over the convex set M. In fact, the function A1(�) := sup�2Mh�; �i
corresponds to the support function of M. It is clear that A1 is convex; moreover, it can be
veri�ed that its subdi�erential @A1(�) has the form:

FM(�) :=
�
�� 2 clM j h�; ��i = sup

�2M
h�; �i

	
: (141)

This set corresponds to the face ofM that is exposed by the direction �.

(b) On the basis of Theorem 2, it is possible to gain additional insight into why lim�!+1A(��)=�
is equivalent to the support function ofM. In particular, using Theorem 2, we write

lim
�!+1

A(��)

�
= lim

�!+1

1

�
sup
�2M

�
h��; �i �A�(�)

	
= lim

�!+1
sup
�2M

�
h�; �i �

1

�
A�(�)

	
:

Equality (b) of Theorem 4 amounts to asserting that the order of the limit over � and the supremum
over � can be exchanged. The convexity of A�, as exploited in the proof, provides justi�cation for
this exchange.

(c) In the particular case of discrete random vectors, the problem of �nding a mode is an integer
programming problem, and the set M is a polytope by Proposition 7. Thus, as a special case
of Theorem 4, the integer programming problem maxxh�; �(x)i is equivalent to a linear program
over the marginal polytope. Since integer programming problems are NP-hard in general, this
equivalence underscores the inherent complexity of M. This type of transformation|i.e., from
an integer program to a linear program over the convex hull of its solutions|is a frequently used
technique in integer programming and combinatorial optimization [e.g., 9, 49, 79, 96]. We return
to this multinomial case in Section 10.2.2.

Theorem 4 is essentially a result concerning the value of any mode (i.e., maxxh�; �(x)i), and
its link to rescaled forms of A. It is also of interest to investigate the limiting behavior of the mean
parameters associated with p(x;��), and their connection to the modes of p(x; �).

Corollary 2. For any � > 0, let �(�) := E�� [�(x)] be the mean parameters associated with

p(x;��). If p(x; �) has at least one mode for all � 2 �, then FM(�) is non-empty for all � 2 �.
Moreover, for all � > 0, there exists �� such that for all � � ��,

�(�) 2
�
FM(�) + B(0; �)

�
; (142)

where B(0; �) is an �-ball around zero in Rd . In the special case that p(x; �) has a unique mode x�,

then FM(�) = f�x�g where �x� := �(x�), and lim�!+1 k�(�)� �x�k = 0.

Proof. For each � > 0, de�ne the function A�(�) :=
1
�A(��). From Theorem 4, the sequence of

functions fA�g converges to A1 pointwise on �. By Proposition 2, for each �xed � < +1, A� is
di�erentiable, and rA�(�) = E�� [�(x)] by the chain rule. By straightforward computations, the
subdi�erential of the support function A1(�) is the set FM(�), so that equation (142) follows from
Theorem 24.5 of Rockafellar [92].
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The interpretation of Corollary 2 is quite intuitive: it guarantees that for � > 0 suÆciently
large, the unique optimizer of the problem A�(�) = sup�2M

�
h�; �i � 1

�A
�(�)

	
is close to the

set of optimizers of the problem A1(�) = sup�2clMh�; �i. In principle, then, one could imagine
attempting to compute A1(�) by computing A�(�) for an increasing sequence of �. Such a strategy
can be viewed as a deterministic analog of simulated annealing [91].

10.2 Exact mode computation by variational principle

In this section, we illustrate Theorem 4 with some examples where the support function can be
computed, and modes can be found exactly. To parallel our discussion in Section 4, we focus in
particular on the Gaussian case, and then the multinomial case. As with the computation of mean
parameters, these exact cases serve as building blocks for convex relaxations of the exact principle
in more challenging cases.

10.2.1 Gaussian case

Recall our parameterization of a multivariate Gaussian random vector (of length n) on the complete
graph, as presented in Sections 4.1.2 and 4.2.2. There are a total of d = n+

�
n
2

�
exponential and

mean parameters, one for each node and edge in the graph. It is convenient to represent the
exponential and mean parameters by a pair of (n+ 1)� (n+ 1) matrices, de�ned as follows:

U(�) :=

�
0 zT (�)

z(�) Z(�)

�
; W (�) :=

�
1 zT (�)

z(�) Z(�)

�
: (143)

Here z(�) := [�1; �2; : : : ; �n]
T is the n-vector of means, whereas Z(�) = [�st] is the n�n matrix of

second-order moments. The analogous blocks of U(�) are �lled with the corresponding exponential
parameters. Recall from Example 4 that � = f� 2 Rd j Z(�) � 0g, whereas from Proposition 6, the
set of realizable mean parameters is given byMGauss = f� 2 Rd j W (�) � 0g. For two symmetric
matrices B and C, let hhB; Cii := trace(BC) be the Frobenius inner product.

Semide�nite programs [104] entail maximizing a linear function subject to linear matrix in-
equalities (see Section 9). In the Gaussian case, the support function representation of Theorem 2
turns out to be a semide�nite program. Using Proposition 6, the constraint set of clMGauss is
characterized by the linear matrix inequality W (�) � 0. By the Schur complement formula [54],
the LMI constraint holds if and only if Z(�)� z(�)zT (�) � 0. The cost function hhU(�); W (�)ii is
linear in �, so that the overall problem is a semide�nite program (SDP).

We claim that for all � 2 �, this SDP has the unique optimal solution

z(��) = �[Z(�)]�1z(�); Z(��) = z(��)zT (��); (144)

where z(��) � x� for some x� 2 Rd . The interpretation is that �� is realized by a Gaussian with
zero covariance that places all its mass on the point x�. Note that the form of x� � z(��) coincides
with the familiar expression for the mode of a Gaussian. Moreover, the optimal solution lies at
an extreme point of MGauss, which is consistent with the last assertion in Theorem 4. Figure 25
provides a geometric illustration of the result in the case n = 1, for which the set clMGauss is a
parabola.

