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Abstract— We present an algorithm to estimate velocity fields
from low resolution video recordings. The algorithm does not
attempt to identify and track individual vehicles, nor does it
attempt to estimate derivatives of the field of pixel intensities.
Rather, we compress a frame by obtaining an intensity profile in
each lane along the direction of traffic flow. The speed estimate
is then computed by searching for a best matching profile in
a frame at a later time. Because the algorithm does not need
high quality images, it is directly applicable to a compressed
format digital video stream, such as mpeg, from conventional
traffic video cameras. We illustrate the procedure using a 15
minute long VHS recording to obtain speed estimates on a one
mile stretch of highway I-80 in Berkeley, California.

I. I NTRODUCTION

Traffic cameras offer the potential to complement or substi-
tute for loop detectors. Because they can provide finer spatial
and temporal resolution, they have many advantages over loop
detectors. In principle, video from cameras can also be used
to detect lane-changing, accidents, and queuing patterns and
to extract macroscopic traffic parameters, such as flow, speed,
and density. Also, cameras are becoming less expensive to
purchase and maintain.

However, in order to use images from cameras to study
traffic, a large amount of video must be processed and an
efficient and practical system to extract traffic parameters is
thus essential. After being digitized, an hour video can be up
to a several gigabytes.

The objective of this paper is to present a simple algorithm
to estimate a velocity field, localized in space and time, from
video data covering a wide area with limited spatial resolution.
The localization is fine enough to reveal the temporal and spa-
tial formation and dissipation of shockwaves. To demonstrate
practicality of the algorithm, we present results from a 15
minute long video filmed by a Berkeley Highway Laboratory
camera. Figure 1(a) shows the layout of the Berkeley Highway
Laboratory. Figure 1(b) shows a single frame covering about
one mile of freeway.

Kastrinaki et al. [1] provide an extensive survey of state
of the art traffic applications of video processing, including
road traffic monitoring. Our methodology falls into the general
category of optical flow, techniques of which are reviewed in
Beauchemin and Barron [2]. Applications of optical flow to
traffic monitoring have been based on detecting and tracking

individual vehicles to estimate speed, density, and flow. The
following are representative examples. Autoscope [3] detects
and tracks vehicles within a detection zone (roughly a rect-
angle the size of a vehicle) and integrates their spatial and
temporal signatures to measure their speeds. The ACTIONS
system [4], detects and tracks moving objects by estimating
optical flow vectors which are then clustered to create candi-
date moving objects. The MORIO system [5] infers polyhedral
models for objects moving relative to a stationary camera. The
TITAN system [6] uses mathematical morphology to extract
individual vehicle features, aggregates them into individual
vehicles, and tracks them. It is capable of monitoring stretches
of the motorway of up to about 1000 feet, depending on the
height of the camera. The images of individual cars need to
be separated. In Fathy and Siyal [7], a morphological edge
detector and background differencing are used to identify and
track vehicles and calculate traffic parameters. Coifmanet al.
[8] developed a feature-tracking algorithm to extract individual
vehicle trajectories from video data by detecting predefined
features from images, grouping them, and tracking the groups
of features to produce trajectories. Daileyet al. [9] developed a
method to estimate mean traffic speed, using an edge-detecting
algorithm to find centroids and estimating mean speed from
centroid movement in successive images.

However, algorithms that rely on identifying and tracking
individual vehicles are not feasible for use with images of
poor quality and over a wide area. If the spatial resolution
is poor, vehicles in the frame do not show distinctive lines
or features throughout the whole span of view and thus can
be neither clearly identified nor tracked. If a vehicle only
occupies a small number of pixels, its features may be hard
to identify and furthermore can change as the precise position
of the vehicle within the pixel grid changes. Vibration due to
wind causes further difficulties, as do shadows and occlusions
in congested traffic. Grantet al. [10] report on an extensive
test of Autoscope on freeways in Atlanta, Georgia, showing
that counts degraded in accuracy as the distance of the count
location to the camera increased out to a maximum of about
400 ft. Although they did not directly measure the quality of
speed estimation as a function of distance, they conjecture that
it is similar to that of the volume counts.

