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Abstract 

Background: Clustering methods have been widely applied to gene expression data in order 
to group genes sharing common or similar expression profiles into discrete functional groups. 
In such analyses, designing an appropriate (dis)similarity measure is critical. In this study, we 
aim to develop a new distance measure for gene expression profiles. The new measure is 
expected to be especially efficient when the shape of expression profile is vital in 
determining the gene relationship, yet the expression magnitude should also be accounted for 
to some extent. Results: The new measure, named TransChisq, was developed by separately 
modeling the shape and magnitude information and then using the estimated shape and 
magnitude parameters to define a distance measure in a new feature space. The feature space 
was constructed based on the specific clustering purpose of grouping genes with similar 
shape of expression curves, while the magnitude information should also be considered when 
determining the shape similarity. The new measure was employed into a k-means clustering 
procedure for performing clustering analyses. Results from applications to a simulation 
dataset, a developing mouse retina SAGE dataset, a small yeast sporulation cDNA dataset 
and a maize root affymetrix microarray dataset show the clear advantages of our method over 
others. Conclusions: The proposed method described in this paper shows great promise in 
capturing underlying biological relationship in gene expression profiles. This study also 
demonstrates that the construction of an appropriate feature space under certain clustering 
purpose is critical for a successful distance measure. We hope our method provides some 
new insights to further investigation in analyzing gene expression data. The clustering 
algorithms are available upon request. 
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Background 

  With the explosion of various ‘omic’ data, a general question facing the biologists and 
statisticians is how to summarize and organize the observed data into meaningful structures. 
Clustering is one of the methods that have been widely explored for this purpose [1-3]. In 
particular, it is being generally applied to gene expression data to group genes sharing 
common or similar expression profiles into discrete functional clusters. Many clustering 
methods are available, including hierarchical clustering [3], k-means clustering [4-5], self-
organizing maps [6], and various model based methods [7-9]. 

The focus of recent research in clustering analysis has been largely on the estimation of 
number of clusters in data with noise points [10-12] and the optimization of clustering 
algorithms [13-14]. In this present study, we focus on a different yet fundamental issue in 
clustering analysis: defining an appropriate measure of similarity for gene expression 
patterns. 

The most common distance or similarity measure for analyzing gene expression data are 
the Euclidean distance and Pearson correlation coefficient, which are simple and easy to be 
implemented.  However, in some situations, both measures could be unsuitable to explore 
the true gene relationship since Pearson correlation can be overly sensitive to the shape 
topology of an expression curve and Euclidean distance only cares about the magnitude of 
changes.  For other model-based distance or similarity measures [15-17], their successes 
would highly depend on how well the assumed probability model fits the data and the 
clustering purpose. 

In this study, we proposed a new distance measure, named TransChisq, to determine gene 
relationships concerning the shape of expression profiles. Moreover, the expression 
magnitude was also considered when measuring the shape similarity. The new method was 
designed based on a data transformation that emphasizes the shape of expression profiles and 
a distance measure PoissonC proposed for Serial Analysis of Gene Expression (SAGE) data 
in Cai et al. [18]. The new method should be applicable to other datasets besides SAGE data.  

The detailed idea of the new method is to separately model the shape and magnitude of 
gene expression profiles, and use the estimated shape and magnitude parameters to define a 
chi-square based distance measure in a new feature space. The construction of an appropriate 
feature space under certain clustering purpose is the key for the success of the new distance 
measure, since an effective summary of data can greatly improve and simplify the extraction 
of relationship between genes. We explored several different transformation schemes to 
construct the feature space, including a space with features determined by the mutual 
differences of original expression components, a component space derived from a parametric 
covariance matrix, and the principal component space in PCA analysis [19]. Each of the 
measures defined in these spaces exhibits distinct characteristics. In order to evaluate these 
measures, we implemented them in a k-means clustering procedure and analyzed a 
simulation dataset and three experimental datasets. The experimental datasets include a 
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developing mouse retina SAGE dataset of 153 tags [18], a small yeast sporulation cDNA 
dataset [20] and a maize root affymetrix microarray dataset [21].  From the results, we 
found that the distance measure defined in the first feature space, named TransChisq, showed 
the best performance in producing more accurate clusters or clusters of more biological 
relevance. We called the measure defined in the third feature space (the principal component 
space) as PCAChisq. 

We also implemented a set of widely used distance or similarity measures in the k-means 
clustering procedure for comparison. The measures we used include Pearson correlation (the 
corresponding algorithm named PearsonC), Euclidian distance (Eucli) and a chi-square 
based measure for Poisson distributed data (PoissonC). TransChisq was proved more 
powerful than other commonly used measures when the shape of expression profile is the key 
factor in determining the gene relationship, yet the expression magnitude should also be 
accounted for to some extent. The MATLAB source codes for all these algorithms are 
available upon request. 

