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Abstract

It has been widely realized that Monte Carlo methods (approximation via a sample
ensemble) may fail in large scale systems. This work offers some theoretical insight into
this phenomenon. In the context of a particle filter (as well as in general importance
samplers), we demonstrate that the maximum of the weights associated with the sample
ensemble members converges to one as both sample size and system dimension tends
to infinity. Under fairly weak assumptions, this convergence is shown to hold for both
a Gaussian case and for a more general case with iid kernels. Similar singularity
behavior is also shown to hold for non-Gaussian, spherically symmetric kernels (e.g.
multivariate Cauchy distribution). In addition, in certain large scale settings, we show
that the estimator of an expectation based on importance sampling converges weakly
to a law, rather than the target constant. Our work is presented and discussed in the
context of atmospheric data assimilation for numerical weather prediction.

1 Introduction

With ever increasing computing power and data storage capabilities very large scale scien-
tific analyzes are feasible and necessary (e.g. Donoho, 2000). One important application
area of high-dimensional data analysis is the atmospheric sciences, where solutions to the
general (inverse) problem of combining data and model quantities are commonly required.
For instance, to produce real-time weather forecasts (including hurricane and severe weather
warnings), satellite radiance observations of humidity and radar backscatter of sea surface
winds must be combined with time-integrated solutions of atmospheric and oceanic models.
To such ends, the model-forecast/data-update cycle in numerical weather prediction has re-
cently been formulated in a probabilistic framework (Evensen, 1994; Molteni et al., 1996;
Toth and Kalnay, 1997), and much effort has been aimed at describing geophysical states
through the sampling of high-dimensional probability density functions (Houtekamer and
Mitchell, 1998; Houtekamer and Mitchell, 2001; Anderson, 2001; van Leeuwen, 2003). Moti-
vated by this work, we investigate the dangers of naively using Monte Carlo approximations
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to estimate posterior distributions of high-dimensional systems. In particular, we show that
accurate estimation of (truly) high-dimensional, non-Gaussian pdfs require sample sizes that
grow exponentially with system dimension.

Much recent focus in the literature on data assimilating for numerical weather prediction
has been on extending Kalman filter solutions to work efficiently in real-time in systems with
degrees of freedom exceeding 106. One popular extension is given by the ensemble Kalman
filter, a Monte-Carlo based filter version which draws samples from the posterior distribu-
tion for the state given the data and the model (Evensen and van Leeuwen, 1996; Burgers
et al., 1998). However, even in the Gaussian case, the task of real-time sampling form high-
dimensional distributions is conceptually non-trivial: computational resources limit sample
sizes to several orders of magnitude smaller than system dimension, and the obtained samples
span only a subspace of the entire system. To address the resulting problems associated with
matrix rank-deficiencies and errors due to sampling variability, various filter approaches lever-
age sparsity constraints and localize spatial information to attenuate spurious correlations
(Houtekamer and Mitchell, 2001; Hamill and Snyder, 2001; Tippett et al., 2003). Moreover,
for systems with a finite number of dominant modes, moderate sample sizes are sufficient to
accurately estimate posterior means and covariances (Furrer and Bengtsson, 2005).

For longer forecast lead times, the involved dynamical models may exhibit strongly non-
linear behavior and produce non-Gaussian error distributions. In these situations, optimal
filtering requires the use of more fully Bayesian filtering methods to combine data and mod-
els. In the context of oceanographic data assimilation, one such approach is considered by
Van Leeuwen (2003), who proposes an importance re-sampling algorithm to obtain poste-
rior estimates of oceanic flow structures. This method falls within the set of sequential
importance sampling procedures (Rubin, 1988), commonly referred to as particle filters (e.g.
Doucet et al., 2001). Using a finite set of sample points with associated sample-weights, the
particle filter seeks to propagate the probability distribution of the unknown state forward
in time. Once new data is available, Bayes theorem is used to re-normalize the weights based
on how “close” the associated sample points are to the data.

Although successfully applied to a variety of settings, particle filters often yield highly
varying importance weights and are known to be unstable even in low-order models. Conse-
quently, much effort has been devoted to stabilizing the filter. Remedies include re-sampling
(re-normalizing) the involved empirical measure at regular time intervals (Gordon et al.,
1993; Liu, 2001), marginalizing or restricting the sample space (Liu and Chen, 1998; Pitt
and Shepard, 1999), and diversifying the sample (e.g. Gilks and Berzuini, 2001). However,
these approaches do not fundamentally address slow convergence rates when Monte Carlo
is applied to truly large-scale systems, but rather serve to improve filter performance in
low-dimensional systems. In particular, as noted by van Leeuwen (2003), when applied to
geophysical models of high-dimension, sequential importance sampling collapses after a few
(or even one) observation cycles. To shed light on the effects of dimensionality on filter
stability, this work describes the relationship between system dimension and required sam-
ple size. Specifically, we provide necessary sample size requirements to avoid serious filter
inefficiencies encountered in truly high-dimensional problems.

