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Abstract

We consider problems involving groups of data, where each observation within a group is
a draw from a mixture model, and where it is desirable to share mixture components between
groups. We assume that the number of mixture components is unknown a priori and is to be
inferred from the data. In this setting it is natural to consider sets of Dirichlet processes, one
for each group, where the well-known clustering property of the Dirichlet process provides a
nonparametric prior for the number of mixture components within each group. Given our desire
to tie the mixture models in the various groups, we consider a hierarchical model, specifically
one in which the base measure for the child Dirichlet processes is itself distributed according to
a Dirichlet process. Such a base measure being discrete, the child Dirichlet processes necessar-
ily share atoms. Thus, as desired, the mixture models in the different groups necessarily share
mixture components. We discuss representations of hierarchical Dirichlet processes in terms of
a stick-breaking process, and a generalization of the Chinese restaurant process that we refer
to as the “Chinese restaurant franchise.” We present Markov chain Monte Carlo algorithms
for posterior inference in hierarchical Dirichlet process mixtures, and describe applications to
problems in information retrieval and text modelling.

Keywords: clustering, mixture models, nonparametric Bayesian statistics, hierarchi-
cal models, Markov chain Monte Carlo
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1 INTRODUCTION

A recurring theme in statistics is the need to separate observations into groups, and yet allow the
groups to remain linked—to “share statistical strength.” In the Bayesian formalism such sharing is
achieved naturally via hierarchical modeling—parameters are shared among groups, and the ran-
domness of the parameters induces dependencies among the groups. Estimates based on the poste-
rior distribution exhibit “shrinkage.”

In the current paper we explore a hierarchical approach to the problem of model-based cluster-
ing. We assume that the data are subdivided into a set of J groups, and that within each group we
wish to find clusters that capture latent structure in the data assigned to that group. The number of
clusters within each group is unknown and is to be inferred. Moreover, in a sense that we make
precise, we wish to allow clusters to be shared among the groups.

An example of the kind of problem that motivates us can be found in genetics. Consider a set
of k binary markers (e.g., single nucleotide polymorphisms or “SNPs”) in a localized region of the
human genome. While an individual human could exhibit any of 2k different patterns of markers
on a single chromosome, in real populations only a small subset of such patterns—haplotypes—are
actually observed (Gabriel et al. 2002). Given a meiotic model for the combination of a pair of
haplotypes into a genotype during mating, and given a set of observed genotypes in a sample from
a human population, it is of great interest to identify the underlying haplotypes (Stephens et al.
2001). Now consider an extension of this problem in which the population is divided into a set of
groups; e.g., African, Asian and European subpopulations. We may not only want to discover the
sets of haplotypes within each subpopulation, but we may also wish to discover which haplotypes
are shared between subpopulations. The identification of such haplotypes would have significant
implications for the understanding of the migration patterns of ancestral populations of humans.

As a second example, consider the problem of the modeling of relationships among sets of
documents in the field of information retrieval (IR). In IR, documents are generally modeled under
an exchangeability assumption—the so-called “bag of words assumption”—in which the order of
words in a document is ignored (Salton and McGill 1983). It is also common to view the words in a
document as arising from a number of latent clusters or “topics,” where a topic is generally modeled
as a probability distribution on words from some basic vocabulary (Blei et al. 2003). Thus, in a
document concerned with university funding the words in the document might be drawn from the
topics “education” and “finance.” If we now consider a corpus of such documents, we may wish
to allow topics to be shared among the documents in the corpus. For example, if the corpus also
contains a document concerned with university football, the topics may be “education” and “sports,”
and we would want the former topic to be related to that discovered in the analysis of the document
on university funding.

Moreover, we may want to extend the model to allow for multiple corpora. For example, doc-
uments in scientific journals are often grouped into themes (e.g., “empirical process theory,” “mul-
tivariate statistics,” “survival analysis”), and it would be of interest to discover to what extent the
latent topics that are shared among documents are also shared across these groupings. Thus in
general we wish to consider the sharing of clusters across multiple, nested groupings of data.

Our approach to the problem of sharing clusters among multiple, related groups is a nonpara-
metric Bayesian approach, reposing on the Dirichlet process (Ferguson 1973). The Dirichlet process
DP(α0, G0) is a measure on measures. It has two parameters, a scaling parameter α0 > 0 and a
base measure G0. An explicit representation of a draw from a Dirichlet process (DP) was given by
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Sethuraman (1994), who showed that if G ∼ DP(α0, G0), then with probability one:

G =
∞
∑

k=1

βkδθk
, (1)

where the θk are independent random variables distributed according to G0, where δθk
is an atom

at θk, and where the “stick-breaking weights” βk are also random and depend on the parameter α0

(the definition of the βk is provided in Section 3.1).
The representation in (1) shows that draws from a DP are discrete (with probability one). The

discrete nature of the DP makes it unsuitable for general applications in Bayesian nonparametrics,
but it is well suited for the problem of placing priors on mixture components in mixture modeling.
The idea is basically to associate a mixture component with each atom in G. Introducing indica-
tor variables to associate data points with mixture components, the posterior distribution yields a
probability distribution on partitions of the data. A number of authors have studied such Dirichlet
process mixture models (Antoniak 1974; Escobar and West 1995; MacEachern and Müller 1998).
These models provide an alternative to methods that attempt to select a particular number of mixture
components, or methods that place an explicit parametric prior on the number of components.

Let us now consider the setting in which the data are subdivided into J groups. Given our goal
of solving a clustering problem within each group, we consider a set of random measures, Gj for
j = 1, . . . , J , whereGj is distributed according to a group-specific Dirichlet process DP(α0j , G0j).
To link these clustering problems, we link the group-specific DPs. Many authors have consid-
ered ways to induce dependencies among multiple DPs via links among the parameters G0j and/or
α0j (Cifarelli and Regazzini 1978; MacEachern 1999; Tomlinson and Escobar 2003; Müller et al.
2004; De Iorio et al. 2004; Kleinman and Ibrahim 1998; Mallick and Walker 1997; Ishwaran and
James 2004). Focusing on the G0j , one natural proposal is a hierarchy in which the measures Gj

arise as conditionally independent draws from a single underlying Dirichlet process DP(α0, G0(τ)),
where G0(τ) is a parametric distribution with random parameter τ (Carota and Parmigiani 2002;
Fong et al. 2002; Muliere and Petrone 1993). Integrating over τ induces dependencies among the
DPs.

That this simple hierarchical approach will not solve our problem can be observed by consider-
ing the case in which G0(τ) is absolutely continuous with respect to Lebesgue measure for almost
all τ (e.g., G0 is Gaussian with mean τ ). In this case, given that the draws Gj arise as conditionally
independent draws from G0(τ), they necessarily have no atoms in common (with probability one).
Thus, although clusters arise within each group via the discreteness of draws from a DP, the atoms
associated with the different groups are different and there is no sharing of clusters between groups.
This problem can be skirted by assuming that G0 lies in a discrete parametric family, but such an
assumption would be overly restrictive.

Our proposed solution to the problem is straightforward—to force G0 to be discrete and yet
have broad support we consider a nonparametric hierarchical model in which G0 is itself a draw
from a Dirichlet process DP(γ,H). This restores flexibility in that the modeler can choose H to be
continuous or discrete. In either case, with probability one, G0 is discrete and has a stick-breaking
representation as in (1). The atoms θk are shared among the multiple DPs, yielding the desired
sharing of atoms among groups. In summary, we consider the hierarchical specification:

G0 | γ,H ∼ DP(γ,H) (2)

Gj | α0, G0 ∼ DP(α0, G0) , (3)

which we refer to as a hierarchical Dirichlet process. The immediate extension to hierarchical
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Dirichlet process mixture models yields our proposed formalism for sharing clusters among related
clustering problems.

Related nonparametric approaches to linking multiple DPs have been discussed by a number of
authors. Our approach is a special case of a general framework for “dependent Dirichlet processes”
due to MacEachern (1999) and MacEachern et al. (2001). In this framework the random variables
βk and θk in (1) are general stochastic processes (i.e., indexed collections of random variables);
this allows very general forms of dependency among DPs. Our hierarchical approach fits into this
framework—endow the stick-breaking weights βk in (1) with a second subscript indexing the groups
j = 1, . . . , J , and view the weights βkj as dependent for each fixed value of k. Indeed, as we show
in Section 4, the definition in (3) yields a specific, canonical form of dependence among the weights
βkj .

Our approach is also a special case of a framework referred to as analysis of densities (AnDe) by
Tomlinson and Escobar (2003). The AnDe model is a hierarchical model for multiple DPs in which
the common base measure G0 is random, but rather than treating G0 as a draw from a DP, as in our
case, it is treated as a draw from a mixture of DPs. The resulting G0 is continuous in general (An-
toniak 1974), which, as we have discussed, is ruinous for our problem of sharing clusters. It is an
appropriate choice, however, for the problem addressed by Tomlinson and Escobar (2003), which is
that of sharing statistical strength among multiple sets of density estimation problems. Thus, while
the AnDe framework and our hierarchical DP framework are closely related formally, the inferen-
tial goal is rather different. Moreover, as we will see, our restriction to discrete G0 has important
implications for the design of efficient MCMC inference algorithms.

The terminology of “hierarchical Dirichlet process” has also been used by Müller et al. (2004)
to describe a different notion of hierarchy than the one discussed here. These authors consider a
model in which a coupled set of random measures Gj are defined as Gj = εF0 + (1− ε)Fj , where
F0 and the Fj are draws from Dirichlet processes. This model provides an alternative approach to
sharing clusters, one in which the shared clusters are given the same stick-breaking weights (those
associated with F0) in each of the groups. By contrast, in our hierarchical model, the draws Gj

are based on the same underlying base measure G0, but each draw assigns different stick-breaking
weights to the shared atoms associated with G0. Atoms can be “partially shared.”

