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Abstract

The Sherali-Adams (SA) and Lasserre (LS) approaches are “lift-and-project” methods that
generate nested sequences of linear and/or semidefinite relaxations of an arbitrary 0-1 polytope
P ⊆ [0, 1]n. Although both procedures are known to terminate with an exact description of
P after n steps, there are various open questions associated with characterizing, for particular
problem classes, whether exactness is obtained at some step s < n. This paper provides suffi-
cient conditions for exactness of these relaxations based on the hypergraph-theoretic notion of
treewidth. More specifically, we relate the combinatorial structure of a given polynomial system
to an underlying hypergraph. We prove that the complexity of assessing the global validity of
moment sequences, and hence the tightness of the SA and LS relaxations, is determined by the
treewidth of this hypergraph. We provide some examples to illustrate this characterization.

Keywords: Integer programming; polynomial programs; semidefinite relaxation; linear pro-
gramming; moment polytopes; graphical models; treewidth.

1 Introduction

Given a discrete set F ⊆ {0, 1}n, it is frequently of interest to characterize the 0-1 polytope P
given by the convex hull of F in terms of a set of linear inequality constraints. In particular, such
a characterization leads to a linear programming formulation of any optimization problem over F
with a linear cost function. The field of polyhedral combinatorics [15] is concerned with finding
efficient representations of such polytopes for various combinatorial problems.

Given some relaxation of the convex hull conv F , there exist a variety of classical techniques for
strengthening the relaxation via the addition of so-called “cutting planes” (e.g., Gomory-Chvátal
cuts [3]). A second class of methods is based on the observation that it is often possible to represent
the polytope P as the projection of another polytope Q lying in a higher-dimensional space. The
basic idea is that projection can lead to a substantial increase in the number of facets; indeed, it
can be possible to characterize a polytope P with exponentially many facets as the projection of a
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polytope Q with only a polynomial number of facets. Of course, such representations are of most
interest when the dimension of Q remains polynomial in the dimension of P , which is known as a
compact representation of P .

This possibility—namely, of representing P in terms of a projection—motivates the class of
“lift-and-project” methods, in which constraints are imposed by first lifting the problem to higher
dimension and then projecting back down. The past fifteen years have witnessed the development
of a number of such techniques for constructing projection-based representations of general 0-1
polytopes,1 including the Sherali-Adams procedure [16], the Lovász-Schrijver procedure [13], and
most recently the Lasserre procedure [8]. Typically, these methods are defined in terms of a sequence
of relaxations, indexed by the number of lifting steps applied. When applied to an 0-1 polytope P ,
all three methods are known to terminate with an exact description of P after at most n steps. This
nth order representation of P entails lifting to a space of dimension O(2n), and hence is primarily
of theoretical interest. Although the full n steps are required in the worst case, a variety of open
questions concern whether fewer steps of lifting may suffice for problems with special structure.

The minimal number of lifting steps required is known as the rank of the relaxation. The rank
issue has been studied for various specific problems in combinatorial optimization, including the
matching problem [17], the stable set problem [e.g., 13, 11], and the MAX-CUT problem [e.g.,
5, 10]. All of these problems can be viewed as particular types of 0-1 polynomial programs, as
defined in Section 2, with special structure in both the constraint set and the form of the objective
function.

In this paper, we study the rank of the Sherali-Adams (henceforth SA) and Lasserre (henceforth
LS) sequence of relaxations for general 0-1 polynomial programs. Our primary contribution is to
define the canonical hypergraph associated with a polynomial program, and to prove that the rank of
the SA and LS relaxations is upper bounded by the treewidth of this hypergraph. The cornerstone
of our development is the junction tree theorem [4, 12], which provides a general framework for
representing and manipulating probability distributions that factorize over hypergraphs. The junc-
tion tree formalism also leads to dynamic-programming algorithms defined on hypergraphs, which
generalize and unify a wide class of standard algorithms for linearly ordered problems (e.g., Kalman
filtering, Viterbi algorithm). A key consequence of the junction tree theorem—and one which we
exploit in this paper—is a set of necessary and sufficient conditions for the global consistency of
moment sequences. We show that these conditions, in the context of the canonical hypergraph
defined by a polynomial system, can be used to assess the exactness of the SA and LS relaxations.
Moreover, the resulting characterization of exactness is sharp in a worst-case sense that we make
precise. Finally, we discuss some examples to illustrate this treewidth-based characterization.