This work is outlined as follows. The next section formulates the problem of using
ensemble methods for approximation purposes in large scale systems, and provide motivating
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examples illustrating the potential difficulties of high-dimensional estimation. Our main
result is presented in Section 3, where the maximum of the weights associated with the
sample ensemble members is shown to converge to one for both Gaussian and general iid
kernels. We also discuss similar behavior exhibited by non-Gaussian spherically symmetric
kernels, e.g. multivariate Cauchy distribution. Additionally, in certain circumstances, an
unexpected consequence of the singularity is illuminated; namely, that the estimator of an
expectation based on importance sampling converges weakly to some law, rather than the
correct constant. Our work is concluded in Section 4 with a discussion of various approaches
to dimensionality reduction.

2 Setting and Motivation

2.1 Setting

The statistical context in which we motivate our work is as follows. Consider a set of n
sample points X = {X1, . . . , Xn}, where Xi ∈ <d and both the sample size n and system
dimension d are “large”. We assume that the sample X is drawn randomly from the prior
(or proposal) distribution p(X). New data Y is related to the state X by the conditional
density p(Y |X). For concreteness, a functional relationship Y = f(X) + ε is assumed and ε
is taken to be independent of the state. The goal is to estimate posterior expectations using
the importance ratio: e.g., for some function h(·), we want to estimate

E(h(X)|Y ) =

∫
h(X)

p(Y |X)p(X)∫
p(Y |X)p(X)dX

dX,

and use

Ê(h(X)|Y ) =
n∑

i=1

h(Xi)
p(Y |Xi)∑n

j=1 p(Y |Xj)
.

The above approximation can be interpreted as an importance sampling estimator of the ex-
pectation of E(h(X)|Y ), where the proposal distribution is p(X) and the desired distribution
is p(X|Y ). Based on this formulation, the importance ratio

wi =
p(Y |Xi)∑n

j=1 p(Y |Xj)

is the primary object of our study.
As discussed, the collapse of the weights to a point mass (with max(wi) ≈ 1) leads

to disastrous behavior of the sampler. One intuition about such weight-collapses is well
known, but here made precise in terms of d and n: Monte Carlo does not work if we
wish to compute d-dimensional integrals with respect to product measures. For large d,
the fundamental problem is that 1

n

∑n
i=1 p(Y |Xi) is a poor approximation to the constant

c(Y ) =
∫

p(Y |X)p(X)dX, where both p(Y |X) and p(X) are defined as product densities.
In fact, even if the proportionality constant c(Y ) is known, 1

n

∑n
i=1 Xip(Y |Xi)/c(Y ) is still
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a poor estimate of E(X|Y ) unless n is grows exponentially in d. The reason for the weight
collapse is that we are in a situation where the proposal distribution p(X) and the desired
sampling distribution are approximately mutually singular and (essentially) have disjoint
support. As a consequence, the density of the desired distribution at all points of the
proposed ensemble is small, but a vanishing fraction of density values predominate in relation
to the others. This issue will be illuminated further at the end of Section 3.4.

Our precision of these intuitions is for situations where the proposal and desired dis-
tributions both have iid components, and the asymptotics apply to the case where both
the ensemble size n and the dimension of the ensemble vectors d grows. Our main result,
Proposition 3.1 (the Gaussian case) and Proposition 3.5 (General iid), show that if n grows
only sub-exponentially in d (Gaussian case) or sub-exponentially in d1/3 (general case), we

have max(wi)
p−→ 1. These results are used in the next proposition, where we show that

the usual estimate Ê of E(h(X)), where h(·) depends only on a small, fixed small number
of components of X, is not stable. Proposition 3.6 thus establishes that Ê converges in law
to the distribution of h(X) under the proposal distribution.

2.2 Motivating examples

To illustrate the convergence of the maximum weight as n and d tend to infinity, the be-
havior of the importance sampler is simulated under a “null” scenario; i.e. the sampling is
constructed to ensure that the importance weights are expected to be of equal magnitude.
Further, to show the pervasiveness of the degeneracy for different distributions, the singu-
larity is illustrated in both a Gaussian and a Cauchy setting. These densities are chosen to
parallel the work of van Leeuwen (2003), who attempts to address filter collapse by modeling
observation noise using the Cauchy distribution.

In our simulations, the observation Y is related to the state variable X through the model
Y = f(X)+ε. We consider two error structures: first, where ε follows the multivariate normal
distribution with mean 0 and covariance Σ; second, with ε = (ε(1), · · · , ε(d)), where each ε(j)

is iid Cauchy. For the defined models, the weights can be re-expressed as

wi =
e−ε′iΣ

−1εi/2

∑n
`=1 e−ε′`Σ

−1ε`/2
, and w′

i =
Πd

j=11/(1 + ε2
ij)

Σn
`=1Π

d
j=11/(1 + ε2

`j)
,

and these forms are used to simulate the sampling distribution of the importance weights.
Histograms of the maximum weight for the Gaussian and Cauchy simulations are dis-

played in the left and right panels of Figure 1. With the ensemble size fixed at n = 1000,
the four histograms in each panel show the effects of increasing the dimension with d =
10, 40, 100, 400. As can be seen, for the Gaussian case, the maximum weight starts to domi-
nate the sample for d = 40, while a more rapid degeneracy rate is exhibited for the Cauchy
case. Each histogram is based on 400 simulation iterations.