Results and discussion 

In this section, we first used a maize expression dataset to illustrate the property of the new 
data transformations introduced in Method section. Next, for performance evaluation and 
comparison, we implemented TransChisq, PCAChisq (see Method section) and other 
commonly used distance or similarity measures into a k-means clustering procedure, and 
applied them to a simulation dataset, a yeast sporulation microarray dataset, and a mouse 
retinal SAGE dataset.  The results demonstrate the success of our proposed method in 
practical applications. 

Experimental maize gene expression data 

The demonstration dataset consists of nine Affymetrix microarrays profiling the gene 
transcription activity in three maize root tissues with three biological replicates: the proximal 
meristem (PM), the quiescent center (QC), and the root cap (RC) [21].  We used the 2092 
significantly differentially expressed genes, categorized into 6 classes of expression patterns 
by Jiang et al., to illustrate the properties of the newly proposed data transformation methods 
with a comparison to the traditional PCA. 

We first applied the transformation employed in TransChisq to the above data. Figure 
1(a)-(c) plot the expression profiles of the genes onto the new space, wherein each axis 
represents the gene expression difference in any two maize root tissues. The blue and red 
genes are from the two dominating classes (RC up or down regulated genes account for 94% 
of all genes) and the other four colors (orange, green, pink, light blue) correspond to the other 
four small classes (up- or down- regulated genes in QC or PM account for 6% of all genes). 
Three plots ascertain that the six classes can be recognized explicitly regardless of the 
relative size of each class in the new space. 

We next applied the transformation in (7), suggested by the parametric covariance matrix, 



�

to the same data (see Method). Figures 1(d)-(f) plot the expression profiles of the genes onto 
the (d) 1st and 2nd, (e) 2nd and 3rd, and (f) 1st and 3rd components in the new space. We see 
that the second and third components have correctly separated all six classes in Figure 1(e). 
The description of the six class separating regions, whose centers are the dotted lines in 

Figure 1(e), is provided in Table 1 (e.g., the genes around the line PC2 = 3 ⋅ PC3 < 0 are 
expected to be PM up-regulated).  

Both the above two transformations have a nice property: the information carried by each 
component is explicit and then the region in the new space corresponding to each class can 
be explicitly determined.  

For comparison, we performed a PCA analysis to the same data. Figures 1(g)-(i) plot the 
expression profiles of the genes onto the (g) 1st and 2nd, (h) 2nd and 3rd, and (i) 1st and 3rd 
principal components. We see that the direct application of PCA is only able to separate the 
two dominating expression patterns and fails to recognize other patterns, even when 
exhausting all principal components. The failure of PCA could be attributed to the use of 
empirical sample covariance matrix for principal components determination. In this dataset, 
about 94% genes are RC up or down regulated genes, which causes the most variance in data. 
The principal components, determined from this sample covariance matrix, thus mainly 
capture the two dominating clusters and miss the meaningful class information for the other 
four small groups. 

This example demonstrates the advantage of the proposed data transformations over PCA 
in keeping class information intact. These results shed a light on the successful applications 
of TransChisq in clustering analysis. 

 
Simulation study 

 In the following, we call the modified k-means algorithms with the measures TransChisq, 
PCAChisq, PoissonC, Pearson correlation coefficient and Euclidian distance implemented 
as TransChisq, PCAChisq, PoissonC, PearsonC and Eucli respectively.  
 To evaluate the performance of these algorithms, we first applied them to a simulation 
dataset. The distributions used to generate the simulation dataset are described in Table 2. It 
consists of 46 vectors of dimension 5 with components independently generated from 
different Normal distributions. The mean (�) and variance (�2) parameters of the Normal 
distributions are constrained by �2 = 3�. The 46 vectors belong to six groups (named A, B, C, 
D, E, and F) according to the Normal distributions they are generated from. The six groups 
are of size 3, 6, 6, 9, 7, and 15 respectively. Here, genes with similar expression profile shape 
are considered to be in the same group. Though the expression magnitude itself is not a factor 
for determining the gene clusters, its information is still useful and should be accounted for in 
comparing the expression profile shapes, i.e. the deviation penalty should be smaller for 
genes with larger expression magnitude.  

The clustering results from different methods are shown in Figure 2. Only TransChisq has 
correctly grouped genes into six classes. PCAChisq (with all PCs used), PoissonC, and 
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PearsonC mix group A and group B together, and Eucli clusters genes mostly based on the 
magnitude of gene expression levels between data rather than the shape changes. To reduce 
the magnitude effects, we further applied Eucli to the rescaled data. The rescaling is 
performed in the way that the sum of the components within each vector is set the same. The 
clustering result of Eucli on rescaled data (Figure 2(f)) is improved over that on original data, 
though it is still not perfect. 

