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Sharp thresholds for high-dimensional and noisy
sparsity recovery usingℓ1-constrained quadratic

programmming (Lasso)
Martin J. Wainwright1

Abstract— The problem of consistently estimating the sparsity
pattern of a vector β∗ ∈ R

p based on observations contaminated
by noise arises in various contexts, including signal denoising,
sparse approximation, compressed sensing, and model selection.
We analyze the behavior ofℓ1-constrained quadratic program-
ming (QP), also referred to as the Lasso, for recovering the
sparsity pattern. Our main result is to establish precise conditions
on the problem dimensionp, the number k of non-zero elements
in β∗, and the number of observationsn that are necessary
and sufficient for sparsity pattern recovery using the Lasso. We
first analyze the case of observations made using deterministic
design matrices and sub-Gaussian additive noise, and provide
sufficient conditions for support recovery and ℓ∞-error bounds,
as well as results showing the necessity of incoherence and
bounds on the minimum value. We then turn to the case of
random designs, in which each row of the design is drawn from
a N(0, Σ) ensemble. For a broad class of Gaussian ensembles
satisfying mutual incoherence conditions, we compute explicit
values of thresholds 0 < θℓ(Σ) ≤ θu(Σ) < +∞ with the
following properties: for any δ > 0, if n > 2 (θu + δ) k log(p−k),
then the Lasso succeeds in recovering the sparsity pattern with
probability converging to one for large problems, whereas for
n < 2 (θℓ − δ) k log(p − k), then the probability of successful
recovery converges to zero. For the special case of the uniform
Gaussian ensemble (Σ = Ip×p), we show thatθℓ = θu = 1, so that
the precise thresholdn = 2 k log(p − k) is exactly determined.

Keywords: Compressed sensing; Convex relaxation; High-
dimensional inference;ℓ1-constraints; Model selection; Phase
transitions; Sparse approximation; Signal denoising; Subset
selection.1

I. I NTRODUCTION

The area of high-dimensional statistical inference is con-
cerned with the behavior of models and algorithms in which
the dimensionp is comparable to, or possibly even larger than
the sample sizen. In the absence of additional structure, it
is well-known that many standard procedures—among them
linear regression and principal component analysis—are not
consistent unless the ratiop/n converges to zero. Since this
scaling precludes havingp comparable or larger thann, an ac-
tive line of research is based on imposing structural conditions
on the data—for instance, sparsity, manifold constraints,or
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graphical model structure—and then studying conditions under
which various polynomial-time methods are either consistent,
or conversely inconsistent.

In this paper, we study the following problem of high-
dimensional inference with sparsity constraints: given noisy
linear observations of an unknown vectorβ∗, how to recover
the positions of its non-zero entries, otherwise known as
its sparsity patternor support set? This problem, known
variously as sparsity recovery, support recovery, or variable
selection, arises in a broad variety of contexts, including
subset selection in regression[28], compressed sensing [9], [4],
structure estimation in graphical models[27], sparse approx-
imation [8], and signal denoising[6]. A natural optimization-
theoretic formulation of this problem is viaℓ0-minimization,
where theℓ0 “norm” of a vector corresponds to the number of
non-zero elements. Unfortunately, however,ℓ0-minimization
problems are known to be NP-hard in general[29], so that
the existence of polynomial-time algorithms is highly unlikely.
This challenge motivates the use of computationally tractable
approximations or relaxations toℓ0 minimization. In particular,
a great deal of research over the past decade has studied the
use of theℓ1-norm as a computationally tractable surrogate to
the ℓ0-norm.

In more concrete terms, suppose that we wish to estimate
an unknown but fixed vectorβ∗ ∈ R

p on the basis of a set of
n-dimensional observation vectory ∈ R

n of the form

y = Xβ∗ + w, (1)

wherew ∈ R
n is zero-mean additive observation noise, and

X ∈ R
n×p is the measurement or design matrix. In many

settings, it is natural to assume that the vectorβ∗ is sparse, in
that the cardinalityk = |S(β∗)| of its support

S(β∗) := {i ∈ {1, . . . p} | β∗
i 6= 0} satisfiesk ≪ p. (2)

Given the observation model (1) and sparsity assumption (2),
a reasonable approach to estimatingβ∗ is by solving the
ℓ1-constrained quadratic program (QP), known as the Lasso
in the statistics literature[30], given by

min
β∈Rp

{ 1

2n
‖y − Xβ‖2

2 + λn‖β‖1

}
, (3)

whereλn > 0 is a regularization parameter. Equivalently, the
convex program (3) can be reformulated as theℓ1-constrained
quadratic program [6]

min
β∈Rp

‖y − Xβ‖2
2, such that ‖β‖1 ≤ Cn, (4)
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where the regularization parameterλn and constraint level
Cn are in one-to-one correspondence via Lagrangian duality.
In this paper, we focus on the following question: what are
necessary and sufficient conditions on theambient dimension
p, thesparsity indexk, and thenumber of observationsn for
which it is possible (or impossible) to recover the support set
S(β∗) using the Lasso?

A. Overview of previous work

Recent years have witnessed a great deal of work on the
use of ℓ1 constraints for subset selection and/or estimation
in the presence of sparsity constraints. Given this substantial
literature, we provide only a brief (and hence necessarily
incomplete) overview here, with emphasis on previous work
most closely related to our results. In the noiseless version
(σ2 = 0) of the linear observation model (1), one can imagine
estimatingβ∗ by solving

min
β∈Rp

‖β‖1 subject to Xβ = y. (5)

This problem is in fact a linear program (LP) in disguise,
and corresponds to a method in signal processing known as
basis pursuit, pioneered by Chen et al.[6]. For the noiseless
setting, the interesting regime is the underdetermined setting
(i.e., n < p). With contributions from a broad range of
researchers[3], [6], [15], [17], [26], [31], there is now a fairly
complete understanding of the conditions on the measurement
matricesX and sparsity indicesk that ensure that the true so-
lution β∗ can be recovered exactly using the LP relaxation (5).

Most closely related to the current paper—as we discuss in
more detail in the sequel—are results by Donoho[10], as well
as Candes and Tao[4] that provide high probability results
for random ensembles. More specifically, as independently
established by both sets of authors using different methods,
for uniform Gaussian ensembles (i.e.,Xij ∼ N(0, 1), i.i.d.)
with the ambient dimensionp scaling linearly in terms of the
number of observations (i.e.,p = δn, for someδ ∈ (0, 1)),
there exists a constantα ∈ (0, 1) such that all sparsity patterns
with k ≤ αp can be recovered with high probability. These
initial results have been sharpened in subsequent work by
Donoho and Tanner[13], who show that the basis pursuit
LP (5) exhibits phase transition behavior, and provide precise
information on the location of the threshold. The results inthis
paper are similar in spirit but applicable to the case ofnoisy
observations: for a class of Gaussian measurement ensembles
including the standard one (Xij ∼ N(0, 1), i.i.d.) as a special
case, we show that the Lasso quadratic program (3) also
exhibits a phase transition in its failure/success, and provide
precise information on the location of the threshold.

There is also a substantial body of work focusing on the
noisy setting (σ2 > 0), and the use of quadratic program-
ming techniques for sparsity recovery. Theℓ1-constrained
quadratic program (3), known as the Lasso in the statistics
literature[30], [14], has been the focus of considerable research
in recent years. Knight and Fu[22] analyze the asymptotic
behavior of the optimal solution, not only forℓ1 regularization
but for ℓq-regularization withq ∈ (0, 2]. Other work focuses

more specifically on the recovery of sparse vectors in the high-
dimensional setting. In contrast to the noiseless setting,there
are various error metrics that can be considered in the noisy
case, including:

• some measurement of predictive power, such as the mean-
squared errorE[‖Yi − Ŷi‖2

2], where Ŷi is the estimate
based on̂β; and

• variousℓq normsE‖β̂ − β∗‖q
q, especiallyℓ2 andℓ1;

• the subset or variable selection criterion, meaning the
correct recovery of the subsetS of non-zero indices.

One line of work has focused on the analysis of the Lasso
and related convex programs for deterministic measurement
ensembles. Fuchs[18] investigates optimality conditions for
the constrained QP (3), and provides deterministic conditions,
of the mutual incoherence form, under which a sparse solution,
which is known to be withinǫ of the observed values, can
be recovered exactly. Among a variety of other results, both
Tropp [32] and Donoho et al.[12] also provide sufficient
conditions for the support of the optimal solution to the
constrained QP (3) to be contained within the true support
of β∗. We discuss connections to this body of work at more
length in Section III. Another line of work has analyzed the use
of the Lasso[3], [11], as well as other closely related convex
relaxations[5] when applied to random ensembles with mea-
surement vectors drawn from the standard Gaussian ensemble.
These papers either provide conditions under which estimation
of a noise-contaminated signal via the Lasso is stable in the
ℓ2 sense[3], [11], or bounds on the MSE prediction error[5].
However, stability results of this nature do not guarantee exact
recovery of the underlying sparsity pattern, according to the
model selection criterion that we consider in this paper. Also
related to the current paper is recent work on the use of
the Lasso for model selection, both for random designs by
Meinshausen and Buhlmann[27] and deterministic designs
by Zhao and Yu[37]. Both papers established that when
suitable mutual incoherence conditions are imposed on either
random [27] or deterministic design matrices[37], then the
Lasso can recover the sparsity pattern with high probability for
a specific regime ofn, p andk. In this paper, we present more
general sufficient conditions for both deterministic and random
designs, thus recovering these previous scalings as special
cases. In addition, we derive a set of necessary conditions
for random designs, which allow us to establish a threshold
result for the Lasso. We discuss connections to this body of
work at more length in Section IV-A.

B. Our contributions

This analysis in this paper applies to high-dimensional
setting, based on sequences of models indexed by(p, k)
whose dimensionp = p(n) and sparsity levelk = k(n)
are allowed to grow with the number of observations. In
this paper, we allow for completely general scaling of the
triplet (n, p, k). Consequently, the analysis applies to different
sparsity regimes, includinglinear sparsity(k = αp for some
α > 0), as well assublinear sparsity(meaning thatk/p → 0).
In this paper, the bulk of our results concern the problem of
signed support recovery, defined more precisely as follows.
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For any vectorβ ∈ R
p, we define its extended sign vector

S±(βi) :=





+1 if βi > 0

−1 if βi < 0

0 if βi = 0,

(6)

which encodes thesigned supportof the vector. Of interest to
us are the following two questions:

• achievability results: under what scalings of(n, p, k) does
the Lasso (3) have aunique solutionβ̂ that recovers the
signed support (S±(β̂) = S±(β∗))?

• converse results: under what scalings of(n, p, k) doesno
solutionof the Lasso specify the correct signed support?

We analyze these questions both for deterministic designs
(meaning the measurement matrixX is viewed as fixed) and
random designs (X drawn from random ensembles). We begin
by providing sufficient conditions for Lasso-based recovery to
succeed with high probability over the random observation
noise, when applied to deterministic designs. Moving to the
case of random designs, we then sharpen this analysis by
proving thresholds for the success/failure of the Lasso forvari-
ous classes of Gaussian random measurement ensembles. Our
analysis of the Gaussian random designs can be understood
as revealing thesample complexityof Lasso-based sparsity
recovery, meaning how the sample sizen must scale with the
problem parameters(p, k) if exact sparsity recovery is to be
obtained using the Lasso.

To provide some intuition, panel (a) of Figure 1 plots the
probability of successful support recoveryP[S±(β̂) = S±(β∗)]
versus the sample sizen for three different problem sizes
p ∈ {128, 256, 512}, and k = ⌈0.40p0.75⌉ in each case.
Each point on each curve corresponds to the average over
200 trials, in each case drawingX ∈ R

n×p randomly from
the standard Gaussian ensemble (Xij ∼ N(0, 1), i.i.d), and
drawingw ∼ N(0, σ2I), with σ = 0.50. Note that each curve
starts atP[S±(β̂) = S±(β∗)] = 0 for small sample sizesn,
and then reachP[S±(β̂) = S±(β∗)] = 1 for sufficiently large
sample sizes. Of course, the transition point from failure to
success depends on the problem sizep, with larger problems
requiring more samples. This observation raises the natural
question:what is the scaling law that links the problem sizep
and sparsity indexk to the sample sizen? One contribution of
our theory is to provide a precise specification of this scaling
law. Panel (b) of Figure 1 shows the same experimental results,
with the probability of support recovery now plotted versusan
“appropriately rescaled” version of the sample size, wherethe
scaling is predicted by our theory. Note that as predicted by
our theory, all of the curves now line up with one another,
even though the problem sizes and sparsity indices vary dra-
matically. In Section VII, we show qualitatively similar results
for different sparsity scalings (behavior ofk as a function
of p), and more general measurement ensembles, thereby
showing excellent agreement between theoretical prediction
and empirical behavior.