We also examine the ensemble size needed to prevent the singularity of the maximum
weight. Here, we choose d = 100 and a comparably large ensemble size, n = 100000. Results
are given in Figure 2 for the Gaussian (left panel) and Cauchy cases (right). As indicated by
the histogram for the Gaussian case, increasing the sample size by a factor 100 (as compared
to Figure 1) ameliorates the dominating effect of the maximum effect; yet, max(wi) still
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Figure 1: Histograms of max(wi) for the Gaussian case (left panel) and Cauchy case (right
panel). Here, n = 1000, and d = 10, 40, 100, 400.

dominates the sample. Remarkably, for the Cauchy case, we see that increasing the sample
size 100-fold barely impacts the distributions of max(wi).
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Figure 2: Histograms of max(wi) for the Gaussian case (left panel) and Cauchy case (right
panel). Here, n = 100000, and d = 100.

As illustrated by the simulations, the convergence of the maximum importance weight
holds in both the Gaussian and Cauchy setting. Further, very large sample sizes appear
necessary to avoid the undesirable singularity feature. Next we present a formal study of the
behavior of the maximum importance weight. Our precision about the convergence of the
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maximum weight is for situations where the proposal and desired distributions both have iid
components, and the asymptotics apply to the case where both the ensemble size and the
dimension of the ensemble vectors grows.

3 The singularity of the maximum weight in high-

dimensional importance sampling.

We now develop the conditions under which the maximum weight max(wi) converges to
unity. Specifically, under fairly weak assumptions, max(wi) is shown to approach unity as
both system dimension d and sample size n tends to infinity. We treat the multivariate
normal case is first, and then extend the results to a more general case. Our main results,
given by Proposition 3.1 (the Gaussian case) and Proposition 3.5 (general iid case), show that
if n grows only sub-exponentially in d (Gaussian case), or sub-exponentially in d1/3 (general

case), we have max(xi)
p−→ 1. Following these results, it is shown that the usual estimate

Ê of E(h(X)), with h(·) depending only on a small, fixed small number of components of
X, does not stabilize. Instead, Proposition 3.6 establishes that Ê converges in law to the
distribution of h(X) under the proposal distribution.

3.1 Multivariate Normal Case

As before, we assume Y = f(X) + ε with ε ∼ N(0, Σ). Thus, the conditional distribution
p(Y |X) is multivariate normal with mean f(X) and covariance Σ. Given the Gaussian
assumption, the weights can be re-expressed (see Section 2.1) as

wi =
e−Ui/2

∑n
`=1 e−U`/2

,

where U1, · · · , Un are iid χ2
d-distributed. With U(1) ≤ · · · ≤ U(n) the ordered Ui’s, the

maximum weight is again re-expressed,

w(n) =
1

1 + Σn
`=2e

−(U(`)−U(1))/2
.

With some effort, we can establish

Proposition 3.1 If n and d both tend to infinity, and log(n)/d → 0, we have w(n)
p→ 1.

The proof of Proposition 3.1 is only sketched here and the technical details are given in the
Appendix. Denote Tn,d = Σn

`=2e
−(U(`)−U(1))/2. In view of Markov’s inequality, in order to show

w(n)
p→ 1, it suffices to show E(Tn,d) → 0 . With Fd(z) =

(
2d/2Γ(d/2)

)−1 ∫ z

0
td/2−1e−t/2dt

the cumulative distribution function (CDF) of the χ2
d-distribution, and F̄d = 1 − Fd the

survival probability function, the expectation of Tn,d is evaluated through the conditional
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expectation,

E(Tn,d) = E(E(Vn,d|U(1)))

=

∫ ∞

0

(
2d/2Γ(d/2)

)−1 ∫∞
x

(n− 1)e−(y−x)/2 · yd/2−1e−y/2dy

F̄d(x)
n(F̄d(x))n−1dFd(x)

= 2−d/2n(n− 1)

∫ ∞

0

ex/2F̄d(2x)(F̄d(x))n−2dFd(x). (1)

To show E(Tn,d) → 0 we proceed by breaking the integral (1) into several parts; see Appendix
for details. The above result is sharp in the sense that if n increases sub-exponentially with
respect to d, we have w(n)

p→ 1.

3.2 Multivariate Cauchy Case

Again we assume the relationship Y = f(X) + ε, but now with ε following the multivariate
Cauchy distribution. The density of a d-variate Cauchy distribution is given by c(d)/(1 +

‖ε‖2)
1+d
2 , where ‖ · ‖ denotes the Euclidean norm in <d. Letting R2 = ‖ε‖2, the weights can

be reformulated as

wi =
1/(1 + R2

i )
1+d
2

Σn
`=11/(1 + R2

` )
1+d
2

.

With this formulation, we will show max(wi)
p→ 1.