2 Hierarchies of semidefinite relaxations

In this section, we begin with the basic set-up necessary to describe the Sherali-Adams (SA) and
Lasserre (LS) procedures. In doing so, we follow largely the notation and approach of Lasserre [8]
and Laurent [11].

1In fact, the underlying ideas are applicable more broadly to general semi-algebraic sets, as described in the work
of Lasserre [9] and Parrilo [14].
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2.1 Notation and set-up

Let V = {1, . . . , n}, and let P(V) denote its power set—i.e., the set of all subsets of V. For any
positive integer q ≤ n, let Pq(V) denote the set of all subsets of V of cardinality at most q. Of
central importance are constraint sets described by polynomials in {x1, . . . , xn}, in which each xi

has degree either zero or one. Any such polynomial g can be written in the form

g(x) :=
∑

I⊆V

g[I]x[I], (1)

where x[I] :=
∏

i∈I xi, and {g[I], I ⊆ V} are the coefficients associated with this monomial
expansion. Our convention is to set x[∅] = 1.

Let g1, . . . , gm be a collection of such polynomials, and consider the semi-algebraic set described
by enforcing non-negativity of these polynomials over the hypercube:

K := {x ∈ [0, 1]n | g`(x) ≥ 0 for ` = 1, . . . , m}. (2)

When necessary, we write K(g1, . . . , gm) to emphasize the fact that K is defined by the underlying
polynomials. The following pieces of notation will be useful in the sequel: for each ` = 1, . . . , m,
let w` = deg(g`) and v` := dw`/2e. We also define w := max

`=1,...,m
w` and v := max

`=1,...,m
v`.

Letting g0 be another polynomial of the form (1), we consider 0-1 polynomial programs of the
following type:

min
x∈Rn

g0(x) s. t. x ∈ {0, 1}n ∩ K(g1, . . . , gm). (3)

It is often convenient to assume a linear cost function—say of the form g0(x) =
∑n

i=1 g0[i] xi for
some real-valued coefficients g0[i]. Note that this assumption entails no loss of generality: if the
cost function involves a higher monomial—say

∏
i∈I xi—it can be eliminated by introducing a new

variable xn+1, and then adding an extra equality constraint (i.e., a pair of inequalities) to enforce
the relation xn+1 −

∏
i∈I xi = 0. Although the bulk of our development assumes linear cost, we find

it convenient to retain non-linear cost in certain cases (see, e.g., Section 5.1).
When the cost function is linear, problem (3) can be reformulated as the linear program

min
µ∈Rn

n∑

i=1

g0[i] µ[i] s. t. µ ∈ P (g1, . . . , gm), (4)

in which the constraint set P (g1, . . . , gm) := conv
(
{0, 1}n ∩ K(g1, . . . , gm)

)
is given by the convex

hull of all feasible solutions in the original problem (3). This equivalence demonstrates that the com-
plexity of solving problem (3) is closely related to the structure of the polytope P ≡ P (g1, . . . , gm).

2.2 Moments and lift-and-project methods

A useful interpretation of the set P is as a first-order moment polytope. More specifically, the set P
corresponds, by definition, to the set of all first-order moment vectors {µ[i] = Ep[xi], i = 1, . . . n}
that can be realized by a distribution p with support restricted to {0, 1}n∩K. The key idea under-
lying lift-and-project methods is that any such first-order moment polytope can be characterized
as the projection of a semidefinite constraint set that is specified in terms of higher-order moments.
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Given a distribution p, let us define, for each subset I ⊆ V, the associated multinomial moment

µ[I] := Ep

{
x[I]

}
= Ep

{∏

i∈I

xi

}
. (5)

These multinomial moments form a real-valued vector µ = {µ[I], I ⊆ V} indexed by the power set
P(V).