In contrast, the method set forth in this paper does not



depend on explicitly identifying and tracking individual ve-
hicles. We demonstrate that it is robust to occlusion and
shadows, which can be seen in Figure 1(b), and to the camera
motion that is evident in the videos. We compare the estimates
obtained from the video to those from high frequency loop
detectors.

II. DATA

The data used in this study were generated from a 15-
minute video of about a one mile stretch of highway I-80 in
Berkeley, California. A video test bed, the Berkeley Highway
Laboratory, consists of 12 cameras on the roof of Pacific Park
Plaza, a 30-story building beside the highway. The analog
cameras have S-VHS video recorders attached. Figure 1(a)
illustrates the setup and the coverage of each camera.

Among six cameras looking north, the field of view of
camera N6 is furthest down I-80E. It covers the longest stretch
(about one mile long), from the Ashby Avenue on-ramp to
University Avenue off-ramp. But it produces relatively poor
quality images due to the poor angle and resolution. Figure
1(b) is a still frame from camera N6. The spatial resolution is
such that a pixel in the near field of view is about 5 feet,
whereas those furthest from the camera are about 15 feet.
The images also suffer from occlusions by vehicles and their
shadows and from camera motion.

Despite the poor quality of the images, the data from camera
N6 is potentially informative, for example for studying the
effect of on-ramp flow on highway performance. Also, it
covers the longest stretch, about one mile, and in principle,
information extracted from this camera can be combined with
that from the higher resolution cameras, which have smaller
fields of view. Algorithms developed to analyze images from
camera N6 should be applicable to other conventional traffic
cameras.

For the analysis, a 15 minute long tape was digitized at the
rate of 10 frames per second and the results saved in ppm file
format. Each frame, like Figure 1(b), has 800x640 pixels and
each pixel has intensities for red, green, and blue channels.

III. M ETHODOLOGY

Because of the camera resolution, it would be at best
extremely difficult to apply a feature detecting and tracking
algorithm. Hence, it is necessary to develop a new way
to extract information from the images. We developed an
algorithm for this purpose. The algorithm proceeds as follows:
First, an “intensity profile” of each lane in the direction of
traffic flow is extracted from each frame. Arranging the profiles
in time order gives intensity flow in the time-space domain, in
which vehicles appear as stripes, or moving peaks. Second, the
speed estimate at(t, x) in the time-space domain is computed
via searching a pair of best matching patterns at timet + τ
andt− τ in terms of theL1 norm (sum of absolute values of
differences) and estimated as the slope of the line connecting
the two centers of the pair. For discussion and references
to such correlation-based matching methods, see Beauchemin
and Barron [2].

The algorithm has a number of advantages. First, it does not
involve vehicle tracking, which can be computationally very
expensive, and hence makes it more efficient to process a large
amount of data. Secondly, in estimating local speed it does not
compute a gradient, or a weighted average of speeds of moving
features around the location of interest. It uses theL1 norm in
finding the best matching pattern and hence is robust to noise.
Later in this section, we show that under certain conditions
the algorithm is equivalent to finding a weighted median of
the speeds of moving peaks.

A. Intensity Profiles

To generate the intensity profile for a lane, a mask (M )
is created on a particular frame, a so-called reference frame.
The mask passes intensities of pixels in a region of interest.
A masked image is presented at the top of Figure 2. Once
masked, a frame contains intensities of pixels in the region.
The pixels have three integers between 0 and 255 for red,
green, and blue channels. Because these three intensities are
strongly correlated at the pixel level, we take the average of
red, green, and blue intensities. Then, we scan across the lane
(orthogonal to the direction of traffic) and calculate the max-
imum average intensity along the direction of traffic, which
we refer to as a maximum intensity profile. The maximum
intensity profile corresponding to the top image of Figure 2 is
presented in the bottom of Figure 2.