To establish the claim summarized in equation (144), we begin by noting that the cone of
symmetric positive semide�nite matrices is self-dual [15]; hence, B � 0 if and only if hhB; Cii � 0
for all C � 0. Applying this fact with the choices B := Z(�)� z(�)zT (�) � 0 and C := �Z(�) � 0
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clMGauss

�

��

Figure 25. Illustration of the geometry of optimizing over the set clMGauss For n = 1, the set
clMGauss = f(�1; �2) j �2 � �21 � 0g. The optimum will always be attained at a boundary point of
clMGauss, for which �2 � �21 = 0, corresponding to a Gaussian with zero variance concentrated on
�1.

yields that hhZ(�); Z(�)ii � hhZ(�); z(�)zT (�)ii. Using this bound, we can write

hhU(�); W (�)ii = 2hz(�); z(�)i + hhZ(�); Z(�)ii

� 2hz(�); z(�)i + hhZ(�); z(�)zT (�)ii: (145)

Observe that this upper bound (145) is simply a quadratic program in z(�), with its maximum
attained at z(��) := �[Z(�)]�1z(�). Thus, if we take the supremum over � 2 clMGauss, the bound
will be met with equality, and attained at a point W (��) of the form given in equation (144).

In practice, of course, one would not compute the mode of a Gaussian problem via this semidef-
inite formulation. However, this formulation provides valuable perspective for semide�nite relax-
ations of integer programming problems, as discussed in Section 10.3.3.

10.2.2 Multinomial case

Recall from Section 4.1.3 that in the �nite discrete case, the set of realizable mean parametersM is a
polytope, meaning that it is bounded and can be characterized by a �nite number of linear inequality
constraints. Throughout this section, we use the canonical overcomplete representation (38), so
that mean parameters correspond to particular values of marginal distributions. We use MARG(G)
to denote the set of realizable marginals associated with potentials on the cliques of G, which we
refer to as a marginal polytope.

Since MARG(G) is a polytope, the support function representation (139) for computing modes
reduces to a linear program (LP). As such, it has a particular geometry, which provides more
intuition into the variational representation of Theorem 4. Figure 26 illustrates the geometry of
optimizing over a marginal polytope. Extreme points of the marginal polytope are all of the form
�e = �(e), for some con�guration e 2 X n. The vector � speci�es a direction in the space. In order
to maximize h�; �i over MARG(G), we translate a hyperplane with normal � outwards until it is
tangent to MARG(G). An important result in linear programming [9] is that this tangency, while
it may occur at multiple points, will always involve at least one vertex of the polytope MARG(G).
In Figure 26(a), the tangency occurs at a single vertex �e� , so that e� 2 X n is the unique MAP
con�guration for the problem. In panel (b), the tangency occurs along a higher-order face of the
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MARG(G)

�1

�e�

MARG(G)

�2

(a) (b)

Figure 26. Geometry of optimizing over the marginal polytope MARG(G). The vector �i speci�es
the cost direction; the hyperplane with this normal is translated until it is tangent to MARG(G).
(a) For the cost direction �1, the tangency occurs uniquely at the vertex �e� , in which case e� 2 Xn

is the unique global optimum. (b) For �2, the tangency occurs along a higher-order face, in which
case all points in the face are global optima.

polytope, and any vertex in the face will be a MAP solution. In either case, the optimal solution
to the LP will be attained at a vertex of MARG(G).

Tree-structured case: As discussed in Section 4.1.3, the nature of MARG(G) depends strongly
on the nature of the underlying graph G. To build on Example 8, we return to the case of a
tree-structured graph T = (V;E(T )). Let �s(xs) and �st(xs; xt) denote a set of marginal functions
(see equation (40)) associated with the nodes and edges of T . Similarly, we also de�ne functions of
the exponential parameters as follows:

�s(xs) :=
X
j2Xs

�s;jIj(xs); �s(xs) :=
X

(j;k)2Xs�Xt

�st;jkIjk(xs; xt):

In Example 8, we proved that the marginal polytope MARG(T ) is characterized by the following
set of local constraints:

LOCAL(T ) := f� � 0 j
X
xs

�s(xs) = 1;
X
xt

�st(xs; xt) = �s(xs)g:

Applying Theorem 4, we conclude that �nding the mode of a tree-structured problem is equivalent
to solving the linear program:

max
�2LOCAL(T )

h�; �i = max
�2LOCAL(T )

�X
s2V

X
xs

�s(xs)�s(xs) +
X

(s;t)2E(T )

X
xs;xt

�st(xs; xt)�st(xs; xt)
	
: (146)

Letting m denote maxs jXsj, it can be seen that LOCAL(T ) involves O(mn +m2jEj) = O(m2n)
constraints. Presuming that m is not overly large, the LP of equation (146) is easily solvable by
standard methods, including the simplex algorithm [9].

Of interest here is the connection between the variational problem (146) and the iterative max-
product algorithm described in Section 2.5.1. Recall that the max-product algorithm is based on
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passing \messages", denoted by Mts(xs), between nodes in the tree. These messages are updated
according to the following recursion:

Mts(xs) = � max
xt2Xt

�
exp

�
�st(xs; xt) + �t(xt)

	 Y
u2N (t)ns

Mut(xt)

�
: (147)

Note that equation (147) is the analog of the sum-product update (80) given in the proof of
Proposition 11, with the summation replaced by maximization.

To understand why such a connection should exist, recall that for tree-structured problems,
the exact variational principle of Theorem 2 has a concrete and tractable formulation (49), one
which involves LOCAL(T ) as the constraint set (see Section 4.2.3). An immediate corollary of

max
�2LOCAL(T )

�
h�; �i �A�tree(�)

	 max
�2LOCAL(T )

h�; �i

Thm. 4Thm. 2

Prop. 11 Prop. 19

LagrangianLagrangian

max-productsum-product

(?)

(y)

� ! +1

� ! +1

Figure 27. Block diagram of the relationships between variational principles and associated message-
passing algorithms. In the tree-structured case, all the implications indicated by arrows are valid.
For general graphs with cycles, implication (y) breaks down.