Finally, the terminology of “hierarchical Dirichlet process” has been used in yet a third way
by Beal et al. (2002) in the context of a model known as the infinite hidden Markov model—a
hidden Markov model with a countably infinite state space. The “hierarchical Dirichlet process”
of Beal et al. (2002) is not, however, a hierarchy in the Bayesian sense—involving a distribution
on the parameters of a distribution—but is instead an algorithmic description of a coupled set of
urn models. We discuss this model in more detail in Section 7, where we show that the notion
of hierarchical Dirichlet process presented here yields an elegant treatment of the infinite hidden
Markov model.

In summary, the notion of hierarchical Dirichlet process that we explore here is a specific exam-
ple of a dependency model for multiple Dirichlet processes, one specifically aimed at the problem
of sharing clusters among related groups of data. It involves a simple Bayesian hierarchy—the
base measure for a set of Dirichlet processes is itself distributed according to a Dirichlet process.
While there are many ways to couple Dirichlet processes, we view this simple, canonical Bayesian
hierarchy as particularly worthy of study. Note in particular the appealing recursiveness of the
definition—a hierarchical Dirichlet process can be readily extended to multiple hierarchical levels.
This is natural in applications. For example, in our application to document modeling, one level
of hierarchy is needed to share clusters among multiple documents within a corpus, and second
level of hierarchy is needed to share clusters among multiple corpora. Similarly, in the genetics
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example, it is of interest to consider nested subdivisions of populations according to various criteria
(geographic, cultural, economic), and to consider the flow of haplotypes on the resulting tree.

As is the case with other nonparametric Bayesian methods, a significant component of the chal-
lenge in working with the hierarchical Dirichlet process is computational. To provide a general
framework for designing procedures for posterior inference for the hierarchical Dirichlet process
that parallel those available for the Dirichlet process, it is necessary to develop analogs for the hi-
erarchical Dirichlet process of some of the representations that have proved useful in the Dirichlet
process setting. We provide these analogs in Section 4—in particular, we discuss a stick-breaking
representation of the hierarchical Dirichlet process, an analog of the Pólya urn model that we refer
to as the “Chinese restaurant franchise,” and a representation of the hierarchical Dirichlet process
in terms of an infinite limit of finite mixture models. With these representations as background,
we present Markov chain Monte Carlo algorithms for posterior inference under hierarchical Dirich-
let process mixtures in Section 5. We present experimental results in Section 6 and present our
conclusions in Section 8.

2 SETTING

We are interested in problems in which observations are organized into groups, and where the
observations are assumed exchangeable within groups. In particular, letting j ∈ {1, 2, . . . , J} index
the J groups, and letting xj = (xji)

nj

i=1 denote the nj observations in group j, we assume that each
observation xji is a conditionally independent draw from a mixture model, where the parameters of
the mixture model are drawn once per group. We will also assume that x1, . . . ,xJ are exchangeable
at the group level. Let x = (xj)

J
j=1 denote the entire data set.

If each observation is drawn independently from a mixture model, then there is a mixture com-
ponent associated with each observation. Let φji denote a parameter specifying the mixture com-
ponent associated with the observation xji. We will refer to the variables φji as “factors.” Note
that these variables are not generally distinct—we will develop a different notation for the distinct
values of factors. Let F (φji) denote the distribution of xji given the factor φji. Let Gj denote a
prior distribution for the factors φj = (φji)

nj

i=1 associated with group j. We assume that the factors
are conditionally independent given Gj . Thus we have the following probability model:

φji | Gj ∼ Gj for each j and i,

xji | φj ∼ F (φji) for each j and i, (4)

to augment the specification given in (3).

3 DIRICHLET PROCESSES

In order to make the paper self-contained, we provide a brief overview of Dirichlet processes in
this section. After a discussion of basic definitions, we present three different perspectives on the
Dirichlet process—one based on the stick-breaking construction, one based on a Pólya urn model,
and one based on a limit of finite mixture models. Each of these perspectives will have an analog in
the hierarchical Dirichlet process to be introduced in Section 4.

Let (Θ,B) be a measurable space, with G0 a probability measure on the space. Let α0 be a
positive real number. A Dirichlet process DP(α0, G0) is defined to be the distribution of a random
probability measure G over (Θ,B) such that, for any finite measurable partition (A1, A2, . . . , Ar)
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of Θ, the random vector (G(A1), . . . , G(Ar)) is distributed as a finite-dimensional Dirichlet distri-
bution with parameters (α0G0(A1), . . . , α0G0(Ar)):

(G(A1), . . . , G(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar)) . (5)

We write G ∼ DP(α0, G0) if G is a random probability measure with distribution given by the
Dirichlet process. The existence of the Dirichlet process was established by Ferguson (1973).

3.1 The stick-breaking construction

Measures drawn from a Dirichlet process turn out to be discrete with probability one (Ferguson
1973). This property is made explicit in the stick-breaking construction due to Sethuraman (1994).
The stick-breaking construction is based on independent sequences of independent random variables
(π′k)

∞
k=1 and (θk)

∞
k=1:

π′k | α0, G0 ∼ Beta(1, α0) θk | α0, G0 ∼ G0 , (6)

where Beta(a, b) is the Beta distribution with parameters a and b. Now define a random measure G
as

πk = π′k

k−1
∏

l=1

(1− π′l) G =
∞
∑

k=1

πkδθk
, (7)

where δθ is a probability measure concentrated at θ. Sethuraman (1994) showed that G as defined
in this way is a random probability measure distributed according to DP(α0, G0).

It is important to note that the sequence π = (πk)
∞
k=1 constructed by (6) and (7) satisfies

∑

∞

k=1 πk = 1 with probability one. Thus we may interpret π as a random probability measure on
the positive integers. For convenience, we shall write π ∼ Stick(α0) if π is a random probability
measure defined by (6) and (7).

3.2 The Chinese restaurant process

A second perspective on the Dirichlet process is provided by the Pólya urn scheme due to Blackwell
and MacQueen (1973). The Pólya urn scheme shows that not only are draws from the Dirichlet
process discrete, but also that they exhibit a clustering property.

The Pólya urn scheme refers not to G directly, but rather to draws from G. Thus, let φ1, φ2, . . .
be a sequence of i.i.d. random variables distributed according to G. That is, the variables φ1, φ2, . . .
are conditionally independent given G, and hence exchangeable. Let us consider the successive
conditional distributions of φi given φ1, . . . , φi−1, where G has been integrated out. Blackwell and
MacQueen (1973) showed that these conditional distributions have the following simple form:

φi | φ1, . . . , φi−1, α0, G0 ∼

i−1
∑

l=1

1

i− 1 + α0
δφl

+
α0

i− 1 + α0
G0 . (8)

This expression shows that φi has positive probability of being equal to one of the previous draws,
and that there is a positive reinforcement effect—the more often a point is drawn, the more likely
it is to be drawn in the future. We can interpret the conditional distributions in terms of a simple
urn model in which a ball of a distinct color is associated with each atom. The balls are drawn
equiprobably; when a ball is drawn it is placed back in the urn together with another ball of the
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Figure 1: A depiction of a Chinese restaurant after eight customers have been seated. Customers
(φi’s) are seated at tables (circles) which correspond to the unique values θk.

same color. In addition, with probability proportional to α0 a new atom is created by drawing from
G0 and a ball of a new color is added to the urn.

To make the clustering property explicit, it is helpful to introduce a new set of variables that
represent distinct values of the atoms. Define θ1, . . . , θK to be the distinct values taken on by
φ1, . . . , φi−1, and let nk be the number of values φi′ that are equal to θk for 1 ≤ i′ < i. We can
re-express (8) as

φi | φ1, . . . , φi−1, α0, G0 ∼

K
∑

k=1

nk
i− 1 + α0

δθk
+

α0

i− 1 + α0
G0 . (9)

Using a somewhat different metaphor, the Pólya urn scheme is closely related to a distribution
on partitions known as the Chinese restaurant process (Aldous 1985). This metaphor has turned
out to useful in considering various generalizations of the Dirichlet process (Pitman 2002), and it
will be useful in this paper. The metaphor is as follows. Consider a Chinese restaurant with an
unbounded number of tables. Each φi corresponds to a customer who enters the restaurant, while
the distinct values θk correspond to the tables at which the customers sit. The ith customer sits at the
table indexed by θk, with probability proportional to nk (in which case we set φi = θk), and sits at
a new table with probability proportional to α0 (set φi ∼ G0). An example of a Chinese restaurant
is depicted graphically in Figure 3.2.

3.3 Dirichlet process mixture models

One of the most important applications of the Dirichlet process is as a nonparametric prior distri-
bution on the components of a mixture model. In particular, suppose that observations xi arise as
follows:

φi | G ∼ G

xi | φi ∼ F (φi) , (10)

where F (φi) denotes the distribution of the observation xi given φi. The factors φi are conditionally
independent given G, and the observation xi is conditionally independent of the other observations
given the factor φi. When G is distributed according to a Dirichlet process, this model is referred
to as a Dirichlet process mixture model. A graphical model representation of a Dirichlet process
mixture model is shown in Figure 2(a).

SinceG can be represented using a stick-breaking construction (7), the factors φi take on values
θk with probability πk. We may denote this using an indicator variable zi, which takes on positive
integral values and is distributed according to π (interpreting π as a random probability measure on
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Figure 2: (a) A representation of a Dirichlet process mixture model as a graphical model. In the
graphical model formalism, each node in the graph is associated with a random variable and joint
probabilities are defined as products of conditional probabilities, where a conditional probability is
associated with a node and its parents. Rectangles (“plates”) denote replication, with the number
of replicates given by the number in the bottom right corner of the rectangle. We also use a square
with rounded corners to denote a variable that is a fixed hyperparameter, while a shaded node is an
observable. (b) An equivalent representation of a Dirichlet process mixture model in terms of the
stick-breaking construction. (c) A finite mixture model (note the L in place of the∞).

the positive integers). Hence an equivalent representation of a Dirichlet process mixture is given by
Figure 2(b), where the conditional distributions are:

π | α0 ∼ Stick(α0) zi | π ∼ π

θk | G0 ∼ G0 xi | zi, (θk)
∞
k=1 ∼ F (θzi

) . (11)

Here G =
∑

∞

k=1 πkδθk
and φi = θzi

.