The mask should be created for each frame, because the
camera may be constantly shaking due to strong wind. To
create masks automatically, we find mappings (Ψt) from the
reference frame to every frame during the time period and
use the new transformed masks (Ψt(M)). First, we choose
four fixed objects (reference objects) on the reference frame
and place square windows centered at them. Then, in each
frame we search for the best matching patterns corresponding
to the squared areas centered at the reference objects. Once the
patterns are found, we use the coordinates of the center pixels
of the square windows to compute the projection matrix. For
more information, refer to chapter 5 of Hartley and Zisserman
[11].

We repeat this process for each frame and stack the maxi-
mum intensity profiles in time order to obtain an intensity flow
on the time-space domain. The intensity fades as the vehicle
moves away from camera, and the road surface intensity
varies depending on the location. To correct for this, at
each location of the highway we determine the maximum
and minimum intensity during the 15 minutes and form the
ratio of the difference between the intensity and minimum to
the difference between maximum and minimum. After this
background correction, the intensity is standardized between
0 and 1. To change units from pixels to feet, we computed the
projection matrix from image to the real world, using the real
dimension of I-80 (For a detailed computation, also refer to
chapter 5 of Hartley and Zisserman [11]). As a final step, we
interpolate the intensities on a finer grid, which are equally
spaced by about 5 feet. Two examples are presented in Figure
3.



(a) Berkeley Highway Laboratory Layout (b) A frame from Camera N6

Fig. 1. Camera Setup

The resulting intensity flow is similar to a trajectory plot in
the time-space domain in that the stripes, or moving peaks,
contain information about the traffic flow on the highway. But
it differs in that one curve does not necessarily correspond
to one vehicle. Rather one vehicle can be shown as two
lines, or two vehicles traveling closely together can appear
as one moving peak. Small or dark vehicles may be barely
perceptible. Fine discrimination is not needed for subsequent
speed estimation.

Fig. 2. A filtered image and the corresponding intensity profile

B. Speed Estimation

The idea behind the estimate is that a locally constant
intensity pattern represents travel at a locally constant speed.
Hence, after a short period of time, the same pattern will show
up again at the travel distance above the previous location in
the time-space domain.

To estimate the local speed at(t, x) in the time space
domain, we choose two rectangular windows of sizewt by

wx and center one at(t + τ, x) and the other at(t − τ, x).
We then move the window centered att + τ up (increase
x) and the other one att − τ down (decreasex), computing
the L1 norms for the pair. The norm will be minimized at
the travel distance. By the nature of the image, the shifts are
integer-valued. To deal with this discretization, we fit theL1

norms near the minimizer to a quadratic function to find the
interpolated distance which minimizes the norm. The speed is
estimated as the ratio of the distance to the shifting parameter,
τ , which is equivalent to the slope between the two centers of
the pair of the best matching patterns.

In the examples presented here, we use theL1 norm criteria
and set the window size to 30 seconds by 90 feet,τ as 3
second, and the searching area as 0 to 80 MPH. The step by
step outline of the algorithm is as follows.

Let I(t, x) denote the intensity at location(t, x) in the time-
space domain.

1) Fix the local window size,wt × wx, and the shift
parameterτ ,

2) For d = 0, . . . ,m, compute

D(d) =
t0+wt∑

t=t0−wt

x0+wx∑
x=x0−wx

|I(t+τ, x+d)−I(t−τ, x−d)|.

3) Fit D(d) near the minimum to a quadratic function of
d.

4) Find d0, which minimizesD.
5) The speed is estimated asd0/τ .

Note that the algorithm does not involve gradient computa-
tion or slopes for individual lines on the intensity flow. After
running the algorithm, we run a 2-dimensional median filter
to remove noise, of size 40 second by 370 feet.

Also note that it simultaneously shifts two square windows
(centered shifting), instead of fixing one window centered at
(t, x) and shifting the other window at eithert + τ (forward
shifting) or t− τ (backward shifting) in time. As can be seen



from a Taylor series expansion, derivatives are estimated more
accurately by central differences than by un-centered ones.
The derivative of a quadratic function is estimated exactly by
central differencing, but not by one-sided differencing.