Note that if {Z1, . . . , Zd, Zd+1} are iid scalar random variables with standard normal dis-
tribution, the vector [Z2/Z1, · · · , Zd+1/Z1]

′ follows the d-variate Cauchy distribution. Now,
for large d, the distribution of R2/d may be approximated by the distribution of 1/Z2

1 , and
the density of R2 is (approximately) given by fR2(v) = (2π)−1/2d1/2v−3/2e−d/2v. Moreover,
from extreme value theory, with R(1) ≤ . . . ≤ R(n) the ordered norms associated with the
sample, we have R2

(1) ∼ d
2logn

. As before, we express the maximum weight by

w(n) =
1

1 + Tn,d

,

where Tn,d = Σn
`=2

[
(1+R2

(1))/(1+R2
(`))

] 1+d
2 . Then, with (log n)2/d = O(1), we have ETn,d →

0, and can state the following result.

Proposition 3.2 If n and d both tend to infinity, and (log n)2/d = O(1), we have w(n)
p→ 1.

A proof of Proposition 3.2 is given in the Appendix.
Thus, we arrive at the same conclusion as for the multivariate Gaussian case, but under

slightly different assumptions. Next we relax the distributional assumptions of p(Y |X) to
include more general product densities.
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3.3 Generalization to iid Kernels

We now verify that the singular phenomenon of the maximum importance weight sustains in
a more general distributional case. We first introduce a lemma that gives a normal approx-
imation to the distribution of iid sums which appear in a reformulation of the importance
weights used to establish the convergence. The lemma is a combination of Theorems 7.1.1
and 8.1.1 of Ibragimov-Linnik, 1971, and is valid for moderately large deviations.

Lemma 3.3 Suppose Y1, · · · , Yd are iid satisfying the Cramer condition E(ea|Y1|) < ∞ for
some positive a. Let µ and σ denote the mean and standard deviation of Y1; gd and Gd

denote the density function and CDF of Sp = (Y1 + · · ·+Yd−dµ)/σ
√

d; and φ and Φ denote
the density function and CDF of the standard normal distribution. Then, as d → ∞, for
s ≥ 1 and s = o(d1/2), we have

gd(s) = φ(s)exp
(
λ(s/

√
d)s3/

√
d
)
(1 + O(s/

√
d)),

gd(−s) = φ(s)exp
(− λ(−s/

√
d)s3/

√
d
)
(1 + O(s/

√
d)),

Ḡd(s) = Φ̄(s)exp
(
λ(s/

√
d)s3/

√
d
)
(1 + O(s/

√
d)),

Gd(−s) = Φ(−s)exp
(− λ(−s/

√
d)s3/

√
d
)
(1 + O(s/

√
d)).

Here, λ(s) is Cramer’s power series, convergent for |s| ≤ ε(a), with ε(a) depending only on
a.

An immediate corollary is given below. It gives a sharp normal approximation for nar-
rower deviations, which is needed in our developments.

Corollary 3.4 For the setting described in Lemma 3.2, as d →∞, for s ≥ 1 and s = o(d1/6),
we have

gd(s) = (1 + o(1))φ(s), gd(−s) = (1 + o(1))φ(s),

Ḡd(s) = (1 + o(1))Φ̄(s), Gd(−s) = (1 + o(1))Φ(−s).

Here, o(1) is in the sense of uniformity.

We are now ready to treat the general iid case. With X = (X(1), · · · , X(d)), Y =
(Y (1), · · · , Y (d)), we require the following decomposition of the observational density

p(Y |X) =
d∏

j=1

p1(Y
(j)|X(j)),

for some density function p1. Thus, given the state X, the components of the observation
vector are iid, and the j-th component of the observation depends only on the j-th state
variable. For convenience, we set Xij = X

(j)
i , Yij = Y

(j)
i , let Xi = (Xi1, · · · , Xid), Yi =

(Yi1, · · · , Yid), 1 ≤ i ≤ d, and denote the iid state-observation pairs by (X1, Y1), · · · , (Xn, Yn).
Now, with Ui = −Σd

j=1log(p(Yij|Xij)) and Ui = dµ+σ
√

dSi, using the observation density
decomposition, we rewrite the weights as

wi =
eσ
√

dSi

Σn
l=1e

σ
√

dSl

,
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where µ = −Elog(p(Y (1)|X(1))) and σ2 = V ar
(
log(p(Y (1)|X(1)))

)
. Hence, analogous to the

normal case, the maximum weight can be expressed as

w(n) =
1

1 + Σn
l=2e

−σ
√

d(S(l)−S(1))
.

With Tn,d = Σn
`=2e

−σ
√

d(S(`)−S(1)), we show in the Appendix that E(Tn,d) ∼ 1
σ
√

d−√2logn
.

We are now ready to state our next proposition.

Proposition 3.5 Assume E
[
(p(Y (1)|X(1)))a

]
< ∞, for some a > 0. As n and d both tend

to infinity, and (log(n))3/d → 0, we have

w(n) ∼ 1

1 + 1
σ
√

d−√2logn

,

and, certainly, w(n)
p→ 1.

The above result will be utilized next to demonstrate a strange limiting behavior of a
importance sampling estimator of an expectation.

3.4 Failure of Importance Sampling with increasing dimension

So far our developments have been focused on likelihood-based update mechanisms in the
particle filter context. As a natural next step, we now investigate the performance of general
importance sampling procedures for large scale systems. Not surprisingly, even in a general
context, the importance weights still behave singularly. Here, we give a concrete example of
such degeneracy.