Proposition 11 is that the sum-product algorithm on trees is an iterative method for solving a
Lagrangian formulation of this problem. These results and their interconnection are shown in the
two left-side boxes in the block diagram of Figure 27. Next, as a special case of Theorem 4, the
tree-structured linear program (146) can be obtained by taking \zero-temperature limit" of the
tree-structured variational principle (49). In particular, this limiting process is described in remark
(c) following the proof of Theorem 4. This implication is denoted by (?) in Figure 27.

Overall, this intuition suggests that the max-product algorithm on trees should be related to
the tree-structured LP (146), which the following result [111] makes precise:

Proposition 19. For each xs 2 Xs, let �st(xs) be a Lagrange multiplier associated with the con-

straint Cts(xs) = 0, where Cts(xs) := �s(xs) �
P

xt
�st(xs; xt). Let N be the set of � that are

non-negative and appropriately normalized:

N := f� � 0 j
X
xs

�s(xs) = 1;
X
xs;xt

�st(xs; xt) = 1 g: (148)

Consider the dual function Q de�ned by the following partial Lagrangian formulation of the tree-
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structured LP (146):

Q(�) := max
�2N
L(� ;�); (149a)

L(� ;�) := h�; �i+
X

(s;t)2E(T )

�X
xs

�ts(xs)Cts(xs) +
X
xt

�st(xt)Cst(xt)
�
: (149b)

For any �xed point M� of the max-product updates (147), the vector �� := logM� (where the

logarithm is taken elementwise) is an optimal solution of the dual problem min�Q(�).

Proof. We begin by converting to a directed tree by �rst designating some node r 2 V as the root,
and then directing all the edges from parent to child t ! s. With regard to this rooted tree, the
objective function h�; �i has the alternative decomposition:X

xr

�r(xr)�r(xr) +
X
t!s

X
xt;xs

�st(xs; xt)
�
�st(xs; xt) + �s(xs)

�
:

With this form of the cost function, the dual function can be put into the form:

Q(�) := max
�2N

�X
xr

�r(xr)�s(xs) +
X
t!s

X
xt;xs

�st(xs; xt)
�
�st(xs; xt)� �t(xt)

��
; (150)

where the quantities �s and �st are de�ned in terms of � and � as:

�t(xt) = �t(xt) +
X

u2N (t)

�ut(xt) (151a)

�st(xs; xt) = �st(xs; xt) + �s(xs) + �t(xt) +
X

u2N (s)nt

�us(xs) +
X

u2N (t)ns

�ut(xt): (151b)

Taking the maximum over � 2 N in equation (150) yields the explicit form for the dual function
Q(�) = maxxr �r(xr) +

P
t!smaxxs;xt[�st(xs; xt)� �t(xt)].

Any vector of messagesM in the max-product algorithm de�nes a vector of Lagrange multipliers
via � = logM , where the logarithm is taken elementwise. With a bit of algebra, it can be seen
that a message vector M� is a �xed point of the max-product updates (147) if and only if the
associated ��s and ��st, as de�ned by �� := logM�, satisfy the edgewise consistency condition
maxxs �

�
st(xs; xt) = ��t (xt) + Cst for all xt 2 Xt, where Cst is a constant independent of x. We now

show that any such �� is a dual optimal solution.
Under the edgewise consistency condition on a tree-structured graph, we can always �nd at

least one con�guration x� that satis�es

x�s 2 argmaxxs
��s (xs) 8 s 2 V; (x�s; x

�
t ) 2 argmaxxs;xt

��st(xs; xt) 8 (s; t) 2 E

The edgewise consistency condition also guarantees the following equalities:

max
xs;xt

[��st(xs; xt)� �
�
t (xt)] = max

xt
[��t (xt) + Cst � �

�
t (xt)] = Cst = ��st(x

�
s; x

�
t )� �

�
t (x

�
t ):

Combining these two relations yields the following expression for the dual value at ��:

Q(��) = ��r (x
�
r) +

X
t!s

�
��st(x

�
s; x

�
t )� �

�
t (x

�
t )
� (a)

= �r(x
�
r) +

X
t!s

�
�st(x

�
s; x

�
t ) + �s(x

�
s)
�
; (152)
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where equality (a) follows by applying the de�nition of f��s ; �
�
stg from equation (151) and simplifying.

(The Lagrange multipliers �� all cancel out in this simpli�cation.)
Now consider the primal solution de�ned by ��s (xs) := Ix�s [xs] and �

�
st(xs; xt) = Ix�s [xs] Ix�t [xt],

where Ix�s [xs] is an indicator function for the event fxs = x�sg. It is clear that �
� is primal feasible;

moreover, the primal cost is equal toX
xr

��r (xr)�r(xr) +
X
t!s

X
xt;xs

��st(xs; xt)
�
�st(xs; xt) + �s(xs)

�
= �r(x

�
r) +

X
t!s

�
�st(x

�
s; x

�
t ) + �s(x

�
s)
�
;

which is precisely equal to Q(��). Therefore, by strong duality for linear programs [9], the pair
(��; ��) is primal-dual optimal.

Remark: A careful examination of the proof of Proposition 19 shows that several steps rely
heavily on the fact that the underlying graph is a tree. In fact, the corresponding result for a graph
with cycles fails to hold, as we will discuss in the following section.

10.3 Relaxations of the exact principle

We now consider relaxations of the exact variational principle of Theorem 4. The development of
this section is specialized to the multinomial case, for which the set of realizable mean parameters
is a marginal polytope MARG(G).

10.3.1 Relaxations from zero-temperature limits

In remark (b) following Theorem 4, we discussed how the support function representation of com-
puting modes arises as a zero-temperature limit of the variational principle from Theorem 2(b). In
analogy to this result, we begin by showing how taking the zero-temperature limit of any convex
relaxation for inference leads to a corresponding relaxation for MAP estimation.