We performed an additional 100 replications of the above simulation. TransChisq, 

PCAChisq and PoissonC correctly cluster 75, 37 and 43 of the 100 replicate simulation 
datasets respectively, while PearsonC, Eucli and Eucli on rescaled data never generate 
correct clusters. For PCAChisq, we have also tried different numbers and combinations of 
PCs to optimize the clustering results, which is however still not helpful to identify all the six 
classes. 

This application evaluates the performance of our method on normally distributed data 
with Poisson-like properties: variance increases with mean. Success in this dataset would 
shed a light on more broad applications of our method. 
 
Experimental mouse retinal SAGE data 

For further validation, we applied TransChisq, PCAChisq, PoissonC, PearsonC and Eucli 
to a set of mouse retinal SAGE libraries. The raw mouse retinal data consists of 10 SAGE 

libraries (38818 unique tags with tag counts ≥ 2) from developing retina taken at 2 day 
intervals, ranging from embryonic to postnatal and adult [18, 22]. 1467 of the 38818 tags 
with counts � 20 in at least one of the 10 libraries are selected.  To effectively compare the 
clustering algorithms, a subset of 153 SAGE tags with known biological functions were 
further selected.  These 153 tags fall into 5 clusters based on their biological function(s) (see 
Table 3(a)). 125 of these genes are developmental genes, which can be further grouped into 
four clusters by their expressions at different developmental stages. The other 28 genes are 
un-related to the mouse retina development. The average expression profiles for the five 
classes are shown in Figure 3. 

TransChisq, PCAChisq, PoissonC, PearsonC and Eucli are applied to group these 153 
SAGE tags into five clusters. Results show that TransChisq and PCAChisq outperform others 
(See Table 3(b)): 12, 12, 22, 26 and 38 of the 153 tags are wrongly clustered by TransChisq, 
PCAChisq, PoissonC, PearsonC and Eucli on rescaled data respectively. In general, 
PCAChisq would work well if the principal components can briefly capture the between-
class variations. In this example, we found that the 5 different expression patterns can be well 
separated in the principal component space. The results from Eucli on original data are too 
messy to report the number of wrongly clustered tags. The performance of TransChisq can 
be further improved to give 8 wrongly clustered tags when we use the transformation 

associated with all the row-switching vectors of e1,…, eT (see Method section).  
 

Microarray yeast sporulation gene expression data 
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To illustrate the effectiveness of our method at identifying genes with characterized 
patterns in a microarray analysis, we applied our method to a yeast sporulation dataset. Chu 
et al. [20] measured gene expression in the budding yeast Saccharomyces cerevisiae at seven 
time points during sporulation using spotted microarrays and identified seven distinct 
temporal patterns of induction. 39 representative genes for each of these seven patterns were 
used to define a model expression profile in that study.  According to the property of each 
pattern, the seven patterns are named as Metabolic, Early I, Early II, Early-Mid, Middle, 
Mid-Late and Late. The average expression profiles for these seven patterns are presented in 
Figure 5.  The profiles of Early I, Early II, Middle, Mid-Late and Late start induction at 0.5h, 
2h, 5h, 7h and 9h, respectively, and sustain expression through the rest of the time course. 
Metabolic profile is also induced at 0.5h like Early I, but decayed afterwards. The genes in 
Early-Mid are induced not only at the 0.5h and 2h like Early genes, but also at 5h and 7h like 
the Middle and Mid-Late genes, which makes it difficult to separate this pattern from others. 
Due to the complex data structure, direct clustering analysis using PearsonC or Eucli turns 
out to be unsuccessful (results not shown). 

Before analyzing the data, we first set the expression ratios below 0 to zero as in Figure 
6(a). This simplifies the expression patterns, but keeps the key properties of each pattern 
intact. The clustering results are briefly summarized in Table 4. We see that TransChisq is 
superior to other methods: 3, 7, 8, 13, 14 and 17 of the 39 genes are wrongly clustered by 
TransChisq, PoissonC, Eucli, PearsonC, PCAChisq and Eucli on rescaled data respectively. 
It is interesting to see that Eucli on rescaled data is working worse than Eucli on original data, 
which is suggesting that the magnitude information should not be ignored to determine the 
seven classes. As we have discussed and shown in Figure 6(b)-(f), all methods fail to 
discriminate the genes in Early-Mid from the genes in Early I, Early II, Middle, Mid-Late 
and Late. Furthermore, PCAChisq and PoissonC mix up two different patterns from 
Metabolic and Early I due to their similar induction time at 0.5h (Figure 6(c) and (d)), and 
PearsonC even split Metabolic group further into two separate clusters (Figure 6(e)). 

For PCAChisq, we have also tried different numbers and combinations of PCs to optimize 
the clustering results. The best result can be reached when first 5 PCs are used that results 3 
of the 39 genes were incorrectly grouped.  This optimal result is the same with that from 
TransChisq.  However, it is not feasible to exhaust all possible combinations of PCs to 
search for the optimal clustering result in practice.  
 