Let {X1, · · · , Xn} be an iid sample with reference density q(x). We again assume that
each sample point is a d-dimensional vector, Xi = (Xi1, . . . , Xid). Letting Ep(·) denote expec-
tation with respect to the target density p(X), we approximate Ep(h(X)) by Σn

i=1wih(Xi),
where

wi =
p(Xi)/q(Xi)

Σn
`=1p(X`)/q(X`)

.

We shall assume p(Xi) = Πd
j=1p1(Xij) and q(Xi) = Πd

j=1q1(Xij), and further that h(X) in
fact depends on a small, fixed number of components of X.

Using Proposition 3.5, the proposed estimator Σn
i=1wih(Xi) will be shown to converge in

law to a random quantity; as opposed to our target quantity Ep(h(X)). For ease of notation,
but without loss of generality, we assume h(X) = h(X(1)), where X(1) = X11 is the first
component of X. We have the following result.

Proposition 3.6 Assume h is uniformly bounded over the sample space of X11, and
Eq1

[
(p1(X

(1))/q1(X
(1)))a

]
< ∞, for some a > 0. As n and d both tend to infinity, and

(log n)3/d → 0, we have

Σn
i=1wih(Xi)

d→ h(X11),

where X11 obeys the law q1(·) inherited from the sampling distribution q(·).
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To verify the result we let Vij = −log
(
p1(Xij)/q1(Xij)

)
, and rewrite the weights as

wi = e−(Vi1+···+Vid)

Σn
i=1e−(Vi1+···+Vid) . In light of Proposition 3.5, we see that max(wi)

p→ 1. Now define the

random index

I = In,p = {k : 1 ≤ k ≤ n, Vk1 + · · ·+ Vkd = min1≤i≤n(Vi1 + · · ·+ Vid)}.
Thus, I denotes the index for the maximum weight.

We are going to show Σn
i=1wih(X1i)

d→ h(X(1)). Since wI
p→ 1, which implies Σi 6=Iwi

p→ 0,
assisted by the assumption that h is bounded, we have

|Σn
i=1wih(X1i)− h(X1I)| = |(wI − 1)h(X1I) + Σi6=Iwih(X1i)| d→ 0.

Thus, we need to show X1I
d→ X11. The remaining details are left to the Appendix.

The preceding proposition implies that the estimator of the expectation based on impor-
tance sampling may not be consistent in high dimensional circumstances. A more “tradi-
tional” prospective, with fixed dimensionality, provides some insight into this phenomena.
A simple variance calculation, which neglects the denominator (or assumes the denominator

is good estimator of 1), of Ê(h(X)) =
Σn

i=1h(Xi)p(Xi)/q(Xi)

Σn
i=1p(Xi)/q(Xi)

, leads to the notion of Effective

Sample Size (ESS) (e.g. see Liu, 2001). The ESS is defined as ESS = n
1+V ar(p(X)/q(X))

, and
under our assumption, we find

1 + V arq(p(X)/q(X)) =
[
Eq1

(
p1(X

(1))/q1(X
(1))

)2]d
.

Now, by the Cauchy-Schwartz inequality, as long as p1 and q1 share support, we know
that

Eq1

(
p1(X

(1))/q1(X
(1))

)2
> 1.

Thus, for large d, ESS is small, and the conclusion is similar to ours. However, in our case,
since under (logn)3/d → 0, both the numerator and denominator in Êh(X) explode, and
the calculation that yields the variance approximation is not valid in our case.

4 Discussion

The developments in this paper demonstrate that brute-force only implementations of Monte
Carlo methods to describe high-dimensional probability distributions will fail. Of course,
this finding is not new - nor particularly profound; rather, our work makes explicit the
rates at which sample sizes must grow (wrt system dimension) to avoid singularities and
degeneracies. In particular, we give necessary bounds on n to avoid convergence to unity
of the maximum importance weight, and, naturally, accurate estimation will require even
larger sample sizes than those implied by our results. Not surprisingly, degeneracies have
been observed in geophysical systems of moderate dimension (Anderson and Anderson, 1999;
Bengtsson et al., 2003; also, C.Snyder/NCAR & T. Hamill/NOAA, personal communication,
2001). The usual manifestation of this degeneracy are Monte Carlo samples that are too
“close” to the data, quickly producing singular probability measures, in particular as the
filter is cycled over time.
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The obvious remedy to this phenomenon is to achieve some form of dimensionality re-
duction, and the high-dimensional form in which the data are presented is typically open to
such reduction with subsequent effective analysis. For instance, in the case of the ensemble
Kalman filter, by imposing sparsity constraints through spatial localization (Houtekamer and
Mitchell, 2001, Hamill Whitaker and Snyder, 2001; also, Furrer and Bengtsson, 2005). Be
that is may, as shown in this work, for fully Bayesian analyzes of high-dimensional systems,
reduction becomes absolutely essential lest spurious sample variability is to dominate the
analyzes.