In analytical terms, our main result on Gaussian random
ensembles (Theorems 3 and 4) show that there exist a pair
of constants0 < θℓ(Σ) ≤ θu(Σ) < +∞, depending on the
covariance matrixΣ such that the following properties hold.

First, for sequences(n, p, k) such that the rescaled sample
size n

2k log(p−k) > θu(Σ), it is always possible to choose the
regularization parameterλn such that the Lasso has a unique
solutionβ̂ with S±(β̂) = S±(β∗) with probability converging
to one (over the choice of noise vectorw and random matrix
X). Conversely, whenever the rescaled sample size satisfies

n
2k log(p−k) < θℓ(Σ), then for whatever regularization param-
eter λn > 0 is chosen, no solution of the Lasso correctly
specifies the signed support with probability converging to
one. Although inachievability results of this type have been
established for the basis pursuit LP in the noiseless setting [13],
to the best of our knowledge, our lower bound for the Lasso is
the first set of necessary conditions for exact sparsity recovery
in the noisy setting. For the special case of the uniform
Gaussian ensemble considered in past work (i.e.,Σ = I, so
that Xij ∼ N(0, 1), i.i.d.), we show thatθℓ(I) = θu(I) = 1,
so that the threshold is sharp. This threshold result has a
number of connections to previous work in the area that
focuses on special forms of scaling. More specifically, as we
discuss in more detail in Section IV-B, in the special case of
linear sparsity(i.e., k/p → α for someα > 0), this theorem
provides a noisy analog of results previously established for
basis pursuit in the noiseless case[10], [4], [13]. Moreover,
our result can also be adapted to an entirely different scaling
regime, in which the sparsity index issublinear (k/p → 0),
as considered by a separate body of recent work[27], [37] on
the high-dimensional Lasso.

The remainder of this paper is organized as follows.
We begin in Section II with some necessary and sufficient
conditions, based on standard optimality conditions for
convex programs, for the Lasso to have a unique solution
that recovers the correct signed support. We then prove
a consistency result for the case of deterministic design
matrices X . Section IV is devoted to the statements of
our main result on the asymptotic behavior of the Lasso
for random Gaussian ensembles, and discussion of some
of their consequences. Proofs are provided in Sections V
and VI. We illustrate our theoretical results via simulation
in Section VII, and conclude with a discussion in Section VIII.

Notation: We collect here some standard notation used
throughout the paper. Throughout the paper, we use the
notationc1, c2 etc. to refer to positive constants, whose value
may differ from line to line. Given sequencesf(n) and
g(n), the notationf(n) = O(g(n)) means that there exists
a constantc1 < ∞ such thatf(n) ≤ c1g(n); the notation
f(n) = Ω(g(n)) means that there exists a constantc2 > 0
such thatf(n) ≥ c2g(n); and the notationf(n) = Θ(g(n))
means thatf(n) = O(g(n)) and f(n) = Ω(g(n)). The
symbol f(n) = o(g(n)) means thatf(n)/g(n) → 0. For
parametersa, b ∈ [1,∞] and a matrixM , we define theℓa/ℓb

operator norm|||M |||a,b := max
‖x‖a=1

‖Mx‖b. Important special

cases include theℓ2/ℓ2 operator norm, also known as the
spectral norm, denoted by|||M |||2,2 or |||M |||2 for short, and the
ℓ∞/ℓ∞ operator norm, given by|||M |||∞,∞ = maxi

∑
j |Mij |,

and denoted by|||M |||∞ for short.
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Fig. 1. (a) Plots of the success probabilityP[S±(bβ) = S±(β∗)] of obtaining the correct signed support versus the sample size n
for three different problem sizesp, in all cases with sparsityk = ⌈0.40p0.75⌉. (b) Same simulation results with success probability
plotted versus the rescaled sample sizeθ(n, p, k) = n/[2k log(p − k)]. As predicted by Theorems 3 and 4, all the curves now lie
on top of one another. See Section VII for further simulationresults.

II. BACKGROUND AND PRIMAL-DUAL WITNESS

CONSTRUCTION

In this section, we begin by developing the convex-analytic
conditions that characterize the optima of theℓ1-regularized
quadratic program (3). We then specify the construction that
underlies the proofs of our main results, and prove some
elementary lemmas that show how it characterizes the success
(or failure) of the Lasso in recovering the correct support set.
We refer to this method as aprimal-dual witness, since it
is based on an explicit construction of a pair of vectors that
(when the procedure succeeds) are a primal and dual optimal
solutions for the Lasso, and act as a witnesses for the correct
recovery of the support.

A. Convex optimality and uniqueness

We begin with some basic observations about the Lasso
problem (3). First, the minimum in the Lasso is always
achieved by at least one vectorβ ∈ R

p. This fact follows
from the Weierstrass theorem, because in itsℓ1-constrained
form (4), the minimization is over a compact set, and the
objective function is continuous. Second, although the problem
is always convex, it is not always strictly convex, so that the
optimum can fail to be unique. Indeed, a little calculation
shows that the Hessian of the quadratic component of the
objective is thep × p matrix XT X/n, which is positive
definite but not strictly so wheneverp > n. Nonetheless, as
stated below in Lemma 1, strict dual feasibility conditionsare
sufficient to ensure uniqueness, even under high-dimensional
scaling (p ≫ n).

The objective function is not always differentiable, sincethe
ℓ1-norm is a piecewise linear function. However, the optima
of the Lasso (3) can be characterized by a zero subgradient
condition. A vectorz ∈ R

p is a subgradient for theℓ1-norm
evaluated atβ ∈ R

p, written asz ∈ ∂‖β‖1, if its elements

satisfy the relations

zi = sign(βi) if βi 6= 0, andzi ∈ [−1, +1], otherwise. (7)

For any subsetA ⊆ {1, 2, . . . , p}, let XA be then × |A|
matrix formed by concatenating the columns{Xi, i ∈ A}
indexed byA. For any vectorβ ∈ R

p, we define itssupport
setS(β) = {i | βi 6= 0}. With these definitions, we state the
following:

Lemma 1. (a) A vector β̂ ∈ R
p is optimal if and only if

there exists a subgradient vectorẑ ∈ ∂‖β̂‖1 such that

1

n
XT X(β̂ − β∗) − 1

n
XT w + λnẑ = 0. (8)

(b) Suppose that the subgradient vector satisfies the strict
dual feasibility condition|ẑj | < 1 for all j /∈ S(β̂). Then
any optimal solutionβ̃ to the Lasso satisfies̃βj = 0 for
all j /∈ S(β̂).

(c) Under the conditions of part (b), if thek × k matrix
XT

S(bβ)
XS(bβ) is invertible, thenβ̂ is the unique optimal

solution of the Lasso program.

The proof is provided in Appendix B.

B. Primal-dual witness construction

We now turn to the proof technique that underlies our main
results. UsingS as a shorthand for the support setS(β∗)
of the true vectorβ∗, we assume throughout that thek × k
matrix XT

S XS is invertible. Under this condition, theprimal-
dual witness(PDW) method consists of constructing a pair
(β̌, ž) ∈ R

p × R
p according to the following steps:

1) First, we obtaiňβS ∈ R
k by solving therestrictedLasso

problem,

β̌S = arg min
βS∈Rk

{ 1

2n
‖y − XSβS‖2

2 + λn‖βS‖1

}
. (9)
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The solution to this restricted convex program is guar-
anteed to be unique under the invertibility condition on
XT

S XS. We setβ̌Sc = 0.
2) Second, we choosězS ∈ R

k as an element of the
subdifferential of theℓ1 norm evaluated aťβS .

3) Third, we solve for a vectořzSc ∈ R
p−k satisfying the

zero subgradient condition (8), and check whether or not
the dual feasibility condition|žj | ≤ 1 for all j ∈ Sc is
satisfied. (For ensuring uniqueness, we check for strict
dual feasibility, i.e.,|žj| < 1 for all j ∈ Sc.)

4) Fourth, we check whether thesign consistency condition
žS = sign(β∗

S) is satisfied.

To be clear, this procedure isnot a practical method for
solving theℓ1-regularized quadratic program (3), since solving
the restricted problem in Step 1 requires knowledge of the
unknown support setS. Rather, the utility of this constructive
procedure is as a proof technique: it succeeds if and only if the
Lasso has a unique optimal solution with the correct signed
support. This characterization allows us to certify support
consistency properties of the Lasso, as summarized by the
following result, proved in Appendix C:

Lemma 2. Assume thatXT
S XS is invertible.

(a) If Steps 1 through 3 of the PDW method succeed with
strict dual feasiblity in Step 3, then the Lasso(3) has a
unique solutionβ̂ with S(β̂) ⊆ S(β∗).

(b) If Steps 1 through 4 succeed with strict dual feasibility
in Step 3, then Lasso(3) has a unique solution̂β with
the correct signed support (i.e.,S±(β̂) = S±(β∗)).

(c) Conversely, if either Steps 3 or 4 of the PDW method
fail, then the Lasso fails to recover the correct signed
support.

The challenges in the primal-dual witness construction liein
verifying thedual feasibility conditionin Step 3, and thesign
consistency conditionin Step 4. More specifically, whether
or not these steps are successful depends on the behavior of
certain random variables, associated with the supportS and
non-supportSc of the true solutionβ∗. In particular, we define
for eachj ∈ Sc, the scalar random variable

Zj := XT
j

{
XS

(
XT

S XS

)−1
žS + ΠX⊥

S
(

w

λnn
)
}

(10)

whereΠX⊥
S

:= In×n − XS

(
XT

S XS

)−1
XT

S is an orthogonal
projection matrix, anďzS is the subgradient vector chosen in
Step 2 of the PDW method. Moreover, for eachi ∈ S, we
define the scalar random variable

∆i := eT
i

( 1

n
XT

S XS

)−1[ 1

n
XT

S w − λn sgn(β∗
S)

]
. (11)

As formalized by the following lemma,Zj is the candidate
dual variable solved for in Step 3 of the primal-dual construc-
tion. On the other hand, if the Lasso is sign-consistent, the
variable∆i is equal to the differencêβi − β∗

i at positioni
between the Lasso solution̂β and the truthβ∗.

Lemma 3. Assume that the matrixXT
S XS is invertible. Then

(a) The dual feasibility check in Step 3 of the PDW method

succeeds if and only if

|Zj | ≤ 1 for all j ∈ Sc. (12)

For strict dual feasibility, these inequalities must hold
strictly.

(b) The sign consistency condition in Step 4 of the PDW
method can be satisfied if and only if

sgn
{
β∗

i + ∆i

}
= sgn(β∗

i ) for all i ∈ S. (13)

See Appendix D for the proof of this claim.

III. A NALYSIS OF DETERMINISTIC DESIGNS

In this section, we show how the primal-dual witness
construction can be used to analyze the behavior of the Lasso
in the case of a deterministic (non-random) design matrix
X ∈ R

n×p, and observation noise vectorsw ∈ R
n from

a sub-Gaussian distribution (see Section A for background
on sub-Gaussian random variables). We begin by stating a
positive result (Theorem 1) that provides sufficient conditions
for Lasso success with high probability over the noise vectors,
and then discuss some of its consequences. Our second result
on deterministic designs (Theorem 2) isolates some conditions
that are sufficient to guarantee failure of the Lasso. Both of
these results are proved using the link between the primal-dual
witness (PDW) method and the success/failure of the Lasso,
as stated in Lemmas 2 and 3.