Conclusions 

In this study, we proposed a new distance measure, named TransChisq, to determine gene 
relationships concerning the shape of expression profiles. Moreover, the expression 
magnitude was considered when measuring the shape similarity. The new method was 
designed based on a data transformation that emphasizes the shape of expression profiles and 
a distance measure PoissonC proposed for SAGE data [18].  Results from applications to a 
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variety of datasets show the clear advantages of TransChisq over other methods. This also 
demonstrates that the data transformation we utilized is effective in projecting the data into 
an informative space regarding the presentation of “pattern” for each class.   

The proposed method described in this paper shows great promise but requires further 
study on possible data transformation schemes when the columns of original data matrices 
show complicated level of dependencies or when the clustering purpose is different. We hope 
our method provides some new insights to further investigation in gene expression 
experiments. 

 

Methods 

  Our method was proposed based on the PoissonC in Cai et al. [18]. So before describing 
the new method, we first gave a brief review on PoissonC.. 

Review on the Poisson-based distance measure, PoissonC, for SAGE data 

SAGE is one of the effective techniques for comprehensive gene expression profiling.  
The result of a SAGE experiment, called a SAGE library, is a list of counts of sequenced tags 
isolated from mRNAs that are randomly sampled from a cell or tissue. Ideally, each tag is 
uniquely mapped to a gene and its counts reflect the level of expression of the corresponding 
gene. SAGE data can be naturally modeled by Poisson distributions due to the data property; 
they are generated by “sampling,” which results in counts. PoissonC, an effective distance 
measure for tag count profiles, was developed under this context [18]. The method was 
summarized below. 

 Let Yi(t) be the count of tag i in library t, and Yi = (Yi(1),…, Yi(T)) be the vector of counts 
of tag i over a total of T libraries. Yi is regarded as the count profile of tag i, which represents 
the expression profile of the corresponding gene. Yi(t) was assumed to be Poisson distributed 
with expected count itγ , which can be further parameterized as ( )it i itγ λ θ=  to separately 
model the magnitude and shape of the count profiles. Here, �i represents the expression 
magnitude that is defined as the expected sum of counts of tag i over all libraries. �i(t) reflects 
the expression profile shape, which can be considered as the contribution of tag i in library t 
to the sum �i  expressed in percentage ( 1 ( ) 1T

t i tλ=Σ = ).  So �i(t)�i redistributes the tag counts 
according to the expression shape parameters ( ( )i tλ ’s), and the genes with similar ( )i tλ ’s are 
considered to be in the same cluster.  Under this model, the joint likelihood function for a 
cluster consisting of tags 1,2,…,m can be expressed as  

( ) ( ) ( )

( )1
1 1

exp( )( )
( | ) ( | , ,..., ) .                (1)

!

iY tm T
i i

m
i t i

t t
L f

Y t

λ θ λ θ
θ θ

= =

−
∝ = ∏∏1 m�,� Y Y ,...,Y λλλλ  

The maximum likelihood estimates of � and 1,..., mθ θ are 

� ( ) ( ) ( ) � ( ) ( )
1 1 1 1

ˆ,  and .
m m m m

i i i i i i
t i i i i t

Y t t Y t Y t Y tθ λ θ
= = = =

= = =� � � � ��   (2) 
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In order to evaluate how closely the observed samples are expressed to the estimated cluster 
model, a chi-square test statistic was adopted to measure the cluster dispersion: 

( ) � ( ) �( ) � ( ) �( )2

.i i i
i t

S Y t t tλ θ λ θ= −��     (3) 

This method was called as PoissonC.  The joint likelihood � �( | , )f 1 mY , ...,Y � �  can also be 

used to evaluate how well the observed samples Y1,…,Ym fit the expected Poisson models: 

� �( )log ,= −� i
i

L f iY � � .     (4) 

This method was called as PoissonL. Chi-square test statistic makes the penalty for deviation 
from a large expected count smaller than that for a small expected count, a property 
consistent with the “mean = variance” nature of Poisson distributions. So PoissonC is 
expected to perform similarly to PoissonL. In general, the smaller the value of S or L, the 
more likely the tags have similar patterns and belong to the same cluster. We should also 
note that because of the separately estimated parameters � and �, the statistics in (3) and (4) 
account for both the shape and magnitude information when measuring the cluster dispersion, 
though there is an emphasis on the shape.  