3.4 The infinite limit of finite mixture models

A Dirichlet process mixture model can be derived as the limit of a sequence of finite mixture mod-
els, where the number of mixture components is taken to infinity (Neal 1992; Rasmussen 2000;
Green and Richardson 2001; Ishwaran and Zarepour 2002). This limiting process provides a third
perspective on the Dirichlet process.

Suppose we have L mixture components. Let π = (π1, . . . πL) denote the mixing proportions.
Note that we previously used the symbol π to denote the weights associated with the atoms inG. We
have deliberately overloaded the definition of π here; as we shall see later, they are closely related.
In fact, in the limit L→∞ these vectors are equivalent up to a random size-biased permutation of
their entries (Patil and Taillie 1977).

We place a Dirichlet prior on π with symmetric parameters (α0/L, . . . , α0/L). Let θk denote
the parameter vector associated with mixture component k, and let θk have prior distribution G0.
Drawing an observation xi from the mixture model involves picking a specific mixture component
with probability given by the mixing proportions; let zi denote that component. We thus have the
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following model:

π | α0 ∼ Dir(α0/L, . . . , α0/L) zi | π ∼ π

θk | G0 ∼ G0 xi | zi, (θk)
L
k=1 ∼ F (θzi

) . (12)

The corresponding graphical model is shown in Figure 2(c). Let GL =
∑L

k=1 πkδθk
. Ishwaran and

Zarepour (2002) show that for every measurable function f integrable with respect to G0, we have,
as L→∞:

∫

f(φ) dGL(φ)
D
−→

∫

f(φ) dG(φ) . (13)

A consequence of this is that the marginal distribution induced on the observations x1, . . . , xn ap-
proaches that of a Dirichlet process mixture model. This limiting process is unsurprising in hind-
sight, given the striking similarity between Figures 2(b) and 2(c).

4 HIERARCHICAL DIRICHLET PROCESSES

We propose a nonparametric Bayesian approach to the modeling of grouped data, where each group
is associated with a mixture model, and where we wish to link these mixture models. By analogy
with Dirichlet process mixture models, we first define the appropriate nonparametric prior, which
we refer to as the hierarchical Dirichlet process. We then show how this prior can be used in the
grouped mixture model setting. We present analogs of the three perspectives presented earlier for
the Dirichlet process—a stick-breaking construction, a Chinese restaurant process representation,
and a representation in terms of a limit of finite mixture models.

A hierarchical Dirichlet process is a distribution over a set of random probability measures over
(Θ,B). The process defines a set of random probability measures (Gj)

J
j=1, one for each group,

and a global random probability measure G0. The global measure G0 is distributed as a Dirichlet
process with concentration parameter γ and base probability measure H:

G0 | γ,H ∼ DP(γ,H) , (14)

and the random measures (Gj)
J
j=1 are conditionally independent given G0, with distributions given

by a Dirichlet process with base probability measure G0:

Gj | α0, G0 ∼ DP(α0, G0) . (15)

The hyperparameters of the hierarchical Dirichlet process consist of the baseline probability
measure H , and the concentration parameters γ and α0. The baseline H provides the prior distri-
bution for the parameters (φj)

J
j=1. The distribution G0 varies around the prior H , with the amount

of variability governed by γ. The actual distribution Gj over the parameters φj in the jth group
deviates from G0, with the amount of variability governed by α0. If we expect the variability in
different groups to be different, we can use a separate concentration parameter αj for each group j.
In this paper, following Escobar and West (1995), we put vague gamma priors on γ and α0.

A hierarchical Dirichlet process can be used as the prior distribution over the factors for grouped
data. For each j let (φji)

nj

i=1 be i.i.d. random variables distributed as Gj . Eacah φji is a factor
corresponding to a single observation xji. The likelihood is given by:

φji | Gj ∼ Gj

xji | φji ∼ F (φji) . (16)
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Figure 3: (a) A hierarchical Dirichlet process mixture model. (b) A alternative representation of a
hierarchical Dirichlet process mixture model in terms of the stick-breaking construction.

This completes the definition of a hierarchical Dirichlet process mixture model. The corresponding
graphical model is shown in Figure 4(a).

Notice that (φji)
nj

i=1 are exchangeable random variables if we integrate out Gj . Similarly,
(φj)

J
j=1 are exchangeable at the group level. Since each xji is independently distributed accord-

ing to F (φji), our exchangeability assumption for the grouped data (xj)
J
j=1 is not violated by the

hierarchical Dirichlet process mixture model.
The hierarchical Dirichlet process can readily be extended to more than two levels. That is, the

base measure H can itself be a draw from a DP, and the hierarchy can be extended for as many
levels as are deemed useful. In general, we obtain a tree in which a DP is associated with each
node, in which the children of a given node are conditionally independent given their parent, and in
which the draw from the DP at a given node serves as a base measure for its children. The atoms
in the stick-breaking representation at a given node are thus shared among all descendant nodes,
providing notion of shared clusters at multiple levels of resolution. The software for hierarchical
Dirichlet process mixtures that we describe in Section 6—software which is publicly available—
provides an implementation for arbitrary trees of this kind.

4.1 The stick-breaking construction

Given that the global measure G0 is distributed as a Dirichlet process, it can be expressed using a
stick-breaking representation:

G0 =
∞
∑

k=1

βkδθk
, (17)

where θk ∼ H independently and β = (βi)
∞
i=1 ∼ Stick(γ) are mutually independent. Since G0 has

support at the points θ = (θi)
∞
i=1, each Gj necessarily has support at these points as well, and can

thus be written as:

Gj =
∞
∑

k=1

πjkδθk
. (18)
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Let πj = (πjk)
∞
k=1. Note that the weights πj are independent given β (since theGj are independent

given G0). We now describe how the weights πj are related to the global weights β.
Let (A1, . . . , Ar) be a measurable partition of Θ and let Kl = {k : θk ∈ Al} for l = 1, . . . , r.

Note that (K1, . . . ,Kr) is a finite partition of the positive integers. Further, assuming thatH is non-
atomic, the θk’s are distinct with probability one, so any partition of the positive integers corresponds
to some partition of Θ. Thus, for each j we have:

(Gj(A1), . . . , Gj(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar))

⇒





∑

k∈K1

πjk, . . . ,
∑

k∈Kr

πjk



 ∼ Dir



α0

∑

k∈K1

βk, . . . , α0

∑

k∈Kr

βk



 , (19)

for every finite partition of the positive integers. Hence each πj is independently distributed accord-
ing to DP(α0,β), where we interpret β and πj as probability measures on the positive integers.

As in the Dirichlet process mixture model, since each factor φji is distributed according to
Gj , it takes on the value θk with probability πjk. Again let zji be an indicator variable such that
φji = θzji

. Given zji we have xji ∼ F (θzji
). Thus Figure 4(b) gives an equivalent representation

of the hierarchical Dirichlet process mixture, with conditional distributions summarized here:

β | γ ∼ Stick(γ)

πj | α0,β ∼ DP(α0,β) zji | πj ∼ πj

θk | H ∼ H xji | zji, (θk)
∞
k=1 ∼ F (θzji

) . (20)

We now derive an explicit relationship between the elements of β and πj . Recall that the stick-
breaking construction for Dirichlet processes defines the variables βk in (17) as follows:

β′k ∼ Beta(1, γ) βk = β′
k

k−1
∏

l=1

(1− β′
l) . (21)

Using (19), we show that the following stick-breaking construction produces a random probability
measure πj ∼ DP(α0,β):

π′jk ∼ Beta

(

α0βk, α0

(

1−

k
∑

l=1

βl

))

πjk = π′jk

k−1
∏

l=1

(1− π′jl) . (22)

To derive (22), first notice that for a partition ({1, . . . , k − 1}, {k}, {k + 1, k + 2, . . .}), (19) gives:
(

k−1
∑

l=1

πjl, πjk,
∞
∑

l=k+1

πjl

)

∼ Dir

(

α0

k−1
∑

l=1

βl, α0βk, α0

∞
∑

l=k+1

βl

)

. (23)

Removing the first element, and using standard properties of the finite Dirichlet distribution, we
have:

1

1−
∑k−1

l=1 πjl

(

πjk,

∞
∑

l=k+1

πjl

)

∼ Dir

(

α0βk, α0

∞
∑

l=k+1

βl

)

. (24)

Finally, define π′jk =
πjk

1−
∑k−1

l=1
πjl

and observe that 1 −
∑k

l=1 βl =
∑

∞

l=k+1 βl to obtain (22).

Together with (21), (17) and (18), this completes the description of the stick-breaking construction
for hierarchical Dirichlet processes.
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4.2 The Chinese restaurant franchise

In this section we describe an analog of the Chinese restaurant process for hierarchical Dirichlet
processes that we refer to as the “Chinese restaurant franchise.” In the Chinese restaurant franchise,
the metaphor of the Chinese restaurant process is extended to allow multiple restaurants which share
a set of dishes.