A. Sufficient conditions and some consequences

To gain intuition for the conditions in the theorem statement,
it is helpful to consider thezero-noise conditionw = 0, in
which each observationyk = xT

k β∗ is uncorrupted, and more-
over to assume that we are seeking signed support recovery, so
that we neeďzS = sign(β∗

S). Under these conditions, assuming
that λn > 0, the conditions of Lemma 3 reduce to

max
j∈Sc

|XT
j XS

(
XT

S XS

)−1
sign(β∗

S)
∣∣ ≤ 1

sgn
(
β∗

i − eT
i λn

( 1

n
XT

S XS

)−1
sgn(β∗

S)
)

= sgn(β∗
i ),

where the latter equality must hold for alli ∈ S. If the
primal-dual witness method fails in the zero-noise setting, then
there is little hope of succeeding in the presence of noise.
These zero-noise conditions motivate imposing the following
set of conditions on the design matrix: first, there exists some
incoherence parameterγ ∈ (0, 1] such that

|||XT
ScXS

(
XT

S XS

)−1|||∞ ≤ (1 − γ), (15)

and ||| · |||∞ denotes theℓ∞/ℓ∞ operator norm,2 and second,
there exists someCmin > 0 such that

Λmin(
1

n
XT

S XS) ≥ Cmin, (16)

where Λmin denotes the minimal eigenvalue. Mutual inco-
herence conditions of the form (15) have been considered
in previous work on the Lasso, initially by Fuchs[18] and

2Recall that for an m × n matrix M , this norm is given by
|||M |||:= max

i=1,...m

Pn
j=1

|Mij |.
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Tropp [32]. Other authors[27], [37] provide examples and
results on matrix families that satisfy this type of condition.

Consider the linear observation model (1) with fixed design
X ∈ R

n×p and additive noise vectorw ∈ R
n with i.i.d.

entries that are zero-mean and sub-Gaussian3 with parameter
σ > 0. With this set-up, we have the following set of sufficient
conditions for sparsity recovery for deterministic designs:

Theorem 1. Assume that the design matrixX satisfies con-
ditions (15) and (16), and has itsn-dimensional columns
normalized such thatn−1/2 max

j∈Sc
‖Xj‖ ≤ 1. Suppose that the

sequence of regularization parameters{λn} satisfies

λn >
2

γ

√
2σ2 log p

n
. (17)

Then for some constantc1 > 0, the following properties hold
with probability greater than1 − 4 exp(−c1nλ2

n) → 1:

(a) The Lasso has a unique solution̂β ∈ R
p with its support

contained within the true support (i.e.,S(β̂) ⊆ S(β∗)),
and satisfies theℓ∞ bound:

‖β̂S − β∗
S‖∞ ≤ λn

[∥∥(XT
S XS/n)−1

∥∥
∞ +

4σ√
Cmin

]

︸ ︷︷ ︸
.

g(λn) (18)

(b) If in addition the minimum value of the regres-
sion vector β∗

S on its support is bounded below as
βmin > g(λn), then β̂ has the correct signed support
(i.e., S±(β̂) = S±(β∗)).

Remarks: (1) First, it is worthwhile to consider Theorem 1
in the classical setting, in which the number of samplesn
tends to infinity, but the model dimensionp and sparsity
index k do not depend onn. Knight and Fu [22] established
consistency of the Lasso with additive Gaussian noise under
the scalingsλn → 0 and nλ2

n → +∞, which4 guarantee
that the conditions of Theorem 1 hold, and moreover that
the probability of success converges to one. For instance,
one could chooseλ2

n = 1/n1−δ for some δ > 0, which
would then guarantee recovering, with probability greater
than 1 − 2 exp(−c1n

δ), all signalsβ∗ with minimum value
βmin = Ω(n− 1−δ

2 ).

(2) Theorem 1 is also related to past work by Fuchs [18],
Tropp [32] and Donoho et al. [12], who (among various
other results) provided sufficient conditions for Lasso-based
support recovery under mutual incoherence constraints. These
sufficient conditions were deterministic in nature, based on
either assuming certain bounds on theℓ2-norm of the noise
vectorw, or on theℓ2-norm of the bestk-term approximation
to the input signaly (e.g., Thm. 4 [18], Thm. 8 [32], or Thm
4.1 [12]). Theorem 1 can be viewed as a stochastic analog of
such results, in which we study the probability of successful
support recovery as the problem sizep and sparsity indexk
scale with the sample sizen.

3See Appendix A for background.
4To be clear, our regularization parameterλn is related to the choiceρn

of the paper [22] via the relationλn = ρn/n.

(3) Theorem 1 is also related to an independent body of
past work by Meinshausen and Buhlmann [27] and Zhao and
Yu [37], who studied the probability of correct support recov-
ery as(p, k) scaled in a very specific way with sample size.
Specializing Theorem 1 to their particular scaling recovers the
following corollary [37]:

Corollary 1. Suppose that the design matrixX satisfies
the conditions of Theorem 1, and thatp = O(exp(nδ3)),
k = O(nδ1 ), and moreover thatβ2

min > 1/n(1−δ2) with

0 < δ1 + δ3 < δ2 < 1.

If we setλ2
n = 1/n1−δ4 for someδ4 ∈ (δ3, δ2−δ1), then under

the conditions of Theorem 1, the Lasso recovers the sparsity
pattern with probability1 − exp(−c1n

δ4).

Proof: We simply need to verify that the conditions of
Theorem 1 are satisfied with these particular choices. First,
with the given choice of regularizer, we have

log p

nλ2
n

= O
(
nδ3/(nδ4−1n)

)
= O(nδ3−δ4) → 0,

so that the inequality (17) certainly holds. SinceXT
S XS is a

k × k matrix, we have

λn ||| 1
n

(XT
S XS)−1|||∞ ≤ λn

√
k||| 1

n
(XT

S XS)−1|||2

≤ λn

√
k

Cmin

Therefore, in order to check the condition from Theo-
rem 1(b) on the minimum value, it is sufficient to show that
λn

√
k

βmin

= o(1). Under the given scalings, we have

λ2
nk

β2
min

= O
(
nδ4−1nδ1n(1−δ2)

)
= O(nδ4+δ1−δ2) → 0,

showing that the condition onβmin holds.

The scaling given in Corollary 1 is interesting since it
allows the model dimensionp to be exponentially larger than
the number of observations (p ≫ n). On the other hand, it
imposes an extremely strong sparsity constraint, since the
ratio k/p ∼= nδ1 exp(−nδ3) vanishes exponentially fast. If we
consider general scaling of the triplet(n, p, k), Theorem 1
suggests that havingn on the order ofk log p is appropriate,
since this sample size would allow the minimum valueβmin

to decay as1/
√

k. In Section IV, we show that this type of
scaling is both necessary and sufficient for almost all matrices
drawn from suitable Gaussian designs.

(4) Of course, Theorem 1 has consequences for esti-
mation of β∗ in ℓ2 norm. In particular, assuming that
|||(XT

S XS)/n|||∞ = O(1) for simplicity, the ℓ∞ bound (18),
in conjunction with thek-sparsity ofβ∗, implies that

‖β̂ − β∗‖2 = O(λn

√
k) = O(

√
k log p

n
),

where we have chosenλn = O(
√

log p
n ). Of course, given that

Theorem 1 guarantees recovery of the supportS, one could
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obtain a betterℓ2-estimate by simply performing ordinary
regression restricted to the supportS.

B. Some necessary conditions

We now turn to some partial inachievability results, pro-
viding sufficient conditions for failure of the Lasso (3) in
recovering the support set:

Theorem 2(Inachievability for deterministic design). Suppose
that the eigenvalue condition(16) holds, and the noise vector
has a distribution symmetric around zero.

(a) Suppose that the mutual incoherence condition(15) is
violated – say

max
j∈Sc

|XT
j XS(XT

S XS)−1 sgn(β∗
S)| = 1 + ν > 1. (19)

Then for anyλn > 0 and for any sample sizen,
the probability of correct signed support recovery is
bounded away from one — namely

P[S±(β̂) = S±(β∗)] ≤ 1/2. (20)

(b) For eachi ∈ S, define the quantity

g̃i(λn) = λneT
i (

XT
S XS

n
)−1 sgn(β∗

S). (21)

Suppose that for somei ∈ S, we have the inclusion
β∗

i ∈ (0, g̃i(λn)) or the inclusionβ∗
i ∈ (g̃i(λn), 0). Then

the probability of correct signed support recovery is
bounded away from one:

P[S±(β̂) = S±(β∗)] ≤ 1/2. (22)

Theorem 2(a) is a precise statement of the fact that the
mutual incoherence condition (15) is an essential requirement
for support recovery using the Lasso; see Zhao and Yu [37]
for related observations. Theorem 2(b) reveals two factors
that are important in signed support consistency: the con-
ditioning of matrix (XT

S XS/n), and the magniduate of the
regularization parameterλn relative to the minimum value
βmin = mini∈S |β∗

i |.
With regards to the former issue, the ideal case is when the

columns ofXS are orthogonal, in which case the matrix is
simply the identity. More generally, control onℓ∞-operator
norm |||(XT

S XS/n)−1|||∞ or a related quantity, as needed for
the ℓ∞-bound (18) in Theorem 1 to be reasonably tight, is
required for sign consistency. With reference to the latterissue,
the quantityg̃i(λn) corresponds to the amount by which the
Lasso estimate in positioni ∈ S is “shrunken”, and it imposes
the constraint that the valueβmin cannot decay to zero faster
than the regularization parameterλn.

C. Proof of Theorem 1

The proof of Theorem 1 consists of two main parts:
we first establish that the random variables{Zj, j ∈ Sc}
previously defined (10) satisfy strict dual feasibility with high
probability, so that Step 3 of the PDW construction succeeds.
We then establish anℓ∞ bound on the variables{∆i, i ∈ S}
previously defined (11), which (under the assumptions of
Theorem 1(b)) ensures that the sign consistency condition in

Step 4 of the PDW construction holds.

Establishing strict dual feasibility:We begin by establishing
that Step 3 of the primal-dual witness condition succeeds with
high probability. Recalling the definition (10), note that we
have the decompositionZj = µj + Z̃j , where

µj = XT
j XS(XT

S XS)−1žS , (23)

and Z̃j := XT
j ΠX⊥

S
( w

λn n ) a zero-mean sub-Gaussian noise
variable. SincězS ∈ R

k is a subgradient vector (chosen in
Step 2) for theℓ1 norm, we have‖žS‖∞ ≤ 1. Applying the
incoherence condition (15) yields that|µj | ≤ (1 − γ) for all
indicesj ∈ Sc, from which we obtain that

max
j∈Sc

|Zj | ≤ (1 − γ) + max
j∈Sc

|Z̃j|.

Since the elements ofw are zero-mean and sub-Gaussian with
parameterσ2, it follows from property (49) that the variable
Z̃j is sub-Gaussian with parameter at most

σ2

λ2
nn2

‖ΠX⊥
S

(Xj)‖2
2 ≤ σ2

λ2
nn

,

where we have used the facts that the projection matrixΠX⊥
S

has spectral norm one, and the conditionn−1 maxj ‖Xj‖2
2 ≤

1. Consequently, by the sub-Gaussian tail bound (48) com-
bined with the union bound, we obtain

P[max
j∈Sc

|Z̃j | ≥ t] ≤ 2(p − k) exp
(
− λ2

n n t2

2σ2

)
.

Settingt = γ
2 yields that

P[max
j∈Sc

|Z̃j | ≥
γ

2
] ≤ 2 exp

{
− λ2

n n γ2

8σ2
+ log(p − k)

}
.

Putting together the pieces and using our choice (17) ofλn,
we conclude that

P[max
j∈Sc

|Zj| > 1 − γ

2
] ≤ 2 exp

{
− c1λ

2
nn} → 0.

Establishingℓ∞ bounds:Next we establish a bound on the
ℓ∞-norm of the random vector∆S from equation (11). By the
triangle inequality, the quantitymax

i∈S
|∆i| is upper bounded by

∥∥(
XT

S XS

n
)−1XT

S

w

n

∥∥
∞ +

∥∥(
XT

S XS

n
)−1

∥∥
∞ λn. (24)

The second term is a deterministic quantity, so that it remains
to bound the first term. For eachi = 1, . . . , k, consider the
random variable

Vi := eT
i (

1

n
XT

S XS)−1 1

n
XT

S w.