Proposition 20. Consider a relaxation for computing approximate mean parameters based on the

variational problem

B(�) := max
�2OUT(G)

�
h�; �i �B�(�)

	
; (153)

where OUT(G) is a compact and convex outer bound on MARG(G), and B� is a convex approxi-

mation to the dual function A�. In the zero-temperature limit, we obtain the following relaxation

for approximate mode computation:

max
�2MARG(G)

h�; �i = A1(�) � B1(�) := max
�2OUT(G)

h�; �i: (154)

Proof. In the �nite discrete case, we have domA = Rd ; moreover, by the compactness of OUT(G),
we also have domB = Rd . Consequently, the respective recession functions are de�ned for all
� 2 Rd by the following limits:

A1(�) := lim
�!+1

A(��)

�
; and B1(�) := lim

�!+1

B(��)

�
:

By Theorem 4, we have A1(�) = sup�2MARG(G)h�; �i. Moreover, observe that B, as de�ned in
equation (153), can be interpreted as the conjugate dual to the extended real-valued function B�,
where B�(�) := +1 for � =2 OUT(G). With this de�nition, the (e�ective) domain of B� is simply
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the set OUT(G). As a conjugate function, B is lower semi-continuous; therefore, by Theorem
13.3 of Rockafellar [92], the recession function of B is given by the support function of domB�; in
analytical terms, we have B1(�) = max�2OUT(G)h�; �i. The bound A1(�) � B1(�) follows because
OUT(G) is an outer bound on MARG(G) by assumption.

Remark: Of course, the inequality max�2MARG(G)h�; �i � max�2OUT(G)h�; �i could be obtained
more directly, simply by observing that OUT(G) is a convex outer bound on MARG(G). Nonethe-
less, it is interesting to obtain it as a zero-temperature limit of a corresponding convex relaxation
for computing mean parameters. It should also be noted that the proof of Proposition 20 relies on
the convexity of A�. For instance, it does not apply directly to the Bethe entropy approximation
or any of its non-convex extensions.

Proposition 20 gives a straightforward way to transform any convex relaxation for computing
approximate mean parameters into a corresponding relaxation for approximate mode computation.
We illustrate in the following sections with a number of examples.

10.3.2 Linear programming relaxations

We begin by considering linear programming (LP) relaxations of the exact principle, wherein the
exact marginal polytope MARG(G) is replaced by an outer bound formed entirely of linear con-
straints. For various classes of problems in combinatorial optimization, such LP relaxations have
been studied extensively; see the books [49, 79] for further details.

The case of a pairwise Markov random �eld suÆces to illustrate the basic notion of an LP
relaxation. It is convenient to use the canonical overcomplete representation based on indicator
functions, as de�ned in equation (38) of Section 4.1.3. The constraint set LOCAL(G), �rst discussed
in Example 8, constitutes an outer bound on MARG(G). Recall from Example 14 that it is a strict
outer bound on MARG(G), unless G is actually tree-structured. The set LOCAL(G) speci�es the
following relaxation of mode computation for a multinomial distribution de�ned a pairwise Markov
random �eld:

max
x2Xn

h�; �(x)i = max
�2MARG(G)

h�; �i � max
�2LOCAL(G)

h�; �i: (155)

This relaxation can also be derived as a Lagrangian dual formulation of �nding the tightest upper
bound on the support function A1(�) = maxx2Xnh�; �(x)i based on a convex combination of
trees [111].

Since the relaxed constraint set LOCAL(G) (like MARG(G)) is a polytope, the relaxation on
the RHS of equation (155) is a linear program. Consequently, by standard properties of linear
programs [9], the relaxed optimum must be attained at a vertex (possibly more than one) of the
polytope LOCAL(G). We say that a vertex of LOCAL(G) is integral if all of its components are
zero or one, and fractional otherwise. The following result characterizes the vertices of LOCAL(G):

Proposition 21. All vertices of MARG(G) are also vertices of the relaxed polytope LOCAL(G).
In addition, when G is not tree-structured, then LOCAL(G) includes additional fractional vertices
that lie outside of MARG(G).

Proof. In the canonical overcomplete representation of a multinomial (X = f0; 1; : : : ;m � 1g)
on a pairwise MRF, the polytope LOCAL(G) lies within Rd , where d = mn + m2jEj. The set
LOCAL(G) is de�ned by the d inequality constraints �� � 0 for all � 2 I, and the normalization
and marginalization equality constraints (see equation (41)). By Proposition 7, every vertex of
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MARG(G)

�2

MARG(G)

Figure 28. The constraint set LOCAL(G) is an outer bound on the exact marginal polytope. Its
vertex set includes all the vertices of MARG(G), which are in one-to-one correspondence with optimal
solutions of the integer program. It also includes additional fractional vertices, which are not vertices
of MARG(G).

MARG(G) is of the form �J for some con�guration J 2 X n. This vector has components [�J ]s(xs) =
Ijs(xs), and [�J ]st(xs; xt) = Ijs(xs)Ijt(xt). To show that �J is also a vertex of LOCAL(G), it
suÆces [9] to show that there are d constraints of LOCAL(G) that are active at �J and linearly
independent. For any J 2 X n, we have Ik(xs) = 0 for all k 2 Xnfjsg, and Ik(xs)Il(xt) = 0 for all
(k; l) 2 (X � X )nfjs; jtg. All of these active inequality constraints are linearly independent, and
there are a total of d0 = (m � 1)n + (m2 � 1)jEj. All of the normalization and marginalization
constraints are also satis�ed by �J , but not all of them are linearly independent (when added to
the active inequality constraints). However, we can add the normalization constraints for each
s = 1; : : : ; n and for each (s; t) 2 E, while still preserving linear independence. Adding these
n+ jEj equality constraints to the d0 inequality constraints yields a total of d linearly independent
constraints of LOCAL(G) that are satis�ed by �J , so that it is a vertex. Note that each of these
vertices has 0� 1 components, and so is integral.

The set LOCAL(G) is a polytope, so that it is equal to the convex hull of its vertices [92].
Moreover, it is a strict outer bound on MARG(G), so that it must contain additional vertices that
are not members of MARG(G). Any such vertex must be fractional; otherwise, it could be identi�ed
with a unique con�guration J 2 X n, and hence would belong to MARG(G) by Proposition 7.