Recall that the factors φji are random variables with distributionGj . In the following discussion,
we will let θ1, . . . , θK denote K i.i.d. random variables distributed according to H , and, for each j,
we let ψj1, . . . , ψjTj

denote Tj i.i.d. variables distributed according to G0.
Each φji is associated with one ψjt, while each ψjt is associated with one θk. Let tji be the

index of the ψjt associated with φji, and let kjt be the index of θk associated with ψjt. Let njt
be the number of φji’s associated with ψjt, while mjk is the number of ψjt’s associated with θk.
Define mk =

∑

jmjk as the number of ψjt’s associated with θk over all j. Notice that while the
values taken on by the ψjt’s need not be distinct (indeed, they are distributed according to a discrete
random probability measure G0 ∼ DP(γ,H)), we are denoting them as distinct random variables.

First consider the conditional distribution for φji given φj1, . . . , φj i−1 and G0, where Gj is
integrated out. From (9), we have:

φji | φj1, . . . , φj i−1, α0, G0 ∼

Tj
∑

t=1

njt
i− 1 + α0

δψjt
+

α0

i− 1 + α0
G0 , (25)

This is a mixture, and a draw from this mixture can be obtained by drawing from the terms on the
right-hand side with probabilities given by the corresponding mixing proportions. If a term in the
first summation is chosen, then we set φji = ψjt and let tji = t for the chosen t. If the second term
is chosen, then we increment Tj by one, draw ψjTj

∼ G0 and set φji = ψjTj
and tji = Tj . The

various pieces of information involved are depicted as a “Chinese restaurant” in Figure 4(a).
Now we proceed to integrate out G0. Notice that G0 appears only in its role as the distribution

of the variables ψjt. Since G0 is distributed according to a Dirichlet process, we can integrate it out
by using (9) again and writing the conditional distribution of ψjt directly:

ψjt | ψ11, ψ12, . . . , ψ21, . . . , ψj t−1, γ,H ∼
K
∑

k=1

mk
∑

kmk + γ
δθk

+
γ

∑

kmk + γ
H . (26)

If we draw ψjt via choosing a term in the summation on the right-hand side of this equation, we set
ψjt = θk and let kjt = k for the chosen k. If the second term is chosen, we increment K by one,
draw θK ∼ H and set ψjt = θK , kjt = K.

This completes the description of the conditional distributions of the φji variables. To use these
equations to obtain samples of φji, we proceed as follows. For each j and i, first sample φji using
(25). If a new sample from G0 is needed, we use (26) to obtain a new sample ψjt and set φji = ψjt.

Note that in the hierarchical Dirichlet process the values of the factors are shared between the
groups, as well as within the groups. This is a key property of hierarchical Dirichlet processes.

We call this generalized urn model the Chinese restaurant franchise (see Figure 4(b)). The
metaphor is as follows. We have a franchise with J restaurants, with a shared menu across the
restaurants. At each table of each restaurant one dish is ordered from the menu by the first customer
who sits there, and it is shared among all customers who sit at that table. Multiple tables at multiple
restaurants can serve the same dish. The restaurants correspond to groups, the customers correspond
to the φji variables, the tables to the ψjt variables, and the dishes to the θk variables.
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Figure 4: (a) A depiction of a hierarchical Dirichlet process as a Chinese restaurant. Each rectangle
is a restaurant (group) with a number of tables. Each table is associated with a parameter ψjt which
is distributed according to G0, and each φji sits at the table to which it has been assigned in (25).
(b) Integrating out G0, each ψjt is assigned some dish (mixture component) θk.

A customer entering the j th restaurant sits at one of the occupied tables with a certain probability,
and sits at a new table with the remaining probability. This is the Chinese restaurant process and
corresponds to (25). If the customer sits at an occupied table, she eats the dish that has already been
ordered. If she sits at a new table, she gets to pick the dish for the table. The dish is picked according
to its popularity among the whole franchise, while a new dish can also be tried. This corresponds to
(26).

4.3 The infinite limit of finite mixture models

As in the case of a Dirichlet process mixture model, the hierarchical Dirichlet process mixture model
can be derived as the infinite limit of finite mixtures. In this section, we present two apparently
different finite models that both yield the hierarchical Dirichlet process mixture in the infinite limit,
each emphasizing a different aspect of the model. We also show how a third finite model fails to
yield the hierarchical Dirichlet process; the reasons for this failure will provide additional insight.

Consider the first finite model, shown in Figure 4.3(a). Here the number of mixture components
L is a positive integer, and the mixing proportions β and πj are vectors of length L. The conditional
distributions are given by

β | γ ∼ Dir(γ/L, . . . , γ/L)

πj | α0,β ∼ Dir(α0β) zji | πj ∼ πj

θk | H ∼ H xji | zji, (θk)
L
k=1 ∼ F (θzji

) . (27)

Let us consider the random probability measures GL
0 =

∑L
k=1 βkδθk

and GLj =
∑L

k=1 πjkδθk
. As
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Figure 5: Finite models. (a) A finite hierarchical multiple mixture model whose infinite limit yields
the hierarchical Dirichlet process mixture model. (b) The finite model with symmetric β weights.
The various mixture models are independent of each other given α0,β and θ, and thus cannot
capture dependencies between the groups. (c) Another finite model that yields the hierarchical
Dirichlet process in the infinite limit.

in Section 3.4, for every measurable function f integrable with respect to H we have
∫

f(φ) dGL0 (φ)
D
−→

∫

f(φ) dG0(φ) , (28)

as L → ∞. Further, using standard properties of the Dirichlet distribution, we see that (19) still
holds for the finite case for partitions of {1, . . . , L}; hence we have:

GLj ∼ DP(α0, G
L
0 ) . (29)

It is now clear that as L → ∞ the marginal distribution this finite model induces on x approaches
the hierarchical Dirichlet process mixture model.

By way of comparison, it is interesting to consider what happens if we set β = (1/L, . . . , 1/L)
symmetrically instead, and take the limit L → ∞ (shown in Figure 4.3(b)). Let k be a mixture
component used in group j; i.e., suppose that zji = k for some i. Consider the probability that
mixture component k is used in another group j ′ 6= j; i.e., suppose that zj′i′ = k for some i′. Since
πj′ is independent of πj , and β is symmetric, this probability is:

p(∃ i′ : zj′i′ = k | α0β) ≤
∑

i′

p(zj′i′ = k | α0β) =
nj
L
→ 0 as L→∞ . (30)

Since group j can use at most nj mixture components (there are only nj observations), as L→∞
the groups will have zero probability of sharing a mixture component. This lack of overlap among
the mixture components in different groups is the behavior that we consider undesirable and wish
to avoid.

The lack of overlap arises when we assume that each mixture component has the same prior
probability of being used in each group (i.e., β is symmetric). Thus one possible direct way to
deal with the problem would be to assume asymmetric weights for β. In order that the parameter
set does not grow as L → ∞, we need to place a prior on β and integrate over these values. The
hierarchical Dirichlet process is in essence an elegant way of imposing this prior.
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A third finite model solves the lack-of-overlap problem via a different method. Instead of intro-
ducing dependencies between the groups by placing a prior on β (as in the first finite model), each
group can instead choose a subset of T mixture components from a model-wide set of L mixture
components. In particular consider the model given in Figure 4.3(c), where:

β | γ ∼ Dir(γ/L, . . . , γ/L) kjt | β ∼ β

πj | α0 ∼ Dir(α0/T, . . . , α0/T ) tji | πj ∼ πj

θk | H ∼ H xji | tji, (kjt)
T
t=1, (θk)

L
k=1 ∼ F (θkjtji

) . (31)

As T → ∞ and L → ∞, the limit of this model is the Chinese restaurant franchise process; hence
the infinite limit of this model is also the hierarchical Dirichlet process mixture model.

5 INFERENCE

In this section we describe two Markov chain Monte Carlo sampling schemes for the hierarchical
Dirichlet process mixture model. The first one is based on the Chinese restaurant franchise, while
the second one is an auxiliary variable method based upon the infinite limit of the finite model in
Figure 4.3(a). We also describe a sampling scheme for the concentration parameters α0, and γ based
on extensions of analogous techniques for Dirichlet processes (Escobar and West 1995).

We first recall the various variables and quantities of interest. The variables xji are the observed
data. Each xji comes from a distributionF (φji) where the parameter is the factor φji. LetF (θ) have
density f(·|θ). Let the factor φji be associated with the table tji in the restaurant representation,
and let φji = ψjtji

. The random variable ψjt is an instance of mixture component kjt; i.e., we
have ψjt = θkjt

. The prior over the parameters θk is H , with density h(·). Let zji = kjtji
denote

the mixture component associated with the observation xji. Finally the global weights are β =
(βk)

∞
k=1, and the group weights are πj = (πjk)

∞
k=1. The global distribution of the factors is G0 =

∑

∞

k=1 βkδθk
, while the group-specific distributions are Gj =

∑

∞

k=1 πjkδθk
.

For each group j, define the occupancy numbers nj as the number of observations, njt the
number of φji’s associated with ψjt, and njk the number of φji’s indirectly associated with θk
through ψjt. Also let mjk be the number of ψjt’s associated with θk, and let mk =

∑

jmjk.
Finally let K be the number of θk’s, and Tj the number of ψjt’s in group j. By permuting the
indices, we may always assume that each tji takes on values in {1, . . . , Tj}, and each kjt takes
values in {1, . . . ,K}.

Let xj = (xj1, . . . , xjnj
), x = (x1, . . . ,xJ), t = (tji : all j, i), k = (kjt : all j, t), z = (zji :

all j, i) θ = (θ1, . . . , θK) and m = (mjk : all j, k). When a superscript is attached to a set of
variables or an occupancy number, e.g., θ−k, k−jt, n−ijt , this means that the variable corresponding
to the superscripted index is removed from the set or from the calculation of the occupancy number.
In the examples, θ−k = θ\θk, k−jt = k\kjt and n−ijt is the number of observations in group j
whose factor is associated with ψjt, except item xji.