Since the elements ofw are zero-mean and i.i.d. sub-Gaussian
with parameterσ2, it follows from property (49) thatVi is
zero-mean and sub-Gaussian with parameter at most

σ2

n
|||( 1

n
XT

S XS)−1|||2 ≤ σ2

Cminn
.

Consequently, by the sub-Gaussian tail bound (48) and the
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union bound, we have

P[ max
i=1,...,k

|Vi| > t] ≤ 2 exp
(
− t2Cminn

2σ2
+ log k

)
.

We sett = 4σλn/
√

Cmin, and note that by our choice (17) of
λn, we have the inequality8nλ2

n > log p ≥ log k. Putting
together these pieces, we conclude that the probabability
P[maxi=1,...,k |Zi| > 4σλn/

√
Cmin] vanishes at rate at least

2 exp(−c2λ
2
nn). Overall, we conclude that

‖β̂S − β∗
S‖∞ ≤ λn

[ 4σ√
Cmin

+
∥∥(XT

S XS/n)−1
∥∥
∞

]
,

with probability greater than1 − 2 exp(−c2λ
2
nn), as claimed.

D. Proof of Theorem 2

We prove part (a) by showing that either the sign con-
sistency check in Step 4, or the dual feasibility check in
Step 3 of the PDW must fail with probability at least1/2.
We may assume thaťzS = sign(β∗

S); otherwise, the sign
consistency condition fails. So it remains to show that under
this condition, the dual feasibility condition in Step 3 fails with
probability at least1/2. Let j ∈ Sc be an index for which the
maximum in the violating condition (19) is achieved. From
proof of Theorem 1, we have the decompositionZj = µj +Z̃j

with µj = XT
j XS(XT

S XS)−1 sign(β∗
S), using the fact that

žS = sign(β∗
S). Without loss of generality, we may assume

that µj = 1 + ν, as the argument withµj = −1 − ν
is entirely analogous by symmetry. Note that sincew is
symmetric about zero by assumption, the random variableZ̃j

from equation (10) is also symmetric. Using this symmetry
and the representationZj = (1 + ν) + Z̃j , we conclude that
P[Zj > 1] ≥ 1/2. Applying Lemmas 2 and 3, we conclude
that P[S±(β̂) 6= S±(β∗)] ≥ 1/2 as claimed. Note that this
claim holds for any sample size.

We prove the claim (b) by analyzing by using Lemma 3(b).
In order for the Lasso to recover the correct signed support,we
must havězS = sign(β∗

S), and the conditionsign(β∗
i +∆i) =

sign(β∗
i ) must hold for alli ∈ S. Without loss of generality,

let us assume thatβ∗
i ∈ (0, g̃i(λn)). We then have

β∗
i + ∆i = β∗

i − g̃i(λn)︸ ︷︷ ︸+ eT
i

( 1

n
XT

S XS

)−1 1

n
XT

S w
︸ ︷︷ ︸

,

Di w̃i

where we have used the definition (11) of∆. Since the
deterministic quantityDi < 0 by assumption, and the
noise variable w̃i is symmetric around zero, we have
P[sign(β∗

i + ∆i) 6= sign(β∗
i )] ≥ 1/2, which implies that the

probability of success is upper bounded by1/2.

IV. RANDOM GAUSSIAN ENSEMBLES: THRESHOLDS FOR

SPARSITY RECOVERY

The previous section treated the case of a deterministic
designX , which allowed for a relatively straightforward anal-
ysis. We now turn to the more complex case of random design
matricesX ∈ R

n×p, in which each rowxi, i = 1, . . . , n is
chosen as an i.i.d. Gaussian random vector with covariance

matrix Σ. In this setting, we specify explicit threshold func-
tions of the triple(n, p, k) and covariance matrixΣ that govern
the success and failureof the Lasso over a given Gaussian
ensemble (Theorems 3 and 4 respectively). Note that our Gaus-
sian ensemble results cover not only the standard Gaussian
ensemble (Σ = Ip×p), but also more general Gaussian designs.
We begin by setting up and providing a precise statement of the
main results, and then discussing their connections to previous
work. In the later part of this section, we provide the proofs.

A. Statement of main results

As before, we consider the noisy linear observation model
except that the measurement matrixX ∈ R

n×p is now
random—namely,

y = Xβ∗ + w, with i.i.d. rowsxi ∼ N(0, Σ). (25)

Our results are based on imposing (subsets of) the following
conditions on the covariance matrices forming the design:

|||ΣScS(ΣSS)−1|||∞ ≤ (1 − γ) for someγ ∈ (0, 1], (26a)

Λmin(ΣSS) ≥ Cmin > 0, and (26b)

Λmax(ΣSS) ≤ Cmax < +∞. (26c)

Note that conditions (26a) and (26b) are simply the population
analogs of the conditions (15) and (16) imposed previously
on the deterministic designs. The upper bound (26c) is re-
quired only for establishing the inachievability claim—namely,
sufficient conditions for failure of the Lasso. The simplest
example of a covariance matrix satisfying these conditionsis
the identityΣ = Ip×p, for which we haveCmin = Cmax = 1,
andγ = 1. Another well-known matrix family satisfying these
conditions are Toeplitz matrices.

For a positive definite symmetric matrixA, we define

ρℓ(A) :=
1

2
min
i6=j

(
Aii + Ajj − 2Aij

)
, andρu(A) := max

i
Aii.

(27)
We note thatA � 0 implies that|Aij | ≤

√
AiiAjj , and hence

that ρℓ(A) ≥ 0, and moreover

ρℓ(A) ≤ 1

2
max
i6=j

(
√

Aii +
√

Ajj)
2 ≤ ρu(A).

The threshold constants in our result involve the conditional
covariance matrix of(XSc | XS), namely

ΣSc|S := ΣScSc − ΣScS(ΣSS)−1ΣSSc � 0. (28)

In particular, we define

θℓ(Σ) :=
ρℓ(ΣSc|S)

Cmax (2 − γ(Σ))2
, and (29a)

θu(Σ) :=
ρu(ΣSc|S)

Cmin γ2(Σ)
, (29b)

whereγ(Σ) ∈ (0, 1] is the incoherence parameter (26a). It is
straightforward to verify that we always have the inequalities

0 ≤ θℓ(Σ) ≤ θu(Σ) < ∞. (30)

Equality holds for the standard Gaussian ensemble
(Σ = Ip×p), for which we haveCmin = Cmax = γ = 1,
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and moreover ρℓ(ΣSc|S) = ρu(ΣSc|S) = 1, so that
θℓ(Ip×p) = θu(Ip×p) = 1.

Theorem 3 (Achievability). Consider the linear observa-
tion model with random Gaussian design(25) and noise
w ∼ N(0, σ2In×n). Assume that the covariance matricesΣ
satisfy conditions(26a)and (26b), and consider the family of
regularization parameters

λn(φp) =

√
φp ρu(ΣSc|S)

γ2

2σ2 log(p)

n
, (31)

for someφp ≥ 2. If for some fixedδ > 0, the sequence(n, p, k)
and regularization sequence{λn} satisfy

n

2k log(p − k)
> (1 + δ) θu(Σ)

(
1 +

σ2Cmin

λ2
nk

)
, (32)

then the following properties holds with probability greater
than 1 − c1 exp(−c2 min{k, log(p − k)}):

(i) The Lasso has a unique solution̂β with support con-
tained withinS (i.e., S(β̂) ⊆ S(β∗)).

(ii) Define the gap

g(λn) := c3λn|||Σ−1/2
SS |||2∞ + 20

√
σ2 log k

Cmin n
. (33)

Then if βmin := min
i∈S

|β∗
i | > g(λn), the signed

support S±(β̂) is identical to S±(β∗), and moreover
‖β̂S − β∗

S‖∞ ≤ g(λn).

Remarks: It should be noted that the condition (32) couples
together the required sample sizen and the regularization pa-
rameterλn. In particular, for the family (31) of regularization
parameters, the proof of Theorem 3 shows that it suffices to
have

n

2k log(p − k)
>

(1 + δ′)

1 − 1
φp

θu(Σ), (34)

for some δ′ > 0. Consequently, if we choose a sequence
of regularization parameters (31) withφp → +∞, then
Theorem 3 guarantees recovery withn = 2θu(Σ)k log(p− k)
observations. More generally, if we chooseλn in equation (31)
with a constantφp ≥ 2, then we still obtain recovery with
n = Ω(k log(p − k)) samples, although the pre-factor now
depends on the precise choice ofλn through the termφp.

Note that the decay rate ofλn imposes limitations for signed
support recovery, in particular how quickly the minimum value
βmin is allowed to decay, since Theorem 3(b) guarantees suc-
cess only ifβmin = Ω(λn). Consequently, with the choice (31)
with a constantφp and|||Σ−1/2

SS |||∞ = O(1), Theorem 3 shows
that the Lasso can recover the support of a signalβ∗ ∈ R

p for

which βmin = Ω(
√

log p
n ).

Theorem 4 (Inachievability). Consider the linear observa-
tion model with random Gaussian design(25) and noise
w ∼ N(0, σ2In×n). Assume that the covariance matrices sat-
isfy conditions(26a) through (26c). If for some fixedδ > 0,

the sequence(n, p, k) satisfies

n

2k log(p − k)
< (1 − δ) θℓ(Σ)

(
1 +

Cmaxσ2

λ2
nk

)
, (35)

then with probability converging to one, no solution of the
Lasso(3) has the correct signed support.

Remarks: Again, the simplest case is when the regularization
parameter is chosen from the family (31) for someφp → +∞.
In this case, the inachievability result (35) is the weakest, in
that it asserts only that the Lasso fails with high probability
for n < 2θℓ(Σ)k log(p − k).

It is also worth noting that the condition (35) imposes
restrictions on the choice ofλn. In particular, suppose that

λ2
n <

2θℓ(Σ)σ2Cmax log(p − k)

n

=
ρℓ(ΣSc|S)

(2 − γ)2
2σ2 log(p − k)

n
.

In this case, the condition (35) is always satisfied, so that the
Lasso fails with high probability. The intuition underlying this
condition is thatλn must be sufficiently large to counteract

the sampling noise, which aggregates at rateΘ(
√

log p
n ).

To develop intuition for Theorems 3 and 4, we begin by
stating certain special cases as corollaries, and discussing
connections to previous work.

B. Some consequences for uniform Gaussian ensembles

First, we consider the special case of the uniform Gaussian
ensemble, in whichΣ = Ip×p. Previous work by Donoho [10],
as well as Candes and Tao[4] has focused on the special case
of the uniform Gaussian ensemble (i.e.,Xij ∼ N(0, 1), i.i.d.).
in the noiseless (σ2 = 0) and underdetermined setting
(n ≪ p). These papers analyze the asymptotic behavior of
the basic pursuit linear program (5), in particular when it
succeeds in recovering a sparse vectorβ∗ ∈ R

p based on
an n-vector y = Xβ∗ of noiseless observations. The basic
result is that exists a functionf : (0, 1) → (0, 1) such that
for any vectorβ∗ ∈ R

p with at most k = αp non-zeros
for someα ∈ (0, 1), the basis pursuit LP recoversβ∗ using
n = f(α)p observations, with high probability over choice
of the random design matrixX ∈ R

n×p from the uniform
Gaussian ensemble,

Suppose that we apply our results to analyze support re-
covery for the noisy version of this problem. For the uniform
Gaussian ensemble, we haveγ = 1, Cmin = Cmax = 1,
and ρℓ(I) = ρu(I) = 1, so that the threshold constants are
given byθℓ(I) = θu(I) = 1. Consequently, Theorems 3 and 4
provide a sharp threshold for the behavior of the Lasso, in
that failure/success is entirely determined by whether or not
the inequality

n

2k log(p − k)
> 1 +

σ2

λ2
nk

(36)

is satisfied or not. Consequently, we have the following corol-
lary for design matrices from the standard Gaussian ensemble.
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Corollary 2 (Standard Gaussian designs). (a) Suppose that
n = νp for someν ∈ (0, 1). Under this scaling, the Lasso can
only recover vectorsβ∗ with supportk ≤ (1 + o(1)) νp

2 log p .
It fails with probability converging to one for any vector
β∗ ∈ R

p with k = Θ(p) non-zero elements.