In the context of numerical weather prediction, one approach to dimension reduction
may be to condition sample draws on a larger information set. One idea is given by Berliner
(2001), who constructs proposal distributions by incorporating dynamic information in a
low-order model. Other examples of geophysically constrained sampling schemes are given
by Bayesian Hierarchical Models (e.g. Wikle et al., 2001; Hoar et al., 2003), but require
computationally heavy, chain-based sampling and thus do not extend in any obvious manner
to real-time applications. Another possibility is to break the system into lower-dimensional
sets and sequentially perform the sampling (e.g. Bengtsson et al., 2003). Ideally, this
approach involves identification of independent, low-dimensional manifolds.
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Appendix

Proof of Proposition 3.1

From Lemma 3 and Lemma 4 of Bickel and Levina (2004), we have, for z ∈ [d, (1 + (1 −
ε)/ε2)d],

F̄d(z) ≤ exp
(− ε2(z − d)2

2d

)
.

Here, F̄d(z) denotes the survival probability function (see Section 3.1). We set ε = 0.61.
With this choice of ε the above inequality holds for z ∈ [d, 2.04d], and this bound is invoked
several times in our proof. Another needed approximation is obtained by application of
Sterling’s formula: (

2d/2Γ(d/2)
)−1 ¹ C ′ed/2d−(d+1)/2.

Now let I(x) = 2−d/2n(n−1)ex/2F̄d(2x)(F̄d(x))n−2. Following the developments of Section
3.1, we need to show

∫∞
0

I(x)dFd(x) → 0. We evaluate the integral over three regions: (i)
[0, 0.69d], (ii) [0.69d, 1.005d], and (iii) [1.005d,∞]:

(i)

∫ 0.69d

0

I(x)dFd(x)

< 2−d/2n(n− 1)

∫ 0.69d

0

e0.69d/2(F̄d(x))n−2dFd(x)

< e−(log(2)−0.69)d/2n < ne−0.001d → 0

(ii)

∫

∪8
k=1Jk

I(x)dFd(x) <

8∑

k=1

Cn(n− 1)e−ckd → 0

(iii)

∫ ∞

1.005d

I(x)dFd(x) < n(n− 1)

∫ ∞

1.005d

(F̄d(x))n−2dFd(x)

= n
(
F̄d(1.005d)

)n−1
< ne−(0.005ε)2d(n−1)/2 → 0

To establish the result in (ii), we split the integral into 8 regions: i.e. [0.69d, 1.005d] =
∪8

k=1Jk, where J1 = [0.69d, 0.77d], J2 = [0.77d, 0.82d], J3 = [0.82d, 0.84d], J4 = [0.84d, 0.87d], J5 =
[0.87d, 0.90d], J6 = [0.90d, 0.93d], J7 = [0.93d, 0.96d], and J8 = [0.96d, 1.005d]. Now, for each
Jk there exists a positive number ck such that

∫

Jk

I(x)dFd(x) < Cn(n− 1)e−ckd → 0.
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For instance, for the interval J1, we have
∫ 0.77d

0.69d

I(x)dFd(x) ≤ 2−d/2n(n− 1)

∫ 0.77d

0.69d

e−x/2F̄d(2x)dFd(x)

< 2−d/2n(n− 1)

∫ 0.78d

0.69d

e−x/2e−
ε2(2x−d)2

2d dFd(x)

< 2−d/2n(n− 1)e−
ε2(2×0.69d−d)2

2d

∫ 0.77d

0.69d

e−x/2dFd(x)

= 2−d/2n(n− 1)e−
ε2(2×0.69d−d)2

2d

(
2d/2Γ(d/2)

)−1
(0.77d)d/2

¹ C2−d/2n(n− 1)e−
ε2(2×0.69d−d)2

2d

(
ed/2d−d/2(πd)−1/2

)
(0.77d)d/2

= Cn(n− 1)(πd)−1/2e−(log(2)+(ε(2∗0.69−1))2+log(1/0.77)−1)d/2

< Cn(n− 1)e−0.008d → 0.

The remaining regions in (ii) are evaluated similarly.

Proof of Proposition 3.2

With the preparation given earlier, we can carry out the following approximate calculation.

ETn,d ≈ (2π)−1/2(n− 1)d1/2

∫ ∞

d
2logn

[
(1 +

d

2logn
)/(1 + v)

] 1+d
2 v−3/2e−d/2vdv

≈ (2π)−1/2(n− 1)d1/2(
d

2logn
)

1+d
2

∫ ∞

d
2logn

v−(d+4)/2e−d/2vdv

v=d/(2ulogn)
= (2π)−1/2(2logn)1/2(n− 1)

∫ 1

0

u
d
2 /nudu (2)

Pick εn = loglogn
4logn

, we have

(2logn)1/2(n− 1)

∫ 1−εn

0

u
d
2 /nudu <

(2logn)1/2(n− 1)(1− εn)
d
2
+1

d
2

+ 1

=
(2logn)1/2elog(n−1)−εn( d

2
+1)(1+o(1))

d
2

+ 1

→ 0 (3)

and applying the inequality 1− (1− t)n ≤ nt (0 < t < 1) yields

(2logn)1/2(n− 1)

∫ 1

1−εn

u
d
2 /nudu <

(2logn)1/2nεn(1− (1− εn)
d
2
+1)

d
2

+ 1

< (2logn)1/2nεnεn

=
1

2(4logn)1/4
→ 0 (4)

(3),(4) and (5) together show ETn,d → 0.
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Proof of Proposition 3.5

Let Gd denote the CDF of Si. It follows from lemma 2.2 that Gd(s) can be well approximated
by the CDF of a standard normal distribution Φ(s) as s = o(d1/6). In what follows, we
shall invoke this approximation over the interval [−(dlogn)1/8, (dlogn)1/8] (note (dlogn)1/8 =
o(d1/6) by (logn)3/d → 0) and the inequality 1− (1− t)n ≤ nt (0 < t < 1) somewhere.