5.1 Posterior sampling in the Chinese restaurant franchise

The Chinese restaurant franchise presented in Section 4.2 can be used to produce samples from the
prior distribution over the φji, as well as intermediary information related to the tables and mixture
components. This scheme can be adapted to yield a Gibbs sampling scheme for posterior sampling
given observations x.

16



Rather than dealing with the φji’s and ψjt’s directly, we shall sample their index variables tji
and kjt as well as the distinct values θk. The φji’s and ψjt’s can be reconstructed from these index
variables and the θk. This representation makes the Markov chain Monte Carlo sampling scheme
more efficient (cf. Neal 2000). Notice that the tji and the kjt inherit the exchangeability properties
of the φji and the ψjt—the conditional distributions in (25) and (26) can be easily adapted to be
expressed in terms of tji and kjt.

The state space consists of values of t,k and θ. Notice that the number of kjt and θk variables
represented explicitly by the algorithm is not fixed. We can think of the actual state space as con-
sisting of a countably infinite number of θk and kjt. Only finitely many are actually associated to
data and represented explicitly.

Sampling t. To compute the conditional distribution of tji given the remainder of the variables,
we make use of exchangeability and treat tji as the last variable being sampled in the last group in
(25) and (26). We can then easily compute the conditional prior distribution for tji. Combined with
the likelihood of generating xji, we obtain the conditional posterior for tji.

Using (25), the prior probability that tji takes on a particular previously seen value t is propor-
tional to n−ijt , whereas the probability that it takes on a new value (say tnew = Tj+1) is proportional
to α0. The likelihood of the data given tji = t for some previously seen t is simply f(xji|θkjt

).
To determine the likelihood if tji takes on value tnew, the simplest approach would be to generate
a sample for kjtnew from its conditional prior (26) (Neal 2000). If this value of kjtnew is itself a new
value, say knew = K + 1, we may generate a sample for θknew as well:

kjtnew | k ∼
K
∑

k=1

mk
∑

kmk + γ
δk +

γ
∑

kmk + γ
δknew θknew ∼ H , (32)

The likelihood for xji given tji = tnew is now simply f(xji|θkjtnew ). Combining all this information,
the conditional distribution of tji is then

p(tji = t|t−ji,k,θ,x) ∝

{

α0f(xji|θkjt
) if t = tnew,

n−ijt f(xji|θkjt
) if t previously used.

(33)

If the sampled value of tji is tnew, we insert the temporary values of kjtnew , θkjtnew into the data
structure; otherwise these temporary variables are discarded. The values of njt,mk, Tj and K are
also updated as needed. In our implementation, rather than sampling kjtnew , we actually consider all
possible values for kjtnew and sum it out. This gives better convergence.

If as a result of updating tji some table t becomes unoccupied, i.e., njt = 0, then the probability
that this table will be occupied again in the future will be zero, since this is always proportional to
njt. As a result, we may delete the corresponding kjt from the data structure. If as a result of delet-
ing kjt some mixture component k becomes unallocated, we may delete this mixture component as
well.

Sampling k. Sampling the kjt variables is similar to sampling the tji variables. First we gener-
ate a new mixture parameter θknew ∼ H . Since changing kjt actually changes the component mem-
bership of all data items in table t, the likelihood of setting kjt = k is given by

∏

i:tji=t
f(xji|θk),

so that the conditional probability of kjt is

p(kjt = k|t,k−jt,θ,x) ∝

{

γ
∏

i:tji=t
f(xji|θk) if k = knew,

m−t
k

∏

i:tji=t
f(xji|θk) if k is previously used.

(34)
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Sampling θ. Conditioned on the indicator variables k and t, the parameters θk for each mixture
component are mutually independent. The posterior distribution is dependent only on the data items
associated with component k, and is given by:

p(θk|t,k,θ
−k,x) ∝ h(θk)

∏

ji:kjtji
=k

f(xji|θk) (35)

where h(θ) is the density of the baseline distribution H at θ. If H is conjugate to F (·) we have the
option of integrating out θ.

5.2 Posterior sampling with auxiliary variables

In this section we present an alternative sampling scheme for the hierarchical Dirichlet process
mixture model based on auxiliary variables. We first develop the sampling scheme for the finite
model given in (27) and Figure 4.3(a). Taking the infinite limit, the model approaches a hierarchical
Dirichlet process mixture model, and our sampling scheme approaches a sampling scheme for the
hierarchical Dirichlet process mixture as well. For a similar treatment of the Dirichlet process
mixture model, see Neal (1992) and Rasmussen (2000). A similar scheme can be obtained starting
from the stick-breaking representation.

Suppose we have L mixture components. For our sampling scheme to be computationally fea-
sible when we take L → ∞, we need a representation of the posterior which does not grow with
L. Suppose that out of the L components only K are currently used to model the observations. It
is unnecessary to explicitly represent each of the unused components separately, so we instead pool
them together and use a single unrepresented component. Whenever the unrepresented component
gets chosen to model an observation, we increment K and instantiate a new component from this
pool.

The variables of interest in the finite model are z, π, β and θ. We integrate out π, and Gibbs
sample z, θ and β. By permuting the indices we may assume that the represented components are
1, . . . ,K. Hence each zji ≤ K, and we explicitly represent βk and θk for 1 ≤ k ≤ K. Define
βu =

∑L
k=K+1 βk to be the mixing proportion corresponding to the unrepresented component u.

In this section we take β = (β1, . . . , βK , βu). Let γr = γ/L and γu = γ(L − K)/L so that we
have β ∼ Dir(γr, . . . , γr, γu). We also only need to keep track of the counts njk for 1 ≤ k ≤ K,
and set nju = 0.

Integrating out π. Since π is Dirichlet distributed and the Dirichlet distribution is conjugate to
the multinomial, we may integrate over π analytically, giving the following conditional probability
of z given β:

p(z|β) =
J
∏

j=1

Γ(α0)

Γ(α0 + nj)

K
∏

k=1

Γ(α0βk + njk)

Γ(α0βk)
. (36)

Sampling z. From (36), the prior probability for zji = k given z−ji and β is simplyα0βk+n
−ji
jk

for each k = 1, . . . ,K, u. Combined with the likelihood of xji we get the conditional probability
for zji:

p(zji = k|z−ji,β,θ,x) ∝ (α0βk + n−jijk )f(xji|θk) for k = 1, . . . ,K, u. (37)

where θu is sampled from its prior H . If as a result of sampling zji a represented component is left
with no observations associated with it, we may remove it from the represented list of components.
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Table 1: Table of the unsigned Stirling numbers of the first kind.

s(n,m) m = 0 m = 1 m = 2 m = 3 m = 4

n = 0 1 0 0 0 0
n = 1 0 1 0 0 0
n = 2 0 1 1 0 0
n = 3 0 2 3 1 0
n = 4 0 6 11 6 1

If on the other hand the new value for zji is u, we need to instantiate a new component for it. To do
so, we increment K by 1, set zji ← K, θK ← θu, and we draw b ∼ Beta(1, γ) and set βK ← bβu,
βu ← (1− b)βu.

The updates to βK and βu can be understood as follows. We instantiate a new component by
obtaining a sample, with index variable ku, from the pool of unrepresented components. That is,
we choose component ku = k with probability βk/

∑

βk = βk/βu for each k = K + 1, . . . , L.
Notice, however, that (βK+1/βu, . . . , βL/βu) ∼ Dir(γr, . . . , γr). It is now an exercise in standard
properties of the Dirichlet distribution to show that βku

/βu ∼ Beta(1 + γr, γu − γr). As L → ∞
this is Beta(1, γ). Hence this new component has weight bβu where b ∼ Beta(1, γ), while the
weights of the unrepresented components sum to (1− b)βu.

Sampling β. We use an auxiliary variable method for sampling β. Notice that in the likelihood
term (36) for β, the variables βk appear as arguments of Gamma functions. However the ratios of
Gamma functions are polynomials in α0βk, and can be expanded as follows:

Γ(njk + α0βk)

Γ(α0βk)
=

njk
∏

mjk=1

(mjk − 1 + α0βk) =

njk
∑

mjk=0

s(njk,mjk)(α0βk)
mjk , (38)

where s(njk,mjk) is the coefficient of (α0βk)
mjk . In fact, the s(njk,mjk) terms are unsigned

Stirling numbers of the first kind. Table 1 presents some values of s(n,m). We have by definition
that s(0, 0) = 1, s(n, 0) = 0, s(n, n) = 1 and s(n,m) = 0 for m > n. Other entries of the table
can be computed as s(n + 1,m) = s(n,m − 1) + ns(n,m). We introduce m = (mjk : all j, k)
as auxiliary variables to the model. Plugging (38) into (36) and including the prior for β, the
distribution over z, m and β is:

q(z,m,β) =
Γ(γ)

Γ(γr)KΓ(γu)





J
∏

j=1

Γ(α0)

Γ(α0 + nj)



βγu−1
u

K
∏

k=1

βγr−1
k

J
∏

j=1

(α0βk)
mjks(njk,mjk) .