(b) Suppose thatk = αp for someα ∈ (0, 1). Then the
Lasso(3) requires a sample sizen > 2αp log[(1 − α) p] in
order to obtain exact recovery with probability convergingto
one for large problems.

This corollary establishes that there is a significant difference
between recovery using basis pursuit (5) in the noiseless
setting versus recovery using the Lasso (3) in the noisy
setting. When the amount of datan scales only linearly with
ambient dimensionp, then the presence of noise means that
the recoverable support size drops from a linear fraction (i.e.,
k = νp as in the work[10], [4]) to a sublinear fraction (i.e.,
k = O( p

log p ), as in Corollary 2).
Interestingly, information-theoretic analysis of this sparsity

recovery problem[34], [36] shows that the optimal decoder—
namely, an exponential-time algorithm that can search ex-
haustively over all

(
p
k

)
subsets—has a fundamentally different

scaling than the Lasso in some regimes. In particular, if the

minimum valueβmin = Ω(
√

log k
k ), then the optimal decoder

requires only a linear fraction of observations (n = Θ(p))
to recover signals with linear fraction sparsity (k = Θ(p)).
This behavior, which contrasts dramatically with the Lasso
threshold given in Theorems 3 and 4, raises an interesting
question as to whether there exist computationally tractable
methods for achieving this scaling.

C. Oracle properties

An interesting question raised by a reviewer is whether
the Lasso solution̂β has an “oracle property” [16]. More
specifically, consider the oracle that knows a priori the support
S of β∗, and then computes the optimal estimateβ̆S , in the
sense of minimizing the expectedℓ2 error E‖β̆S − β∗

S‖2. A
natural question is whether the errorE‖β̂S − β∗

S‖2
2 associated

with the Lasso estimatêβS has the same scaling as this oracle
error. Since the Lasso involves shrinkage (essentially, inorder
to exclude the variables inSc), one might expect that the
estimateβ̂S would be biased, thereby increasing the mean-
squared error relative to an oracle. The following corollary,
proved in Appendix E, confirms this intuition:

Corollary 3. Assume that the covariance matrix satisfies
conditions (26a), (26b), and (26c). Under the scaling of
Theorem 3, there is a constantc1 > 0 such that the Lasso
ℓ2-error satisfies

P
[
‖β̂S − β∗

S‖2
2 ≥ c1λ

2
nk

]
= 1 − o(1).

Remark: Since λ2
n = Ω( log p

n ), the ℓ2-error of the Lasso
exceeds theO(k/n) ℓ2-error that can be achieved by ordinary
least squares restricted to the correct subsetS. Consequently,
Corollary 3 shows that the one-step Lasso procedure does
not have the oracle property, in that itsℓ2-error is larger than
what could be achieved by a method that knew a priori the

correct subset. Of course, assuming that the Lasso correctly
estimates the subsetS, one could estimateβ∗

S at oracle rates
in ℓ2-norm by restricting toS; however, the Lasso does not
achieve this optimal scaling in a one-step manner.

D. Comparison to information-theoretic limits

A related question is whether someother algorithm—
whether or not is is computationally feasible—could perform
consistent subset selection for scalings(n, p, k) where the
Lasso fails. More specifically, Theorem 3 shows that the Lasso
can achieve consistent subset selection for sample sizesn
that scale with the problem sizep and sparsityk as n =
Ω(k log(p − k)). Could an optimal algorithm—namely, one
that searches exhaustively over all

(
p
k

)
subsets—-recover the

correct one with substantially fewer observations? Since the
initial posting of this work [33], our follow-up work[34], [36]
has investigated the information-theoretic limitations of the
subset selection problem whenX is drawn from the standard
Gaussian ensemble. This body of work shows that for sub-
linear sparsity (i.e.,k/p → 0), any algorithmrequires at least
Ω(k log(p−k)) samples to perform consistent subset selection.
Thus, up to constant factors, the Lasso performs as well as
any algorithm for sublinear subset selection in the standard
Gaussian ensemble. As discussed following Corollary 2, for
the regime of linear sparsity (k/p = Θ(1)) and suitably large
values of the minimum valueβmin, the Lasso doesnot always
achieve the information-theoretically optimal scaling.

V. PROOF OFTHEOREM 3

We begin with the achievability result for random Gaussian
designs (Theorem 3). As with the proof of Theorem 1, the
proof is based on the PDW method, and in particular consists
of verifying the strict dual feasibility check in Step 3, andthe
sign consistency check in Step 4.

Before proceeding, we note that sincek
n = o(1) under the

scaling of Theorem 3, the random Gaussian matrixXS has
rank k with probability one, whence the matrixXT

S XS is
invertible with probability one. Accordingly, the conditions of
Lemmas 2 and Lemma 3 are applicable.

A. Verifying strict dual feasibility

Recall the definition (28) of the conditional covariance
matrix ΣSc|S . We begin by conditioning onXS : since for
each j ∈ Sc, the vectorXj ∈ R

n is zero-mean Gaussian
(and possibly correlated withXS), we can decompose it into
a linear prediction plus prediction error as

XT
j = ΣjS(ΣSS)−1XT

S + ET
j ,

where the elements of the prediction error vectorEj ∈ R
n

are i.i.d., with Eij ∼ N(0, [ΣSc|S]jj). Consequently, condi-
tioning on XS and using the definition (10) ofZj , we have
Zj = Aj + Bj , where

Aj := ET
j

{
XS(XT

S XS)−1žS + ΠX⊥
S

(
w

λnn
)
}
, and (37a)

Bj := ΣjS(ΣSS)−1žS . (37b)
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By the mutual incoherence condition (26a), we have

max
j∈Sc

|Bj | ≤ (1 − γ). (38)

Conditioned onXS and w, the vectorEj does not depend
on the subgradient vectořzS ; this subgradient, determined in
Step 2 of the PDW method, is a function only ofXS andw,
since it is obtained from the solution of the restricted Lasso
program (9).

Since var(Eij) = [ΣSc|S ]jj ≤ ρu(ΣSc|S), conditioned
on XS and w, the quantityAj is zero-mean Gaussian with
variance at most

var(Aj) ≤ ρu

∥∥XS(XT
S XS)−1žS + ΠX⊥

S
(

w

λnn
)‖2

2

= ρu

{
1

n
žT

S (
XT

S XS

n
)−1žS +

∥∥ΠX⊥
S

(
w

λnn
)
∥∥2

2

}

︸ ︷︷ ︸
,

Mn

where we have used the Pythagorean identity, and introduced
the shorthandρu = ρu(ΣSc|S). The following lemma, proved
in Appendix F, controls the random scalingMn of this
variance bound:

Lemma 4. For any ǫ ∈ (0, 1/2), define the event
T (ǫ) = {Mn > Mn(ǫ)}, where

Mn(ǫ) :=
(
1+max{ǫ, 8

Cmin

√
k

n
}
) ( k

Cmin n
+

σ2

λ2
nn

)
. (39)

ThenP
[
T (ǫ)] ≤ 4 exp(−c1 min{nǫ2, k}) for somec1 > 0.

We exploit this lemma by conditioning onT (ǫ) and its
complement, thereby thatP[maxj∈Sc |Aj | ≥ γ] is upper
bounded by

P
[
max
j∈Sc

|Aj | ≥ γ | T c(ǫ)
]

+ 4 exp(−c1 min{nǫ2, k}).

Conditioned onT c(ǫ), the variance ofAj is at mostρuMn(ǫ),
so that by standard Gaussian tail bounds, we obtain the upper
bound

P[max
j∈Sc

|Aj | ≥ γ | T c(ǫ)] ≤ 2(p − k) exp
(
− γ2

2ρuMn(ǫ)

)
.

Since the assumptions of Theorem 3 ensure thatk/n = o(1)
and 1/(λ2

nn) = o(1), we are guaranteed thatMn(ǫ) = o(1).
Therefore, the exponential term is decaying in our tail bound;
we need the decay rate to dominate the(p− k) term from the
union bound. Using the definition (39) and following some
algebra, we find that it is sufficient5 to have

n

1 + ǫ
>

2 ρu

Cmin γ2
k log(p − k)

{
1 +

σ2Cmin

λ2
nk

}
.

Thus, we have established the sufficiency of the lower
bound (32) given in the theorem statement.

Now let us verify the sufficiency of the alternative
bound (34). Using the definition (29b) ofθu, and the given

5Here we have used the fact that for any fixedǫ > 0, we have8
p

k/n < ǫ
for n sufficiently large.

form (31) of λn, it is equivalent to have

n

1 + ǫ
> 2θu(Σ)k log(p − k) +

2ρuσ2

γ2

log(p − k)
φpρu

γ2

2σ2 log p
n

= 2θu(Σ)k log(p − k) +
n

φp

log(p − k)

log p
.

or after further manipulation, to have

n

2k log(p − k)
f(ǫ, φp) >

θu(Σ)

1 − 1
φp

. (40)

where f(ǫ, φp) =
(1+ǫ)−1− 1

φp

1− 1

φp

. We note that for any fixed

ǫ ∈ (0, 1/2), the functionf is increasing forφp ∈ [2,∞).
Therefore, we have

f(ǫ, φp) ≥ f(ǫ, 2) =
2

1 + ǫ
− 1 =

1 − ǫ

1 + ǫ
.

Recall the lower bound (34) onn, specified by some fixed
δ′ > 0. By choosingǫ ∈ (0, 1/2) sufficiently small so that
1−ǫ
1+ǫ > (1 + δ′)−1, the condition (34) implies that the
condition (40) holds.

B. Sign consistency andℓ∞ bounds

We have established that with high probability under the
conditions of Theorem 3, the Lasso has a unique solutionβ̂
with supportS(β̂) ⊆ S(β∗). We now turn to establishing the
sign consistency andℓ∞ bounds. From its definition (11) and
applying triangle inequality, the random variablemaxi∈S |∆i|
is upper bounded by

λn‖
( 1

n
XT

S XS

)−1
sgn(β∗

S)‖∞
︸ ︷︷ ︸

+ ‖( 1

n
XT

S XS)−1 1

n
XT

S w‖∞
︸ ︷︷ ︸

F1 F2

In order to analyze the first term, we require the following
lemma.

Lemma 5. Consider a fixed non-zero vectorz ∈ R
k and a

random matrixW ∈ R
n×k with i.i.d. elementsWij ∼ N(0, 1).

Under the scalingn = Ω(k log(p − k)), there are positive
constantsc1 and c2 such that for allt > 0:

P
[
‖[( 1

n
WT W )−1 − Ik×k] z ‖∞ ≥ c1‖z‖∞

]

≤ 4 exp(−c2 min{k, log(p − k)}).

Using this lemma, we can boundF1 as follows. By triangle
inequality, we have the upper boundF1

λn
≤ G1 + G2, where

G1 := ‖
(
ΣSS)−1 sgn(β∗

S)‖∞,

and

G2 := ‖
[
(
1

n
XT

S XS)−1 −
(
ΣSS)−1

]
sgn(β∗

S)‖∞.

The first term is deterministic, and bounded as
G1 ≤ (|||(ΣSS)−1/2|||∞)2, so that it remains to boundG2. By
definition, we haveXS = WS (ΣSS)1/2, whereWS ∈ R

n×k

is a standard Gaussian random matrix. Consequently, we can
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write

G2 = ‖Σ−1/2
SS

[( 1

n
WT

S WS

)−1 − Ik×k

]
Σ

−1/2
SS

~b‖∞

≤ |||Σ−1/2
SS |||∞ ‖

[( 1

n
WT

S WS

)−1 − Ik×k

]
Σ

−1/2
SS

~b‖∞,

where we have introduced the shorthand~b = sign(β∗
S).

Applying Lemma 5 withz = Σ
−1/2
SS

~b, we obtain that

P
[
G2 > c1|||Σ−1/2

SS |||∞‖z‖∞
]

≤ 4 exp(−c2 min{k, log(p − k)}).

Note that since‖~b‖∞ = 1, we have the upper bound
‖z‖∞ ≤ |||Σ−1/2

SS |||∞. Putting together the pieces, we conclude
that

P
[
F1 > c3λn|||Σ−1/2

SS |||2∞
]
≤ 4 exp(−c2 min{k, log(p−k)}).