Because the algorithm involves computing the sums of
absolute difference over 2 square windows, it can be quite
slow. To speed up, we use a subgrid within the square window
instead of using all the intensities. Based on the empirical
comparisons, we find even a coarse grid of resolution one
second by about 10 feet (using5% of data points) is sufficient
to produce an estimate equally good as using all the data. Also,
we need not evaluate the estimate at every location. Instead,
we estimate the speed on a sparse grid and then interpolate.

To gain some insight into the nature of the estimate
produced by the algorithm we now consider an idealized
continuous version. Suppose features,Aj(t, x), have disjoint
supports Ij , are parabolic onIj (3rd and higher order
derivatives are zeros), and travel at the speed ofvj . The
features correspond to the contributions of individual vehicles
to the intensity profile, which we write as

f(t, x) =
∑

j Aj(t, x) =
∑

j Aj(x− vjt).

Now consider the minimizer of

1
2τ

t0+wt∫
t=t0−wt

x0+wx∫
x=x0−wx

|f(t + τ, x + d)− f(t− τ, x− d)| dxdt.

For small d andτ

v̂ = arg min
d

1
2τ

∫

t

∫

x

|f(t + τ, x + d)

− f(t− τ, x− d)|dxdt

= arg min
d

1
2τ

∫

t

∑

j

∫

x

|Aj(t + τ, x + d)

−Aj(t− τ, x− d)|dxdt

= arg min
d

1
2τ

∫

t

∑

j

∫

x

∣∣2(d− vjτ)A′j(x− vjt)
∣∣ dxdt

= arg min
d

∑

j

∣∣∣∣
d

τ
− vj

∣∣∣∣
∫

t

∫

x

∣∣A′j(x− vjt)
∣∣ dxdt

= arg min
d

∑

j

Sj

S

∣∣∣∣
d

τ
− vj

∣∣∣∣

where Sj =
∫ t0+wt

t0−wt

∫ x0+wx

x0−wx
|A′j(x − vjt)|dxdt and S =∑

j Sj . The minimizer of the final expression above is a
weighted median of the individual velocitiesvj in which the
weights areSj/S. That is, it is the median of a discrete
probability distribution which has massesSj/S on the values
vj . Vehicles with large derivatives of their individual intensity
profiles thus contribute most heavily to the estimate. The
median, however, is insensitive to extreme velocities. By
contrast, if we were to use the sum of squared deviations rather
than the sum of absolute deviations, the argument above shows
that the estimate would be a weighted mean, and less robust
to extremevj . This argument formalizes the notion that the

shifting and matching algorithm estimates a weighted median
velocity over a region of space and time.

IV. RESULTS

Two intensity flows during 15 minutes from 3:00pm on 17th
of December 2001 to 3:15pm on the same day are presented
in Figure 3. We picked two lanes; the right-most (5th) lane of
I-80E and the 3rd lane of I-80W. We chose the two lanes for
the following reasons. The 5th lane merges with the Ashby on-
ramp at the near field of the frame (at around 500 feet) and the
inflow creates congestion. The 3rd lane of I-80W experienced
the worst stop-and-go traffic and had more trucks than any
other lanes during the 15 minutes.

During the 15 minutes, the east bound traffic experienced
moderate congestion, shown in the intensity flow as changes
in slopes of lines. Examining the figure carefully, one can
see some lines disappear and appear, caused by lane-changing
and occlusions from the shadows of vehicles traveling in
the next lane. The west bound lanes experienced very heavy
traffic. Also recall that in the 3rd lane there were the most
trucks. In the intensity flow, trucks appear as broad stripes. In
the intensity flow, we observe flat patterns lining up, which
shows shockwaves propagating against the traffic. The lane
also experienced the most frequent occlusion from vehicles
and their shadows, due to the stop and go traffic in the next
lane. In this lane, there are marks on the road to signify the
off-ramp and they create horizontal stripes around 30, 60, 460
pixels even after background correction. However, the speed
estimate is robust to these artifacts.

From the speed estimate of I-80E, we observe congestion
due to the inflow from the Ashby on-ramp and corresponding
shockwaves. We suspect that a traffic signal on Ashby Avenue
caused periodic fluctuations in inflow and hence the pulsating
series of shockwaves. Also note a pronounced shockwave
originating at around 360 second and 0.5 mile from the
University exit and travelling against the traffic at about 10
MPH.