Given an arbitrary vector y ∈ R
P(V), we now describe semidefinite constraints that can be used

to assess whether or not it is a valid moment sequence for a distribution p with support constrained
to {0, 1}n ∩ K. We begin by using y to define a 2n × 2n matrix Mn[y], with rows and columns
indexed by elements of P(V), as follows:

(
Mn[y]

)
IJ

:= y[I ∪ J ]. (6)

The structure of Mn[y] for n = 3 is illustrated in Figure 1(a).
For each ` = 1, . . . , m, the polynomial g`(·) is uniquely identified by its coefficient vector

g` := {g`[I], I ⊆ V}. With this notation, we define for each ` = 1, . . . , m another 2n × 2n matrix
Mn[g` ∗ y] as follows:

(
Mn[g` ∗ y]

)
IJ

:=
∑

U⊆V

g`[U ] y[I ∪ J ∪ U ]. (7)

By imposing positive semidefiniteness constraints on these matrices, we obtain the following con-
straint set:

Cn(K) := {y ∈ R
P(V) | Mn[y] º 0 and Mn[g` ∗ y] º 0 for all ` = 1, . . .m}. (8)

For any set A ⊆ R
P(V), let Π1(A) denote its projection onto the n co-ordinates indexed by the

sets of cardinality one. In terms of moments, this operation amounts to projecting onto the n-
dimensional vector µ[1], . . . , µ[n] of first-order moments. With this notation, it was proved first by
Lasserre [8], and subsequently in an alternative way by Laurent [11], that the following equivalence
holds:

P (g1, . . . , gm) = Π1

[
Cn(K) ∩

{
y ∈ R

P(V) | y[∅] = 1
}]

. (9)

The essence of this result is that the first-order moment polytope P can be characterized by a
“lift-and-project” procedure, which entails lifting the problem by introducing higher-order mo-
ments, then imposing constraints in the lifted space, and finally projecting back to the co-ordinates
corresponding to first-order moments.

Of course, the characterization of P given in equation (9) is not a practical one, since it requires
imposing positive semidefiniteness constraints on matrices of size 2n×2n. However, this equivalence
does suggest that outer bounds on P can be obtained by imposing positive semidefiniteness on
particular minors of the matrices Mn(y) and Mn(g` ∗ y). Moreover, as shown by Laurent [11], this
perspective leads to a unified understanding of both the Lasserre and Sherali-Adams hierarchies.
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Figure 1. Relevant minors for the Lasserre and Sherali-Adams relaxations. (a) Full matrix M3[y].
(b) Shaded region: 7×7 principal minor M2[y] constrained by the Lasserre relaxation at order 1. (c),
(d) Shaded regions: 4×4 minors M{12}[y] and M{13}[y] constrained by the Sherali-Adams relaxation
at order 2. Also constrained is the minor M{23}[y] (not shown).

2.3 Lasserre hierarchy

The Lasserre hierarchy of relaxations entails imposing positive semidefiniteness on certain principal
minors of the matrices Mn[y] and Mn[g` ∗ y]. For any integer 1 ≤ s ≤ n, let Ms[y] denote the
principal minor of Mn[y] indexed by Ps(V). In explicit terms, this matrix Ms[y] has elements of
the form

Ms[y] :=
(
y[I ∪ J ]

)
|I|,|J |≤s

.

For n = 3, the matrix M2[y] is shown in Figure 1(b).
Recall the definitions v` := ddeg(g`)/2e and v := max

`=1,...,m
v`. For each integer q ≥ v − 1, define

the set

L̃q(K) :=
{
y ∈ R

P2q+2(V)
∣∣ Mq+1[y] º 0 and Mq+1−vl

[g` ∗ y] º 0 for all ` = 1, . . .m
}
. (10)

The Lasserre relaxation of order q is defined by intersecting the first co-ordinate with the hyperplane
y[∅] = 1, and then projecting the resulting set onto the co-ordinates associated with first-order
moments:

Lq(K) := Π1

[
L̃q(g1, . . . , gm) ∩

{
y ∈ R

P2q+2(V)
∣∣ y[∅] = 1

}]
. (11)
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This construction generates a nested sequence of the form

P = Ln+v−1(K) ⊆ . . . ⊆ Lv(K) ⊆ Lv−1(K). (12)

2.4 Sherali-Adams hierarchy

The Sherali-Adams hierarchy [16] can also be understood in terms of imposing positive semidefi-
niteness on certain minors of Mn[y] and Mn[g` ∗ y]. For any subset U ⊆ V, we isolate the minor of
Mn[y] indexed by subsets of U as follows:

MU [y] :=
(
y[I ∪ J ]

)
I,J⊆U

Note that, with this notation, we have the equivalence MV [y] = Mn[y]. For n = 3, the matrices
M{12}[y] and M{13}[y] are shown in panels (c) and (d) respectively of Figure 1.