(41)

Turning to the second termF2, conditioned onXS , the k-
dimensional random vector̃w := ( 1

nXT
S XS)−1 1

nXT
S w

is zero-mean Gaussian with variance at most
σ̃2

n(X) := σ2

n |||(XT
S XS)−1|||2. Define the event

T (XS) :=

{
σ̃2

n(X) ≥ 9σ2

nCmin

}
.

By the bound (60) from Appendix K, we have
P[T (XS)] ≤ 2 exp(−n/2). By the total probability rule,
we have

P[F2 > t] ≤ P[F2 > t | T c(XS)] + P[T (XS)].

Conditioned onT c(XS), the random variablẽw is zero-mean
Gaussian with variance at most9σ2

nCmin
so that by Gaussian

tail bounds, we have

P[‖w̃‖∞ ≥ t] ≤ 2k exp
(
− Cminnt2

162σ2

)
.

Setting t = 20
√

σ2 log k
Cminn yields that this probability vanishes

at rate2 exp(−c1n). Overall, we conclude that

P

[
F2 ≥ 20

√
σ2 log k

Cmin n

]
≤ 4 exp(−c1n). (42)

Finally, combining bounds (41) and (42), we conclude that
with probability greater than1 − c′3 exp(−c2 log k), we have

max
i∈S

|∆i| ≤ c3λn|||Σ−1/2
SS |||2∞ + 20

√
σ2 log k

Cmin n
:= g(λn).

Consequently, we have shown that the candidate dual vector
žS = sign(β∗

S) leads to a candidate primal solutioňβS such
that

max
i

|∆i| = ‖β̌S − β∗
S‖∞ ≤ g(λn),

with high probability. As long asβmin > g(λn), the pair
(β̌S , žS) are primal-dual feasible; by Lemma 2, they are the
unique Lasso solution, and show that it successfully recovers
the signed support.

VI. PROOF OFTHEOREM 4

We establish the claim by showing that under the stated
conditions, the random variablemaxj∈Sc Zj exceeds1 with
probability approaching one. By Lemmas 2(c) and 3(a), this
event implies failure of the Lasso in recovering the support.
From the proof of Theorem 3, recall the decomposition (37)
Zj = Aj + Bj . Using the bound (38) on theBj terms, it
suffices to show thatmaxj∈Sc Aj exceeds(2 − γ) with
probability approaching one.

From Lemma 2, in order for the Lasso to achieve correct
signed support recovery, we must havežS = sgn(β∗

S). Given
this equality and under conditioning on(XS , w), the vector
ASc is zero-mean Gaussian with covariance matrix̃Mn ΣSc|S ,
where the random scaling factor̃Mn has the form

{
1

n
sign(β∗

S)T (
XT

S XS

n
)−1 sign(β∗

S) +
∥∥ΠX⊥

S
(

w

λnn
)
∥∥2

2

}
.

The following lemma, proved in Appendix 6, provides control
on this random scaling:

Lemma 6. For any ǫ ∈ (0, 1/2), define the event
T (ǫ) = {M̃n > Mn(ǫ)}, where for some positive constantc2

Mn(ǫ) :=





c2
k
n , if k/n = Θ(1),

(1 − max{ǫ, 8
Cmin

√
k
n})

(
k

Cmax n + σ2

λ2
nn

)

if k/n = o(1).

ThenP
[
T (ǫ)] ≤ 4 exp(−c1 min{nǫ2, k}) for somec1 > 0.

Conditioning on the complementT c(ǫ), we obtain

P
[
max
j∈Sc

Aj > 2 − γ
]

≥ P
[
max
j∈Sc

Aj > 2−γ | T c(ǫ)
]{

1−2 exp(−c1 min{nǫ2, k})
}
.

The remainder of our analysis studies the random variable
maxj∈Sc Aj conditioned onT c(ǫ). We first note that it suffices
to show thatP[maxj∈Sc Ãj > 2 − γ] goes to one, where
the vectorÃ ∈ R

p−k is zero-mean Gaussian with covariance
Mn(ǫ)ΣSc|S . Letting ei ∈ R

p−k denote a unit vector with1
in position i, observe that for eachi 6= j, we have

E[(Ãi − Ãj)
2] = Mn(ǫ) (ei − ej)

T ΣSc|S(ei − ej)

≥ 2 Mn(ǫ) ρℓ(ΣSc|S),

where we have used the definition (27) ofρℓ. Consequently,
if we let {Ăj , j ∈ Sc} be i.i.d. zero-mean Gaussians with
varianceMn(ǫ) ρℓ(ΣSc|S), then we have established the lower
bound

E[(Ãi − Ãj)
2] ≥ E[(Ăi − Ăj)

2],

Therefore, the Sudakov-Fernique inequality [25] implies that
the maximum overÃ dominates the maximum over̆A: more
precisely, we haveE[max

j∈Sc
Ãj ] ≥ E[max

j∈Sc
Ăj ]. The {Ăj} are

i.i.d., so that by standard asymptotics of Gaussian extreme
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order statistics [25], for allν > 0, we have

E[max
j∈Sc

Ãj ] ≥ E[max
j∈Sc

Ăj ] (43)

≥
√

(2 − ν) Mn(ǫ) ρℓ(ΣSc|S) log(p − k),

oncep − k is large enough.

We now claim that the random variablemax
j∈Sc

Ãj is sharply

concentrated around its expectation.

Lemma 7. For any η > 0, we have

P

[∣∣max
j∈Sc

Ãj−E[max
j∈Sc

Ãj ]
∣∣ > η

]
≤ 2 exp

(
− η2

2Mn(ǫ)ρu

)
,

whereρu = ρu(ΣSc|S).

The proof, provided in Appendix I, makes use of con-
centration results for Lipschitz functions of Gaussian random
vectors [25], [24].

Combining the lower bound (43) and the concentration
statement from Lemma 7, for allν, η, ǫ > 0, we have the
lower bound

max
j∈Sc

Ãj ≥
√

(2 − ν)Mn(ǫ) ρℓ(ΣSc|S) log(p − k)− η (44)

with probability greater than1− 2 exp
(
− η2

2Mn(ǫ)ρu

)
. Conse-

quently, it suffices to establish the bound

2Mn(ǫ) ρℓ(ΣSc|S) log(p− k) ≥ 2 [(2 − γ) + η]2

2 − ν
, (45)

using choices ofη, ǫ for which η2

Mn(ǫ) ρu
→ +∞ as

(n, p, k) → +∞.

Case 1:If Mn(ǫ) → +∞ or Mn(ǫ) = Θ(1), then we may
set η2 = δ′Mn(ǫ) log(p − k) for someδ′ > 0. If δ′ > 0 is
fixed but chosen sufficiently close to zero (as a function ofν,
ǫ and other constants), then from the lower bound (44), there
is some constantc4 > 0 such that

P[max
j∈Sc

Ãj ≥ c4

√
log(p − k))] → 1.

Case 2: The other and more delicate possibility is that
Mn(ǫ) = o(1). In this case, we may choose any fixed
η > 0, and have the guarantee thatη2/Mn(ǫ) → +∞. Note
Mn(ǫ) = o(1) is possible only ifk/n = o(1), so that the
second line in the definition ofMn(ǫ) from Lemma 6 applies.

Moreover, for any fixedǫ > 0, we have 8
Cmin

√
k
n ≤ ǫ oncen

is sufficiently large, so we include only the terms involvingǫ.
Substituting this quantity into inequality (45) and performing
some algebra, we find that it suffices to choose fixedν, η > 0
andǫ ∈ (0, 1/2) such that

(2 − ν) (1 − ǫ)
[ 1

Cmax
+

σ2

λ2
nk

]
ρℓ(ΣSc|S)

k log(p − k)

n

> [(2 − γ) + η]2,

or equivalently, such that

ρℓ(ΣSc|S)

Cmax(2 − γ)2
[
1 +

Cmaxσ2

λ2
nk

]2k log(p − k)

n

>
[(2 − γ) + η]2

(2 − γ)2(1 − ν/2) (1 − ǫ)
.

Recall that under the assumptions of Theo-
rem 4, the sample size is bounded above as
n < 2θℓ(1 + Cmaxσ2

λ2
nk )(1 − δ)k log(p − k) for some fixed

δ > 0, where θℓ =
ρℓ(ΣSc|S)

Cmax (2−γ)2 . Substituting in these
relations, we find that find that after some algebraic
manipulation, it suffices to chooseǫ ∈ (0, 1/2) and ν, η > 0
such that

1

1 − δ
>

[(2 − γ) + η]2

(2 − γ)2(1 − ν/2) (1 − ǫ)
.

Note that the left-hand side is strictly greater than1. On
the right-hand side, the quantityγ ∈ (0, 1] is the mutual
incoherence constant, whereasǫ, ν, η are parameters that can
be chosen in(0, 1/2). By choosingǫ, ν, η to be strictly positive
but arbitrarily close to0, we can set the right-hand side
arbitrarily close to1, thereby satisfying the required inequality.

VII. I LLUSTRATIVE SIMULATIONS

In this section, we provide some simulations to confirm
the threshold behavior predicted by Theorems 3 and 4. We
consider the following three types of sparsity indices:

(a) linear sparsity, meaning thatk(p) = ⌈αp⌉ for some
α ∈ (0, 1);

(b) sublinear sparsity, meaning thatk(p) = ⌈αp/(log(αp))⌉
for someα ∈ (0, 1), and

(c) fractional powersparsity, meaning thatk(p) = ⌈αpδ⌉
for someα, δ ∈ (0, 1).

For all three types of sparsity indices, we investigate the
success/failure of the Lasso in recovering the sparsity pattern,
where the number of observations scales as

n = 2 θ k log(p − k),

where thecontrol parameterθ is varied in the interval(0, 2.4).
For all results shown here, we fixedα = 0.40 for all three
ensembles, and setδ = 0.75 for the fractional power ensemble.
We specified the parameter vectorβ∗ by choosing the subset
S randomly, and for eachi ∈ S settingβ∗

i equal to+βmin

or −βmin with equal probability, andβ∗
j = 0 for all indices

j /∈ S. For the results shown here, we fixedβmin = 0.50, but
have also experimented with decaying choices of the minimum
value. In addition, we fixed the noise levelσ = 0.5, and

the regularization parameterλn =
√

2σ2 log(k) log(p−k))
n in all

cases. For this choice ofλn, Theorem 4 predicts failure with
high probability for sequences(n, p, k) such that failure for
sequences such that

n

2k log(p − k)
< θℓ(Σ),
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Fig. 2. Plots of the rescaled sample sizeθ = n/[k log(p− k)] versus the probabilityP[S±(bβ) = S±(β∗)] of correct signed support
recovery using the Lasso for the uniform Gaussian ensemble.Each panel shows three curves, corresponding to the problemsizes
p ∈ {128, 256, 512}, and each point on each curve represents the average of200 trials. (a) Linear sparsity index:k = αp. (b)
Sublinear sparsity indexk = αp/ log(αp). (c) Fractional power sparsity indexk = αpδ with δ = 0.75. In all cases, the parameter
α = 0.40. The threshold in Lasso success probability occurs atθ∗ = 1, consistent with the sharp threshold predicted by Theorems3
and 4.

whereas Theorem 3 predicts success with high probability for
sequences such that

n

2k log(p − k)
> θu(Σ).

We begin by considering the uniform Gaussian ensem-
ble, in which each rowxk is chosen in an i.i.d. manner
from the multivariateN(0, Ip×p) distribution. Recall that for
the uniform Gaussian ensemble, the threshold values are
θu(I) = θℓ(I) = 1. Figure 2 plots the control parameter or
rescaled sample sizeθ versus the probability of success,
for linear sparsity (a), sublinear sparsity pattern (b), and
fractional power sparsity (c), for three different problemsizes
(p ∈ {128, 256, 512}). Each point represents the average of
200 trials. Note how the probability of success rises rapidly
from 0 around the predicted threshold pointθ∗ = 1, with the
sharpness of the threshold increasing for larger problem sizes.