ETn,d

= (E(Tn,d1(S(1) < −(dlogn)1/8))

+(n− 1)E
[(

∫∞
(dlogn)1/8 +

∫ (dlogn)1/8

S(1)
)e−σ

√
d(z−S(1))gd(z)dz

Ḡd(S(1))
1(S(1) > −(dlogn)1/8)

]

≤ (n− 1)P (|S(1)| > (dlogn)1/8)) + (n− 1)(Φ̄((dlogn)1/8) + Ḡd((dlogn)1/8))E
[ 1

Ḡd(S(1))

]

+(n− 1)eσ2d/2(1 + o(1))E
[eσ

√
dS(1)Φ̄(σ

√
d + S(1))

Φ̄d(S(1))

]

≤ (n− 1)
[
1− (

1−Gd(−(dlogn)1/8)
)n]

+ n
(
Φ̄((dlogn)1/8) + Ḡd((dlogn)1/8)

)

+(n− 1)eσ2d/2(1 + o(1))E
[eσ

√
dS(1)Φ̄(σ

√
d + S(1))

Φ̄(S(1))

]

≤ n(n− 1)Gp(−(dlogn)1/8) + n
(
Φ̄((dlogn)1/8) + Ḡd((plogn)1/8)

)

+(n− 1)eσ2d/2(1 + o(1))E
[eσ

√
dS(1)Φ̄(σ

√
d + S(1))

Φ̄(S(1))

]

Hence we derive that

ETn,p = (n− 1)eσ2d/2(1 + o(1))E
[eσ

√
dS(1)Φ̄(σ

√
d + S(1))

Φ̄(S(1))

]
+ o(

1

d
) (5)

since

dn(n− 1)Gd(−(dlogn)1/8) = n(n− 1)Φ(−(dlogn)1/8) ∼ dn(n− 1)
e−(dlogn)1/4/2

(dlog)1/8
→ 0

Next, applying lemma 2.2 and Mill’s ratio Φ̄(x) ∼ φ(x)
x

(as x → 0), we have

P (S(1) ≤ −
√

2logn− ε) = 1− (Ḡd(−
√

2logn− ε))n

= 1− (1− (1 + o(1))Φ̄(
√

2logn + ε))n

→ 0

since nΦ̄(
√

2logn + ε) ∼ nφ(
√

2logn+ε)√
2logn+ε

→ 0. Analogously,

P (S(1) ≥ −
√

2logn + ε) = (Ḡd(−
√

2logn + ε))n

= (1− (1 + o(1))Φ̄(
√

2logn− ε))n

→ 0
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since nΦ̄(
√

2logn − ε) ∼ nφ(
√

2logn−ε)√
2logn−ε

→ ∞. Combining the last two facts yields S(1) +
√

2logn
P→ 0. Then looking back to (5) and applying bounded convergence theorem gives

EYn,d ∼ 1
σ
√

d−√2logn
.

Proof of Proposition 3.6

Following the previous discussion, it suffices to show, for every measurable set A ⊂ <,∣∣P (X1I ∈ A) − P (X11 ∈ A)
∣∣ → 0. Note Vij = −log

(
p1(Xij)/q1(Xij)

)
, we simply need to

show, for every measurable set B ⊂ <,
∣∣P (V1I ∈ B)− P (V11 ∈ B)

∣∣ → 0. Notice

∣∣P (V1I ∈ B)− P (V11 ∈ B)
∣∣

=
∣∣Σn

k=1P (V1I ∈ B, I = k)− P (V11 ∈ B)
∣∣

≤
∣∣Σn

k=1E
(
(P (I = k|V1k)− 1

n
)1(V1k ∈ B)

)∣∣

≤ Σn
k=1E

∣∣P (I = k|V1k)− 1

n

∣∣

= nE
∣∣(P (I = 1|V11)− 1

n
)
∣∣

It suffices to show that

nE
∣∣P (I = 1|V11)− 1

n

∣∣ → 0 (6)

Let Zjk = (Vjk − µ)/
√

2σ. Note that

P (I = 1|V11) = P (
Z11 + · · ·+ Z1d√

d
= min1≤i≤n

Zi1 + · · ·+ Zid√
d

|Z11)

= E(Ḡn−1
d (

Z11 + · · ·+ Z1d√
d

)|Z11)

and E(Ḡn−1
d ((Z11+···+Zn1√

d
) = 1

n
. Let Z1, · · · , Zn and Z ′

1 are iid copies of Z11 and denote

Sd = Z1+Z2+···+Zd√
d

, S ′d =
Z′1+Z2+···+Zd√

d
. It is equivalent to show

nE
∣∣E[

Ḡn−1
d (Sd)− Ḡn−1

d (S ′d)|Z1

]∣∣ → 0 (7)

Firstly, for each small ε > 0, we can choose C > 0, such that P (|Z1 − Z ′
1| > C) < ε/2.