However the use of square of deviation from expectation in (3) could somewhat torture the 
gene relationship concerning the shape of expression curves in some situations. For example, 
we considered an expression vector Y = (15, 30, 15), and its relationship with two clusters 
wherein the expected expression profiles of Y are 1

EY =(5, 50, 5) and 2
EY =(25, 10, 25) 

respectively. It is reasonable to expect that Y is closer to the first cluster because of the high 
expression observed on the middle component in both Y and 1

EY . The measures in (3) and (4), 
however, determine that Y has the same distance to 1

EY  and 2
EY . By (3), the distance between 

Y and 1
EY  is 2 2 2(15 5) / 5 (30 50) / 50 (15 5) / 5 48− + − + − = ; the distance between Y and 2

EY  
is 2 2 2(15 25) / 25 (30 10) /10 (15 25) / 25 48− + − + − = . By (4), the distance between Y and 1

EY  
is 15 30 15log((exp( 5)5 /15!)(exp( 50)50 / 30!)(exp( 5)5 /15!)) 24.81295− − − − = and between Y and 

2
EY  is 15 30 15log((exp( 25)25 /15!)(exp( 10)10 / 30!)(exp( 25)25 /15!)) 24.81295.− − − − = This 

result is clearly not desirable. The poor performance of (3) and (4) in this example can be 
attributed to the fact that they neglect the direction of difference when penalizing the 
deviation from the expected value and thus lose some shape information. In order to address 
this omission, we proposed to define a distance measure in a new feature space, wherein the 
expression profile shape can be more appropriately described and extracted. The construction 
of a proper feature space under certain clustering purpose is essential for defining an 
effective distance or similarity measure. In next section, we explored several different 
transformation schemes to construct new feature spaces. These spaces, with different 
characteristics, are expected to be useful in different situations.  
  
Newly proposed distance measures: TransChisq and PCAChisq 

Below we presented our new measures, which were proposed on the basis of the 
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probability model introduced in the previous section. 
 
The distance measure based on a simple data transformation: TransChisq 

Let us consider again the example presented in the previous section, where PoissonC and 
PoissonL consider Y = (15, 30, 15) to be equally distant from the two clusters with expected 
profile 1

EY =(5, 50, 5) and 2
EY =(25, 10, 25) respectively. The failure of PoissonC and 

PoissonL in this case is due to the neglects of the direction of difference when penalizing the 
deviation from the expected value. A simple yet natural feature space motivated by this 
example is then to consider the space consisting of the mutual differences of original vector 
components. That is, given a gene with expression profile/vector Yi = (Yi(1),…,Yi(T)), the 
transformed vector Zi is of dimension T(T-1)/2 with components in the form of Yi(t1)-Yi(t2) 
for t1 = 1,...,T-1 and t2 = (t1+1),...,T. These mutual differences can provide more profound 
interpretation regarding the shape changes of gene expression profiles and thus complement 
the weakness of PoissonC and PoissonL. 

According to the Poisson model in the previous section, E(Yi(t1)-Yi(t2)) = ( )1 2( ) ( )i i it tλ λ θ−  
and Var(Yi(t1)-Yi(t2)) = ( )1 2( ) ( )i i it tλ λ θ+ . Then for a cluster consisting of tags 1, 2,…, m, we 
can define the following statistic to measure the cluster dispersion: 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )

( ) ( )( ) � ( ) � � ( ) �( )( ) � ( ) � � ( ) �( )
1 2

1 2

2

1 2 1 2 1 2
,

2

1 2 1 2 1 2
,

       ,

trans i i i i i i
i t t

i i i i i i
i t t

S Y t Y t E Y t Y t Var Y t Y t

Y t Y t t t t tλ θ λ θ λ θ λ θ

= − − − −

= − − − +

��

��
     (5) 

where � ( )tλ and �iθ can be estimated by (2). We call this measure as TransChisq. In general, 

the smaller the value of Strans, the more likely the tags have similar expression patterns and 

belong to the same cluster. For the previous example of determining the relationship between 

Y = (15, 30, 15) and two clusters with expected profiles 1
EY  = (5, 50, 5) and 2

EY  = (25, 10, 

25), TransChisq considers that Y is closer to the first cluster 1
EY , which makes more sense 

intuitively. 

 

The data transformation and distance measure based on a parametric covariance matrix  

Here we consider the data transformation determined by a covariance matrix in the following 

parametric form:   

 , 1,...,cov( ) ( ) ,  with = 0 if  and =  if ,ij i j T ij iji j i jγ γ α γ β== = > = ≠R X  (6) 

where X  is the data matrix with n observations on the rows and T variables on the columns, 
and the matrix R is the covariance matrix of the T variables. That the matrix R takes this 
form is equivalent to the conditions that the variables have identical variances, and that the 
covariance of every pair of variables is equal. These two conditions are biologically 
reasonable considering that normalized arrays have identical distributions and thus in 
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particular equal variances, and that all pairs of variables would exhibit equal covariance (or 
un-correlated when 0β = ) if each component had been equally important (or independent) 
to determine a class.  