Recall the definition w := max
`=1,...,m

deg(g`). For each q = 1, . . . , n, we define the set S̃q(K) as

follows:
{

y ∈ R
Pq+w(V)

∣∣∣∣
MW [y] º 0, for all W ⊆ V such that |W | = min(q + 1, n)
MU [g` ∗ y] º 0, for all U ⊆ V such that |U | = q, ∀` = 1, . . .m

}
. (13)

In analogy to the Lasserre construction, the Sherali-Adams relaxation of order q is defined by
intersecting the first co-ordinate with the hyperplane y[∅] = 1, and then projecting the resulting
set onto the co-ordinates associated with first-order moments:

Sq(K) := Π1

[
S̃q(K) ∩

{
y ∈ R

Pq+w(V)
∣∣ y[∅] = 1

}]
, (14)

thereby generating the nested sequence of relaxations:

P = Sn(K) ⊆ . . . ⊆ S2(K) ⊆ S1(K). (15)

3 Hypertrees and the junction tree representation

In this section, we introduce background material on hypergraphs, hypertrees and the junction tree
representation that underlies our development in the sequel. Further background on hypergraphs,
junction trees and treewidth can be found in various sources [1, 2, 4, 12].

3.1 Hypergraphs and hypertrees

A hypergraph H = (V, E) consists of a set V of vertices and a set E of hyperedges. Each hyperedge
corresponds to a particular subset of V (i.e., an element of the power set P(V)). For the sake of
exposition, it is convenient to adopt the convention that for any hyperedge E ∈ E , the hyperedge
set also contains all F ⊆ E. We say that a hyperedge is maximal if it is not properly contained
within any other hyperedge. Under our convention, we necessarily have E = ∪αP(Eα), where the
union is taken over all maximal hyperedges. Finally, note that our definition of a hypergraph covers
as a special case an ordinary graph, for which all of the maximal hyperedges have cardinality two.

A fundamental class of graphs are those without cycles, known as trees or acyclic graphs. The
following definition extends this notion to hypergraphs.
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Definition 1 (Tree decomposition). A tree decomposition of a hypergraph H = (V, E) is a
tree-structured graph T with the following properties:

(a) the vertex set of the tree T is of the form VT = {E1, . . . , Ed}, where each Eα ∈ E ;

(b) every hyperedge F ∈ E is contained within some Eα ∈ VT , and

(c) for every pair of vertices Eα, Eβ ∈ VT , the intersection Eα∩Eβ is contained in every Eγ ∈ VT

on the unique path in T that joins Eα and Eβ. This property is known as running intersection.

The quantity t := max
α=1,...d

|Eα| − 1 is known as the width of the tree decomposition. We refer to any

hypergraph with a tree decomposition of width t as a hypertree of width t.

Example 1. (a) The simplest illustration is provided by an ordinary tree, for which the edges
play the role of vertices in the tree decomposition. Since the size of each edge is two, an
ordinary tree corresponds to a hypertree of width 1.

(b) The hypergraph on V = {1, 2, 3, 4, 5} with maximal hyperedges (124) and (235) is is a hyper-
tree of width two.

While not every hypergraph is a hypertree, a suitable augmentation of the hyperedge set allows
every hypergraph to be covered by a hypertree. More formally, we say that G ′ = (V, E ′) is a covering
hypergraph for G = (V, E) if E ⊆ E ′. Of interest will be the set of covering hypertrees associated
with a given hypergraph G. Clearly, every hypergraph has at least one covering hypergraph:
more specifically, if we include (12 · · ·n) as a hyperedge, then the trivial tree with vertex set
VT = (12 · · ·n) is a covering hypertree of width n− 1 for any hypergraph. The key quantity, then,
is the minimal width taken over all possible covering hypertrees, as we formalize in the following:

Definition 2 (Treewidth). The treewidth of a hypergraph G = (V, E) is the minimum width of
all hypertrees G ′ = (V, E ′) that cover G.

We illustrate this definition with an example:

Example 2. Consider the hypergraph with V = {1, 2, 3, 4} and E = V ∪ {(12), (23), (34), (41)}),
which corresponds to an ordinary single cycle graph on four vertices. It can be verified that no
subset of E alone defines a tree decomposition. (For instance, using the subset {(12), (23), (34)}
as the tree vertex set VT satisfies properties (a) and (b) of the definition, but fails the running
intersection property (c).) However, one minimal covering hypertree can be specified by maximal
hyperedges {(123), (234)}; these hyperedges also define the vertex set VT of the associated tree
decomposition. Accordingly, the treewidth of the single cycle graph is 2.