Then

nE
∣∣E[

Ḡn−1
d (Sd)− Ḡn−1

d (S ′d)|Z1

]
1(|Z1 − Z ′

1| > C)
∣∣

≤ nE
∣∣E[

Ḡn−1
d (Sd)− Ḡn−1

d (S ′d)|Z1

]∣∣P (|Z1 − Z ′
1| > C)

≤ nE
(
E

[
Ḡn−1

d (Sd) + Ḡn−1
d (S ′d)|Z1

])
P (|Z1 − Z ′

1| > C)

= 2P (|(Z1 − Z ′
1)| > C)

≤ ε
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Secondly, let τn,d =
√

2logn− 1
4
log(dlogn). We proceed as

nE
∣∣E[

Ḡn−1
d (Sd)− Ḡn−1

d (S ′d)|Z1

]
1(|Z1 − Z ′

1| ≤ C, S ′d > −τn,d)
∣∣

≤ nE
[
Ḡn−1

d (Sd)1(Sd > −τn,d +
C√
d
)
]
+ nE

[
Ḡn−1

d (S ′d)1(S ′d > −τn,d

]

= Ḡn
d(−τn,d +

C√
p
) + Ḡn

d(−τn,d)

=
[
1− (1 + o(1))Φ̄(τn,d − C√

d
)
]n

+
[
1− (1 + o(1))Φ̄(τn,d)

]n

→ 0

since nΦ̄(τn,d − C√
d
) ∼ nφ(τn,d− C√

d
)

τn,d− C√
d

= (dlog(n))1/8

τn,d− C√
d

→∞ and nΦ̄(τn,d) →∞ similarly.

Thirdly, observe gd(z) = φ(z)(1 + o(1)) over the interval [−(dlogn)1/8 − C√
d
,−τn,d + C√

d
]

by Lemma 2.2 and the assumption (logn)3/d → 0.

nE
∣∣E[

Ḡn−1
d (Sd)− Ḡn−1

d (S ′d)|Z1

]
1(|Z1 − Z ′

1| ≤ C,−(dlogn)1/8 ≤ S ′d ≤ −τn,d)
∣∣

≤ n(n− 1)√
d

E
∣∣∣E

[
(Z1 − Z ′

1)gd(λSd + (1− λ)S ′d)Ḡ
n−2
d (λSd + (1− λ)S ′d)|Z1]

×1(|Z1 − Z ′
1| ≤ C,−(dlogn)1/8 − C√

d
≤ Sd ≤ −τn,d +

C√
d
,−(dlogn)1/8 ≤ S ′d ≤ −τn,d)

∣∣∣

≤ Cn(n− 1)√
p

φ(−τn,p +
C√
d
)E

(
Ḡn−2

d (Sd)1(−(dlogn)1/8 − C√
d
≤ Sd ≤ −τn,d +

C√
d
)

+Ḡn−2
d (S ′d)1(−(dlogn)1/8 ≤ S ′d ≤ −τn,d)

)
(1 + o(1))

=
Cn√

d
φ(−τn,d +

C√
d
)(1 + o(1))

(
2− Ḡn−1

d (−τn,d +
C√
d
)− Ḡn−1

d (−τn,d)
)

≤ 2Cn√
d

φ(−τn,d +
C√
d
)(1 + o(1))

→ 0

since 2Cn√
d
φ(−τn,d + C√

d
) ∼ 2C(2dlog(n))1/4(1+o(1))√

d
→ 0.

Fourthly, as in the second case, we have (We shall apply the basic inequality 1−(1−t)n ≤
nt (0 < t < 1) again.)
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nE
∣∣E[

Ḡn−1
d (Sd)− Ḡn−1

d (S ′d)|Z1

]
1(|Z1 − Z ′

1| ≤ C, S ′d < −(dlogn)1/8)
∣∣

≤ nE(Ḡn−1
d (Sd)1(Sd < −(dlogn)1/8 +

C√
d
)) + nE(Ḡn−1

d (S ′d)1(S ′d < −(dlogn)1/8)

=
[
1− (1− Ḡd((dlogn)1/8 − C√

d
))n

]
+

[
1− (1− Ḡn

d((dlogn)1/8)n
]

≤ nḠd((dlogn)1/8 − C√
d
) + nḠd((dlogn)1/8)

= n
[
Φ̄((dlogn)1/8 − C√

d
) + Φ̄((dlogn)1/8)

]
(1 + o(1))

→ 0

since nΦ̄((dlogn)1/8 − C√
d
) ∼ nφ((dlogn)1/8− C√

d
)

(dlogn)1/8− C√
d

→ 0. Similarly for the second term. Hence (7)

is proved via the four-step procedure. The claim in the proposition follows.
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