This covariance matrix has two different eigenvalues 1 ( 1)Tη α β= + −  and 2η = =�  

Tη α β= − . The corresponding orthonormal eigenvector to the eigenvalue 1η  is 
T

1 )(1/ , ,1/T T=e � . The orthonormal eigenspace of the eigenvalue 2 Tη η= =�  is not 
unique. One set of column orthonormal eigenvectors, denoted by 1 2, , ..., Te  e   e , was presented 
in the Appendix I. Given a gene expression profile Yi = (Yi(1),…,Yi(T)), we did the 
transformation of Yi into the eigenspace of R, that is  

Zi = (Zi1,…, ZiT) = Yi 1 2( ... )Te  e   e .                     (7) 
This transformed space has nice properties that each component explicitly captures different 
aspects of the expression profile: the component related to e1 reflects the expression 
magnitude; the component associated with e2 represents the expression difference between 
Yi(1) and Yi(2); the component linked with e3 characterizes the expression of Yi(1)+Yi(2)-
2Yi(3); etc. 

We defined a distance measure based on the above transformation and the Poisson-based 
probability model. Under the Poisson model, E(Zit) = E(Yi) te = ( (1)i iλ θ , …, ( ) )i iTλ θ te , 
Var(Zit) = ( (1)i iλ θ , …, ( ) )i iTλ θ 2

te  and Cov(Zit, Zik) = 0 when t k≠ . Then for a cluster 
consisting of tags 1, 2, …, m, we can measure the cluster dispersion by: 

( )

� ( ) � � ( ) �( )( ) � ( ) � � ( ) �( )

2
_

1,..,

2
2

2,..,

( ) ( )

           1 ,..., 1 ,..., .

trans N it it it
i t T

it i i t i i t
i t T

S Z E Z Var Z

Z T Tλ θ λ θ λ θ λ θ

=

=

= −

= −

� �

� � e  e
 (8) 

We should note the connection between this measure and the TransChisq in (5). For the 
transformation in (7), as we have mentioned, the new component associated with e2 
represents the expression difference between Yi(1) and Yi(2). However, the orthonormal 
eigenspace of a covariance matrix is not unique. An immediate alternative of the column 
vector e2 can be obtained by a row-switching transformation of e2, for which the associated 
component could represent the expression difference of any two original vector components, 
not necessary the Yi(1) and Yi(2). Under this consideration, the transformation associated with 
TransChisq is therefore equivalent to a transformation determined by all the possible row-
switching vectors of e2.  

This, however, also raises a shortcoming of Strans_N in (8) and a not serious limitation of 
TransChisq. For Strans_N, different eigenspaces could generate different values of Strans_N. 
Though the problem could be overcome by using all the possible row-switching vectors of 

1 2, , ..., Te  e   e  (note that e1 is invariant under row-switching transformations) in principle, it is 

not computationally feasible since the computation cost increases exponentially with the 
dimension of the transformed data space. The problem of TransChisq lies in the use of only 

the row-switching vectors of e2, due to which it has the potential of losing the information 
carried by e3 or other eigenvectors. However, the application results showed that TransChisq 
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algorithm is efficient in terms of both performance and running time. This implies that the 
potential information loss in TransChisq is minor and could be ignored in most cases 
practically. 

 
The distance measure based on the PCA data transformation: PCAChisq 

We have explored new data transformation schemes useful for extracting desired information. 
For comparison, we also performed the Principal Components Analysis (PCA) [19]. PCA is a 
statistical technique for determining key features of a high dimensional dataset. In more 
detail, PCA approach uses the first few principal components (PCs), which are determined by 
the eigenspace of the sample covariance matrix, in data analysis. The first few PCs capture 
most of the variation in the original data set while the last few PCs are usually believed to 
capture only the residual noise in the data. Recently, PCA has been explored as a method for 
clustering gene expression data [23-29] and proved useful in simplifying the analysis of a 
high dimensional dataset in many situations. However, we should note that a blind 
application of PCA in clustering analysis could be dangerous, since PCA chooses principal 
component axes based on the empirical covariance matrix of overall data rather than class 
information, and thus it does not necessarily give good clustering results [30].  

By substituting a set of PCs for the orthonormal eigenvectors ( )1 2 ... Te  e   e  in (8), we 
defined a new distance measure named PCAChisq. In some theoretical [31] and empirical 
[24] studies, it has been observed that the first few PCs determined by the empirical sample 
covariance matrix in PCA are not always helpful to extract biologically meaningful signals 
from data. Thus, we considered all PCs in this study unless PCAChisq shows better 
performance with the first few PCs. Results section gives some examples showing the 
positive and negative effects of applying PCA transformation. 
 