3.2 Junction tree representation

Let us say that a function f : {0, 1}|S| → R is localized to the subset S ⊂ V if f depends on only on
elements within S. Now consider a probability distribution p over {0, 1}n that is composed as the
product of non-negative functions that are localized to the hyperedges of a given hypergraph. The
essence of the junction tree theorem [12] is that when the underlying hypergraph is a hypertree,
then any such distribution has an alternative but equivalent factorization in terms of local marginal
distributions defined on the maximal hyperedges (and their pairwise intersections). Moreover, this
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factorization can be computed efficiently by a variant of dynamic programming on the junction
tree structure.

Central to our development in the sequel is a result that can be viewed as a corollary of the
junction tree theorem [18]. Consider a hypertree H = (V, E), and for each maximal hyperedge E,
let pE be a vector with 2|E| elements. Of interest is when the collection of vectors {pE | E ∈ E}
correspond to a set of marginal distributions induced by some global distribution p on {0, 1}n. The
junction tree theorem implies that for any hypertree H, the following conditions are both necessary
and sufficient to ensure that {pE | E ∈ E} are the marginals of some global distribution:

1. Each vector pE is non-negative.

2. Each vector pE is properly normalized (i.e., ‖pE‖1 = 1).

3. For any pair E, F ∈ E with non-empty intersection E ∩ F , the marginals induced by pE and
pF on variables in their intersection agree with each other.

This characterization of globally consistent marginal distributions plays a key role in the proof of
our main result.

4 Exactness based on treewidth

We now proceed to the statement and proof of the main result.

4.1 Hypergraph of a polynomial system

Given a polynomial g of the form (1), we use V[g] to denote the subset of variables xi on which g
depends, defined as follows:

V[g] := {i ∈ V | i ∈ I ⊆ V with g[I] 6= 0
}
. (16)

The canonical hypergraph associated with the polynomial system (g1, . . . , gm) consists of the vertex
set V = {1, . . . , n}, and the hyperedge set

E :=
{
P(V[g`])

∣∣∣∣ ` = 1, . . . , m
}

. (17)

With these definitions, we have the following:

Theorem 1. Let t be the treewidth of the canonical hypergraph associated with the polynomial
system (g1, . . . , gm). Then:

(a) The Sherali-Adams relaxation is upper bounded by t + 1 (i.e., St+1(K) = P ).

(b) The Lasserre relaxation is upper bounded by t + v (i.e., Lt+v(K) = P ).

Moreover, these bounds are sharp in the following worst-case sense: for a given treewidth t, there
exists a polynomial system (g1, . . . , gm) whose associated canonical hypergraph has treewidth t such
that the upper bounds in (a) and (b) are both met with equality.
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Remarks:

(a) To gain some intuition for the theorem, consider a simple example with V = {1, 2, 3, 4, 5}.
Suppose that we impose the polynomial constraints g1(x1, x2, x4) = x1x2x4 − 1 ≥ 0 and
g2(x2, x3, x5) = x2x3x5 = 0. The associated canonical hypergraph has maximal hyperedges
{1, 2, 4} and {2, 3, 5}, which generates the hypertree of width 2 considered in Example 1(a).
Therefore, by Theorem 1(a), the Sherali-Adams procedure will be exact at order 3.

(b) It should be noted that the conditions of Theorem 1 are sufficient to ensure exactness, but
not all of the associated constraints may be necessary in general. This comment is particu-
larly applicable to the Lasserre relaxation. For instance, it is known [11] that the inclusion
Lt+v(K) ⊆ St+1(K) always holds. In general, however, the Sherali-Adams relaxation St+1(K)
is based on fewer constraints than the Lasserre relaxation Lt+v(K). Therefore, when equal-
ity holds in both relaxations, there must be irrelevant constraints involved in the Lasserre
construction. We elaborate on the issue of the minimal number of constraints in Section 4.3.