The distinction between fractional and integral vertices is crucial, because it determines whether
or not the LP relaxation (155) speci�ed by LOCAL(G) is tight. In particular, there are only two
possible outcomes to solving the relaxation:

(a) the optimum is attained at a vertex of MARG(G), in which case the upper bound in equa-
tion (155) is tight, and a mode can be obtained.

(b) the optimum is attained only at one or more fractional vertices of LOCAL(G), which lie
strictly outside MARG(G). In this case, the upper bound of equation (155) is loose, and the
relaxation does not output the optimal con�guration.

Figure 28 illustrates both of these possibilities. The vector �1 corresponds to case (a), in which the
optimum is attained at a vertex of MARG(G). The vector �2 represents a less fortunate setting, in
which the optimum is attained only at a fractional vertex of LOCAL(G). In simple cases, one can
explicitly demonstrate a fractional vertex of the polytope LOCAL(G).
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Example 29. Here we explicitly construct a fractional vertex for a binary problem x 2 f0; 1g3 on
the complete graphK3. Consider the exponential parameter � shown in matrix form in Figure 29(a).

�s =
�
�s;0 �s;1

�
�st =

�
�st 0
0 �st

�
1

2

3

�1

�2

�3

�12 �23

�13

(a) (b)

Figure 29. The smallest graph G = (V;E) on which the relaxation (155) can fail to be tight. For
�st � 0 for all (s; t) 2 E, the relaxation is tight for any choice of �s; s 2 V . On the other hand, if
�st < 0 for all edges (s; t), the relaxation will fail for certain choices of �s; s 2 V .

When �st < 0, then con�gurations with xs 6= xt are favored, so that the interaction is repulsive. In
contrast, when �st > 0, the interaction is attractive, because it favors con�gurations with xs = xt.
When �st > 0 for all (s; t) 2 E, it can be shown that the relaxation (155) is tight, regardless of the
choice of �s; s 2 V . In contrast, when �st < 0 for all edges, then there are choices of �s; s 2 V for
which the relaxation breaks down.

The following exponential parameter corresponds to a direction for which the relaxation (155)

is not tight, and hence exposes a fractional vertex. First choose ��s =
�
0 0

�T
for s = 1; 2; 3, and

then set �st = � < 0 for all edges (s; t) to de�ne ��st via the construction in Figure 29(a). Observe
that for any con�guration x 2 f0; 1g3, we must have xs 6= xt for at least one edge (s; t) 2 E.
Therefore, any � 2 MARG(G) must place non-zero mass on at least one term of �� involving �,
whence A1(�

�) = max�2MARG(G)h�; �i < 0. In fact, the optimal value A1(�
�) is exactly equal to

� < 0.

On the other, consider the pseudomarginal �� 2 LOCAL(G) de�ned as follows:

��s :=
�
0:5 0:5

�T
for s 2 V; ��st :=

�
0 0:5
0:5 0

�
for (s; t) 2 E:

Observe that h��; ��i = 0. Since ��� � 0 for all elements �, this value is the optimum of h��; �i
over LOCAL(G). Moreover, the relaxation (155) is not tight because max�2MARG(G)h�

�; �i < 0.
Finally, to establish that �� is a vertex of LOCAL(G), we will show that h��; �i < 0 for all � 6= ��.
If h��; �i = 0, then for all (s; t) 2 E the pairwise pseudomarginals must be of the form

�st :=

�
0 �st

1� �st 0

�
for some �st 2 [0; 1]. Enforcing the marginalization constraints on these pairwise pseudomarginals
yields the constraints �12 = �13 = �23 and 1� �12 = �23, whence �st = 0:5 is the only possibility.
Therefore, �� is a fractional vertex. }

Remarks: (a) In analogy to Proposition 11, one might postulate that Proposition 19 could be
extended to graphs with cycles|speci�cally, that the max-product algorithm solves the dual of the
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tree-based relaxation (155). This conjecture is false, since it is possible to construct problems (on
graphs with cycles) for which the max-product algorithm will output a non-optimal con�guration.
Consequently, the max-product algorithm does not specify solutions to the dual problem, since any
LP relaxation will either output a con�guration with a guarantee of correctness, or a fractional
vertex. Wainwright et al. [111] derive a tree-reweighted analog of the max-product algorithm,
analogous to the tree-reweighted sum-product algorithm of Section 8.3. Under certain conditions,
�xed points of this algorithm provably correspond to dual-optimal solutions of the tree-based re-
laxation (155).

(b) The tree-based relaxation (155) can be extended to hypertrees of higher width, by using the
hypertree-based constraint sets LOCALt(G) described in Section 7. This extension produces a
sequence of progressively tighter LP relaxations. In the binary f0; 1g case, this sequence has
been proposed previously by various researchers [50, 98], although without the connections to the
underlying graphical structure.

(c) Feldman et al. [36, 37] have applied the tree-based relaxation (155) to the task of decoding turbo
and low-density parity check (LDPC) codes, and provided analytical results to characterize its
decoding performance. For this case of error-correcting codes, the marginal polytope is equivalent
to a codeword polytope (i.e., the convex hull of all possible codewords). Moreover, the fractional
vertices of the linear relaxation have a very speci�c interpretation as pseudocodewords [e.g., 39, 116,
43] of the underlying code.

10.3.3 Semide�nite relaxations for mode computation

It is also possible to develop relaxations for computing modes based on semide�nite outer approxi-
mations to MARG(G), as described in Section 9. The resulting optimization problem is a semide�-

nite program [104], since it entails optimizing a linear function subject to linear matrix inequalities.
Such semide�nite relaxations are widely-used in combinatorial optimization [e.g., 49, 48, 71], as
well as for programs involving semialgebraic constraints more generally [e.g., 64, 84].