The I-80W speed estimate shows even stronger oscillations
shockwave evolution, and some variation in their velocities of
propagation. The figure shows that the shockwaves typically
travel at about 10 MPH. Because we do not observe where
they originated and dissipated, we cannot verify how long
the shockwaves traveled before dissipating, based solely on
camera # 6. For now, we conjecture that the shockwaves were
created further downstream on I-80W, about 1.3 miles south
of the Ashby off-ramp, at the notorious split of I-80W into
I-580S, I-880, and I-80W. Further investigation using tapes
from cameras # 1-5 would reveal more information.

To check our estimates, we compared them to loop detector
data. Loop detectors are located at stations 3, 4, and 5 in
the order of distance from the University exit; refer to Figure
1(a). Unfortunately, the stretch had been paved recently and
we could not locate precisely where the loops were. So, we
approximated the loop locations by those of the cabinets and
pull-boxes of the loop counter stations, which are located at
the side of the wall of I-80E. In Figure 5, the dots are the point



estimates(vehicle by vehicle) from the loop data. The speed
estimates corresponding to the cabinet(pull-box) locations are
shown as the solid lines.

TABLE I

MEANS AND STANDARD DEVIATIONS (MPH)

East bound West bound
Station 3 -3.7 (2.1) -2.0 (3.8)
Station 4 0.3 (1.6) 0.0 (1.8)
Station 5 4.3 (1.8) 1.6 (3.1)

The figures show that the estimates are very close to the
loop data during the 15 minutes and pick up most of the
oscillations. There are some systematic differences, which may
be attributable to the imprecision of loop detector locations.
Note that the speed ranges and traffic conditions for the west
and east bound lanes are very different, yet the estimates
are very consistent in both cases. The means and standard
deviations of the errors between the estimates and the loop
data are reported in Table I.

V. CONCLUSIONS ANDDISCUSSION

The results above demonstrate the potential of our algorithm
for processing a video recording from a traffic camera, provid-
ing a useful tool to study numerous traffic issues, such as the
effect of an on-ramp, the evolution and dissipation of queuing
and congestion, and for monitoring highway performance.
Despite its poor quality image, camera N6 provides very
useful information in these regards. For some purposes, simple
functionals of the estimated velocity field may be sufficient.
For example, travel times can be estimated by tracing through
the field, or the average velocity over space at a given time
can be computed.

Although the results we have shown are quite reasonable,
we will study several issues in more detail in the future. One
is the choice of the region on which to base shifting and
matching. In principle, the rectangle could be as small as
one pixel in time and several pixels in space, or vice-versa.
The computing time is faster for smaller rectangles, but the
results are noisier (a defect which can be ameliorated, however,
by smoothing the estimates). Smaller rectangles yield a finer
resolution in space and time, but again at the cost of noise.
Larger rectangles localize less and are computationally more
expensive, but produce less noisy estimates. In principle, the
regions need not be rectangular and weight functions, such as
Gaussian kernels, can be used instead of uniform weighting.
Initial experimentation indicates that the final results are quite
insensitive to these choices, but further study is necessary to
optimize the algorithm for speed and accuracy.

In addition to further improving speed estimation, we are
developing algorithms to extract the other macroscopic param-
eters, flow and density, from the intensity profiles. This is more
difficult than velocity estimation. Counting is more feasible
in the near field of view, and the results can be propagated
through the estimated velocity field to obtain estimates of

density and flow in the far field of view. We will also
investigate the still more challenging problem of detecting lane
changing.

Finally we mention that we have used our method on MPEG
and AVI compressed video, with little degradation of the
results. This may be useful if data are to be transmitted prior
to analysis.
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(a) I-80 East Bound (b) I-80 West Bound

Fig. 3. Intensity flows

(a) I-80 East Bound (b) I-80 West Bound

Fig. 4. Estimated velocity fields



(a) I-80 East Bound (b) I-80 West Bound

Fig. 5. Comparsion between the estimate and the loop data