4.2 Proof of Theorem 1

We begin by introducing a definition and lemma that are central to the proof:

Definition 3. Let S be a subset of {0, 1}n. Given some subset Q of the power set P(V), let y{Q}
denote a vector indexed by the elements of Q (i.e., of the form

{
y[I]

∣∣ I ∈ Q}). We say that y{Q}
is a globally consistent S-moment vector for Q if there exists some distribution p with support
restricted to S ⊆ {0, 1}n such that y[I] = Ep

{
x[I]

}
for all I ∈ Q.

The following lemma is proved in Appendix A:

Lemma 1 (Local to global consistency). Consider a hypertree G = (V, E) of width t. For each
maximal hyperedge E ∈ E, let S(E) be some subset of {0, 1}|E|, and consider the subset S ⊆ {0, 1}n

defined by

S := ∩E∈E

{
u ∈ {0, 1}n | uE ∈ S(E)

}
. (18)

where uE := {ui | i ∈ E}. Then a vector y{E} is a globally consistent S-moment vector for E if
and only if the subvector y{P(E)} is a globally consistent S(E)-moment vector for each maximal
hyperedge E ∈ E.

Equipped with this lemma, we first prove part (a) of the theorem. Consider the canonical
hypergraph associated with the polynomial system (g1, . . . , gm). Since it has width t by assump-
tion, there exists a covering hypertree G = (V, E) with width t. Let VT = {E1, . . . , Ed} be the
vertex set of an associated tree decomposition, for which (by definition of treewidth) there holds
maxα=1,...,d |Eα| = t+1. Since the hypertree covers the canonical hypergraph, for each ` = 1, . . . , m,
the set V[g`] is contained in at least one Eα ∈ VT . For each α = 1, . . . , d, we define

G(Eα) :=

{
` ∈ {1, . . . , m}

∣∣ V[g`] ⊆ Eα

}
.
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Note that by definition, for each ` ∈ G(Eα), the value of the polynomial g` depends only on (at
most) the subvector uEα

:= {ui | i ∈ Eα}. With these definitions, the set K ∩ {0, 1}n has the
decomposition

∩d
α=1

{
u ∈ {0, 1}n | g`(uEα

) ≥ 0 ∀ ` ∈ G(Eα)
}

≡ ∩d
α=1S(Eα), (19)

where we have defined for future reference the local support set

S(Eα) :=
{
uEα

∈ {0, 1}|Eα|
∣∣ g`(uEα

) ≥ 0 ∀ ` ∈ G(Eα)}. (20)

By definition, the polytope P can be characterized exactly by a suitable projection of the set of
all vectors y{E} that are globally valid K ∩ {0, 1}n-moment vectors. Consider the Sherali-Adams
relaxation S̃t+1(K), as defined in equation (13). Since any hyperedge Eα ∈ E has size at most t+1,
any y ∈ S̃t+1(K) can be used to define a subvector y{E}. To establish exactness of the Sherali-
Adams relaxation at order t+1, it suffices to show that any subvector y{E} thus defined is a globally
valid K ∩ {0, 1}n-moment vector. Recall that G = (V, E) is a hypertree, and the decomposition of
K ∈ {0, 1}n in equation (19). These facts in conjunction with Lemma 1 guarantee that y{E} is a
globally valid K ∩ {0, 1}n-moment vector for E if and only if each of the subvectors y{P(Eα)}, for
α = 1, . . . , d, is a globally consistent S(Eα)-moment vector for P(Eα).

Fix an arbitrary index α ∈ {1, . . . , d}. Since Eα has cardinality at most t+1, characterizing the
set of all globally consistent S(Eα)-moment vectors is a subproblem for which the Sherali-Adams
relaxation, if applied to Eα as an isolated subsystem, will be tight at order t + 1. We now claim
that the Sherali-Adams relaxation applied globally to the full set V at order t+1 imposes all of the
necessary constraints to ensure exactness for the Eα subsystem. More precisely, since each Eα has
cardinality at most t+1, the global Sherali-Adams relaxation at order t+1 imposes the constraint
MEα

[y{P(Eα)}] º 0, as well as the constraints MEα
[g` ∗y] º 0 for all ` ∈ G(Eα). These conditions

guarantee that y{P(Eα)} is a globally consistent S(Eα)-moment vector for P(Eα), which concludes
the proof of part (a).

To establish part (b), we use the fact that Lq+v−1(K) ⊆ Sq(K) for any q = 1, . . . , n, as
established by Laurent [11]. Part (b) thus follows from part (a) with q = t + 1 ≤ n.