For the sake of brevity, we limit ourselves to describing a well-known semide�nite programming
relaxation that applies to the Ising model, as described in Example 3. In particular, the problem
of computing the mode of a model in Ising form is equivalent to solving the following quadratic
binary integer program:

max
x2f�1;1gn

�X
s2V

�sxs +
X
(s;t)

�stxsxt
	
: (156)

It is convenient to use \spin" variables x 2 f�1;+1gn, and to assume that the problem is for-
mulated on the complete graph Kn.

15 By applying Theorem 4, we conclude that the the binary
quadratic program (156) is equivalent to a linear program over the marginal polytope MARG(Kn),
represented in this case in terms of the spin variables. Since the marginal polytope is diÆcult to
characterize, it is natural to replace it with the �rst-order semide�nite outer bound SDEF1, as
de�ned in equation (118). Doing so leads to the following semide�nite relaxation of the integer
program:

max
�2MARG(Kn

h�; �i � max
�2SDEF1

h�; �i; (157)

where the RHS corresponds to a semide�nite program (SDP). Recall from our discussion of the
exact computation of Gaussian modes in Section 10.2.1 the n�nmatrices of exponential parameters

15This assumption entails no loss of generality, since a problem de�ned on an arbitrary graph can be put in this
form by setting �st = 0 for all (s; t) =2 E.
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U(�) and mean parameters W (�). It is instructive to re-write the semide�nite program (SDP) in
terms of these quantities as follows:

max
�2SDEF1

h�; �i =
1

2
max

W (�)�0;�ss=1
hhU(�); W (�)ii: (158)

Note that the constraints �ss = 1 on the diagonal of W (�) arise because x2s = 1 for any spin
variable xs 2 f�1;+1g. From the form of the relaxation in (158), it can be seen that the relaxation
is essentially Gaussian-based. In particular, any optimal solution �� can be associated with the
covariance matrix of a multivariate Gaussian random vector, where each element of the vector is
constrained to unit variance (i.e., �ss = 1).

Studying the SDP relaxation (157) in application to the MAX-CUT problem,16 Goemans and
Williamson [48] provided a random sampling scheme for generating solutions, and proved a strong
guarantee on its expected performance. Although not originally described in these terms, their
method can be understood as solving the SDP relaxation, thereby obtaining a solution �� that
speci�es the covariance of an optimal zero-mean Gaussian. The sampling scheme itself entails
drawing a random sample from this zero-mean Gaussian, and then taking the sign of each element
of this random n-vector, thereby generating an integral vector (i.e., an element of f�1;+1gn).
Goemans and Williamson proved the following remarkable fact: the expected value of a randomized
solution generated in this way is at worst a factor � � 0:878 less than the value of the optimal cut.
In subsequent work, researchers have developed approximation algorithms based on semide�nite
constraints for a variety of other problems [e.g., 80, 60].

11 Discussion

The core of this paper is a general set of variational principles for the problems of computing
marginal probabilities and modes, applicable to multivariate statistical models in the exponen-
tial family. A fundamental object underlying these optimization problems is the set of realizable
mean parameters associated with the exponential family; indeed, the structure of this set largely
determines whether or not the associated variational problem can be solved exactly in an eÆ-
cient manner. Moreover, a large class of well-known algorithms for both exact and approximate
inference|including mean �eld methods, the sum-product and max-product algorithms, as well as
generalizations thereof|can be derived and understood as methods for solving various forms (ei-
ther exact or approximate) of these variational problems. The variational perspective also suggests
convex relaxations of the exact principle, which in turn lead to new algorithms for approximate
inference.

Many of the algorithms described in this paper are already essential tools in various practical
applications (e.g., the sum-product algorithm in error-correcting coding). While such empirical suc-
cesses underscore the promise of variational approaches, a variety of theoretical questions remain
to be addressed. One important direction to pursue is obtaining a priori guarantees on the accu-
racy of a given variational method for a particular subclass of problems. For instance, it remains
to be seen whether techniques used to obtain performance guarantees for relaxations of combina-
torial optimization problems can be adapted to analyze other types of inference problems (e.g.,
computing approximate marginal distributions). Another major area with various open issues is
the application of variational methods to parameter estimation. Although mean �eld methods are
already widely used for parameter estimation in directed graphical models, open questions include

16The MAX-CUT problem is a particular case of the general binary quadratic program(156), in which �s = 0 for
all s 2 V and �st � 0 for all (s; t) 2 E.
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how to exploit more powerful variational methods, and also how to deal with undirected graphical
models. Variational methods that provide upper bounds on the cumulant generating function are
likely to be useful for parameter estimation in the undirected setting.

Finally, it should be emphasized that the variational approach provides a set of techniques
that are complementary to Monte Carlo methods. One interesting program of research, then, is
to characterize the classes of problems for which variational methods (or conversely, Monte Carlo
methods) are best suited, and moreover to analyze the trade-o�s in complexity versus accuracy
inherent to each method. It is also worthwhile pursuing the development of hybrid methods, which
could combine the virtues of both variational techniques and Monte Carlo methods.
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A Proofs

A.1 Proof of Proposition 2

The proof of the results in this proposition are straightforward; see, for example, Brown [17] for
more details. Lower semi-continuity follows from Fatou's lemma [93]. Interchanging the order
of di�erentiation and integration can be justi�ed via a standard argument using the dominated
convergence theorem [93], from which derivatives can be calculated by chain rule. To establish
the last claim, let �b be a boundary point, and let �0 2 � be arbitrary. By the convexity and
openness of �, the line �t := t�b + (1� t)�0 is contained in � for all t 2 [0; 1) (see Thm. 6.1, [92]).
Using the di�erentiability of A on � and its convexity (Corollary 1), for any t < 1, we can write
A(�0) � A(�t) + hrA(�t); �0 � �ti. Re-arranging and applying the Cauchy-Schwartz inequality
yields that A(�t)�A(�0) � k�t � �0k krA(�t)k. Now as t! 1�, the LHS tends to in�nity by the
lower semi-continuity of A. Consequently, the RHS must also tend to in�nity; since k�t � �0k is
bounded, we conclude that krA(�t)k ! +1, as claimed.