Clustering analysis of microarray data 

We would also like to explore the potential application of the proposed measures in 

clustering analysis of microarray data when Normal distribution is assumed and the Poisson-

like property that variance increases with mean holds. Given a microarray dataset of 

expressions of n genes in T experiments, adopting the parameter notations in the Poisson 

model, we assumed that the expression of gene i in experiment t, Xi(t), is normally distributed 

with mean ( )( )i i it tµ λ θ=  and variance ( )2 ( )i i it k tσ λ θ= , where k is a constant that can be 

estimated from data. The derivation of the maximum likelihood estimates (MLEs) of ( )i tλ  

and iθ  under the normal model is rather involved.  So we borrowed the estimators in (2); it 

can be shown that �iθ  in (2) is unbiased and �tλ  in (2) is consistent under the above 

restricted normal model (See Appendix II). With �iθ  and �tλ  available under the normal 

model, TransChisq, PCAChisq and PoissonC can then be employed in a clustering analysis 

of microarray data. 
  For both oligonucleotide and cDNA microarray data, the strong dependence of the 
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variance on the mean, in particular, variance increasing with mean, has been widely observed 
and studied [32-33]. Therefore, it is reasonable to expect that our restricted normal model is 
more or less valid and applicable to many microarray datasets. One example on the yeast 
sporulation dataset has been shown to demonstrate the power of TransChisq in analyzing 
microarray data (see Results and discussion section). But we should also note that TransChisq 
should not be used when the assumption on the relationship between the variance and the 
mean is seriously violated. 
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Figures 

Figure 1 - Plots of 2092 maize genes on to the three different feature spaces. 

(Top line) Genes are plotted on to the new space wherein each axis represents the gene 

expression difference in any two maize root tissues (TransChisq method); (Middle and 
Bottom lines) Genes are plotted on to the (d)(g) 1st and 2nd, (e)(h) 2nd and 3rd, and (f)(i) 1st 
and 3rd components by parametric covariance matrix (Middle line), and PCAChisq (Bottom 
line). Blue/red dots: RC up-/down-regulated genes, cyanide/pink dots: PM up-/down-
regulated genes, green/orange dots: QC up-/down-regulated genes, respectively. 

Figure 2 - Graphs of clustering results for the simulation data.  

Horizontal axis represents the index of the 46 genes, which belong to six groups (named A, B, 

C, D, E and F) that are marked at the top of the figure; vertical axis represents the index of 
the cluster that each gene has been assigned by each algorithm. 

Figure 3 - Average expression profiles for the 153 SAGE tags. 

153 tags falling into 5 classes based on their biological functions are chosen from a 
developing mouse retinal SAGE dataset, and the average expression profiles for each class 
are shown. 125 of these genes are developmental genes grouped into four clusters (Early I, 
Early II, Late I and Late II) by their expressions at different developmental stages and the 
other 28 genes are un-related to the mouse retina development. 

Figure 4 - Clustering results for the SAGE data.  

Horizontal axis represents the index of the 153 tags, which belong to five groups (named 

Early I, Early II, Late I, Late II and Non.) that are marked at the top of the figure; vertical 
axis represents the index of the cluster that each gene has been assigned by each algorithm. 

Figure 5 - Average expression profiles for the 39 representative genes in the yeast 

sporulation data. 

39 representative genes are chosen from each of the seven expression patterns of the yeast 
sporulation data, and average expression profiles for each set are shown.  
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Figure 6 – Clustering results for the yeast sporulation data. 

(a) Original expression profiles of the 39 representative genes from 7 functional groups in the 
yeast data. (b)-(f) Expression profiles of 7 groups after applying different clustering 
algorithm. The resulting plots by Eucli on rescaled data were too messy to present. The x-axis 
represents different time points of 0h, 0.5h, 2h, 5h, 7h, 9h, 11.5h; the y-axis represents the 
normalized log-ratio expression levels. 

 

Tables 

Table 1 - Six expression patterns of maize gene expression dataset and their 

separating regions described by PC2 and PC3. 

Table 2 - Five dimensional simulation dataset with Normal distributions ( 2 3σ µ= ). 

Table 3(a) - Functional categorization of the 153 mouse retinal tags (125 

developmental genes; 28 non-developmental genes). 

Table 3(b) - Comparison of algorithms on the 153 SAGE tags. 

Table 4 - Comparison of algorithms on the 39 yeast sporulation genes. 

 

Additional files 

Appendix I - One set of orthonormal eigenvectors 

This file contains the derived one set of orthonormal eigenvectors referred in the Method 

section. 

Appendix II – Proof of the properties of Poisson parameters under normal model 

This file shows the proof that the �iθ  in (2) is an unbiased estimator of iθ  and � ( )tλ  in (2) 

is a consistent estimator of ( )tλ  under the suggested normal model.�
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Table 1. Six expression patterns of maize gene expression dataset and their separating 
regions described by PC2 and PC3. 