(39)

It can be verified that
∑

m
q(z,m|β) = p(z|β). Finally, to obtain β given z, we simply iterate

sampling between m and β using the conditional distributions derived from (39). In the limit
L→∞ the conditional distributions are simply:

q(mjk = m|z,m−jk,β) ∝ s(njk,m)(α0βk)
m (40)

q(β|z,m) ∝ βγ−1
u

K
∏

k=1

β
∑

j mjk−1

k . (41)
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The conditional distributions ofmjk are easily computed since they can only take on values between
zero and njk, and s(n,m) are easily computed and can optionally be stored at little cost. Given m

the conditional distribution of β is simply a Dirichlet distribution Dir(
∑

jmj1, . . . ,
∑

jmjK , γ).
Sampling θ in this scheme is the same as for the Chinese restaurant franchise scheme. Each θk

is updated using its posterior given z and x:

p(θk|z,β,θ
−k,x) ∝ h(θk)

∏

ji:zji=k

f(xji|θk) for k = 1, . . . ,K. (42)

5.3 Conjugacy between β and m

The derivation of the auxiliary variable sampling scheme reveals an interesting conjugacy between
the weights β and the auxiliary variables m. First notice that the posterior for π given z and β is

p((πj1, . . . , πjK , πju)
J
j=1|z,β) ∝

J
∏

j=1

πα0βu−1
ju

K
∏

k=1

π
α0βk+njk−1
jk , (43)

where πju =
∑

∞

k=K+1 πjk is the total weight for the unrepresented components. This describes the
basic conjugacy between πj and njk’s in the case of the ordinary Dirichlet process, and is a direct
result of the conjugacy between Dirichlet and multinomial distributions (Ishwaran and Zarepour
2002). This conjugacy has been used to improve the sampling scheme for stick-breaking general-
izations of the Dirichlet process (Ishwaran and James 2001).

On the other hand, the conditional distribution (41) suggests that the β weights are conjugate
in some manner to the auxiliary variables mjk. This raises the question of the meaning of the mjk

variables. The conditional distribution (40) of mjk gives us a hint.
Consider again the Chinese restaurant franchise, in particular the probability that we obtain m

tables corresponding to component k in mixture j, given that we know the component to which
each data item in mixture j is assigned (i.e., we know z), and we know β (i.e., we are given the
sample G0). Notice that the number of tables in fact plays no role in the likelihood since we already
know which component each data item comes from. Furthermore, the probability that i is assigned
to some table t such that kjt = k is

p(tji = t|kjt = k,mji,β, α0) ∝ n
−i
jt , (44)

while the probability that i is assigned a new table under component k is

p(tji = tnew|kjtnew = k,mji,β, α0) ∝ α0βk . (45)

This shows that the distribution over the assignment of observations to tables is in fact equal to
the distribution over the assignment of observations to components in an ordinary Dirichlet process
with concentration parameter α0βk, given that njk samples are observed from the Dirichlet process.
Antoniak (1974) has shown that this induces a distribution over the number of components:

p(# components = m|njk samples, α0βk) = s(njk,m)(α0βk)
m Γ(α0βk)

Γ(α0βk + njk)
, (46)

which is exactly (40). Hence mjk is the number of tables assigned to component k in mixture j.
This comes as no surprise, since the tables correspond to samples fromG0 so the number of samples
equal to some distinct value (the number of tables under the corresponding component) should be
conjugate to the weights β.
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5.4 Comparison of sampling schemes

We have described two different sampling schemes for hierarchical Dirichlet process mixture mod-
els. In Section 6 we present an example that indicates that neither of the two sampling schemes
dominates the other. Here we provide some intuition regarding the dynamics involved in the sam-
pling schemes.

In the Chinese restaurant franchise sampling scheme, we instantiate all the tables involved in
the model, we assign data items to tables, and assign tables to mixture components. The assignment
of data items to mixture components is indirect. This offers the possibility of speeding up conver-
gence because changing the component assignment of one table offers the possibility of changing
the component memberships of multiple data items. This is akin to split-and-merge techniques in
Dirichlet process mixture modeling (Jain and Neal 2000). The difference is that this is a Gibbs
sampling procedure while split-and-merge techniques are based on Metropolis-Hastings updates.

Unfortunately, unlike split-and-merge methods, we do not have a ready way of assigning data
items to tables within the same component. This is because the assignments of data items to tables
is a consequence of the prior clustering effect of a Dirichlet process with njk samples. As a result,
we expect that—with high-dimensional, large data sets, where tables will typically have large num-
bers of data items and components are well-separated—the probability that we have a successful
reassignment of a table to another previously seen component is very small.

In the auxiliary variable sampling scheme, we have a direct assignment of data items to com-
ponents, and tables are only indirectly represented via the number of tables assigned to each com-
ponent in each mixture. As a result data items can only switch components one at a time. This
is potentially slower than the Chinese restaurant franchise method. However, the sampling of the
number of tables per component is very efficient, since it involves an auxiliary variable, and we have
a simple form for the conditional distributions.

It is of interest to note that combinations of the two schemes may yield an even more efficient
sampling scheme. We start from the auxiliary variable scheme. Given β, instead of sampling the
number of tables under each component directly using (40), we may generate an assignment of data
items to tables under each component using the Pólya urn scheme (this is a one-shot procedure
given by (8), and is not a Markov chain). This follows from the conjugacy arguments in Section 5.3.
A consequence is that we now have the number of tables in that component, which can be used to
update β. In addition, we also have the assignment of data items to tables, and tables to components,
so we may consider changing the component assignment of each table as in the Chinese restaurant
franchise scheme.

5.5 Posterior sampling for concentration parameters

MCMC samples from the posterior distributions for the concentration parameters γ and α0 of the
hierarchical Dirichlet process can be obtained using straightforward extensions of analogous tech-
niques for Dirichlet processes. Consider the Chinese restaurant franchise representation. The con-
centration parameter α0 governs the distribution over the number of ψjt’s in each mixture indepen-
dently. As noted in Section 5.3 this is given by:

p(T1, . . . , TJ |α0, n1, . . . , nJ) =
J
∏

j=1

s(nj , Tj)α
Tj

0

Γ(α0)

Γ(α0 + nj)
. (47)

Further, α0 does not govern other aspects of the joint distribution, hence given Tj the observations
are independent of α0. Therefore (47) gives the likelihood for α0. Together with the prior for α0 and
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the current sample for Tj we can now derive MCMC updates for α0. In the case of a single mixture
model (J = 1), Escobar and West (1995) proposed a gamma prior and derived an auxiliary variable
update for α0, while Rasmussen (2000) observed that (47) is log-concave in α0 and proposed using
adaptive rejection sampling (Gilks and Wild 1992) instead. Both can be adapted to the case J > 1.

The adaptive rejection sampler of Rasmussen (2000) can be directly applied to the case J >
1 since the conditional distribution of α0 is still log-concave. The auxiliary variable method of
Escobar and West (1995) requires a slight modification for the case J > 1. Assume that the prior
for α0 is a gamma distribution with parameters a and b. For each j we can write

Γ(α0)

Γ(α0 + nj)
=

∫ 1

0
wα0

j (1− wj)
nj−1

(

1 +
nj
α0

)

dwj . (48)

In particular, we define auxiliary variables w = (wj)
J
j=1 and s = (sj)

J
j=1 where each wj is a

variable taking on values in [0, 1], and each sj is a binary {0, 1} variable, define the following
distribution:

q(α0,w, s) ∝ α
a−1+

∑J
j=1

Tj

0 eα0b
J
∏

j=1

wα0

j (1− wj)
nj−1

(

nj
α0

)sj

. (49)

Now marginalizing q to α0 gives the desired conditional distribution for α0. Hence q defines an
auxiliary variable sampling scheme for α0. Given w and s we have:

q(α0|w, s) ∝ α
a−1+

∑J
j=1

Tj−sj

0 eα0(b−
∑J

j=1
logwj) , (50)

which is a gamma distribution with parameters a+
∑J

j=1 Tj − sj and b−
∑J

j=1 logwj . Given α0,
the wj and sj are conditionally independent, with distributions:

q(wj |α0) ∝ w
α0

j (1− wj)
nj−1 (51)

q(sj |α0) ∝

(

nj
α0

)sj

, (52)

which are beta and binomial distributions respectively. This completes the auxiliary variable sam-
pling scheme for α0. We prefer the auxiliary variable sampling scheme as it is easier to implement
and typically mixes quickly (within 20 iterations).

Given the total number T =
∑

j Tj of ψjt’s, the concentration parameter γ governs the distri-
bution over the number of components K:

p(K|γ, T ) = s(T,K)γK
Γ(γ)

Γ(γ + T )
. (53)

Again the observations are independent of γ given T and K, hence we may apply the techniques of
Escobar and West (1995) or Rasmussen (2000) directly to sampling γ.

6 EXPERIMENTS

We describe three experiments in this section to highlight various aspects of the hierarchical Dirich-
let process: its nonparametric nature, its hierarchical nature, and the ease with which we can extend
the framework to more complex models, specifically a hidden Markov model with a countably infi-
nite state space.
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The software that we used for these experiments is available at
http://www.cs.berkeley.edu/∼ywteh/research/npbayes. The core sampling routines are written in C,
with a MATLAB interface for interactive control and graphical display. The software implements a
hierarchy of Dirichlet processes of arbitrary depth.

6.1 Document modeling

Recall the problem of document modeling discussed in Section 1. Following standard method-
ology in the information retrieval literature (Salton and McGill 1983), we view a document as a
“bag-of-words”; that is, we make an exchangeability assumption for the words in the document.
Moreover, we model the words in a document as arising from a mixture model, in which a mixture
component—a “topic”—is a probability distribution over words from some basic vocabulary. The
goal is to model a corpus of documents in such a way as to allow the topics to be shared among the
documents in a corpus.

A parametric approach to this problem is provided by the latent Dirichlet allocation (LDA)
model of Blei et al. (2003). This model involves a finite mixture model in which the mixing propor-
tions are drawn on a document-specific basis from a Dirichlet distribution. Moreover, given these
mixing proportions, each word in the document is an independent draw from the mixture model.
That is, to generate a word, a mixture component (i.e., a topic) is selected, and then a word is
generated from that topic.

Note that the assumption that each word is associated with a possibly different topic differs
from a model in which a mixture component is selected once per document, and then words are
generated i.i.d. from the selected topic. Moreover, it is interesting to note that the same distinction
arises in population genetics, where multiple words in a document are analogous to multiple markers
along a chromosome. Pritchard et al. (2000). One can consider mixture models in which marker
probabilities are selected once per chromosome or once per marker. The latter are referred to as
“admixture” models by Pritchard et al. (2000), who develop an admixture model that is essentially
identical to LDA.