A.2 Proof of Corollary 1

From equation (20b), the Hessian r2A(�) is a Gram matrix and hence must be positive semide�nite
on the open set �, which ensures convexity (Thm. 4.3.1, [53]). If the representation is minimal,
there is no vector a 2 Rd and constant b 2 R such that ha; �(x)i = b holds �-almost-everywhere.
This condition implies var�[ha; �(x)i] = aTr2A(�)a > 0 for all a 2 Rd and � 2 �; this strict
positive de�niteness of the Hessian on the open set � implies strict convexity [53].
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A.3 Proof of Proposition 3

If the representation is not minimal, then there exists a distinct pair �1 6= �2 for which p(x; �1) =
p(x; �2). For this pair, we have �(�1) = �(�2), so that � is not one-to-one. Conversely, if the
representation is minimal, then A must be strictly convex by Corollary 1. For any strictly convex
function, the inequality hrA(�1)�rA(�2); �1 � �2i > 0 holds for all �1 6= �2, which is equivalent
to � being one-to-one.

A.4 Proof of Theorem 1

We prove the result �rst for a minimal representation, and then discuss its extension to the over-
complete case. By de�nition, a convex subset of Rd is full-dimensional if its aÆne hull is equal to
Rd . As shown in Proposition 5,M is a full-dimensional convex set whenever the representation is
minimal. Consequently, we can deal with the interior (as opposed to relative interior). Our proof
makes use of the following properties of a full-dimensional convex set [see 53, 92]: (a) intM is
non-empty, and int [cl(M)] = int(M); and (b) the vector 0 2 int(M) () for all non-zero  2 Rd ,
there exists some � 2M with h; �i > 0.

�(�) � intM: By shifting the potential � by a constant vector if necessary, it suÆces to consider

the case 0 2 �(�). Let �0 2 � be the associated exponential parameter satisfying �(�0) = 0. We
prove that for all non-zero directions  2 Rd , there is some � 2 M such that h; �i > 0, which
implies 0 2 int(M) by property (b).

For any  2 Rd , the openness of � ensures the existence of some Æ > 0 such that (�0 + Æ) 2 �.
Using the strict convexity and di�erentiability of A on � and the fact that �(�0) = 0 by assumption,
there holds A(�0 + Æ) > A(�0) + h�(�0); Æi = A(�0). Similarly, de�ning �Æ := �(�0 + Æ), we
can write A(�0) > A(�0 + Æ) + h�Æ; �Æi. These two inequalities in conjunction imply that

Æ h�Æ; i > A(�0 + Æ)�A(�0) > 0:

Since �Æ 2 �(�) �M and  2 Rd was arbitrary, this establishes that 0 2 int(M).

intM� �(�): As in the preceding argument, we may take 0 2 intM without loss of generality.
Then, we must establish the existence of � 2 � such that �(�) = rA(�) = 0. By convexity, it is
equivalent to show that inf�2�A(�) is attained. To establish the attainment of this in�mum, we
prove that A has no directions of recession, meaning that limn!+1A(�n) = +1 for all sequences
f�ng such that k�nk ! +1.

For an arbitrary non-zero direction  2 Rd and � > 0, consider the half space H;� := fx 2
X n j h; �(x)i � �g. Since 0 2 intM, this half-space must have positive measure under � for all
suÆciently small � > 0. Otherwise, the inequality h; �(x)i � 0 would hold �-a.e., which implies
that h; �i � 0 for all � 2 cl(M). By the convexity of M, this inequality would imply that
0 =2 int cl(M) = int(M), which contradicts our starting assumption.

For an arbitrary �0 2 �, we now write

A(�0 + t) � log

Z
H;�

exp
�
h�0 + t; �(x)i

	
�(dx) � t�+ log

Z
H;�

exp
�
h�0; �(x)i

	
�(dx):| {z }

C(�0)

Note that we must have C(�0) > �1, because expfh�0; �(x)ig > 0 for all x 2 X n, and �(H;�) > 0.
Hence, we conclude that limt!+1A(�0 + t) = +1 for all directions  2 Rd , showing that A has
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no directions of recession.

Extension to overcomplete case: For any overcomplete representation �, let ' be a set of potential
functions in an equivalent minimal representation. In particular, a collection ' can be speci�ed by
eliminating elements of � until no aÆne dependencies remain. Let �' and �� be the respective
mean parameter mappings associated with ' and �, with the setsM' andM� similarly de�ned.
By the result just established, �' is onto the interior ofM'. By construction of ', each member in
the relative interior ofM� is associated with a unique element in the interior ofM'. We conclude
that the mean parameter mapping �� is onto the relative interior ofM�.

A.5 Proof of Theorem 2

(a) Case (i) � 2 riM: In this case, Theorem 1 guarantees that the inverse image ��1(�) is non-
empty. Any point in this inverse image attains the supremum in equation (23). In a mini-
mal representation, there is only one optimizing point, whereas there is an aÆne subset for an
overcomplete representation. Nonetheless, for any �(�) 2 ��1(�), the value of the optimum is:
A�(�) = h�(�); �i �A(�(�)). We conclude by observing that

�H(p(x; �(�))) = E � [h�(�); �(x)i �A(�(�))] = h�(�); �i �A(�(�)):

Case (ii) � =2 clM: Let domA� = f� 2 Rd j A�(�) < +1g denote the e�ective domain of A�.
With this notation, we must prove that clM � domA�. From Proposition 2, the function A is
essentially smooth and lower semi-continuous. From Theorem 1, we have rA(�) = riM. By
Corollary 26.4.1 of Rockafellar [92], these conditions guarantee that ri domA� � riM � domA�.
Since both M and domA� are convex sets, taking closures in the these inclusions yields that
cl domA� = cl riM = clM, where the second equality follows by the convexity of M. Therefore,
by de�nition of the e�ective domain, A�(�) = +1 for any � =2 clM.

Case (iii) � 2 clMn riM: Since A� is de�ned as a conjugate function, it is lower semi-continuous.
Therefore, the value of A�(�) for any boundary point � 2 clMn riM is determined by the limit
over a sequence approaching � from inside riM, as claimed.