Class index Expression patterns 
Center of separating regions 
described by PC2 and PC3 

1 PM > (QC � RC) PC2 = 3 ⋅ PC3 < 0 
2 PM < (QC � RC) PC2 = 3 ⋅ PC3 > 0 
3 QC > (PM � RC) PC2 = 3− ⋅ PC3 > 0 
4 QC < (PM � RC) PC2 = 3− ⋅ PC3 < 0 
5 RC > (PM � QC) PC2 = 0; PC3 > 0 
6 RC < (PM � QC) PC2 = 0; PC3 < 0 

 
Table 2. Five dimensional simulation dataset with Normal distributions 2 3σ µ= . 

Group ID          Mean parameters of the Normal distributions ( µ ) 

Group A a1 ~ a3 1 1 1 15 150 

Group B b1 ~ b6 15 1 1 1 150 

c1 ~ c4 10 30 30 60 10 
Group C 

c5 ~ c6 100 300 300 600 100 

d1 ~ d7 200 70 70 10 10 
Group D 

d8 ~ d9 2000 700 700 100 100 

e1 ~ e5 210 120 10 10 10 
Group E 

e6 ~ e7 2100 1200 100 100 100 

f1 ~ f3 5 50 5 5 5 
f4 ~ f6 5 75 5 5 5 
f7 ~ f9 5 100 5 5 5 
f10 ~ f11 50 500 50 50 50 
f12 ~ f13 50 750 50 50 50 

Group F 

f14 ~ f15 50 1000 50 50 50 
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Table 3 (a). Functional categorization of the 153 mouse retinal tags          
(125 developmental genes; 28 non-developmental genes). 

Function Groups  
Early I Early II Late I Late II Non-dev. 

Total 

Number of tags 32 34 32 27 28 153 

 
Table 3 (b). Comparison of algorithms on the 153 SAGE tags 

Algorithm 
Number of tags 
in incorrect clusters 

Percentage of tags  
in incorrect clusters 

TransChisq 12 7.8 
PCAChisq 12 7.8 
PoissonC 22 14.4 
PearsonC 26 17.0 
Eucli on rescaled data 38 24.8 
Eucli NA NA 

Clusters generated by Eucli are too messy. 

 

Table 4. Comparison of algorithms on the 39 yeast sporulation genes. 

Algorithm 
Number of genes in 
incorrect clusters 

Percentage of genes 
in incorrect clusters 

TransChisq 3 7.7 
PCAChisq 14 35.9 
PoissonC 7 18.0 
PearsonC 13 33.3 
Eucli 8 20.5 
Eucli on rescaled data 17 43.6 
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Appendix I. 

One set of T column eigenvector of the covariance matrix in (6) is given by 

[ ]
( ) ( )
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1 1

1 1 1
1

1
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� �=
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e e I
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 ,    (S1) 

where ( 1) ( 1)T T− × −I  is an (T-1)-dimensional identity matrix. Orthonormal eigenvectors can be 

further obtained by applying the Gramm-Schmidt procedure which orthogonalize each 

eigenvector ( ie ) with respect to all the other eigenvectors to give i⊥e : 
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Finally, we can obtain one set of orthonormal eigenvectors of (S1) as follows: 
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For ease of notation, we used ei instead of i⊥e  in the main text to denote the orthonormal 

eigenvectors. By randomly permuting the rows (performing row-switching transformations), 

we can obtain alternative orthonormal eigenspaces of the covariance matrix in (6). 
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Appendix II. 

Let the expression of gene i at experiment t, Xi(t), follow a Normal distribution with mean 

( ) itλ θ  and variance ( ) ik tλ θ , where k is a constant. We want to show that the �iθ  in (2) is 

an unbiased estimator of iθ  and � ( )tλ  in (2) is a consistent estimator of ( )tλ  under this 

normal model. By (2), �iθ  and � ( )tλ  can be computed by 
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Statement 1. �iθ  is unbiased. 

Proof: �( ) ( )( ) ( )( ) ( )
1 1 1

T T T

i i i i i
t t t

E E X t t tθ λ θ θ λ θ
= = =

= = = =� � � . So �iθ  is an unbiased estimator 

of iθ .     � 

 

Statement 2. � ( )tλ  is a consistent estimator of ( )tλ . 

Proof: For � ( )tλ  to be a consistent estimator of ( )tλ , it is sufficient to show that 

� ( ) ( )t tλ λ−  converges to 0 in probability. By (S4), we have 
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We first consider the numerator (Mn) of (S5).  
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So the numerator Mn converges to 0 in probability as n goes to infinity. Now we consider the 

denominator (Dn) in (S5). It is reasonable to assume that iθ ’s are uniformly bounded. That is 

that there exists a positive real value A and B, such that iA Bθ≤ ≤  for any i. Then we have 
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Consequently, for any 0ε > , we have 
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So � ( ) ( ) n
n

M
Dt tλ λ− =  converges to 0 in probability as n goes to infinity, and then � ( )tλ  is a 

consistent estimator of ( )tλ .    � 