A limitation of the parametric approach include the necessity of estimating the number of mix-
ture components in some way. This is a particularly difficult problem in areas such as information
retrieval and genetics, in which the number of components is expected to be large. It is natural to
consider replacing the finite mixture model with a DP, but, given the differing mixing proportions
for each document, this requires a different DP for each document. This then poses the problem of
sharing mixture components across multiple DPs, precisely the problem that the hierarchical DP is
designed to solve.

We fit both the LDA model and the hierarchical DP mixture model to a corpus of nematode
biology abstracts (see http://elegans.swmed.edu/wli/cgcbib). There are 5838 abstracts in total. After
removing standard stop words and words appearing fewer than 10 times, we are left with 476441
words in total and a vocabulary size of 5699.

Both models were as similar as possible beyond the distinction between the parametric or non-
parametric Dirichlet distribution. Both models used a symmetric Dirichlet distribution with param-
eters of 0.5 for the prior H over topic distributions. The concentration parameters were integrated
out using a vague gamma prior: γ ∼ Gamma(1, .1) and α0 ∼ Gamma(1, 1).

We evaluated the models via 10-fold cross-validation. The evaluation metric was the perplex-
ity, a standard metric in the information retrieval literature. The perplexity of a held-out abstract
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Figure 6: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture.
Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of
topics for the hierarchical Dirichlet process mixture over 100 posterior samples.

consisting of words w1, . . . , wI is defined to be:

exp

(

−
1

I
log p(w1, . . . , wI |Training corpus)

)

(54)

where p(·) is the probability mass function for a given model. The perplexity can be understood as
the average inverse probability of single words given the training set.

The results are shown in Figure 6.1. For LDA we evaluated the perplexity for mixture com-
ponent cardinalities ranging between 10 and 120. As seen in Figure 6.1(Left), the hierarchical DP
mixture approach—which integrates over the mixture component cardinalities—performs as well
as the best LDA model, doing so without any form of model selection procedure as would be re-
quired for LDA. Moreover, as shown in Figure 6.1(Right), the posterior over the number of topics
obtained under the hierarchical DP mixture model is consistent with this range of the best-fitting
LDA models.

6.2 Multiple corpora

We now consider the problem of sharing clusters among the documents in multiple corpora. We
approach this problem by extending the hierarchical Dirichlet process to a third level. A draw from
a top-level DP yields the base measure for each of a set of corpus-level DPs. Draws from each
of these corpus-level DPs yield the base measures for DPs associated with the documents within a
corpus. Finally, draws from the document-level DPs provide a representation of each document as
a probability distribution across “topics,” which are distributions across words. The model allows
topics to be shared both within corpora and between corpora.

The documents that we used for these experiments consist of articles from the proceedings
of the Neural Information Processing Systems (NIPS) conference for the years 1988-1999. The
original articles are available at http://books.nips.cc; we use a preprocessed version available at
http://www.cs.utoronto.ca/∼roweis/nips. The NIPS conference deals with a range of topics cover-
ing both human and machine intelligence. Articles are separated into nine prototypical sections:
algorithms and architectures (AA), applications (AP), cognitive science (CS), control and naviga-
tion (CN), implementations (IM), learning theory (LT), neuroscience (NS), signal processing (SP),
vision sciences (VS). (These are the sections used in the years 1995-1999. The sectioning in earlier
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Table 2: Summary statistics for the NIPS data set.

Sections # Papers Total # words Distinct # words
Cognitive science (CS) 72 83798 4825
Neuroscience (NS) 157 170186 5031
Learning theory (LT) 226 225217 5114
Algorithms and architectures (AA) 369 388402 5365
Implementations (IM) 195 199366 5334
Signal processing (SP) 71 75016 4618
Vision sciences (VS) 104 114231 4947
Applications (AP) 146 158621 5276
Control and navigation (CN) 107 116885 4783
All sections 1447 1531722 5570

years differed slightly; we manually relabeled sections from the earlier years to match those used
in 1995-1999.) We treat these sections as “corpora,” and are interested in the pattern of sharing of
topics among these corpora.

There were 1447 articles in total. Each article was modeled as a “bag-of-words,” i.e., each word
was modeled as a multinomial variate and the words were modeled as conditionally i.i.d. given the
underlying draw from the DP. We culled standard stop words as well as words occurring more than
4000 or fewer than 50 times in the whole corpus. This left us with on average slightly more than
1000 words per article. Some summary statistics for the data set are provided in Table 2.

We considered the following experimental setup. Given a set of articles from a single NIPS
section that we wish to model (the VS section in the experiments that we report below), we wish to
know whether it is of value (in terms of prediction performance) to include articles from other NIPS
sections. This can be done in one of two ways: we can lump all of the articles together without
regard for the division into sections, or we can use the hierarchical DP approach to link the sections.
Thus we consider three models (see Figure 7 for graphical representations of these models):

• M1: This model ignores articles from the other sections and simply uses a hierarchical DP
mixture of the kind presented in Section 6.1 to model the VS documents. This model serves as
a baseline. We used γ ∼ Gamma(5, 0.1) and α0 ∼ Gamma(0.1, 0.1) as prior distributions
for the concentration parameters.

• M2: This model incorporates articles from other sections, but ignores the distinction into
sections, using a single hierarchical DP mixture model to model all of the articles. Priors of
γ ∼ Gamma(5, 0.1) and α0 ∼ Gamma(0.1, 0.1) were used.

• M3: This model takes a full hierarchical approach and models the NIPS sections as multiple
corpora, linked via the hierarchical DP mixture formalism. The model is a tree, in which the
root is a draw from a single DP for all articles, the first level is a set of draws from DPs for the
NIPS sections, and the second level is set of draws from DPs for the articles within sections.
Priors of γ ∼ Gamma(5, 0.1), α0 ∼ Gamma(5, 0.1), and α1 ∼ Gamma(0.1, 0.1) were
used.

We conducted experiments in which sets of 80 articles were chosen uniformly at random from
each of the sections other than VS (this was done to balance the sections, which are of different
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Figure 7: Three models for the NIPS data. From left to right: M1, M2 and M3.

sizes). A “training set” of 80 articles were also chosen uniformly at random from the VS section, as
were an additional set of 47 test articles.

Figure 6.2(Left) presents the predictive performance for all three models as the number N of
articles used for training in the VS section ranged from 0 to 80. The performance is measured in
terms of the perplexity of single words from the test articles given the training articles. As seen
in the figure, the fully hierarchical model M3 performs best, with perplexity decreasing rapidly
with modest values of N . For small values of N , the performance of M1 is quite poor, but the
performance approaches that of M3 when more than 20 articles are included in the VS training
set. The performance of the partially-hierarchical M2 was poorer than the fully-hierarchical M3
throughout the range of N . M2 dominated M1 for small N , but yielded poorer performance than
M1 for N greater than 14. Our interpretation is that the sharing of strength based on other articles
is useful when little other information is available (small N ), but that eventually (medium to large
N ) there is crosstalk between the sections and it is preferable to model them separately and share
strength via the hierarchy.

While the results in Figure 6.2(Left) are an average over the sections, it is also of interest to
see which sections are the most beneficial in terms of enhancing the prediction of the articles in
VS. Figure 6.2(Right) plots the predictive performance for model M3 when given data from each
of three particular sections: LT, AA and AP. While articles in the LT section are concerned mostly
with theoretical properties of learning algorithms, those in AA are mostly concerned with models
and methodology, and those in AP are mostly concerned with applications of learning algorithms to
various problems. As seen in the figure, we see that predictive performance is enhanced the most by
prior exposure to articles from AP, less by articles from AA, and still less by articles from LT. Given
that articles in the VS tend to be concerned with the practical application of learning algorithms to
problems in computer vision, this pattern of transfer seems reasonable.

Finally, it is of interest to investigate the subject matter content of the topics discovered by the
hierarchical DP model. We did so in the following experimental setup. For a given section other
than VS (e.g., AA), we fit a model based on articles from that section. We then introduced articles
from the VS section and continued to fit the model, while holding the topics found from the earlier fit
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fixed, and recording which topics from the earlier section were allocated to words in the VS section.
Table 3 displays the two most frequently occurring topics in this setup (a topic is represented by the
set of words which have highest probability under that topic). We also show some of the new topics
created by the model while fitting the VS data in Table 4. Both sets of topics provide qualitative
confirmation of our expectations regarding the overlap between VS and other sections.

7 HIDDEN MARKOV MODELS

The simplicity of the hierarchical DP specification—the base measure for a DP is distributed as a
DP—makes it straightforward to exploit the hierarchical DP as a building block in more complex
models. In this section we demonstrate this in the case of the hidden Markov model.

Recall that a hidden Markov model (HMM) is a doubly stochastic Markov chain in which a
sequence of multinomial “state” variables (v1, v2, . . . , vT ) are linked via a state transition matrix,
and each element yt in a sequence of “observations” (y1, y2, . . . , yT ) is drawn independently of
the other observations conditional on vt (Rabiner 1989). This is essentially a dynamic variant of a
finite mixture model, in which there is one mixture component corresponding to each value of the
multinomial state. As with classical finite mixtures, it is interesting to consider replacing the finite
mixture underlying the HMM with a Dirichlet process.

Note that the HMM involves not a single mixture model, but rather a set of mixture models—
one for each value of the current state. That is, the “current state” vt indexes a specific row of the
transition matrix, with the probabilities in this row serving as the mixing proportions for the choice
of the “next state” vt+1. Given the next state vt+1, the observation yt+1 is drawn from the mixture
component indexed by vt+1. Thus, to consider a nonparametric variant of the HMM which allows
an unbounded set of states, we must consider a set of DPs, one for each value of the current state.
Moreover, these DPs must be linked, because we want the same set of “next states” to be reachable
from each of the “current states.” This amounts to the requirement that the atoms associated with
the state-conditional DPs should be shared—exactly the framework of the hierarchical DP.