Finally, the worst-case tightness of the bounds follows as a consequence of the junction tree
theorem. If we are allowed freedom in our choice of polynomial system (g1, . . . , gm) of treewidth t,
then the full set of junction tree constraints are required for an exact characterization. The pre-
ceding proof establishes the number of steps required to impose all of the junction tree constraints.

4.3 Minimal set of constraints

The proof of Theorem 1 actually provides somewhat more precise information on the minimal set
of constraints required to ensure global validity of a moment sequence, and hence tightness of the
associated relaxation. In general, both the SA and LS sequences impose more constraints than are
strictly necessary for a given treewidth. In order to illustrate, suppose that the polynomials defining
K are all of degree one (so that v = 1), and the canonical hypergraph corresponding to a given
polynomial system is a hypertree of width one (i.e., an ordinary tree). As a particular example,
consider n = 3 and the constraints g1(x1, x2) = x1 + x2 − 1 ≥ 0 and g2(x2, x3) = 1 − x2 − x3 ≥ 0.
The associated canonical hypergraph is the ordinary tree with edge set {(12), (23)}.
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In this tree-structured case, Theorem 1 asserts that both the SA and LS sequences are tight
at order 2, which is certainly true. By definition, the SA sequence at order 2 will enforce, among
other constraints, positive semidefiniteness (PSD) on all submatrices MU [y] with |U | = 3 and all
submatrices MW [g` ∗ y] with |W | = 2. However, for a hypertree of width one, careful inspection
of the proof of Theorem 1 reveals that it suffices to impose PSD constraints only for subsets U or
W with cardinality two, and moreover only for those subsets corresponding to the hyperedges. To
illustrate with our specific example, it suffices to impose the constraints MU [y] º 0 and MW [y] º 0
for U and W ranging only over the edge set {(12), (13)}. Similar comments apply to the Lasserre
sequence. Therefore, Theorem 1 shows that for a hypergraph of given treewidth, a subset of the
constraints in both the SA and LS sequences are redundant.

5 Illustrative examples

We illustrate Theorem 1 with some examples.

5.1 0-1 quadratic programs

Suppose that we are interested in an arbitrary 0-1 quadratic program (QP) of the form

max
x∈{0,1}m

{ m∑

i=1

qixi +
∑

i<j

qijxixj

}
. (21)

One approach is to reduce this QP to the canonical form (3) with a linear cost function by defining
a set of

(
n
2

)
additional variables {xij | 1 ≤ i < j ≤ n}, and imposing equality constraints of the

form xij − xixj = 0.
If we follow this route, the canonical hypergraph associated with the quadratic program will

have hyperedges of size three; in particular, the set of maximal hyperedges will be

{{
i, j, (ij)

}
| for all (i, j) such that qij 6= 0

}
.

An alternative approach, and one which turns out to be more natural, is to retain the monomials
xixj in their original form, and consider the problem of characterizing the convex hull of the vectors
{(xi)

n
i=1, (xixj)i<j | (xi)

n
i=1 ∈ {0, 1}n}. In terms of moments, the associated problem corresponds

to characterizing not only the n-vector of singleton moments y[i] = E[xi] for i = 1, . . . , n, but also
the

(
n
2

)
pairwise moments y[(ij)] = E[xixj ] for i < j. It is straightforward to modify the proof of

Theorem 1(a) to show that the Sherali-Adams relaxation will be exact at order t+1, where t is the
treewidth of the ordinary graph G with vertex set V = {1, . . . , n} and edge set E = { (i, j) | qij 6= 0}.

It is worth commenting that this treewidth-based characterization takes into account only the
graphical structure associated with the QP (21), but not the numerical values of the cost coefficients
qi and qij . With particular restrictions on the cost coefficients, the treewidth condition can be
relatively weak. As an example, suppose that qi = 0 for all i = 1, . . . , n and that qij 6= 0 only for
edges (i, j) associated with a planar graph G. Up to some irrelevant constant terms, this problem
is equivalent to a MAX-CUT problem on the associated graph. For a planar graph, it is known
that the Sherali-Adams relaxation at order 3 (which imposes the triangle constraints that define the
so-called metric polytope [5]) provides an exact description of the MAX-CUT problem. In contrast,
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the treewidth of a planar graph need not be bounded in n; for example, the four-nearest-neighbor
grid in two dimensions with n nodes has a treewidth that scales as

√
n.