We now consider a non-uniform Gaussian ensemble—in
particular, one in which the covariance matricesΣ are Toeplitz
with the structure

Σ =




1 µ µ2 · · · µp−2 µp−1

µ 1 µ µ2 · · · µp−2

µ2 µ 1 µ · · · µp−3

...
...

...
...

...
...

µp−1 · · · µ3 µ2 µ 1




, (46)

for someµ ∈ (−1, +1). The maximum and minimum eigen-
values (Cmin and Cmax) can be bounded using standard
asymptotic results on Toeplitz matrix families[19].

Figure 3 shows representative results for this Toeplitz family
with µ = 0.10. Panel (a) corresponds to linear sparsity
k = αp with α = 0.40), panel (b) corresponds to sublinear
sparsity (k = αp/ log(αp) with α = 0.40), whereas panel
(c) corresponds to fractional sparsity (k = αp0.75). Each
panel shows three curves, corresponding to the problem sizes
p ∈ {128, 256, 512}, and each point on each curve represents
the average of200 trials. The vertical lines to the left and right

of θ = 1 show the numerical values of the theoretical upper
and lower bounds on the threshold—that is,θu(Σ) andθℓ(Σ),
as defined in equation (29). Once again, these simulations
show good agreement with the theoretical predictions.

VIII. D ISCUSSION

The problem of recovering the sparsity pattern of a high-
dimensional vectorβ∗ from noisy observations has impor-
tant applications in signal denoising, compressed sensing,
graphical model selection, sparse approximation, and subset
selection. This paper focuses on the behavior ofℓ1-regularized
quadratic programming, also known as the Lasso, for estimat-
ing such sparsity patterns in the noisy and high-dimensional
setting. We first analyzed the case of deterministic designs,
and provided sufficient conditions for exact sparsity recovery
using the Lasso that allow for general scaling of the number of
observationsn in terms of the model dimensionp and sparsity
index k. In addition, we provided some necessary conditions
on the design and signal vector for support recovery. We
then turned to the case of random designs, with measurement
vectors drawn randomly from certain Gaussian ensembles. The
main contribution in this setting was to establish a threshold
of the ordern = Θ(k log(p − k)) governing the behavior of
the Lasso: in particular, the Lasso succeeds with probability
(converging to) one above threshold, and conversely, it fails
with probability one below threshold. For the uniform Gaus-
sian ensemble, our threshold result is exactly pinned down to
n = 2 k log(p − k) with matching lower and upper bounds,
whereas for more general Gaussian ensembles, it should be
possible to tighten the constants in our analysis.

There are a number of interesting questions and open
directions associated with the work described here. Although
the current work focused exclusively on linear regression,it is
clear that the ideas and analysis techniques apply to other log-
linear models. Indeed, some of our follow-up work[35] has
established qualitatively similar results for the case of logistic
regression, with application to model selection in binary
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Fig. 3. Plots of the rescaled sample sizeθ = n/[k log(p− k)] versus the probabilityP[S±(bβ) = S±(β∗)] of correct signed support
recovery using the Lasso for the Toeplitz family (46) of random design matrices withµ = 0.10. Each panel shows three curves,
corresponding to the problem sizesp ∈ {128, 256, 512}, and each point on each curve represents the average of200 trials. (a)
Linear sparsity index:k = αp. (b) Sublinear sparsity indexk = αp/ log(αp). (c) Fractional power sparsity indexk = αpδ with
δ = 0.75. The vertical lines to the left and right ofθ = 1 show the theoretical upper and lower boundsθu(Σ) and θℓ(Σ), from
equation (29).

Markov random fields. Another interesting direction concerns
the gap between the performance of the Lasso, and the per-
formance of the optimal (oracle) method for selecting subsets.
In this realm, information-theoretic analysis[34] shows that it
is possible to recover linear-sized sparsity patterns (k = αp)
using only a linear fraction of observations (n = Θ(p)).
This type of scaling contrasts sharply with the order of the
thresholdn = Θ(k log(p− k)) that this paper has established
for the Lasso. It remains to determine if a computationally
efficient method can achieve or approach the information-
theoretic limits in this regime of the triplet(n, p, k).
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APPENDIX

A. Sub-Gaussian variables and tail bounds

Parts of our analysis focus on noise vectorsw ∈ R
n in the

linear observation model (1) that have i.i.d. elements satisfying
a sub-Gaussian tail condition.

Definition 1. A zero-mean random variableZ is sub-Gaussian
if there exists a constantσ > 0 such that

E[exp(tZ)] ≤ exp(σ2 t2/2) for all t ∈ R. (47)

By applying the Chernoff bound and optimizing the exponent,
this upper bound (47) on the moment-generating function
implies a two-sided tail bound of the form

P[|Z| > z] ≤ 2 exp
(
− z2

2σ2

)
. (48)

Naturally, any zero-mean Gaussian variable with varianceσ2

satisfies the bounds (47) and (48). In addition to the Gaussian
case, the class of sub-Gaussian variates includes any bounded
random variable (e.g., Bernoulli, multinomial, uniform),any
random variable with strictly log-concave density [2], [24],
and any finite mixture of sub-Gaussian variables.

For future use, we also note the following useful property
(Lemma 1.7, [2]): if Z1, . . . , Zn are independent and zero-
mean sub-Gaussian variables with parametersσ2

1 , . . . , σ2
n, then

n∑

i=1

Zi is sub-Gaussian with parameter
∑n

i=1 σ2
i . (49)

B. Proof of Lemma 1

From the equivalent constrained form (4), we see that the
Lasso involves a continuous objective function over a compact
set, and so by Weierstrass’ theorem, the minimum is always
achieved. By standard conditions for optimality in a convex
program[20], a point β̂ ∈ R

p is optimal for the regularized
form of the Lasso (3) if and only if there exists a subgradient
ẑ ∈ ∂‖β̂‖1 such that1nXT Xβ̂− 1

nXT y+λẑ = 0. Substituting
in the observation modely = Xβ∗ + w and performing some
algebra yields equation (8), thereby establishing Lemma 1(a).
By standard duality theory [1], given the subgradientẑ ∈ R

p,
any optimal solutionβ̌ ∈ R

p of the Lasso must satisfy the
complementary slackness conditionẑT β̌ = ‖β̌‖1, which can
hold only if β̌j = 0 for all indicesj such that|ẑj | < 1, which
establishes Lemma 1(b). Lastly, ifXT

S(bβ)
XS(bβ) is strictly

positive definite, then when restricted to vectors of the form
(βS(bβ), 0), the Lasso program is strictly convex, and so its
optimum is uniquely attained, as claimed in part (c).

C. Proof of Lemma 2

(a) Suppose that steps 1 through 3 of the PDW construc-
tion succeed. Then, we have demonstrated a pair of vectors
β̌ = (β̌S , 0) ∈ R

p and ž ∈ R
p, such thatž ∈ ∂‖β̌‖1. It



16

remains to check that these vectors satisfy the zero subgradient
condition (8), so thaťβ is actually an optimal solution to the
Lasso. Writing out this condition in block form yields

1

n

[
XT

S XS XT
S XSc

XT
ScXS XT

ScXSc

] [
βS − β∗

S

0

]

− 1

n

[
XT

S

XT
Sc

] [
wS

wSc

]
+ λ

[
zS

zSc

]
=

[
0
0

]
. (50)

Since the pair(β̌S , žS) was obtained by solving the restricted
convex program (9), they must satisfy the top block of these
equations. Secondly, the bottom block of equations must also
be satisfied, since we used these sub-gradient condition to
solve for žSc in Step 3 of the PDW method. Lastly, the strict
dual feasibility guaranteed in Step 3 implies uniqueness, using
the assumed invertibility ofXT

S XS , and Lemma 1(c), which
completes the proof of Lemma 2(a).

(b) Suppose that in addition, the sign consistency condition
in Step 4 is satisfied. Then sincězS was chosen as an
element of the subdifferential∂‖β̌S‖1 in Step 2, we must have
sign(β̌S) = sign(β∗

S), from which Lemma 2(b) follows.
(c) Turning to Lemma 2(c), it is equivalent to prove the

following assertion: if there exists a Lasso solutionβ̂ ∈ R
p

with β̂Sc = 0 and sign(β̂S) = sign(β∗
S), then the PDW

method succeeds in producing a dual feasible vectorž with
žS = sign(β∗

S). Since XT
S XS is invertible by assumption,

the vector β̂S must be the unique optimal solution to the
restricted program (9), so it will be found in Step 1 of the PDW
method. Sincesign(β̂S) = sign(β∗

S) by assumption, the vector
ẑS = sign(β∗

S) is only subgradient that can be chosen in Step
2. Since(β̂S , 0) is an optimal Lasso solution by assumption,
then there must exist a dual feasible vectorẑSc such that
(sign(β̂S), ẑSc) satisfy the zero subgradient condition (8).

D. Proof of Lemma 3

The vectors(β̌S , žS) determined in Steps 1 and 2 of the
PDW must satisfy the top block of equation (50). Using the
assumed invertibility ofXT

S XS , we may solve fořβS −β∗
S as

follows:

β̌S − β∗
S =

( 1

n
XT

S XS

)−1[ 1

n
XT

S w − λžS

]
. (51)

Similarly, the vectoržSc determined in Step 3 of the PDW
must satisfy the zero-subgradient conditions (50). Note that it
enters only in the bottom block of equations. Consequently,
we may solve fořzSc in terms ofβ̌S − β∗

S and žS as follows:

ẑSc = XT
Sc

[
XS

(
XT

S XS

)−1
žS + ΠX⊥

S
(

w

λnn
)

]
. (52)

The elements of this vector are the variables{Zj} defined in
equation (10). Consequently, the claim of Lemma 3(a) follows.

Now suppose that the condition (13) holds. Note that the
vector ∆ from equation (11) is obtained by solving for
β̌S , as in equation (51), but assuming thatžS = sign(β∗

S).
But if condition (13) holds, then we can conclude that the
optimal solutionβ̌S to the restricted program (9) does satisfy
sign(β̌S) = sign(β∗

S), so that žS = sign(β∗
S) is indeed the

only valid choice of subgradient vector. This certifies that

the Lasso has a solution with the correct signed support, as
claimed. Conversely, if the Lasso has a solutionβ̌ with the
correct signed support, then∆i = β̌i −β∗

i , and condition (13)
must hold, thus completing the proof of Lemma 3(b).

E. Proof of Corollary 3

As shown in the proof of Lemma 3 (in particular, equa-
tion (51)), when the Lasso correctly recovers the signed
support set, its error is given by

β̂S − β∗
S =

( 1

n
XT

S XS

)−1[ 1

n
XT

S w − λn sgn(β∗
S)

]
.

By triangle inequality, the quantity‖β̂S − β∗
S‖2 is lower

bounded by

λn‖
( 1

n
XT

S XS

)−1
sgn(β∗

S)‖2 − ‖
( 1

n
XT

S XS

)−1 1

n
XT

S w‖2

≥ λn

√
k Λmin

[
(
1

n
XT

S XS)−1
]

︸ ︷︷ ︸
−‖

( 1

n
XT

S XS

)−1 1

n
XT

S w‖2

︸ ︷︷ ︸
.

T1 T2

Since XT
S XS/n is formed by Gaussian random matrices

with k ≤ n, then the bound (59) in Appendix K implies
that Λmin[( 1

nXT
S XS)−1] ≥ 1

9Cmax
with probability at least

1 − 2 exp(−n/2). Consequently, we have

P[T1 ≤ λn

√
k

9Cmax
] ≤ 2 exp(−n).

As for the second term, conditioned onXS , the quantity(
1
nXT

S XS

)−1 1
nXT

S w is zero-mean Gaussian with covariance
σ2

n (XT
S XS/n)−1. Letting w̃ ∈ R

k be a standard Gaussian
vector, we can re-expressT2 as

T 2
2 = w̃T σ2

n
(XT

S XS/n)−1 w̃

≤ σ2 ‖w̃‖2
2

n
|||(XT

S XS/n)−1|||2

Again applying the bound (60) from Appendix K, we have

P[|||(XT
S XS)−1/n|||2 ≥ 9

Cmin
] ≤ 2 exp(−n).

By χ2-concentration, we haveP[‖w̃‖2
2 ≥ 2k] ≤ 2 exp(−c2k).