Thus, we can define a nonparametric hidden Markov model by simply replacing the set of condi-
tional finite mixture models underlying the classical HMM with a hierarchical Dirichlet process. We
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Table 3: Topics shared between VS and the other NIPS sections. These topics are the most fre-
quently occurring in the VS fit, under the constraint that they are associated with a significant
number of words (greater than 2500) from the other section.

CS
task representation pattern processing trained representations three process unit
patterns
examples concept similarity bayesian hypotheses generalization numbers positive
classes hypothesis

NS
cells cell activity response neuron visual patterns pattern single fig
visual cells cortical orientation receptive contrast spatial cortex stimulus tuning

LT
signal layer gaussian cells fig nonlinearity nonlinear rate eq cell
large examples form point see parameter consider random small optimal

AA
algorithms test approach methods based point problems form large paper
distance tangent image images transformation transformations pattern vectors convolu-
tion simard

IM
processing pattern approach architecture single shows simple based large control
motion visual velocity flow target chip eye smooth direction optical

SP
visual images video language image pixel acoustic delta lowpass flow
signals separation signal sources source matrix blind mixing gradient eq

AP
approach based trained test layer features table classification rate paper
image images face similarity pixel visual database matching facial examples

CN
ii tree pomdp observable strategy class stochastic history strategies density
policy optimal reinforcement control action states actions step problems goal

Table 4: Novel topics (not shared with another NIPS section) that arose during the fit of the VS data.

CS matching correspondence match point points transformation line matches object objective

NS matching correspondence match point points transformation object matches line con-
straints

LT matching correspondence match point points transformation object matches line scene

AA depth grossberg contrast stage gray perception boundaries classification regions patch

IM face facial images image view faces expression gesture action representation

SP motion visual cells orientation field receptive stimulus cortex direction spatial

AP disparity stereo layer match left surfaces depth energy constraints constraint

CN motion visual direction velocity moving stimulus stage signals directions second
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Figure 9: A hierarchical Bayesian model for the infinite hidden Markov model.

refer to the resulting model as a hierarchical Dirichlet process hidden Markov model (HDP-HMM).
The HDP-HMM provides an alternative to methods that place an explicit parametric prior on the
number of states or make use of model selection methods to select a fixed number of states (Stolcke
and Omohundro 1993).

In work that served as an inspiration for the HDP-HMM, Beal et al. (2002) discussed a model
known as the infinite hidden Markov model, in which the number of hidden states of a hidden
Markov model is allowed to be countably infinite. Indeed, Beal et al. (2002) defined a notion of
“hierarchical Dirichlet process” for this model, but their “hierarchical Dirichlet process” is not hier-
archical in the Bayesian sense—involving a distribution on the parameters of a Dirichlet process—
but is instead a description of a coupled set of urn models. In this section we briefly review this
construction, and relate it to our formulation.

Beal et al. (2002) considered the following two-level procedure for determining the transition
probabilities of a Markov chain with an unbounded number of states. At the first level, the prob-
ability of transitioning from a state u to a state v is proportional to the number of times the same
transition is observed at other time steps, while with probability proportional to α0 an “oracle” pro-
cess is invoked. At this second level, the probability of transitioning to state v is proportional to
the number of times state v has been chosen by the oracle (regardless of the previous state), while
the probability of transitioning to a novel state is proportional to γ. The intended role of the oracle
is to tie together the transition models so that they have destination states in common, in much the
same way that the baseline distribution G0 ties together the group-specific mixture components in
the hierarchical Dirichlet process.

To relate this two-level urn model to the hierarchical DP framework, let us describe a repre-
sentation of the latter using the stick-breaking formalism. In particular, consider the hierarchical
Dirichlet process representation shown in Figure 9. The parameters in this representation have the
following distributions:

β | γ ∼ Stick(γ) πk | α0,β ∼ DP(α0,β) θk | H ∼ H , (55)

for each k = 1, 2, . . ., while for each time step t = 1, . . . , T the state and observation distributions
are:

vt | vt−1, (πk)
∞
k=1 ∼ πvt−1

yt | vt, (θk)
∞
k=1 ∼ F (θvt) , (56)

where we assume for simplicity that there is a distinguished initial state v0. If we now consider the
Chinese restaurant franchise representation of this model as discussed in Section 5, it turns out that
the result is equivalent to the coupled urn model of Beal et al. (2002).
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Unfortunately, posterior inference using the Chinese restaurant franchise representation is awk-
ward for this model, involving involving substantial bookkeeping. Indeed, Beal et al. (2002) did
not present a Markov chain Monte Carlo inference algorithm for the infinite hidden Markov model,
proposing instead a heuristic approximation to Gibbs sampling.

On the other hand, both the stick-breaking and the infinite limit of finite models representation
lead directly to a Markov chain Monte Carlo sampling scheme involving auxiliary variables that
is straightforward to implement. In the experiments reported in the following section we used the
auxiliary variable representation.

Practical applications of hidden Markov models often consider sets of sequences, and treat these
sequences as exchangeable at the level of sequences. Thus, in applications to speech recognition, a
hidden Markov model for a given word in the vocabulary is generally trained via replicates of that
word being spoken. This setup is readily accommodated within the hierarchical DP framework by
simply considering an additional level of the Bayesian hierarchy, letting a master Dirichlet process
couple each of the HDP-HMMs, each of which is a set of Dirichlet processes.

7.1 Alice in Wonderland

In this section we report experimental results for the problem of predicting strings of letters in
sentences taken from Lewis Carroll’s Alice’s Adventures in Wonderland, comparing the HDP-HMM
to other HMM-related approaches.

Each sentence is treated as a sequence of letters and spaces (rather than as a sequence of words).
There are 27 distinct symbols—26 letters and space—cases and punctuation marks are ignored. The
emission distributions are again multinomial. There are 20 training sentences, with average length
of 51 symbols, while there are 40 test sentences with an average length of 100.

Using the auxiliary variable sampling method for posterior predictive inference, we compared
the HDD-HMM to a variety of other methods for prediction using hidden Markov models: (1) a
classical HMM using maximum likelihood (ML) parameters obtained via the Baum-Welch algo-
rithm (Rabiner 1989), (2) a classical HMM using maximum a posteriori (MAP) parameters, taking
the priors to be were independent, symmetric Dirichlet distributions for both the transition and
emission probabilities, and (3) a classical HMM trained using an approximation to a full Bayesian
analysis—in particular, a variational Bayesian (VB) method due to Beal (2003). For each of these
classical HMMs, we conducted experiments for each value of the state cardinality ranging from 1
to 30.

Again using the perplexity on test sentences to evaluate predictive performance (see (54)), we
present the results in Figure 7.1. For VB, the predictive probability is intractable to compute, so the
modal setting of parameters was used. Both MAP and VB models were given optimal settings of the
hyperparameters found using the HDP-HMM. We see that the HDP-HMM has a lower perplexity
than all of the models tested for ML, MAP, and VB.

8 DISCUSSION

We have described a nonparametric approach to the modeling of groups of data, where each group
is characterized by a mixture model, and where it is desirable to allow mixture components to be
shared between groups. We have proposed a hierarchical Bayesian solution to this problem, in
which a set of Dirichlet processes are coupled via their base measure, which is itself distributed
according to a Dirichlet process.
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small to see).

We have described three different representations that capture aspects of the hierarchical Dirich-
let process. In particular, we described a stick-breaking representation that describes the random
measures explicitly, a representation of marginals in terms of an urn model that we referred to as
the “Chinese restaurant franchise,” and a representation of the process in terms of an infinite limit
of finite mixture models.

These representations led to the formulation of two Markov chain Monte Carlo sampling schemes
for posterior inference under hierarchical Dirichlet process mixtures. The first scheme is based di-
rectly on the Chinese restaurant franchise representation, while the second scheme is an auxiliary
variable method that represents the stick-breaking weights explicitly.

Clustering is an important activity in many large-scale data analysis problems in engineering
and science, reflecting the heterogeneity that is often present when data are collected on a large
scale. Clustering problems can be approached within a probabilistic framework via finite mixture
models (and their dynamical cousins the HMM), and recent years have seen numerous examples
of applications of finite mixtures and HMMs in areas such as bioinformatics (Durbin et al. 1998),
speech recognition (Huang et al. 2001), information retrieval (Blei et al. 2003), computational vi-
sion (Forsyth and Ponce 2002) and robotics (Thrun 2000). These areas also provide numerous
instances of data analyses which involve multiple, linked sets of clustering problems, for which clas-
sical clustering methods (model-based or non-model-based) provide little in the way of leverage. In
bioinformatics we have already alluded to the problem of finding haplotype structure in subpopula-
tions. Other examples in bioinformatics include the use of HMMs for amino acid sequences, where
a hierarchical DP version of the HMM would allow motifs to be discovered and shared among dif-
ferent families of proteins. In speech recognition multiple HMMs are already widely used, in the
form of word-specific and speaker-specific models, and adhoc methods are generally used to share
statistical strength among models. We have discussed examples of grouped data in information re-
trieval; other examples include problems in which groups indexed by author or by language. Finally,
computational vision and robotics problems often involve sets of descriptors or objects that are ar-
ranged in a taxonomy. Examples such as these, in which there is substantial uncertainty regarding
appropriate numbers of clusters, and in which the sharing of statistical strength among groups is
natural and desirable, suggest that the hierarchical nonparametric Bayesian approach to clustering
presented here may provide a generally useful extension of model-based clustering.
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biabilità Parziale e Impiego di Medie Associative,” Tech. rep., Quaderni Istituto Matematica Fi-
nanziaria dell’Università di Torino.
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