(b) From Proposition 2, A is lower semi-continuous, which ensures that (A�)� = A so that we
can write A(�) = sup�2cl domA�fh�; �i � A�(�)g. Part (a) shows that cl domA� = clM, so that
equation (26) follows. Whether the supremum is taken overM or over clM is inconsequential.

A.6 Proof of Proposition 4

For a minimal representation, Proposition 3 and Theorem 1 guarantee that the gradient mapping
rA is a bijection between � and riM. On this basis, it follows that the gradient mapping rA�

also exists and is bijective [92], whence the supremum (32) is attained at a unique point whenever
� 2 �. The analogous statement for an overcomplete representation can be proved via reduction
to a minimal representation.

A.7 Proof of Proposition 5

(a) The representation is not minimal if and only if there exists some vector a 2 Rd and constant
b 2 R such that ha; �(x)i = b holds �-a.e. By de�nition of M, this equality holds if and only if
ha; �i = b for all � 2M, which is equivalent toM not being full-dimensional.
(b) By Theorem 4 of Section 10, the recession function A1 is the support function sup�2Mh�; �i.
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Therefore, the setM is bounded if and only if A1(�) is �nite for all � 2 R
d . The recession function

A1 is �nite-valued if and only if A is Lipschitz (hence �nite) on all of Rd (Prop. 3.2.7; [53]).

A.8 Proof of Proposition 6

By the Schur complement formula [54], the (n + 1) � (n + 1) matrix W (�) is positive de�nite if
and only if the n� n matrix Z(�) � z(�)zT (�) is positive de�nite. But this latter matrix can be
interpreted as the covariance of x. Any Gaussian random vector gives rise to a positive de�nite
covariance. Conversely, given a matrix W (�) that is positive de�nite, we can construct a Gaussian
with mean z(�) and covariance Z(�)� z(�)zT (�).

A.9 Proof of Proposition 7

The de�nition (33) shows that M is given by the convex hull of the vectors f�(x) j x 2 X ng.
Regardless of the speci�c choice of �, there are only a �nite number of vectors �(x) in this convex
hull. Therefore, the Minkowski-Weyl theorem [92, 53] guarantees that M has a representation as
in equation (36). By de�nition, any � 2 M has a representation of the form � =

P
x
p(x)�(x). If

� is not of the form �e = �(e), then p(xi) > 0 for at least two distinct x1;x2. Hence, it is not an
extreme point.

A.10 Proof of Proposition 8

The convexity and lower semi-continuity (l.s.c.) follow because A� is the supremum of collection of
functions linear in �. Statements (a)|(c) are equivalent to the assertion that A� is strictly convex
and essentially smooth. Since both A and A� are l.s.c., A� has these properties if and only if A is
strictly convex and essentially smooth (Thm. 26.3; [92]). For a minimal representation, A is strictly
convex by Corollary 1, and it is essentially smooth by Proposition 2, so that the result follows.

B AÆne hulls and relative interior

The interior of a convex set C � Rd consists of all vectors z 2 C for which there exists some � > 0
such that the �-ball B�(z) := fy 2 Rd

�� ky � zk < �g is contained within C. The relative interior
is de�ned similarly, except that the interior is taken with respect to the aÆne hull of C, denoted
a� C. More formally, the relative interior of C, denoted riC, is the set of all points z such that for
some � > 0, the set B�(z) \ a�(C) is contained within C. To illustrate the distinction, note that
the interior of the convex set [0; 1], when viewed as a subset of R2 , is empty; the aÆne hull of [0; 1]
is the real line, so that the relative interior is the open interval (0; 1).

A key property of any convex set C is that its relative interior is always non-empty [92]. A
convex set C � Rd is full-dimensional if its aÆne hull a� C is equal to Rd . In this case, the notion
of interior and relative interior coincide.

C Conversion to a pairwise Markov random �eld

In this appendix, we describe how any Markov random �eld with discrete random variables can be
converted to an equivalent pairwise form (i.e., with interactions only between pairs of variables).
To illustrate the general principle, it suÆces to show how to convert a compatibility function  123
de�ned on a triplet fx1; x2; x3g of random variables into a pairwise form. To do so, we introduce
an auxiliary node A, and associate with it random variable z that takes values in the Cartesian
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product space X1 � X2 � X3. In this way, each con�guration of z can be identi�ed with a triplet
(z1; z2; z3). For each s 2 f1; 2; 3g, we de�ne a pairwise compatibility function  As, corresponding to
the interaction between z and xs, by  As(z; xs) :=  123(z1; z2; z3)I[zs = xs]. With this de�nition,
it is straightforward to verify that the equivalence

 123(x1; x2; x3) =
X
z

3Y
s=1

 As(z; xs)

holds, so that our augmented model faithfully captures the interaction among the triplet fx1; x2; x3g.

D M�obius inversion

This appendix provides a brief overview of the M�obius function associated with a partially-ordered
set (poset); see Stanley [101] for a thorough treatment. The zeta function �(g; h) of a poset is
de�ned as:

�(g; h) =

(
1 if g � h

0 otherwise
(159)

The M�obius function ! arises as the multiplicative inverse of this zeta function. It is de�ned in a
recursive fashion, by �rst specifying !(g; g) = 1 for all g. Once !(g; f) has been de�ned for all f
such that g � f < h, we then de�ne:

!(g; h) = �
X

ff j g�f<hg

!(g; f) (160)

With this de�nition, it can be seen that ! and � are multiplicative inverses, in the sense thatX
ff j g�f�hg

!(g; f)�(f; h) = Æ(g; h)

where Æ(g; h) is the Kronecker delta.

Lemma 8 (M�obius inversion formula). Let �(h) be a real-valued function de�ned for h in a

poset. De�ne a new real-valued function 
 via:


(h) =
X

g2D+(h)

�(g) (161)

where D+(h) := fg j g � hg is the set of descendants of h. Then we have the relation

�(h) =
X

g2D+(h)

!(g; h)
(g) (162)

where ! is the associated M�obius function.
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