Putting together the pieces, we conclude that the second term

satisfiesP[T2 ≥
√

18σ2k
Cminn ] ≤ 4[exp(−c1k)].

Consequently, with high probability, we have the lower
bound

‖β̂S − β∗
S‖2 ≥ λn

√
k

9Cmax
−

√
18σ2k

Cminn

=
λn

√
k

9Cmax

[
1 − c3

λn
√

n

]

≥ c4λn

√
k,

sinceλn
√

n → +∞.
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F. Proof of Lemma 4

SinceΠX⊥
S

is an orthogonal projection matrix, we have

‖ΠX⊥
S

(
w

λnn
)
∥∥2

2
≤ 1

λ2
nn

‖w‖2
2

n
.

Noting that‖w‖2
2/σ2 is χ2 with n degrees of freedom, by the

bound (54a), we have

P

[
‖ΠX⊥

S
(

w

λnn
)
∥∥2

2
≥ (1 + ǫ)

σ2

λ2
nn

]
≤ 2 exp(−3nǫ2

16
).

Turning to the first term definingMn, by applying Lemma 9)
from Appendix K—more specifically, in the form (58a)—we
obtain

1

n
žT

S (
XT

S XS

n
)−1žS ≤

(
1 +

8

Cmin

√
k

n

) ‖žS‖2
2

nCmin

≤
(
1 +

8

Cmin

√
k

n

) k

nCmin
,

with probability greater than1 − 2 exp(−k/2), which com-
pletes the proof.

G. Proof of Lemma 5

We begin by diagonalizing the random matrix
(WT W/n)−1, writing (WT W/n)−1 − Ik×k = UT DU ,
whereD is diagonal, andU is unitary. Since the distribution
of W is invariant to rotations, the matricesD and U are
independent. Since|||D|||2 = |||(WT W/n)−1 − Ik×k|||2, the
random matrix bound (58a) from Appendix K implies that

P[|||D|||2 > 8
√

k/n] ≤ 2 exp(−k/2).

We condition on the event{|||D|||2 < 8
√

k/n throughout the
remainder of the analysis.

For a fixed vectorz ∈ R
k, we define, for eachi = 1, . . . , k,

the random variable

Vi = eT
i UT DUz = ziu

T
i Dui + uT

i D
[ ∑

ℓ 6=i

zℓuℓ

]
,

where uj is the jth column of the unitary matrixU . Ob-
serve that the lemma statement concerns the random variable
maxi |Vi|. Since the{Vi} are identically distributed, it suffices
to obtain an exponential tail bound on{V1 ≥ t}.

Under our conditioned event on|||D|||2, we have

|V1| ≤ 8
√

k/n |z1| + uT
1 D

[ k∑

ℓ=2

zℓuℓ

]
. (53)

Consequently, it suffices to establish a sharp tail bound
on the second term. Conditioned onD and the vector
g :=

∑k
ℓ=2 zℓuℓ, the random vectoru1 ∈ R

k is uniformly
distributed over a sphere ink − 1 dimensions.6 Now con-
sider the functionF (u1) := uT

1 Dg; we claim that it is Lip-
schitz (with respect to the Euclidean norm) with constant at
most8

√
k/n

√
k − 1 ‖z‖∞. Indeed, given any pair of vectors

6One dimension is lost sinceu1 must be orthogonal tog ∈ R
k.

u1, u
′
1 ∈ R

k, we have

|F (u1) − F (u′
1)| = |(u1 − u′

1)
T Dg|

≤ ‖u1 − u′
1‖2|||D|||2 ‖g‖2

≤ 8
√

k/n

√√√√
k∑

ℓ=2

z2
ℓ ‖u1 − u′

1‖2,

= 8
√

k/n
√

k − 1 ‖z‖∞ ‖u1 − u′
1‖2,

where we have used the fact that‖g‖2 =

√∑k
ℓ=2 z2

ℓ , by the
orthonormality of the{uℓ} vectors.

Since E[F (u1)] = 0, by concentration of measure for
Lipschitz functions on the sphere [24], for allt > 0, we have

P[|F (u1)| > t‖z‖∞] ≤ 2 exp
(
− c1(k − 1)

t2

128 k
n (k − 1)

)

= 2 exp
(
− c1

nt2

128k
)

Taking union bound, we have

P[ max
i=1,...,k

|F (ui)| > t‖z‖∞] ≤ 2 exp
(
− c1

nt2

128k
+ log k

)
.

Sincelog(p− k) > log k, if we sett = 256k log(p−k)
c1n then this

probability vanishes at rate2 exp(−c5 log(p − k)). But since
n = Ω(k log(p − k)) by assumption, the quantityt is order
one, so that the claim follows.

H. Proof of Lemma 6

We begin by proving part (a), which requires only that
k ≤ n (and not thatk/n = o(1)). Using only the first term
definingM̃n, we have

M̃n ≥ 1

n
sign(β∗

S)T (
XT

S XS

n
)−1 sign(β∗

S)

≥ k

n

1

|||XT
S XS/n|||2

≥ k

n

1

9Cmax
,

where the final bound holds with probability at least
1 − 2 exp(−n/2), using equation (59) from Appendix K.

For part (b), we assume thatk/n = o(1). In this case,
can apply the concentration bound (58b) from Appendix K to
conclude that there are positive constantsc1, c2 such that

1

n
sign(β∗

S)T (
XT

S XS

n
)−1 sign(β∗

S)

≥ 1

Cmax

k

n

(
1 − 8

Cmin

√
k

n

)
,

with probability greater than1 − 2 exp(−k/2).

Turning to the second term iñMn, sinceΠX⊥
S

is an orthog-
onal projection matrix with rank(n−k) andw ∼ N(0, σ2I) is
multivariate Gaussian, the variable‖ΠX⊥

S
(w)‖2

2/σ2 is χ2 with
d = n−k degrees of freedom. Using the tail bound (54b), for
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any ǫ ∈ (0, 1/2), we have

P

[
‖ΠX⊥

S
(

w

λnn
)
∥∥2

2
≤ (1 − k

n
) (1 − ǫ)

σ2

λ2
nn

]

≤ 2 exp(− (n − k) ǫ2

4
).

Overall, we conclude that with probability greater than
1 − 4 exp(−c1 min{nǫ2, k}), we have

M̃n ≥ (1 − max{ǫ, 8

Cmin

√
k

n
})

(
k

Cmax n
+

σ2

λ2
nn

)
,

as claimed.

I. Proof of Lemma 7

Consider the functionf : R
p−k → R given by

f(u) :=
√

Mn(ǫ) max
j∈Sc

[
eT

j

√
ΣSc|S u

]
,

where ej denotes the unit vector with1 in position j, and√
ΣSc|S is the symmetric matrix square root. By construc-

tion, for a Gaussian random vectoru ∼ N(0, I), we have

f(u)
d
= maxj∈Sc Ãj . We now bound the Lipschitz constant of

f . For eachj = 1, . . . , p − k and pairs of vectorsu, v ∈ R
p−k,

we have

|f(u) − f(v)| ≤
√

Mn(ǫ)max
j∈Sc

|eT
j

√
ΣS|Sc(u − v)|

(a)

≤
√

Mn(ǫ) max
j∈Sc

∥∥eT
j

√
ΣSc|S

∥∥
2
‖u − v‖2

(b)

≤
√

Mn(ǫ) ρu(ΣSc|S) ‖u − v‖2,

where inequality (a) follows by Cauchy-Schwartz, and in-
equality (b) follows since

‖eT
j

√
ΣSc|S‖2

2 = eT
j (ΣSc|S)ej ≤ ρu(ΣSc|S),

using the definition (27) ofρu. Therefore, by Gaussian concen-
tration of measure for Lipschitz functions[24], we conclude
that for anyη > 0, it holds that

P[|max
j∈Sc

Ãj − E[max
j∈Sc

Ãj ]| ≥ η]

≤ 2 exp
(
− η2

2Mn(ǫ)ρu(ΣSc|S)

)
,

as claimed.

J. Tail bounds forχ2-variates

Given a centralizedχ2-variateX with d degrees of freedom,
then for all t ∈ (0, 1/2), we have

P
[
X ≥ d (1 + t)

]
≤ exp

(
− 3

16
d t2

)
, and (54a)

P
[
X ≤ (1 − t)d

]
≤ exp(−1

4
dt2). (54b)

The bound (54a) is taken from Johnstone [21], whereas the
bound (54b) follows from Laurent and Massart [23].

K. Spectral norms of random matrices

Here we collect some useful results about concentration of
spectral norms and eigenvalues of Gaussian random matrices.
We begin with the following basic lemma [7]:

Lemma 8. For k ≤ n, let U ∈ R
n×k be a random matrix

from the standard Gaussian ensemble (i.e.,Uij ∼ N(0, 1),
i.i.d.). Then for allt > 0, we have

P
[
||| 1
n

UT U − Ik×k|||2 ≥ δ(n, k, t)
]
≤ 2 exp(−nt2/2),

(55)

whereδ(n, k, t) := 2(
√

k
n + t) + (

√
k
n + t)2.

This result can be adapted easily to random matricesX
drawn from more general Gaussian ensembles. In particular,
for a positive definite matrixΛ ∈ R

k×k, settingX = U
√

Λ
yields n × k matrix with i.i.d. rows,Xi ∼ N(0, Λ).

Lemma 9. For k ≤ n, let X ∈ R
n×k have i.i.d. rows

Xi ∼ N(0, Λ).
(a) If the covariance matrixΛ has maximum eigenvalue

Cmax < +∞, then for all t > 0,

P

[
||| 1
n

XT X − Λ|||2 ≥ Cmaxδ(n, k, t)
]

≤ 2 exp(−nt2/2). (56)

(b) If the covariance matrixΛ has minimum eigenvalue
Cmin > 0, then for all t > 0,

P

[
|||(XT X

n
)−1−Λ−1|||2 ≥ δ(n, k, t)

Cmin

]
≤ 2 exp(−nt2/2).

(57)

Proof: (a) Letting
√

Λ denote the symmetric matrix
square root, we can writeX = U

√
Λ whereU ∈ R

n×k is
standard Gaussian (Uij ∼ N(0, 1), i.i.d.). Thus, we have

|||n−1XT X − Λ|||2 = |||
√

Λ[n−1UT U − I]
√

Λ|||2,
which is upper bounded byCmax |||n−1 UT U − I|||2, so that
the claim (56) follows from the basic bound (55).

(b) LettingU ∈ R
n×k denote a standard Gaussian matrix, we

write

|||(XT X

n
)−1 − Λ−1|||2 = |||Λ−1/2

[
(
UT U

n
)−1 − Ik×k

]
Λ−1/2|||2

≤ |||(UT U/n)−1 − Ik×k|||2
1

Cmin
,

so that claim (57) follows by applying the basic bound (55).

Finally, we state some particular choices oft that are useful
for future reference. First, if we sett =

√
k/n, then since

k/n ≤ 1, we have

δ(n, k,
√

k/n) = 4
{√

k

n
+

k

n

}
≤ 8

√
k

n
.

Consequently, we obtain specialized versions of the
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bounds (56), of the form

P
[
|||X

T X

n
− Σ|||2 ≥ 8Cmax

√
k

n

]
≤ 2 exp(−k/2), and (58a)

P
[
|||(XT X

n
)−1 − (Σ)−1|||2 ≥ 8

Cmin

√
k

n

]
≤ 2 exp(−k/2). (58b)

By setting t = 1 and performing some algebra, we obtain
another set of very crude but adequate bounds on the spectral
norms of random matrices. In particular, by triangle inequality,
we have

|||XT X/n|||2 ≤ |||Σ|||2 + |||XT X/n− Σ|||2
≤ Cmax + Cmaxδ(n, k, t)

with probability greater than1−2 exp(−nt2/2). Settingt = 1,
we find (using the boundk ≤ n) that δ(n, k, 1) ≤ 8 so that
we can conclude that

P[|||XT X/n|||2 ≥ 9Cmax] ≤ 2 exp(−n/2). (59)

A similar argument yields that

P[|||(XT X/n)−1|||2 ≥ 9

Cmin
] ≤ 2 exp(−n/2). (60)
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