5.2 Rank n example

We now consider a problem taken from Laurent [11] for which n iterations of the Sherali-Adams
procedure are required to characterize P exactly. Letting V = {1, . . . , n}, we define

K := {x ∈ [0, 1]n
∣∣ ∑

r∈R

(1 − xr) +
∑

r∈V\R

xr ≥ 1

2
for all R ∈ P(V)}. (22)

On one hand, it is straightforward to see that K ∩ {0, 1}n = ∅, and hence P := conv
[
K ∩ {0, 1}n

]

is also empty. On the other hand, Laurent [11] shows that the set Sn−1(K) is not empty, implying
that the Sherali-Adams procedure requires the maximal n iterations.

With reference to Theorem 1, the canonical hypergraph associated with problem (22) consists
of the single maximal hyperedge E1 = {1, . . . , n}, and hence has treewidth n − 1. Thus, the fact
that n iterations are required is consistent with the assertion of Theorem 1, and the upper bound
on the rank is met with equality.

6 Conclusion

The main contribution of this paper is to provide upper bounds on the ranks of the Sherali-
Adams [16] and Lasserre [8] sequences of relaxations that are sharp in a worst-case sense. The
central underlying ideas are that of the canonical hypergraph associated with a polynomial program,
and the link provided by the junction tree theorem [12] between treewidth and the global consistency
of moment sequences. More broadly, this paper establishes a connection between methods for
solving polynomial programs based on moment sequences (or from the dual perspective, sums-of-
squares representation), and the theory of hypergraphs. Polynomial programs of interest in practical
applications will often exhibit special graphical features such as sparsity (e.g., due to spatially
localized interactions). Thus, the high-level perspective taken in this paper—namely of exploiting
the graphical structure of given polynomial systems—has broader consequences for characterizing
the behavior of moment-based relaxations in applications (e.g., error-control coding [7, 6]).

A Proof of Lemma 1

The necessity is clear, since each y{P(E)} is a subvector of y{E} by definition. To establish
sufficiency, suppose that y{P(E)} is a globally consistent S(E)-moment vector for each maximal
E ∈ E . To simplify matters, we restrict our attention to the hyperedges in the vertex set VT =
{E1, . . . , Eα} of some tree decomposition of the hypertree. By definition, for each α = 1, . . . , d,
there exists a distribution pα with support S(Eα) such that y[F ] = Epα

{
x[F ]

}
for each F ⊆ Eα.

In fact, the distribution pα is unique since the inclusion-exclusion formula provides a one-to-one
mapping between the 2|Eα|-vector y{P(Eα)} and the 2|Eα|-vector pα. (See Laurent [11] for details of
this mapping.) Now consider the distributions pα and pβ for any pair (α, β) such that Eα∩Eβ 6= ∅.
We claim that the marginal distributions induced by pα and pβ on their overlap are identical. Each
of these induced marginal distributions has 2|Eα∩Eβ | − 1 degrees of freedom (where we lose one
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degree due to the normalization constraint). Moreover, by construction of pα and pβ , there holds
Epα

{
x[F ]

}
= Epβ

{
x[F ]

}
for all non-empty F ⊆ Eα ∩Eβ, which corresponds to a set of 2|Eα∩Eβ |−1

linearly independent constraints linking the marginals induced by pα and pβ, so that they must
agree.

Thus, for each Eα, α = 1, . . . , d in the tree decomposition, we have constructed a local distri-
bution pα over S(Eα), such that pα and pβ agree on their overlap Eα ∩ Eβ . By the junction tree
theorem, the local distributions {p1, . . . , pd} can be used to construct an unique global distribution
p over {0, 1}n such that y[F ] = Ep

{
x[F ]

}
for all F ∈ E . This establishes that y{E} is a globally

consistent {0, 1}n-moment vector.
To conclude the proof, we need to verify that p has support S. By the junction tree construction,

for each α = 1, . . . , d, the distribution p, when marginalized down to the subset Eα, agrees with pα.
Suppose that p placed strictly positive mass on any configuration u /∈ S. By the definition of S, at
least of the marginals pα would have mass outside S(Eα), which is not possible by construction of
pα. Therefore, p must have support restricted to S so that y{E} is a globally consistent S-moment
vector.
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